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Abstract

Molecular simulations begin with an underlying energy model or force field, and

from this, can predict diverse physical properties. However, force fields were often

developed with relatively limited datasets, yet accuracy for diverse properties across

a broad chemical space is desirable, so tests of such accuracy are particularly impor-

tant. Here, to this end, we calculate 237 infinite dilution activity coefficients (IDACs),

comparing with experimental values from NIST’s ThermoML database. We found that

calculated IDAC values correlate strongly with experiment (Pearson R of 0.92± 0.01),

and allow us to identify specific functional groups which appear to present challenges

to the force field employed. One potentially valuable aspect of IDACs, as compared to

solvation free energies which have been frequently employed as force field tests, is that

the same molecules serve both as solutes and solvents in different cases, allowing us to

ensure force fields are not overly tuned to one particular environment or solvent.
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1 Introduction

Molecular simulations see widespread use in calculating various physical and biological prop-

erties of interest, with a key goal being predictive molecular design — the ability to design

molecules which have desired physical properties and activity (e.g. adequate solubility while

binding to a biological target, for example). Such simulations begin with an underlying en-

ergy model, or force field, giving the energy and forces as a function of the atomic positions.

This energy model, then, determines the accuracy of calculated properties, thus considerable

attention is paid to force field parameterization.

Force fields have long been parameterized based on both quantum mechanical calcula-

tions (e.g. for torsional potentials and in some cases electrostatics)1 and condensed phase

properties, including density, heat of vaporization, and others1 including mixture data.2 Sol-

vation free energies of molecules in water (hydration free energies, for gas-to-water transfer)

and solvation free energies in other solvents have become a standard test of force fields,

and thus have comprised a component of various blind prediction challenges like the Sta-

tistical Assessment of Modeling of Proteins and Ligands (SAMPL) challenges.3–7 This is in

part because they can be calculated quite precisely, allowing quantitative tests of force field

accuracy,8,9 and even identification and repair of specific systematic errors.10 Other force

fields have actually used such free energies as part of their parameterization — especially

the GROMOS family of force fields,1,11 but also more recent versions of OPLS.12,13

While solvation free energies have proved valuable to the field, these are rather diffi-

cult to measure experimentally and few if any such experiments are still conducted.3 In

contrast, infinite dilution activity coefficients (IDACs) are more readily measured experi-

mentally,14–17 are available in relatively large quantities in databases such as NIST’s Ther-

moML and DECHEMA’s DETherm, and can yield insight into solvation by different solvents.

Specifically, IDACs (also represented by γ∞) are related to solvation free energies by:18–20

2



γ∞

i = exp
(∆Gsolv

i −∆Gself solv
i

kBT

)

·
ρsolventmolar

ρpure solute

molar

(1)

where ∆Gsolv
i is the solvation free energy of a solute i, ∆Gself solv

i is the solvation free energy

of a solute i in its bulk phase, kB is the Boltzmann constant, T is the absolute temperature,

and ρmolar is the molar density of component of the mixture.

In addition to their experimental tractability, IDAC values have at least two additional

potential advantages over solvation free energies. First, IDACs for a given solute of interest

can be obtained in different solvents, allowing the potential to explore how well a force field

represents molecules both as solutes and as solvents to ensure both contexts are treated ac-

curately. Second, molecules become polarized when transferred from gas phase to water and

hydration free energies with conventional force fields (excepting polarizable force fields) might

not be able to describe this phenomenon well; parameterization to hydration free energies

could even build in systematic error resulting from lack of treatment of polarization. This

may be particularly important; while an IDAC calculation also involves a transfer between

environments, it is a transfer between two condensed phases, which usually is associated to

a much smaller change in polarization of the solute molecule in comparison to transfer from

the gas phase, as in the case of hydration free energies. IDAC values thus could potentially

be an even better way to test how a force field represents a condensed-phase environment

than hydration free energies, and potentially a better source of parameterization data.

Here, we focus on the calculation of IDAC values using an automated protocol for the

estimation of solvation free energies, and comparison of these values with experimental results

given in NIST’s ThermoML database. While IDAC values have been calculated before using

molecular simulations, especially in the chemical engineering literature,19,21 to our knowledge

this is the first work calculating these on a large scale as a test of general-purpose small

molecule force fields, and marks our first effort towards beginning to use these in force

field parameterization. Additionally, this may also be the first study on IDACs outside

the chemical engineering literature, and the first to use them to test general-purpose small
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molecule force fields.

The overall usefulness of solvation free energies for molecular modeling has led to the

availability of several databases of these values, such as FreeSolv,22,23 ATB,24,25 MNSol26

and CompSol,27 ∆Gsolv and ∆Ghyd. We hope this work may spur a similar interest in

infinite dilution activity coefficients.

2 Methods

In this work, we focus on automatically calculating a large number of infinite dilution activity

coefficients for comparison with reference values automatically obtained from NIST’s Ther-

moML database. Our focus is not on optimizing our protocol for calculation of these coeffi-

cients; rather, we use a protocol previously optimized for calculation of solvation/hydration

free energies, and simply apply it to calculate the solvation free energies needed for IDAC

calculations without further optimization. Thus, as we discuss further below, additional

optimization may be possible.

Here, we briefly recap several key concepts behind activity coefficients and then detail

the computational methods employed.

2.1 Conceptual background

Most readers will likely remember activity coefficients from introductory physical chemistry,

where these are used to assess how, essentially, the effective concentration of a molecule in

solution deviates from ideality. The activity of a component in a system, or its effective con-

centration, is the product between the component’s activity coefficient and its concentration

and is related to the chemical potential of a component in a mixture (µi) (Eq. 2). Thus, infi-

nite dilution activity coefficients (IDACs) tell us how far an infinitely dilute mixture is from

ideal solution conditions14,15,28–30 and they are of considerable experimental and theoretical

interest.15,18,19 Deviations from ideality indicate whether a solvent is particularly good or
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particularly poor for a given solute.

The chemical potential of a component is related to its activity coefficient and concen-

tration via

µi = µ0
i +RT ln γ ·

[i]

[i0]
, (2)

where γ is the activity coefficient, µ0
i is the standard chemical potential of the component,

[i] and [i0] are its concentration and standard concentration, R is the ideal gas constant, and

T is the absolute temperature. If γ = 1, the mixture is ideal; if γ > 1 or 0 < γ < 1, the

mixture behaves non-ideally.

There are different ways to express activity coefficients, including in terms of concen-

tration, mole fraction, or partial pressure. Here, we focus on activity coefficients expressed

in terms of mole fraction (χ) henceforth, but it is worth remembering the connections to

concentration and other forms.

Activity coefficients can also be defined relative to different reference states. Here, we

define activity coefficients with reference to an ideal solution in the sense of Raoult’s law,

where, for each component in a mixture, γi → 1 as χi → 1.31 This defines the activity

coefficient as 1 for the pure solution, and is called the Lewis-Randall standard state. Other

reference states are also commonly employed. For example, a common textbook definition

uses an ideal dilute solution as a reference state, in which case the activity coefficient is 1

for a solute at infinite dilution. Here, however, we use the Lewis-Randall reference state as

it is the state employed by the database of experimental values we utilize.

Measurement of IDAC can be conducted via a variety of techniques. IDACs are related

to the slope of isothermal pressure-composition phase diagrams when the mole fraction

tends to zero, and are proportional to the Henry’s Law constant,32 thus their measurement

of depends on factors such as the volatility of solvent and solute.30 Techniques such as

gas-liquid chromatography,30,33 high-performance liquid chromatography33 and differential

ebulliometry30,33,34 are traditionally used to measure activities in extremely dilute systems at
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varying concentrations, leading to the infinite dilution activity coefficient by extrapolation.33

There has been considerable interest in predicting these coefficients18–21,30,33–42 due to their

use in phase equilibria studies in chemical engineering applications.14,15,29,36

2.2 Computational methods

We obtained experimental activity coefficients at infinite dilution from ThermoML,43–45 an

XML-based system for storage and exchange of thermochemical data. ThermoML was ac-

cessed on July 27, 2017 using thermopyl,46 a Python tool that allows interaction with the

database and provides access via a Pandas Dataframe. We made a search for IDACs of or-

ganic compounds containing less than 40 heavy atoms at temperatures between 250 K and

400 K. All the activity coefficients were obtained approximately at 101 kPa. The search

was restricted to molecules containing no elements other than C, O, N, F, P, S, and Cl.

The heaviest solute molecule of the set was hexadecane (226.44 Da) and the lightest was

methanol (32.04 Da). The heaviest solvent molecule was tetradecanoic acid (228.37 Da)

and the lightest was water (18.02 Da). Most molecules were fairly rigid with less than three

rotatable bonds, but a few, such as hexadecane and undecane, had up to 13 rotatable bonds.

We found 263 coefficients but limited our study to 237 coefficients. The reduced set

size resulted from problems building the simulation boxes for some systems with solutes or

solvents with long chains, as well as parameterization issues for some tertiary amines. The

final set contains a variety of combinations of a moderate number of different solvents and

solutes. This allows us to look for trends in accuracy both as a function of solute and as

function of solvent.

All solvation free energy calculations were performed using now relatively standard al-

chemical free energy calculations described further below, but automated via the OpenEye

Orion cloud computing platform. The calculations could have been done on local computing

resources using an identical protocol, but Orion allowed for higher throughput.

Setup of calculations began with processing the solute and solvent names from the data
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obtained from ThermoML. From names, SMILES strings were generated using OpenEye’s

OEChem toolkits, and stored as OEMol objects,47 with one OEMol for each solvation free energy

calculation to be done (i.e. one for calculation of the solvation free energy of each solute in

pure solute, and one for calculation of solvation free energy of the solute in pure solvent).

In each case we attached the SMILES string of the solvent (generated with OEChem) to the

OEMol for the solvent, along with the target temperature and pressure for each simulation

(as these were required by the Orion workflow we constructed) and then output the resulting

set of molecules to an OpenEye binary file (.oeb) for use on Orion.

The Orion workflow then conducted solvation free energy calculations from these input

files in a straightforward manner, ultimately using Yank48 to run free energy calculations

as further detailed below. Before input into Yank, however, simulation boxes were built

and parameters were assigned. Specifically, starting geometries for simulation boxes were

built (in PDB format) from the solute and the specified solvent (as indicated by SMILES

strings attached to the input molecule) using the OpenEye toolkits to generate molecular

structures and conformers, and PACKMOL (version 17.221) to build boxes consisting of the

solvated systems.49 Force field parameters were then assigned via Antechamber and Am-

bertools (version 16.16.0), using the GAFF 1.8 small molecule force field50 and AM1-BCC

charges51,52 (the latter as assigned by the OpenEye toolkits, version 2018.2.1) to describe

solvents and solutes, with the exception of water, which was modeled by using TIP3P.53

Once parameterized, the resulting systems were stored as ParmEd54 (version 2.7.3) objects

and attached to the OpenEye data record to progress through the workflow.

Following parameterization, equilibration stages were run using OpenMM55–57 (version

7.1.1), followed by production free energy calculations done with Yank (version 0.20.1), us-

ing protocols that are now relatively standard (e.g. as in23). Nonbonded interactions were

calculated for all inter-atomic distances under a cutoff of 9 Å, with a long range dispersion

correction applied to the energy and pressure.58 Such corrections are, in isotropic systems,

enough to typically make hydration/solvation free energies independent of cutoff well before
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9Å59,60 when combined with lattice-sum electrostatics. Electrostatic interactions were com-

puted using particle mesh Ewald (PME).61,62 In our simulations, bonds involving hydrogen

were constrained. All simulations were conducted at the target temperature and pressure

associated with the ThermoML data for the experiment, as provided by our input files.

Equilibration was done with standard equilibration workflows (“floes”) from OpenEye on

Orion, utilizing OpenMM. These consisted of 0.2 ns of NVT equilibration for each system

with the solute heavy atoms harmonically restrained with 2.0kcal/(mol·Å2) spring constants,

then an additional 0.2 ns of NPT equilibration with 0.1kcal/(mol · Å2) spring constant re-

straints on the same atoms, to equilibrate solvent molecules and bring the system to the

correct temperature and pressure. Yank simulations were then started from these equili-

brated structures, but additional data from the free energy simulations was then discarded

as equilibration as discussed below.

Solvation free energies were computed with consistent protocol for every solute-solvent

combination in an effort to test the overall accuracy of this approach when applied at scale;

no attempt was made to ensure the protocol was ideally adapted to each individual case

examined. In the approach employed here, each Hamiltonian replica exchange simulation

run using Yank had 1000 iterations of 500 MD steps of 2 femtoseconds each at each of

the 20 λ values we employed (λ values given in the Supporting Information), totaling one

nanosecond per replica. Every iteration, exchanges were proposed between across all replicas

using Gibbs sampling (rather than just pairwise swaps) to accelerate mixing,63 as is standard

with this protocol in Yank. Solvation free energies were estimated with the Multistate

Bennett Acceptance Ratio64 (MBAR), an extension of the Bennett Acceptance Ratio65 that

considers the overlap between a given state and all the others in the path between the

end states, as provided by Yank. MBAR is the default free energy estimator in Yank,

and the one we use. It is statistically optimal in a particular sense,64 and also performs

consistently well,66 supporting this choice. Free energies and uncertainties are calculated

via MBAR, following automatic equilibration detection within Yank and subsampling data
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at intervals of the statistical inefficiency of the timeseries,67 as is standard in Yank. Our

systems were already equilibrated before Yank simulations began; however, in some cases

Yank concluded discarding additional data to equilibration was needed. Ultimately this

resulted in analysis of a varying amount of data (and significantly varying uncertainties) for

each solute/solvent combination since automatic equilibration detection discarded varying

amounts of data, and the autocorrelation time was different in each case. Since different

solute-solvent combinations also have different overlap between λ values even given the same

protocol, that also drove variation in uncertainties from case to case.

The protocol applied here for calculation of solvation free energies typically works rela-

tively well/reliably for calculation of hydration free energies (e.g.23), even without Hamilto-

nian exchange. However, further optimizations of the protocol might be possible to improve

efficiency and/or convergence. Additionally, as Hamiltonian exchange is additionally em-

ployed here with only 1000 iterations, mixing across all replicas might not be ideal — some

solute-solvent combinations might pose particular challenges. An alternate approach to ex-

plore in future studies might be to run Yank until a specified statistical precision is reached

for each calculation (which is available as an option); however, this would make the total

compute time required unclear until the project’s completion. Here, however, our focus here

was instead on a large-scale test of the present fully-automated approach, saving optimiza-

tions of the protocol for future work.

For calculation of the density term, 5ns Langevin dynamics simulations were run using

OpenMM,56,57 with otherwise the same settings, to obtain densities of pure solvents and

pure solutes to calculate the ratio in Eq. 1.

3 Results

IDACs (γ∞), as defined in the Introduction, tell us how far from ideality a mixture is when the

concentration of the solute is infinitely small. They are widely used as input for engineering
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models, such as for prediction of liquid-vapor equilibria, and they can be calculated from

solvation free energies (Eq. 1).18–20 The natural logarithm of γ∞ is proportional to the

difference between the free energy of solvation of a solute i in a given solvent (∆Gsolv
i ) and

the free energy of solvation of the solute molecule in its pure bulk phase (∆Gself solv
i , free

energy of ”self-solvation”) plus the ratio between the densities of the solvent and the pure

solute:

kBT ln γ∞

i = ∆Gsolv
i −∆Gself solv

i + kBT ln
( ρsolventmolar

ρpure solute

molar

)

(3)

where kB is the Boltzmann constant and T is the absolute temperature.

Here, we calculated the solvation free energies using MBAR64 and compared to experi-

mental values as shown in Figure 1.
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Figure 1: Calculated versus experimental kBT ln γ∞ for 237 solute – solvent pairs taken from
ThermoML. Calculated values are on the vertical axis and experimental on the horizontal.

We found an average error (in free energy units, as in Equation 3) of 0.06 ± 0.05 kcal ·

mol−1, a root-mean-square (RMS) error of 0.73 ± 0.05 kcal · mol−1, an average unsigned

error of 0.48 ± 0.04 kcal ·mol−1, a Kendall τ value of 0.67 ± 0.03, and a Pearson R value of
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0.92 ± 0.01.

Here, we choose to report our error in free energy units rather than the dimensionless form

used by γ itself in order to allow us to set our accuracy in the context of that typically seen

for solvation free energies. In previous work on hydration free energies in a blind challenge

context, the best half of methods participating typically yielded RMS errors around 1.5

kcal/mol,60 consistent with retrospective studies such as that on FreeSolv23 with somewhat

larger errors seen for calculation of logD60 and somewhat smaller for logP.68 Thus it may be

surprising that the RMS error here is actually lower than that on hydration free energies,

despite the fact that these calculations involve a difference in solvation free energies as well

as an excess density term. Perhaps this lower-than-expected error suggests a cancellation of

error between solvents, or that hydration free energy calculations pose particular challenges.

Given that each IDAC tells us how well a solute molecule interacts with the solvent

with respect to how well it interacts with itself, Fig. 1 can potentially also give us some

idea whether a given force field underestimates or overestimates the intermolecular forces

between solvent and solute. The diagonal line in Fig. 1 corresponds to the cases where the

simulation agreed with the experiment. If a point is located below the diagonal line, the

force field potentially underestimates solute – solvent interactions relative to solute – solute

interactions. On the other hand, if a point is located above the diagonal line, the force field

potentially overestimates solute – solvent interactions relative to solute – solute interactions.

Having an extensive set of IDAC values allows us to look for systematic errors in the

force field and how it describes particular functional groups and solvents, as has been done

previously in studies with hydration free energies.9,69 Here, in order to detect possible issues

with force field parameters, we partitioned our dataset by functional groups and by solvents.

The absolute value of the average error of the free energy differences for functional groups

with more than five occurrences in the set can be seen in Figure 2.

Here (Fig. 2), analysis of errors by functional group is slightly complicated by the fact

that errors could depend on the identity of the solvent or the identity of the solute. In the
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Figure 2: Absolute values of the average errors (AE) for solute functional groups with more
than five occurrences in the set. Error bars denote the standard error in the mean of the
quantity on the vertical axis.

limit of very large datasets this should be easily surmountable, because a large number of

samples would ensure that analysis by solute would involve averaging over a large number

of solutes, and analysis by solvent would involve averaging over a large number of solutes.

Here, however, our set is relatively small, so it is important to not place too much confidence

in any analysis of systematic errors. Still, such analysis can suggest likely targets needed for

follow up studies to confirm potential problems, and some trends seem clear.

Here, based on our analysis of errors in activity coefficients broken down by the functional

group observed in the solute, we found that sulfoxide had the largest absolute value of

the average error of the set (Figure 2). In fact, the only sulfoxide present in the set was

dimethylsulfoxide (DMSO), and all IDACs involving DMSO were for this molecule in different

solvents (DMSO was never present as a solvent in the simulations). The average error of

+1.4 ± 0.2 kcal/mol suggests a systematic error in the GAFF description of DMSO (Fig.
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3). The data for primary amines and dialkyl ethers also suggests significant issues, but is

less pronounced than the case of DMSO.
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AE = 1.4±0.2 kcal mol 1

y= x± 1.0kcal mol 1

sulfoxide

Figure 3: As a solute, dimethylsulfoxide (DMSO) shows a positive shift (average error of 1.7
± 0.2 kcal·mol−1 for DMSO) with respect to the y = x line, suggesting a potential systematic
error in the force field. The set contained no measurements where DMSO was a solvent.

We did a similar analysis of IDAC values broken down by particular solvent. The absolute

average error of the free energy differences by solvents with more than five occurrences can

be seen in Figure 4.

Given that solvents tended to occur many times in IDAC measurements, our analysis by

solvent provided more data concerning potential systematic errors than did our analysis by

solute. Methanol, formamide, and ethylene glycol were the solvents whose IDACs showed

the largest average absolute errors of the set (Figure 5).

Figure 5 singles out solvents containing four different functional groups for particular

analysis, and highlights several potentially important trends. For instance, when examining

water as a solvent, IDAC values are nearly evenly spread around the x = y line for IDACs in

water (Fig. 5(d)), which indicates that water undersolvates and oversolvates solutes nearly

equally often. This is perhaps expected, given that water models are typically given special
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Figure 4: Absolute values of the average errors (AE) for solvents with more than five occur-
rences in the set. Error bars denote the standard error in the mean of the quantity on the
vertical axis.

attention and parameterized quite carefully. Still, the average error for water is nonzero by a

significant margin (0.5 ± 0.1 kcal·mol−1) suggesting a modest systematic error may remain.

In contrast, Fig. 5 (a) and (b) show more systematic shifts away from the diagonal line,

suggesting larger potential systematic errors for these solvents. Average errors were 0.9 ± 0.1

kcal·mol−1, -0.7 ± 0.2 kcal·mol−1 for kBT log γ for solutes in diethylene glycol and methanol,

respectively, backing up the trend visible by inspection. In both cases, the average error is

more than three times the statistical uncertainty. The case of tetradecanoic acid (panel (c)

is less clear. Still the size of our sample (11, 7 and 11 IDACs per solvent in (a), (b), and

(c)) limits our ability to investigate in much detail, and leaves open other possibilities – for

example, for the case of diethylene glycol, all solutes are hydrophobic, so a systematic error

in treatment of hydrophobic compounds could result in such a trend, and for methanol, all

solutes are amines, so a systematic error in treatment of amines could result in this trend.
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(a) (b)

(c) (d)

diethylene glycol

Figure 5: Plots highlighting the IDACs for solutes in diethylene glycol (a), methanol (b),
tetradecanoic acid (c), and water (d), four of the cases solutes with the largest average error.
AE stands for the average error of computed values for the green star-shaped points. Several
of these plots suggest possible systematic errors in the treatment of particular solvents; for
example, by eye, panels (a) and (b) suggest at least a modest systematic offset, whereas
(c) and (d) are less clear (though the average error is nonzero by a statistically significant
margin. Additional data can be found in the Supporting Information.
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We believe, however, that the expansion of the data set can yield further insights.

4 Discussion

Here, we calculated a large number of infinite dilution activity coefficients and compared

with experimental values extracted automatically from NIST’s ThermoML database. We

used relatively standard (if computationally demanding), easily-automated approaches for

calculation of solvation free energies, and performed the calculations in a high-throughput

manner on OpenEye’s Orion cloud computing platform. This allowed the calculations to

run in a highly parallel and relatively efficient manner and complete on an overnight time-

frame. Interestingly, agreement between calculated and experimental values is actually quite

good, and these calculations are also able to highlight clear systematic issues for particular

functional groups or types of solutes/solvents, suggesting promising areas for investigation

of possible force field deficiencies. The fact that infinite dilution activity coefficients can

also be measured in a relatively straightforward manner means these will likely serve as a

valuable source of data for future tests of computational methods.

Our calculations were kept rather short for computational efficiency, resulting in some-

what high statistical errors. For computational efficiency, we ran only 1 ns per lambda value,

allowing each kBT log γ∞ to be computed quite quickly. With additional sampling at each

lambda value we could further reduce the statistical error and better ensure that sampling

is adequate, so extending the simulations may be something to explore in future work. Ad-

vances in hardware have already provided considerable gains in this area, already making

it possible to perform the large number of calculations reported here in a relatively short

amount of time, in part due to the availability of GPUs.70

Each calculated kBT log γ∞ value requires two solvation free energy calculations, which

modestly increases the computational cost in comparison to our traditional approach of us-

ing hydration free energies, which requires a single free energy calculation23 . This small
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increase is worthwhile given that hydration free energies involve gas-to-water transfers while

many events computational chemistry seeks to predict (e.g. binding, solubility, partitioning,

permeation, etc.) involve transfer between condensed phases. Thus IDACs may be particu-

larly appealing for force field parameterization since IDAC calculations involve the transfer

of molecules between condensed phases, similar to biological and pharmacological events

which typically involve transfer from one condensed phase environment to another.

An additional interesting avenue for future inquiry is to assess the accuracy of the sol-

vation free energy and self-solvation free energy separately to determine the exact origins

of any systematic errors. Specifically, the self-solvation free energy is directly related to the

vapor pressure,71–73 and vapor pressures for many compounds have been measured. Thus,

follow up work could separately examine accuracies of IDACs and vapor pressures, allowing

any discrepancies to be traced back to solute-solute or solute-solvent interactions. We plan

to revisit this topic in future work as it may prove invaluable for force field development.

The abundance of kBT ln γ∞ values around zero (Figure 1) is noteworthy and is poten-

tially an artifact of the type of data which is available in ThermoML. Recall that a value of

0 here corresponds to an activity coefficient of 1 (see Section 1). Specifically, a large portion

of the available data is for transfer of solute molecules to solvents of similar polarity — for

example, transfer of a polar solute to a polar solvent, or (more commonly) transfer of a

nonpolar solute to a nonpolar solvent. If the dataset contained more cases of transfer of a

nonpolar solute to a polar solvent, or a polar solute to a nonpolar solvent, we would expect to

see more values substantially different from 0. Thus, we believe that the IDAC data should

be expanded to include more activity coefficients for compounds of very different polarity

than the solvent, to capture more features of transfers between nonpolar (or weakly polar)

environments to very polar environments.
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5 Conclusion

Here we reported our results calculating some 237 different infinite dilution activity coef-

ficients (IDACs) for small molecules in various solvents, and comparing to experiment. In

general, results were quite promising and showed considerable predictive power over a range

of 6 kcal/mol in free energy units.

Our results suggest that IDAC values can potentially play an important role in testing

force fields and assisting with force field parameterization. They are frequently measured

for applications in engineering while other commonly used quantities, such as hydration free

energies (∆Ghyd), are not routinely measured. Furthermore, since IDACs can be calculated

in a straightforward manner using solvation free energy calculations, they can be calculated

with essentially the same degree of precision as solvation free energies, and with the same

procedures. IDACs actually could be even better than solvation free energies, which involve

transfer between gas and liquid phases, since they are related to transfer between two con-

densed phases – pure solute and pure solvent – which makes them an ideal candidate to test

how a force field represents condensed-phase environments.

While we have made the case that IDAC values are potentially superior to solvation free

energies for force field testing and parameterization, there are other properties which have

some of the same advantages. For example, partition and distribution coefficients can be

estimated from differences in solvation free energies in different solvents, avoiding the issues

with phase transfer which plague solvation free energies. Thus these have seen some use

in the SAMPL series of challenges — particularly, distribution between water, cyclohexane

and octanol.7,74 And water-octanol partition coefficients are particularly abundant as they

are commonly measured in pharmaceutical discovery. Another potentially useful property is

relative solubility, examining how well different solvents solvate the same solute75 However,

relative solubilities and partition/distribution coefficients are typically available for relatively

few solvents, meaning they lack the advantage of IDACs wherein the same compounds are

present both as solute and solvent.

18



Overall, not only are IDAC calculations appealing in principle, but our results suggest

that these calculations can indeed be helpful in identifying force field issues needing attention.

Specifically, graphic analysis of experimental and calculated kBT ln γ∞ values enabled the

identification of possible systematic errors in the force field used in this study. We hope

that the evidence shown in this work drives future research in expanding the number of

experimental activity coefficients at infinite dilution in the literature, and in using γ∞ as a

new source of constraints for force field parameterization and method development.
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