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The aim of this paper is to show that there exist infinite dimensional Banach spaces of functions that, except
for 0, satisfy properties that apparently should be destroyed by the linear combination of two of them. Three
of these spaces are: a Banach space of differentiable functions on Rn failing the Denjoy-Clarkson property; a
Banach space of non Riemann integrable bounded functions, but with antiderivative at each point of an interval;
a Banach space of infinitely differentiable functions that vanish at infinity and are not the Fourier transform of
any Lebesgue integrable function.
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0 Introduction

A set M of functions enjoying some special property is said to be lineable if M ∪ {0} contains an infinite

dimensional vector space and spaceable if M ∪ {0} contains a closed infinite dimensional vector space. More

specifically, we will say that M is µ-lineable if M ∪ {0} contains a vector space of dimension µ, where µ is a

cardinal number. Furthermore, λ(M) will denote the maximum dimension (if it exists) of such a vector space.

In a similar way, we say that M is algebrable if M ∪ {0} contains an infinitely generated algebra. More

specifically, we will say that M is (µ, s)-algebrable if M ∪ {0} contains an algebra A such that dim(A) = µ
(as a vector space) and card(S) = s, where µ and s are two cardinal numbers and S is a minimal system of

generators of A. Trivially, s ≤ µ and if M is (µ, s)-algebrable then it is also µ-lineable. Similarly, we could

also define the notions of dense-lineability, dense-algebrability. The density of functions with certain properties

yields interesting results (e.g. [12]). The term coneability refers to the existence of a positive (or negative) cone

containing an infinite linearly independent family of functions enjoying a certain special property.

These notions of lineability and spaceability were coined by V. I. Gurariy, first introduced in [11] and later

in [2] and [3], while the word algebrability didn’t appear until recently (see, for instance, [5]).

The earliest results of this type come from 1966, when V. I. Gurariy showed in [13] that the set of continuous

nowhere differentiable functions on the interval [0, 1] is lineable. He also showed that the set of everywhere

differentiable functions on the interval [0, 1] is lineable, but not spaceable in (C([0, 1]), ‖·‖∞). Other pathological

properties have been studied by various authors, for instance differentiable nowhere monotone functions and

everywhere surjective functions in [3]. Along these lines, in the last few years, the set of zeros of polynomials

on Banach spaces has been explored: some authors, when working with infinite dimensional spaces, found large

linear structures in these sets [1] (even though they have not explicitly used terms like lineability or spaceability),

while others concentrated more on the finite dimensional case [4].
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Sometimes these algebraic structures can be endowed with different types of topologies. For example, in

[15] the authors proved the (c, c)-algebrability of the set of C∞ functions with constant Taylor expansion on R.

Following the line of the proof given there, it can be shown that the algebra in case is a Fréchet space.

The paper is organized in four sections. In the first we show the existence of a Banach space of continuous

functions on R for which their sets of proper local minima and maxima, respectively, are dense subsets of R. In

the second section we construct a Banach space of infinitely differentiable functions that vanish at infinity and

are not the Fourier transform of any Lebesgue integrable function. The third part deals with the Denjoy-Clarkson

property for several real variables. Following the recent solution (in the negative) of the Weil Gradient Problem,

we display a Banach space of differentiable functions on Rn which fail the Denjoy-Clarkson property. The last

part of the article is dedicated to Riemann integrability. We find a Banach space of bounded functions that are

not Riemann integrable and also a Banach algebra and another Banach space of function whose derivatives are

bounded but not Riemann integrable.

1 Functions with proper local minima and maxima in each interval

In [18] it was proved that there exist continuous functions on R with a proper local maximum at each point of

a dense subset of R. One could ask whether the set of all functions enjoying this property, CM(R), is lineable.

Apparently this is not true, the problem being that the proper local maxima become proper local minima for any

negative multiple of f , with f ∈ CM(R). If f also had a dense set of proper local minima then this problem

would not arise. Let us denote by CMm(R) the nonempty (see [10]) set of continuous functions such that both

of their sets of proper local minima and maxima are dense in R. We will show that CMm(R) is spaceable.

Theorem 1.1

1. There exists an infinite dimensional Banach space of continuous functions on R for which (except for

0) their sets of proper local minima and maxima, respectively, are dense subsets of R, i.e. CMm(R) is

spaceable. Moreover, λ(CMm(R)) = c.

2. CMm(R) is (c, c)-algebrable.

P r o o f. Without loss of generality we can assume that f(R) is the interval with endpoints 0 and 1. Let

A = {rn}n and B = {sn}n be the dense sets of proper local maxima and minima, respectively, for f . We define

Φ : C[0, 1] → Cb(R) by Φ(h) = h ◦ f .

If h ∈ C[0, 1] is a nonconstant analytic function on (0, 1) then, since h′ is also analytic, it must have at most

a countable number of zeroes and the only accumulation points for its zeroes could be 0 or 1. Thus we can write

(0, 1) \ {t : h′(t) = 0} =
⋃

In, with In disjoint open intervals such that h′ vanishes at their endpoints and has

constant sign inside. Let us show that Ah = A ∩ f−1 (
⋃

In) is dense in R.

Assume that we have R\Ah 	= ∅. Then there exists an interval (α, β) ⊂ R\Ah. If x ∈ (α, β) then f(x) must

be either one of the endpoints of In or 0 or 1. Thus f((α, β)) is a connected subset of a countable set and so it

must consist of only one element. This implies that f is constant on (α, β), a fact which contradicts the existence

of proper local maxima in this interval.

In the same way we have that Bh = B ∩ f−1(
⋃

In) is dense in R.

Suppose that h′ is positive on the interval In. For every rk ∈ f−1(In) and x in a neighborhood of rk contained

in f−1(In) we can write h(f(x)) = h(f(rk))+ h′(γ)(f(x)− f(rk)) with γ ∈ f−1(In) and so each such rk is a

proper local maximum for h ◦ f . In the same way it follows that every sk ∈ f−1(In) is a proper local minimum

for h ◦ f .

If h′ is negative on the interval In then each rk in f−1(In) is a proper local minimum for h ◦ f and each sk in

f−1(In) is a proper local maximum for h ◦ f .

Furthermore, f−1(In) ∩ A and f−1(In) ∩ B are dense sets in f−1(In) for every n.

Now let us show that the set of proper local maxima for h ◦ f is dense in R. Let x ∈ R and ε > 0. There

exists an rk ∈ Ah such that |rk − x| < ε. If rk is a proper local maximum for h ◦ f then we are done. If not,

it means that there exists In ∋ f(rk) such that h′ < 0 on In. Since f−1(In) ∩ B is dense in f−1(In), there is

sl ∈ f−1(In) (therefore a proper local maximum for h ◦ f ) such that |sl − rk| < ε and so |sl − x| < 2ε.

Likewise the set of proper local minima for h ◦ f is dense in R.

www.mn-journal.com c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



714 Garcı́a, Grecu, Maestre, and Seoane-Sepúlveda: Functions with nonlinear properties

1. Let {nk}k be a lacunary sequence of positive integers (i.e. with nk+1/nk ≥ d > 1). Let F be the closure

in C[0, 1] of the linear span of {tnk}k. By [8], F consists of functions which are analytic on (0,1) and continuous

on [0, 1]. Let us note that h(0) = 0 for all h in F and so the only constant function in F is the zero function.

Then Φ(F ) ⊂ CMm(R) ∪ {0} and, since ‖Φ(h)‖ = ‖h‖ for all h, is a closed infinite dimensional subspace.

Since we are working with continuous functions, we necessarily have λ(CMm(R)) = c.

2. Since Φ is an injective algebra homomorphism, it follows that CMm(R)∪{0} contains an injective image

of any algebra of (except for zero) nonconstant analytic functions on (0, 1). Consider H a Hamel basis of R as

a Q-vector space and the algebra A = A({fβ}, β ∈ H) of analytic functions in (0, 1), where fβ(x) = eβx.

As in [15], A has a minimal system of generators of cardinality c and using the ideas in the proof there it can

easily be shown that the only constant function in A is the zero function. Thus CMm(R) ∪ {0} contains a (c, c)
subalgebra.

Remark 1.2 The method used does not allow us to find a nontrivial Banach algebra inside of CMm(R)∪{0}
because there does not exist a Banach subalgebra of C([0, 1]) which consists of analytic functions on (0, 1).
Indeed, assume that such an algebra B exists and take g an element in B whose range is the interval [0, 1].
Consider the continuos function

s(t) =

⎧

⎨

⎩

0 if t ≤ 1/3,

3t − 1 if 1/3 < t < 2/3,

1 if t ≥ 2/3.

Let Wn be the Bernstein polynomials which approximate s. Since s(0) = 0, we also have Wn(0) = 0 and so

Wn ◦ g ∈ B. Consequently s ◦ g ∈ B is analytic on (0, 1) and vanishes on the open set g−1(0, 1/3) and so s ◦ g
must be identically 0. That leads to g(x) ≤ 1/3 for all x ∈ [0, 1], a contradiction.

Remark 1.3 1. Let us denote by Cm(R) the set of continuous functions on R with a proper local minimum

at each point of a dense subset of R. Since CMm(R) ⊂ Cm(R) and CMm(R) ⊂ CM(R), it follows that

CM(R) and Cm(R) are both spaceable and (c, c)-algebrable.

2. If we consider the set of all continuous functions on R with proper local extrema at each point of a

dense subset of the real line, then CE(R) is certainly spaceable and (c, c)-algebrable. In fact, the proof of

this result can be obtained in a simpler way. Indeed, once we know that CE(R) contains a function f , then,

with the notations of the previous proof, we can argue in the following way: if h is a nonconstant analytic

function on (0, 1), given rn, a proper local extreme for f , there exists a minimal positive integer l such that

h(f(x)) = h(f(rn)) + (f(x) − f(rn))l(αl + Pl(x)) with αl 	= 0 and Pl continuous with limx→rn Pl(x) = 0.

Thus there exists a neighborhood of rn in which Φ(h)(x)−Φ(h)(rn) has constant sign. Therefore Φ(h) belongs

to CE(R) and the rest of the proof follows as above.

2 Infinitely differentiable functions that vanish at infinity and are not the Fourier trans-

form of any Lebesgue integrable function

We can make further use of this method of embedding a Banach space in a set of continuous functions. Let

C∞
0,NF be the set of infinitely differentiable functions that vanish at infinity and are not the Fourier transform of

any Lebesgue integrable function. One class of examples (see [14, Chap. 6] for details) is given by the functions

of the form f(x) =
∑∞

−∞ cng(x − n), where

1. (cn)n is any double infinite sequence such that
∑∞

−∞ cneinx converges for all x but cn are not the Fourier

coefficients of a Lebesgue-integrable function on [−π, π],

2. g is any infinitely differentiable function that vanishes outside
[

− 1
2 , 1

2

]

and with g(0) 	= 0.

It is easy to see that f(x) = cng(x − n) in the interval
[

n − 1
2 , n + 1

2

]

, and thus if f vanishes everywhere then

so does g. All these facts allow us to prove the following result:

Theorem 2.1 There is an infinite dimensional Banach space of infinitely differentiable functions that vanish

at infinity and (except for 0) are not the Fourier transform of any Lebesgue integrable function, i.e. C∞
0,NF is

spaceable and λ
(

C∞
0,NF

)

= c.

c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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P r o o f. Without loss of generality we can assume that g
([

− 1
2 , 1

2

])

= [0, 1]. Let us now define Φ on C∞[0, 1]

by Φ(h)(x) =
∑∞

−∞ cn(h ◦ g)(x − n). Clearly h ◦ g is an infinitely differentiable function. If we also ask that

h(0) = 0 then h ◦ g also vanishes outside
[

− 1
2 , 1

2

]

. If Φ(h) ≡ 0, then h ◦ g must be identically 0 and it follows

that h = 0. Thus, Φ is injective on {h ∈ C∞[0, 1] : h(0) = 0}.

It remains to show that Φ(h) cannot be a Fourier transform if h 	= 0. Since h ◦ g 	= 0, there exists an x0 ∈
(

− 1
2 , 1

2

)

such that h◦g(x0) 	= 0. If there exists a Lebesgue integrable function H such that
∫ ∞

−∞
H(t)e−itx dt =

Φ(h)(x) then, taking G(t) = e−itx0

∑∞
−∞ H(t + 2πm), we obtain

∫ π

−π

G(t)e−int dt =

∫ ∞

−∞

H(t)e−i(n+x0)t dt = Φ(h)(x0 + n) =

∞
∑

−∞

ck(h ◦ g)(x0 + n − k) = cn(h ◦ g)(x0),

which yields that cn are the Fourier coefficients of the Lebesgue integrable function 2π
(h◦g)(x0)

G, a contradiction.

Thus Φ(h) ∈ C∞
0,NF for all h 	= 0 and since

‖Φ(a)‖∞ = (supn|cn|)‖h‖∞,

we obtain spaceability, since C∞
0,NF ∪ {0} contains the isometric image of the Banach space F introduced in the

proof of the previous theorem (and whose members are analytic and vanish at 0). Since we are working with

continuous functions, λ
(

C∞
0,NF

)

= c.

3 Differentiable functions on Rn which fail the Denjoy-Clarkson property

It is well-known that derivatives of functions of one real variable satisfy the Denjoy-Clarkson property: if

u : R → R is everywhere differentiable, then the counterimage through u′ of any open subset of R is either

empty or has positive Lebesgue measure. Extending this result to several real variables is known as the Weil

Gradient Problem [19] and, after being an open problem for almost 40 years, was eventually solved in the nega-

tive for R2 by Buczolich in 2002 [7]. His example was simplified in some subsequent articles, in particular very

recently by Deville and Matheron [9]. They constructed an everywhere differentiable function on Q = [0, 1]n

and then extended it through Zn-periodicity to the whole of Rn obtaining a bounded, everywhere differentiable

function f : Rn → R such that

1. f and ∇f vanish on the boundary of Q,

2. ‖∇f‖ = 1 almost everywhere in Rn and ‖∇f(x)‖ ≤ 1 for all x ∈ Rn.

Thus it is clear that f fails the Denjoy-Clarkson property, since (∇f)−1(B(0, 1)) is a nonempty set of zero

Lebesgue measure.

We will use this function (which we call the Deville-Matheron function) to prove the following result:

Theorem 3.1 For every n ≥ 2 there exists an infinite dimensional Banach space of differentiable functions

on Rn which (except for 0) fail the Denjoy-Clarkson property.

P r o o f. For the sake of simplicity we will work with R2, but everything is also valid for Rn with n ≥ 2.

For every (k, l) ∈ Z2 let Qk,l = [k, k + 1] × [l, l + 1] and let fk,l : R2 → R be defined by the restriction

of f on Qk,l and 0 everywhere else. Of course, now (∇fk,l)
−1(B(0, 1)) has infinite Lebesgue measure, but the

function still fails the Denjoy-Clarkson property. For this we just need to show that there exist an 0 < α < 1 and

a point aα ∈ Qk,l with ‖∇fk,l(aα)‖ = α.

For the sake of completeness we give a very simple proof of the fact that for every α ∈ [0, ‖f‖∞], there

exists a point aα ∈ Qk,l with ‖∇fk,l(aα)‖ = α. This is all we need to know about the intermediate values

of the gradient in order to reach the conclusion of our theorem. By Weierstrass theorem and connectedness

we have |f |(Q) = [0, ‖f‖∞]. Hence, by changing f by −f if necessary, we have [0, ‖f‖∞] ⊂ f(Q). Let

α ∈ (0, ‖f‖∞]. Consider b ∈ Qk,l with fk,l(b) = α. Of course, b does not belong to the boundary of Qk,l.

Define the differentiable function h : Qk,l → R by h(x, y) = fk,l(x, y) + α(x − k). Since h(b) > fk,l(b) =
α = max∂Qk,l

h, it follows that h attains its maximum in the interior of Qk,l. Thus, there exists a point aα with

0 = ∇h(aα) = ∇fk,l(aα) + (α, 0) and so ‖∇f(aα)‖ = α.

www.mn-journal.com c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



716 Garcı́a, Grecu, Maestre, and Seoane-Sepúlveda: Functions with nonlinear properties

Now we choose 0 < δ < min{α, 1 − α} and we have that

(∇fk,l)
−1(B(∇f(aα), δ)) ⊂ (∇f)−1(B(0, 1)) ∩ Q

is a nonempty set of zero Lebesgue measure.

We define Φ : c0(N
2) → Cb(R

2) to be the function that associates to every double sequence d = (dk,l)k,l

the function Φd(x, y) =
∑

dk,lfk,l(x, y). Since fk,l = ∇fk,l = 0 on R2 \ int (Qk,l), the pieces glue together

well and so Φd is an everywhere differentiable function. Clearly we have ∇Φd(x, y) =
∑

dk,l∇fk,l(x, y) and

so ‖∇Φd(x, y)‖ ∈ {|dk,l|, (k, l) ∈ N2} for almost all (x, y) ∈ R2. Given d 	= 0, there exists dk0,l0 	= 0. Choose

α ∈ (0, ‖f‖∞] such that α|dk0,l0 | 	∈ K = {|dk,l| : (k, l) ∈ N2} ∪ {0}. Since |dk0,l0 |α does not belong to the

compact set K the distance δ from |dk0,l0 |α to K is positive. Consider aα ∈ Qk0,l0 with ‖∇fk0,l0(aα)‖ = α.

Then ‖∇Φd(aα)‖ = |dk0,l0 |α. If x ∈ (∇Φd)
−1

(

B(∇Φd(aα), δ)
)

then ‖∇Φd(x)‖ 	= |dk,l| for all (k, l) ∈ N2

and so (∇Φd)
−1(B(∇Φd(aα), δ)) is a nonempty set of zero Lebesgue measure.

All this shows that Φ(c0(N
2)) is a vector space of differentiable functions which (except for 0) do not have

the Denjoy-Clarkson property. But Φ(c0(N
2)) is also a closed subspace of (Cb(R

2), ‖ · ‖∞) since ‖Φd‖∞ =
‖(dk,l)k,l‖∞‖f‖∞ for all d ∈ c0(N

2) and so,
(

Φ(c0(N
2)), ‖.‖∞

)

is an infinite dimensional Banach space iso-

metric to c0(N
2).

Remark 3.2 1. The proof can be simplified if, instead of using the simple intermediate value result for

gradients that we proved, one uses the much stronger Darboux property for gradients [17].

2. The result can be reformulated in the following way. If we denote by NDC(Rn) the set of everywhere

differentiable functions on Rn which do not have the Denjoy-Clarkson property then NDC(Rn) is spaceable

and λ(NDC(Rn)) = c.

3. It is possible to construct another infinite dimensional Banach space of differentiable functions on Rn which

(except from 0) fail the Denjoy-Clarkson property and which contains the Deville-Matheron function. Indeed, it

is enough to replace c0(N
n) in the proof above with the Banach space c(Nn) of all convergent sequences in R

endowed with the supremum norm. In that case f is the image of the sequence (1, 1, . . . ).
4. It is also possible to construct a non separable infinite dimensional normed space of differentiable func-

tions on Rn which (except from 0) fail the Denjoy-Clarkson property and which contains the Deville-Matheron

function too. For that, consider the non-separable norm space X = span{χP : P ⊂ Nn}, endowed with the

supremum norm, instead of c0(N
n) in the proof above. Our method cannot be extended to ℓ∞(Nn), the comple-

tion of X . To check that (we write it only for the case n = 2), consider c = (ck,l)k,l the sequence of all rational

numbers in [0, 1]. The function Φc actually does satisfy the Denjoy-Clarkson property.

4 Bounded functions which are Lebesgue but not Riemann integrable

One of the key points that led Lebesgue to his theory of integration was the existence of two examples, one

given by Volterra in 1881 and another by Brodén in 1896 which showed that, at least from the point of view of

Riemann integration, the process of obtaining antiderivatives of a function and the integration theory were not

equivalent. Our aim in sequel is to show that it is possible to find infinite dimensional Banach spaces of functions

having Brodén (Theorem 4.1) and Volterra (Remark 4.2) properties. Actually, the derivatives of the Brodén-type

functions will allow us to build (Theorem 4.3) an infinite dimensional Banach space of bounded functions on

an interval which are Lebesgue integrable, have antiderivative at any point and (except for 0) are not Riemann

integrable.

4.1 Brodén-type functions

In 1896, Brodén (see, e.g. [6, sect. 4.4]) gave an example of a homeomorphism g : [a, b] −→ [−1, 1] such that g is

differentiable in [a, b], with g′ being bounded and vanishing on a dense subset of [a, b]. He considered a function

f(x) =
∑∞

n=1
(x−an)1/3

2n , where (an) is a dense sequence in [−1, 1], with a1 = −1, a2 = 1, and satisfying that:

1. f ′(an) = +∞ for all n ∈ N, and

2. f ′(x) ≥ 1
12 for every x 	= an.

c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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This function is a homeomorphism f : [−1, 1] → [f(−1), f(1)] = [a, b], strictly increasing and taking g := f−1,

we obtain that

g′(x) =
1

f ′(f−1(x))
,

which takes the values g′(x) ∈ (0, 1
12 ] if x 	= f(an), and 0 if x = f(an) for some n. Since a = f(a1) and

b = f(a2), we have that g′(a) = g′(b) = 0. Let c = 2b− a. The function g can be modified in the following way

s(x) =

⎧

⎨

⎩

g(x) + 1 if a ≤ x ≤ b,
g(2b − x) + 1 if b < x ≤ c,

0 if x /∈ [a, c],

such that s is differentiable, with bounded derivative on R, and s(x) = 0 if either x ≤ a, or x ≥ c. Thus

s′(x) = 0 if either x ≤ a, or x ≥ c, and s′(x) = g′(x) if x ∈ (a, b) and −g′(2b − x) if x ∈ (b, c). So, s is

continuous, non-constant, differentiable, and s′ bounded and zero in a dense subset of R. This kind of function

will be called a Brodén-type function.

In the proofs of the following two theorems we are going to use the following classical result, which we call

Theorem A If a sequence of differentiable functions fn : (a, b) → R converges at some point t0 ∈ (a, b) and

if the sequence of derivatives f ′
n converges uniformly on (a, b) to a function g, then there exists a differentiable

function f : (a, b) → R such that the sequence fn converges uniformly on (a, b) to f and f ′ = g.

Theorem 4.1 There exists an infinite dimensional Banach algebra of (except for 0) Brodén-type functions. In

particular, the set of Brodén-type functions is spaceable and algebrable.

P r o o f. Let us proceed with the Brodén-type function s, which we gave earlier. Let [α, β] be any closed

bounded interval, α < β, and let In = [αn, βn] be a sequence of disjoint proper subintervals of [α, β]. Now,

consider the linear mappings given by

φn : [αn, βn] −→ [a, c]

t �−→
t − αn

βn − αn

(c − a) + a

and call

sn := s ◦ φn : R −→ R.

We have that, for every n ∈ N, sn is continuous, non-constant, differentiable, and s′n vanishes in a dense subset

in R. We have

sn(t) =

⎧

⎪

⎨

⎪

⎩

0 if t ≤ αn,

s
(

t−αn

βn−αn
(c − a) + a

)

if αn < t < βn,

0 if t ≥ βn,

and

s′n(t) =

⎧

⎪

⎨

⎪

⎩

0 if t ≤ αn,
c − a

βn − αn

g′
(

t−αn

βn−αn
(c − a) + a

)

if αn < t < βn,

0 if t ≥ βn,

and we have obtained a sequence of functions with disjoint supports, each one of them vanishing in a dense set

in R. Moreover, we have that supp(s′n) ⊂ [αn, βn].
Since the functions {sn : n ∈ N} have pairwise disjoint supports, they form a minimal set of generators for

an algebra that we call A. Let h ∈ A. Then h is necessarily of the form

h =

k1
∑

i=1

c1,is
i
1 +

k2
∑

i=1

c2,is
i
2 + · · · +

kl
∑

i=1

cl,is
i
l := p1 + p2 + · · · + pl.
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Suppose that h ≡ 0. Then, h restricted to Ij is equal to pj , j ∈ {1, . . . , l}. Clearly, if each pj ≡ 0, then it follows

that cj,i = 0 for every i ∈ {1, . . . , kj}, since we would have that the polynomial
∑kj

i=0 cj,iz
j ≡ 0. This shows

the algebrability of the set of Brodén-type functions. Note also that all functions in A vanish at all points αn

and βn.

By Theorem A, the set X of all functions h : R → R which are differentiable, have compact support and

bounded derivative, endowed with the norm ‖h‖1 = supx∈R
|h(x)| + supx∈R

|h′(x)| is a Banach space. Now

consider the closed subset of X given by B = A
‖·‖1

. Clearly B is a Banach algebra and so it only remains to

show that all functions in B are of Brodén-type.

Let h ∈ B and take hk :=
∑nk

j=1 p
(k)
j → h with the ‖ · ‖1. Thus h is differentiable, hk converges uniformly

to h and h′
k converges uniformly to h′ on [α, β]. Now, hk restricted to In (with n arbitrary) gives us p

(k)
n =

∑lk
i=1 ck,is

i
n, and thus h′

k =
∑lk

i=1 ck,is
i−1
n s′n. For all n and k, whenever s′n(t) = 0, we have that h′

k(t) = 0 and

consequently h′(t) = 0 and so h′ vanishes on a dense subset of R. Since h(αn) = 0, if h is constant then it has

to be the zero function. Thus B is a Banach algebra of (except for 0) Brodén-type functions. In particular, this

shows that the set of Brodén-type functions is spaceable.

Remark 4.2 In 1881, Volterra (see, e.g. [16, p. 100]) gave an example of a differentiable function on R whose

derivative is bounded but not Riemann-integrable. Let [a, b] be an interval in R, and

Fa,b(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if x 	∈ (a, b),
φa(x) if a < x < a + c,

φa(a + c) if a + c ≤ x ≤ b − c,
φb(x) if b − c < x < b,

where φd(x) = (x − d)2 sin
(

1
x−d

)

and a + c = sup
{

x ∈ (a, a+b
2 ] : φ′

a(x) = 0
}

. Let (rn)n = Q ∩ (0, 1)

and In =
(

rn − αn, rn + αn

)

such that
∑

n µ(In) < 1
2 with µ being the Lebesgue measure on R. Let

K = [0, 1] \
⋃∞

n=1 In, which is compact with empty interior. Clearly, µ(K) ≥ 1
2 . We can write

⋃∞
n=1 In

as an infinite union of connected components Jn = [an, bn]. Volterra’s function with support in [0, 1] is given by

F =
∑∞

n=1 Fan,bn pointwise.

Choosing a collection of pairwise disjoint intervals [αn, βn] and taking

E = span{Gn : n ∈ N}
‖·‖1

,

where Gn is the Volterra function with support in the interval [αn, βn], we have another way of proving that

there is an infinite dimensional Banach space of differentiable functions on R whose derivatives are bounded and

(except for 0) not Riemann-integrable.

Let us notice that the E is not an algebra since the derivative of the square of Volterra function, F 2, is contin-

uous, a fact which follows from F (x) = 0 for all x ∈ K .

4.2 Bounded derivatives which are not Riemann-integrable

Let us notice that the derivative of any Brodén-type function is bounded but not Riemann-integrable. We say that

a bounded function f has property (P ) if there exists a function F such that F ′(x) = f(x) for all x ∈ R but f
is not Riemann-integrable on any compact interval of R. In particular, any function enjoying (P ) does not verify

the Fundamental Theorem of Calculus. We will show that the set of functions enjoying (P ) is spaceable.

Theorem 4.3 Given an interval [a, b], a < b, there exists an infinite dimensional Banach space of bounded

functions which are Lebesgue integrable, have antiderivatives at any point of [a, b] but (except for 0) are not

Riemann-integrable on [a, b].

P r o o f. Let g be the original Brodén function, and In = [αn, βn] a collection of pairwise disjoint intervals in

R. Let us define, for every n ∈ N, the function gn : R → R given by:

gn(t) =

⎧

⎪

⎨

⎪

⎩

−1 if t ≤ αn,

g
(

t−αn

βn−αn
(b − a) + a

)

if αn < t < βn,

1 if t ≥ βn.
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It is clear that g′n has property (P ), they have pairwise disjoint supports, and as in the proof of Theorem 4.1, they

are linearly independent. Let

E = span{g′n : n ∈ N}
‖·‖∞

.

Pick h ∈ E, and let hk be a sequence of functions in E such that hk converges to h. We choose t0 ∈ R \
⋃

n In,

and denote by Hk the antiderivative of hk which vanishes at t0. There exists a bounded sequence (cn)n such that

h =
∑∞

n=1 cng′n point-wise. Putting H(x) =
∑∞

n=1 cngn(x), we have

Hk(t0) = H(t0) = 0,

H ′
k = hk, and

hk −→ h uniformly.

By Theorem A, it follows that H is differentiable and H ′ = h. Nevertheless h is not Riemann-integrable. If it

were then, since h = g′n on the interval In, we would have

2 = gn(βn) − gn(αn) = H(βn) − H(αn) =

∫ βn

αn

h(x) dx =

∫ βn

αn

g′n(x) dx = 0,

which is a contradiction.
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[9] R. Deville and É. Matheron, Infinite games, Banach space geometry and the eikonal equation, Proc. Lond. Math. Soc.

(3) 95, No. 1, 49–68 (2007).

[10] V. Drobot and M. Morayne, Continuous functions with a dense set of proper local maxima, Amer. Math. Monthly 92,

No. 3, 209–211 (1985).

[11] P. Enflo and V. I. Gurariy, On lineability and spaceability of sets in function spaces, preprint (2000).

[12] J. Ferrer, An approximate Rolle’s theorem for polynomials of degree four in a Hilbert space, Publ. Res. Inst. Math. Sci.

41, No. 2, 375–384 (2005).

[13] V. I. Gurariy, Subspaces and bases in spaces of continuous functions, Dokl. Akad. Nauk SSSR 167, 971–973 (1966) (in

Russian).

[14] B. R. Gelbaum and J. M. H. Olmsted, Counterexamples in Analysis (Dover Publications, New York, 2003).

[15] F. J. Garcı́a-Pacheco, N. Palmberg, and J. B. Seoane-Sepúlveda, Lineability and algebrability of pathological phenomena
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