
INFINITE-DIMENSIONAL GROUP REPRESENTATIONS1 

GEORGE W. MACKEY 

1. Introduction. Let S be a set in which there is given a c-field of 
"Borel sets" and let G be a topological group. Let sx be defined for all 
5 in S and all x in G in such a manner that 

(a) sxiX2= (sxi)x2, 
(b) se = st 

(c) s, x-*sx is a Borel function 
from SXG to 5. Under these circumstances we shall say that 5 is a 
Borel G space. We shall usually assume that S is standard in the sense 
that it is isomorphic as a Borel space to a Borel subset of a separable 
complete metric space. Let /x be a Borel measure in 5, that is, a 
<r-finite countably additive measure defined on all Borel subsets of 5. 
If fx(Ex) —fx(E) for all E we shall say that /* is invariant. Given an 
invariant fx in the Borel space 5 we may form the Hilbert space 
£2(S, JH) and observe tha t for each x in G the operator Lx such that 
(Lx(f))(s)=f(sx) is a unitary operator. Moreover x—>LX is a unitary 
representation of the group G in a sense to be made precise below. 
When S = G, G is locally compact and sx is group multiplication, the 
measure ix exists and is essentially unique. The unitary representation 
L in this case is called the regular representation of G. 

Consider the special case in which G is the compact group K of all 
rotations in the plane-—or equivalently the group obtained from the 
additive group of the real line by identifying numbers which differ 
by integral multiples of 2TT. 

The functions einx (n = 0, ± 1 , ± 2 , • • • ) form a basis for £2(K) 
and each member of this basis generates a one-dimensional subspace 
which is invariant under each Lx. We have, in a sense to be defined 
below, a decomposition of the regular representation of K into ir-
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reducible parts. The fact that this decomposition exists is a simple 
reformulation of one of the fundamental theorems in the theory of 
Fourier series. The celebrated Plancherel formula for Fourier trans-
forms provides a similar decomposition for the regular representation 
of the additive group of the real line. However here one has a continu-
ous decomposition into "infinitesimal" parts. 

The theory we are going to describe in these lectures begins with 
and is to some extent dominated by attempts to answer the following 
two questions. 

(a) To what extent can an arbitrary unitary representation of a 
group be analyzed into irreducible ones. 

(b) Given a group G to what extent can one find all possible ir-
reducible representations of G. 

Such answers as are available represent extensions of classical har-
monic analysis in various directions and include a large part of what 
group theory has contributed to analysis. The particular representa-
tions defined by invariant measures in Borel G spaces are much more 
general than they at first appear to be and certain natural generaliza-
tions of them come close to being exhaustive. Certainly they are the 
most important examples occurring naturally in analysis and physics. 

When G is finite the theory is purely algebraic in character and 
(barring classical harmonic analysis whose group theoretical char-
acter was clearly recognized only much later) it is with this case 
that the subject begins. Started by Frobenius in 1900 it was domi-
nated by the names of Frobenius and Schur for the next decade or so. 
In the mid 1920's it was extended to compact Lie groups by Schur, 
Weyl and others. The celebrated Peter-Weyl theorem says that the 
regular representation of a compact Lie group is a direct sum of finite-
dimensional irreducible representations. With A. Haar's (1933) dis-
covery of the existence of an invariant measure on any locally com-
pact group it was realized that the Peter-Weyl theorem and much of 
the rest of the theory applies to arbitrary compact groups. When the 
compactness hypothesis is discarded there are serious difficulties due 
to the fact that one may have to deal with continuous decompositions 
and infinite-dimensional irreducible components. The second diffi-
culty disappears when the group is commutative for then all irreduci-
ble representations are one-dimensional and one obtains a close ana-
logue of the theory of the Fourier transform. This theory is based in 
part on the Pontrjagin-van Kampen duality theory for locally com-
pact groups which was developed in the mid 1930's. 

Insofar as unitary representations of compact and commutative 
groups are concerned the theory was well nigh complete in 1938 and 
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is described in detail in A. Weil's classic treatise. We shall be chiefly 
concerned with the post World War II theory in which one must deal 
simultaneously with continuous decompositions and infinite-dimen-
sional irreducible constituents. Although there was an important 
paper by Wigner in 1939, another by Gelfand and Raikov in 1943 
and a few preliminary announcements by Gelfand and Naimark in 
1946, this part of the theory did not really get under way until 1947 
when papers began to appear at the rate of five to ten a year. 

In the fourteen years which have elapsed since this deluge began 
the theory has developed far too much to be summarized adequately 
in ten lectures—let alone four. Since we must select we hope we may 
be excused for emphasizing those parts of the theory with which we 
have been most directly concerned. Actually we have reason to be-
lieve that a fairly large section of the theory will ultimately be fitted 
into the framework which we shall outline here. 

2. Some basic notions. We shall deal throughout with topological 
groups G which are locally compact and are separable in the sense that 
there exists a countable basis for the open sets. By a unitary represen-
tation L of such a group G we shall mean a mapping x—*Lx from G 
to the unitary operators in some separable Hilbert space 3C(L) which 
has the following two properties : 

(a) Lxy = LxLy for all x and y in G. 
(b) x—>Lx(<})) is a continuous function from G to 3C(L) for all 0 in 

3C(L). 
I t is known that property (b) is implied by the ostensibly much 

weaker property (b') x—>{Lx(<t>), xf/) is measurable with respect to 
Haar measure in G for all <j> and \[/ in 5C(L). 

By an intertwining operator for L and M we shall mean a bounded 
linear operator T from 5C(L) to 5C(iW) such that TLX = MXT for all 
x in G. The set of all such is a vector space which we denote by 
(R(L, M). When L = M, (R(L, M) = (R(L, L) is a (weakly closed) sub-
algebra of the algebra of all bounded linear operators on 3C. It is 
called the commuting algebra of L. If (R(L, M) contains a unitary map 
U of 3C(L) onto 3C(ikf) then ULXU~1 = MX and L and M are said to 
be equivalent representations of G. We shall write Lc^M. I t is seldom 
necessary to distinguish between equivalent representations. 

If L1, L2, • • • are unitary representations of G we define their 
direct sumL — Ll®L2@ • • • as follows. 5C(L) is the direct sum of the 
Hilbert spaces tfCC-L1), 3C(L2), • • • , i.e. the set of all sequences 
<Ê\<Ê2, • • • with||<A1 | |2+||02 | |2+ • • •< oo, <^G3C(L0 and the obvious 
definition of the Hilbert space operations. Lx{4>1, <£2, • • • )=La?(01), 
£*(tf>2), • • • • 
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Let 3Ci be a closed subspace of 3C(L). If Lx(<t>) £3Ci for all x G G and 
all <££3Ci we say that 3Ci is an invariant subspace of 3C(L). If Ljp* de-
notes the restriction of Lx to 3Ci then x-^L^ is a unitary representa-
tion of G, which we call the subrepresentation defined by 5Ci. If P is 
the unique projection whose range is 3Ci then 3Ci is invariant if and 
only if P£(R(L , L) SO that the subrepresentations of L correspond 
one-to-one to the projections in (R(L, L). We shall use Lp as an alter-
native notation for Lr*1. I t is easy to see that L is equivalent to 
Lp@Ll~p. Thus the following statements about L are equivalent: 

(a) L is not equivalent to a (nontrivial) direct sum. 
(b) (ft(L, L) contains no nontrivial projections. 
(c) L has no (nontrivial) subrepresentations. 

Using the spectral theorem (b) can be shown to be equivalent to 
(b') (R(L, L) contains only scalar multiples of the identity J. 

When any one and hence all of these equivalent statements hold L is 
said t o be irreducible. 

Let there exist a nonzero member T of (R(L, M). Let NT denote the 
set of all <t> with T(<t>) — 0 and let WT denote the closure of the set of 
all T(<t>). I t is immediate that NT and WT are invariant and it follows 
from an extension of a classical lemma of Schur that the subrepre-
sentation of L defined by NT is equivalent to the subrepresentation of 
M defined by WT» Thus (R(L, M) reduces to 0 if and only if no sub-
representation of L is equivalent to any subrepresentation of M. 
When this is so we say that L and M are disjoint and write L à M. 
To pass to the opposite extreme we say that L and M are quasi 
equivalent if no (nonzero) subrepresentation of L is disjoint from M 
and no (nonzero) subrepresentation of M is disjoint from L. For 
example if L is irreducible then L @L is quasi equivalent but not equiv-
alent to L. Moreover two inequivalent irreducible representations 
are always disjoint. 

I t is not hard to show that Lp and Ll~p are disjoint if and only if 
P is in the center of (R(L, L). When this center reduces to multiples 
of the identity so that it is impossible to decompose L as a direct sum 
of disjoint parts we say that L is primary. When the center is all of 
(R(L, L) so that (R(L, L) is commutative and every decomposition of 
L as a direct sum has disjoint parts we say that L is multiplicity free. 

If L = Ll®L2® • • • where the U are all irreducible then L is 
primary if and only if Llc^.U for all i and j and L is multiplicity free 
if and only if Uc^U implies i =j. 

Ifw = l , 2 , • • • , fc$o then nL will denote the direct sum L@L@ • • • 
taken to n terms. If #oL~L we shall say that L is infinite. Clearly 
HoL is infinite whenever L ^ O . If no subrepresentation of L is infinite 
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we shall say that L is finite. If L is neither finite nor infinite there 
exists a unique projection Pf in the center of (R(L, L) such that Lpt is 
finite and Ll~p' is infinite. Of course Lpf 6 Ll~pf. 

Let L = nL° where L° is irreducible. Then L is primary and has an 
irreducible subrepresentation. Conversely if L is primary and has an 
irreducible subrepresentation L° then L~nL° for some n= 1, 2, • • • , 
No. Any two irreducible subrepresentations L° and L00 of L are equiv-
alent and nL°c^n'L00 implies n = n' and L°c^L00. n = n' is called the 
multiplicity of L. A primary representation with an irreducible sub-
representation is said to be of type L There are two further possibili-
ties. It may be that, though L is not irreducible, every proper sub-
representation of L is equivalent to L. Such a representation is neces-
sarily primary and infinite and is said to be primary of type III. A 
primary representation which has a finite subrepresentation but no 
irreducible subrepresentation is said to be of type II. If L is finite, 
primary and of type II it may always be "cut in half"; that is there 
exists a primary subrepresentation L1 such that L~Ll@Ll and L1 

is unique to within equivalence. By iteration (1/2*)L is defined to 
within equivalence for all fe = l, 2, • • • . Thus we may define XL 
where X is any positive real number by writing X in the form 
n + l/2*i + 1/2*2 + i/2*i + . . . and setting XL = nL + (l/2k^)L 
+ (l/2k2)L-\- • • • . It can be shown that each XL is finite, primary 
and quasi equivalent to L and that every representation quasi equiv-
alent to L is either finite and equivalent to a unique XL or else 
infinite and equivalent to NoL. It follows that the set of all repre-
sentation quasi equivalent to a given primary representation has a 
natural ordering which is either that of the positive integers and No, 
the positive reals and No, or No alone. 

If L = Ll@L?@ • • • where the L1' are disjoint and primary then 
the following statements are easily proved. 

(a) Each U is of type I if and only if L is quasi equivalent to a 
multiplicity free representation. 

(b) Each D' is of type III if and only if every representation quasi 
equivalent to L is equivalent to L. 

(c) Each D' is of type II if and only if L is quasi equivalent to a 
finite representation and every representation quasi equivalent to L 
is of the form M@M for some M. 

Thus it is natural to make the following definitions. A (not neces-
sarily primary) representation L is of type I if it is equivalent to a 
multiplicity free representation. It is of type III if every representa-
tion quasi equivalent to L is equivalent to L. It is of type II if it is 
quasi equivalent to a finite representation and every representation 
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quasi equivalent to L is of the form M@M for some M. I t can be 
shown that for any L there exist unique projections P1 , P n , and P m 

in the center of (R(L, L) such that 
(a) Lpi à Lpk îorjîék, 
(b) Lc^LpI@LplI®LplI\ 
(c) Lpl is of type j whenever P 'VO. 

3. The decomposition of representations. Let us say that L is dis-
cretely decomposable if Lc^±Ll®L2@ • • • where the U are irreduci-
ble. If M is irreducible then the dimension of (R(M, Ll®L2@ • • • ) 
is equal to the number of indices k for which Mc^Lk. We shall call 
this number the multiplicity of M in Ll@L2@ • • • . It is clear that 
L is uniquely determined by the non-negative integers which are the 
dimensions of the spaces (R(ikT, L) whenever L is discretely decom-
posable. Thus to know all irreducible unitary representations (to 
within equivalence) is to know all discretely decomposable unitary 
representations to within equivalence. When G is compact every uni-
tary representation is discretely decomposable but for more general 
groups discretely decomposable representations are rather special. 
While it is true that every unitary representation is (in a sense to be 
defined below) a direct integral of irreducible representations, this 
decomposition is too nonunique to be useful in the general case in 
reducing the study of unitary representations to that of irreducible 
ones. On the other hand there are many important noncompact 
groups which are known to have only type I representations. For 
these the direct integral decomposition into irreducibles is essentially 
unique and there is a sense in which finding the general unitary 
representation can be reduced to finding the general irreducible uni-
tary representation—both to within equivalence of course. When 
type II and type III representations exist there is a somewhat weaker 
sense in which finding the most general unitary representation can be 
reduced to finding the most general quasi equivalence class of primary 
representations. However there is no case known in which one has 
nontype I representations and can describe (in any reasonable sense) 
the set of all equivalence classes of irreducibles—let alone the set 
of all quasi equivalence classes of primary representations. 

Let S be a standard Borel space and let jubea finite measure in 5. 
Let there be given a Hubert space 3C and for each s £ «S let L* be a 
unitary representation of our group G. Let L* be a Borel function of 
s in the sense that (Z4($) •$) is a complex-valued Borel function on 
SXG for all <j> and \[/ in 3C. We then define a new unitary representa-
tion L as follows. 3C(L) = £2(S, /x, 3C) ; that is, the Hubert space of all 
5C-valued square summable functions on S. For each x&G and each 
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g £ £ 2 ( S , /x, 3C), Lx(g)(s) = Ls
x(g(s)). We call L the direct integral of the 

L* with respect to L* and denote it by JsL*dix(s). [If the L* are given 
to us as acting in different Hilbert spaces 5C* or as equivalence classes 
of representations then we may make the above construction when-
ever it is possible to map all 5C* of a given dimension onto a single 
Hilbert space in such a manner that the above condition on L* is 
satisfied. I t may be shown that the equivalence class of JsL8dn(s) does 
not depend upon which mappings are chosen and that the mappings 
exist if and only if the Hilbert space "bundle" of all pairs s, <j> with 
0£3C» can be made into a Borel space having certain simple natural 
properties. In practice there is often a "natural" Borel structure in the 
bundle of pairs s, <£. ] 

Let v be a second measure in S having the same null sets as ju. Let 
p be the Radon-Nikodym derivative of v with respect to p. Then 
ƒ—W(p)f defines a unitary map of <£2(S, v, 3C) on <£2(S, /i> 3C) which sets 
up an equivalence between fsL*dv(s) and JsL8dix(s). In other words 
in forming direct integrals it is only the family of null sets which 
counts—not the measure itself. It is even possible to redefine JsL8dfx{s) 
in such a way as to avoid choosing a particular ju, but we shall not give 
details here. It is obvious that /s>L8dix(s)c^f8L

8dtJL(S) whenever S'QS 
and tx(S—S')=0 and it is true but not obvious that JsL8dix{s) 
~fsM

8diJ,(s) if L8c^M8 for almost all s. 
For each Borel subset E of S let PE denote the projection in 

<£2(£, ju, 3C) which takes ƒ into 4>EJ where 4>E is the characteristic func-
tion of E. Then E—*PE is a projection-valued measure; that is a func-
tion from Borel sets to projections having the following three prop-
erties : 

(a) Po = 0 and Ps = I (I is the identity operator), 
(b) PEHF^PEPF, 

(c) if EiHEj^O for *Vj then P(BIUF1\J...)=PB1+PB% + 

Moreover each PE is in (R(L, L). Conversely let V be any unitary 
representation of G and let P' be a projection-valued measure defined 
on the Borel subsets of a standard Borel space S such that PE is in 
(R(L, L) for all E. Then there exists an assignment s-*L8 of a unitary 
representation to each 5 in S and a finite measure /x in S such that 
L — fL8dfi,(s) exists and is equivalent to L'. In addition the unitary 
mapping setting up the equivalence may be chosen so that it carries 
P' into the projection-valued measure P associated with the direct 
integral jL8dix{s) in the manner described above. The null sets of /x 
are just the sets E such that PE = 0 and to within equivalence L8 is 
uniquely determined for almost all s. Thus a representation L to-
gether with a projection-valued measure P such that PELX = LXPE for 
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all E and x is essentially the same thing as a representation L together 
with a particular realization of L as a direct integral. 

Actually the space S can be eliminated from the above. Let P 1 

and P 2 be projection-valued measures defined on standard Borel 
spaces Si and 52. Suppose that the range of P 1 is identical with the 
range of P2 , i.e. that every P\ is equal to some P | and vice versa. 
Then there exists a one-to-one map 0 of Si on 52 such that £ is a 
Borel set if and only if 6(E) is a Borel set and such that P\{E)~P\ for 
all E. Let $ be a family of projections in the (separable) Hubert space 
5C. Then S is the range of a projection-valued measure P defined on a 
standard Borel space if and only if it has the following properties: 

(a) (?i02==(?2(?iE3: whenever QiG$ and Q2G$. 
(b) If QGffthen l - Ç e s . 
(c) If Qi, (?2, • • • G ff and Q,Q, = 0 for i ^ ; then Qx + Qt 

+ • • • Gff. 
A family £F having these three properties is called a <r Boolean algebra 

of projections. 
It follows from the above that there is a natural one-to-one cor-

respondence between the representations of a given L as a direct 
integral and the different a Boolean algebras of projections in 
(R(L, £). Let JsL*dix(s) be the essentially unique direct integral de-
composition of L associated with the c Boolean algebra of projections 
$ in (R(Lf L). One knows the following about the connections between 
$ and the L\ 

(a) Almost every L* is irreducible if and only if # is maximal in 
<R(L, L). 

(b) Almost every L8 is primary if and only if SF contains the center 
of (R(L, L). 

(c) If SF is equal to the center of (R(L, L) then there exists a subset 
N of 5 such that y,(N) = Q and such that Z> ó 1 / if s&S-N and 

It follows from (a) and Zorn^ lemma that every L has a direct 
integral decomposition into irreducible parts. This decomposition 
may vary greatly from one maximal # to another when L is not of 
type I. For example there exists a type II primary representation and 
two direct integral decompositions L~f8L

8diJL(s), L~J8tL
ndv{t) such 

that no L* is equivalent to any Lft and such that each L8 is irreducible 
and each Lft is irreducible. 

The decomposition into disjoint primary components defined by 
taking # to be all projections in the center of (R(L, L) is of course 
canonical and is called the central decomposition of L. 

When L is multiplicity free the set of all projections in the center 
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of (R(L, L) is the set of all projections in (R(L, L) and hence is maxi-
mal. Thus, in this case, the central decomposition of L is into in-
equivalent irreducible parts. Let (? denote the set of all equivalence 
classes of irreducible representations of G. Let L be multiplicity free 
and let jL8dix{s) denote the central decomposition chosen so that the 
L9 are all irreducible. Then the mapping s—>L* defines a mapping of 
S into ô and takes [x into a measure j& in ô. The null sets of jit are inde-
pendent of the arbitrary features in fsL

8dix(s) so that each multi-
plicity free L defines a unique measure class CL which in turn deter-
mines L to within equivalence. I t is possible to define the notion of 
Borel set in ô in a natural manner and when this is done the measure 
class CL turns out to be a Borel measure class. However if G has non-
type I representations there may exist Borel measure classes in G 
which do not arise from any multiplicity free representation. A fairly 
interesting unsolved problem is that of characterizing intrinsically 
the measure classes which arise from multiplicity free representations. 
On the other hand it is known that G is a standard Borel space if and 
only if every representation of G is of type I. When either and hence 
both of these conditions hold, every Borel measure class in G comes 
from a multiplicity free representation and we have a natural one-to-
one correspondence between the measure classes and the equivalence 
classes of multiplicity free representations. Now the study of type I 
representations can be reduced (without using direct integral theory) 
to the study of multiplicity free representations. Hence for type I 
groups (defined as those having only type I representations) the 
study of the general unitary representation can be reduced to the 
study of measure classes in ô—and thus to the determination of ô 
and a classical problem in real variable theory. 

The "type I to multiplicity free" reduction is a consequence of the 
following theorem. Let L be any type I representation. Then there 
exist disjoint multiplicity free representations L00, L1, L2, • • • 
uniquely determined by L to within equivalence such that 
Lcdtf o£0 0©£1©2L2© • • • . Of course some of the V may be missing. 

Amongst the separable locally compact groups which are known to 
have only type I representations are the compact groups, the com-
mutative groups, the connected semisimple Lie groups and the con-
nected real algebraic groups. However there are many examples of 
connected solvable Lie groups which have nontype I representations. 

I t is known that the regular representation of a discrete group is 
of type II whenever the subgroup generated by the finite conjugate 
classes has infinite index. Moreover it is known that a countable re-
stricted direct product of finite groups always has a type II regular 
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representation. No examples are known of type I discrete groups 
except for finite extensions of commutative groups. 

4. Characters, spherical functions and the Plancherel formula. For 
any Hubert space let J* denote the canonical antilinear mapping of 
3C on the Banach space adjoint 3C of 5C and if T is a bounded linear 
operator from 5CX to 3C2 let T° denote the Banach space adjoint from 
3C2 to 3&. Then the ordinary Hubert space adjoint T* from 3C2 to 3Ci 
will be equal to JT°J. For each unitary representation L the mapping 
x—>L%-\ is a unitary representation which we shall call the adjoint of 
L and denote by L. The set of all bounded linear operators T from 
3C2 to 3Ci such that Trace (TT*) < <x> is a Hubert space under the inner 
product (2^: JT2) = T r a c e u r * ) . I t is called the Kronecker or tensor 
product of 3Ci with 3C2 and denoted by 3Ci<S>3C2. If A\ and A2 are 
bounded linear operators on 5CX and 3C2 respectively, then T—>A{TA% 
is a bounded linear operator AiXA2 in 3Ci®3C2. If L1 and L2 are uni-
tary representations of G% and G% respectively, then x, y—>Ll

xXL2
v is a 

unitary representation of G1XG2 called the Kronecker or tensor prod-
ucts LlXL2 of L1 and L2. LlXL2 is irreducible whenever Ll and L2 

are irreducible. 
Let d(G) denote the set of all set functions of the form Ciai+ • • • 

+cnan where the CLJ are finite Borel measures on G and the Cj are 
complex constants. Ct(G) is an algebra under convolution a, /3—»aj3 
where Jf(x)d(a^) (x) = ff(xy)da(x)dj3(y) for all continuous ƒ with com-
pact support. If L is a unitary representation of G and aÇz&(G) then 
L« is defined to be the unique bounded linear operator such that 
(La{4>) -\f/) =J(Lx((j>) '\f/)da(x) for all <j> and yp in 5C(L). a—»L« is a homo-
morphism of (1(G) into the ring of all bounded linear operators in 
3C(L). Moreover £«<* = £* where a*(£) = [«(E-1)]"".2 If L is finite-di-
mensional x—»Trace(La;) is a complex-valued function 9C1, on G called 
the character of L. L is uniquely determined to within equivalence 
by its character XL-fXL(x)da(x) =Trace(L«) and 9CL determines and 
is determined by the linear functional a-^Trace(La) on d(L). Let 
L = niLl@n2L2® • • • @nkL

k where the V are irreducible and finite-
dimensional. Let us define an inner product in Ct(G) by setting 
(a:/3)c£L = Trace (L^*). If we identify a with a! whenever 
(ce —a! \ a—oc')c£L = 0, Ofc(G) becomes a finite-dimensional Hubert 
space and right and left translation in ®(G) define unitary operators 
in this Hilbert space. Let V^L denote the corresponding unitary 

2 Here and elsewhere the notation [ ]~ is used to avoid putting a bar over a 
group of symbols. According to the context it means either the conjugate of a complex 
number or the dual of a Banach space. 
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representation of GXG. The mapping ƒ—>L/ is a unitary member of 
Gi(V^L, LXT) and hence sets up an equivalence between V^L and 
a subrepresentation of L X L. This representation is easily seen to be 
the multiplicity free representation L iXÏ i©L2XX 2 © • • • @L*XX* 
whose restriction to GX# is quasi equivalent to L. If 9Cz, is replaced 
by 9C=Xi9CLi© • • •©X*9CL* where the Xy are arbitrary positive real 
numbers V^ may be defined just as V^L was and is equivalent to 
V^L. However ƒ—»L/ is no longer unitary. 

The above considerations may be extended to infinite-dimensional 
representations—but only to some and at the cost of defining a char-
acter to be an abstract linear functional defined on a proper subspace 
of &(G) and not necessarily associated with a point function on G. 
Specifically let us say that the unitary representation L has a char-
acter if Trace(La) exists for some nonzero a in Ot(G). Let ®L(G) denote 
the set of all a for which Trace (La) exists and let FL denote the linear 
functional on (LL(G): a—»Trace(La). We note that dL(G) is always 
an ideal in d(G) and in particular is invariant under right and left 
translation. 

We call FL the character of L. Given FL we define an inner product 
in ®L(G) by setting (a:fi)FL = FL(afi*) and convert &L(G) into a pre-
Hilbert space by identifying as above. Left and right translations in 
the completion of this Hubert space define a representation oî GXG 
which we shall denote by VFL. ƒ —» L/ is a unitary member of 
(R(VFL, LXL) and if L is irreducible ƒ—>Z/ sets up an equivalence 
between VFL and LXL. Thus if the irreducible representation L has 
a character FL this character determines L to within equivalence. 
Indeed L is so determined by the restriction of FL to any ideal in 
&L(G) on which it is not identically zero. I t can be shown that L can-
not have a character in the sense just described unless it is of the 
form niLl@nzL2(B • • • ®njcLk® • • • where the U are irreducible. 
When it is, F ^ c ^ X Z 1 © • • • ©Z^XZ*© • • • just as in the finite-
dimensional case. 

The correspondence between certain infinite-dimensional represen-
tations and their characters which we have just described can be ex-
tended to a much wider class if we give up one-to-oneness and associate 
representations with characters instead of vice-versa. Let us define 
a character to be any linear functional F which is defined on a self ad-
joint ideal 6F in <3t(G) and which has the following further properties: 

(a) F(ofi) = F(pa) for all a, 0 in ér. 
(b) F(aa*) ^ 0 for all a in ÓF. 
(c) F is a Borel function with respect to the topology which $F in-

herits from the usual norm topology in Ct(G). Then VF may be de-
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fined just as above and can be shown8 to be a multiplicity free repre-
sentation of GXG. If G is a type I group there exists a unique meas-
ure class in ô such that VFcs±J%L*X~L*dix(s) for any /z in this measure 
class. The measure class is concentrated in the set of all Z/s for which 
FL is defined on $F and there is a unique member of it, fio such that 
F(a) =f^XL'(a)djjio(s) for all a in $F- We may think of F as being a 
character of all representations quasi equivalent to jL8dfi(s). Actually 
there will be many different characters F for a given VF. They will 
correspond one-to-one to certain measures in the measure class of 
#0—those for which fXL*(a)diJ,(s) exists. 

Note that though we have lost one-to-oneness for the correspond-
ence between representations and characters we have achieved a cer-
tain uniqueness in direct integral decompositions. Any character on 
a type I group has a unique representation as an integral of irreducible 
characters. Thus whenever a canonical character may be selected for 
a given representation we have, corresponding to it, a well deter-
mined element in the measure class in ô denned by its direct integral 
decomposition. For example the regular representation of a unimodu-
lar group is that defined by the linear functional fp—>f(e) denned for 
all continuous ƒ with compact support where JU is Haar measure for 
the group. The corresponding measure p, in ô is called the Plancherel 
measure for G and the formula f(e) =ffi Tra,ce(Ls

ffi)dp,(s) is called the 
Plancherel formula for G. When G is commutative ô is itself a group, 
# is just Haar measure in (5 and the Plancherel formula for the trans-
late of ƒ by x becomes the Fourier inversion formula. Of course /x 
depends upon p which is determined only up to a multiplicative con-
stant. 

When G is not a type I group there may exist characters F such 
that VF is irreducible but not of the form LXL. The restriction of 
such a Vto GXe will be a type II primary representation. When the 
regular representation of G is not of type I the character fiA-*f(e) 
can still be decomposed as above but now some of the components 
will be associated with type II primary representations instead of 
irreducible ones. Correspondingly the Plancherel measure must ex-
tend over type II primary representations and the Plancherel formula 
adjusted by a suitable redefinition of Trace(LJM). Similar remarks 
apply to the decomposition of other characters. 

Let L and M be irreducible representations of G having characters 
8 Since this was written it has occurred to the author that it is not obvious that 

the properties (a), (b) and (c) are strong enough to imply that the relevant Hilbert 
space is separable. In any event one can simply assume this separability as a separate 
property (d). 
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FL and FM. Then LX M has a character whose domain of definition 
includes all aX& where a and j3 are in the domains of FL and FM 

respectively. Suppose that this domain includes measures whose sup-
ports are in the "diagonal" G of GXG, i.e. the set of all x, y with x^y. 
Then its restriction to these measures defines a character for G. The 
decomposition of this character defines a unique measure in G which 
we may call the Plancherel measure for the decomposition of the 
Kronecker product of L and M. 

Let G be unimodular and let ju be a Haar measure in G. Let L be 
an irreducible representation of G. Then L is equivalent to a sub-
representation of the regular representation if and only if x—±{Lx(<j)) •$) 
is in £2(G, ju) for all <f> and x// in 3C(L). Moreover if (Lx(<j>)-\j/) is in 
<£2(G, fx) for some $ and ^ with 0 ^ 0 and xf/^O then L is equivalent 
to a subrepresentation of the regular representation. Such represen-
tations are said to be square integrable. When G is compact, so that 
li(G) < oo every irreducible L is square integrable and one has the 
"orthogonality relations." 

ƒ (Ll(4>) -flKlfoO 'V)dn(x)]- - 0 if LXqk L% 

and 

f ( i ^ W ) [ ( W W ' ) ] - < W * ) = - ^ r r r (*-*0[(rf"*0l-
•/ dim (D dim ( I ) 

for all 0, ^, 0 ' and \p' in the appropriate Hubert spaces. Here dim (L) 
denotes the dimension of 5C(L). On the other hand the Plancherel 
measure # in G assigns the measure dim (L)//x(G) to the representa-
tion L. Thus we may write the second orthogonality relation in the 
form 

ƒ 
In this form it makes sense whether or not G is compact and both 
orthogonality relations can be shown to hold for square integrable 
representations of arbitrary unimodular groups. I t is suggestive to 
think of fi(L) as the finite ratio of the infinite dimension of 3C(L) to 
the infinite measure of G. In particular it makes sense to talk of the 
ratio of the dimensions of two infinite-dimensional square integrable 
representations. Amongst examples of noncompact groups with non-
trivial square integrable representations are the group of all 2X2 
real matrices of determinant one, certain other noncomplex semi-
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simple Lie groups and certain groups with compact open normal sub-
groups. 

Let K be a compact subgroup of the group G. For each irreducible 
representation L of G we may consider the primary decomposition of 
the restriction LK of L to K. Let 3C<*(L) denote the subspace of 5C(L) 
on which LK is a multiple of the irreducible representation d of K 
and let P% denote the projection on 3Cd(L). Whenever 3Cd(£) is finite-
dimensional we may form the function x~>Trace(P%LX). I t is called 
the spherical function of L associated with d and denoted by $J. If 
L is finite-dimensional then T r a c e d ) = ]C<*$d 0*0 • In general we 
may think of <j>% as being the d component of the "generalized func-
tion" which is the character of L and may think of this character as 
a formal sum of the $£. If 5C^(L) is finite-dimensional for all L and d 
we shall say that K is a large compact subgroup of G. It is easy to see 
that if K1QK2 and Ki is large then K% is also large. It is known that 
the maximal compact subgroup of the quotient of a semisimple Lie 
group by its center is large and that a compact subgroup K is large 
whenever there is a commutative normal subgroup N such that 
NK = G. Many of the special properties of semisimple Lie groups 
hold for all groups which admit a large compact subgroup. For exam-
ple such a group is always of type I and every irreducible representa-
tion has a character. Moreover there exists a single ideal on which all 
characters are defined. Each irreducible representation L is deter-
mined to within equivalence by any nonvanishing </$. For each d 
the set of all L with $£ =^0 and a given value for dim 3C<*(L) can be 
given a natural Hausdorff locally compact topology. Thus though 
the natural topology which one can introduce into ô makes it into a 
non-Hausdorff space—even in very simple cases—this space can be 
written as a countable union of (overlapping) Hausdorff locally com-
pact subspaces. 

Let &C(G) denote the center of ®(G). If L is an irreducible repre-
sentation of G then La commutes with Lx for all x in G and all a in 
(^(G) so that La must be a scalar multiple of the identity : La = hL(a)I. 
Each hL is a homomorphism of the commutative Banach algebra 
&e(G) into the complex numbers. When G is compact the homomor-
phism hL determines L to within equivalence. Its restriction to £l(G) 
is defined by a bounded function which is a constant multiple of 
Trace (La,). For noncompact G this way of defining characters is quite 
inadequate. For most interesting noncompact groups the conjugate 
classes are so large that Clc(G) is too small for L—>hl to be anywhere 
near to being one-to-one. In fact it is quite often the case that ®C(G) 
contains only zero. On the other hand when G is a connected Lie 
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group one can replace a (G) by the algebra 5(G) of all distributions 
whose support is the identity of the group. While the center of this 
algebra is not big enough for hL to determine L to within equivalence 
one does have the following result. Let G be a semisimple Lie group 
with a finite center and let K be a maximal compact subgroup. Let d 
be an irreducible representation of K. Let h be a, homomorphism of 
the center of 5(G) onto the complex numbers. Then there are at most 
a finite number of inequivalent irreducible representations L of G 
such that P J T ^ O and hL = h. hL is called the infinitesimal character 
of L. 

5. Induced representations and systems of imprimitivity. Let -ffbe 
a closed subgroup of the separable locally compact group G and let 
L be a unitary representation of H. Let w denote the natural mapping 
of G onto the space G/H of all H cosets Hx and let 3TC(G/iï) denote 
the set of all finite Borel measures a on G/H such that a(E) = 0 when-
ever Tr^iE) has Haar measure zero. We define Vw*2 to be the meas-
ure whose Radon-Nikodym derivative with respect to «1+0:2 is 

/ / da\ dai \ 

V W i + «2) d(ai + «0/ ' 
Let 3CL denote the set of all pairs a, (j> where a is in 9Tl(G/iî) and </> 
is a Borel function from G to the unit sphere of #C(L) such that 
<K&*0 == A ($(*)) f ° r aU £ *n H and all x in G. The set on which #(x) 
= <£1(x) is clearly a union of cosets and we identify a, </> with a, <j>1 

whenever <l>(x)=(l>1(x) almost everywhere with respect to a. Given 
two pairs au <£i and a2i 02 we define their inner product (ai, $1: a2, $2) 
by the formula (cei, $1:0:2, $2) —fo/H^iix) - ^ ^ ^ ( v W ^ X x ) . This 
formula makes sense because (0i(x) '02 0*0) is constant on the cosets 
Hx. With this inner product 5CL becomes a Hubert space; that is, 
there is a unique way of defining linear combinations so that 3CL is 
a Hilbert space in the usual sense. For each x £ G let Ux be the oper-
ator taking ce, <j> into aXl 4>x where ax(E) =a(Ex), <j>x(s) —<j>(sx). Then 
Jj\ is a one-to-one inner product preserving map of 5CL on 5CL and 
hence is a unitary operator. The mapping x—» £/£ is a unitary repre-
sentation of G which we call the representation of G induced by L 
and denote by £/L. In the special case in which G/H admits an invari-
ant measure [x we may define 3CL = 3C([/L) somewhat more perspicu-
ously as the set of all Borel functions 6 from G to 3C(L) such that 
0(fr)=Ls(0(x)) for all £, xG-ffXG and such that JO/H(6(X) -6(x)dn(x)) 
<oo. We identify as before and set (61:62) ~JGIH(6I(X) -02(x)d^(x)). 
The natural correspondence between the two Hilbert spaces is that 
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taking 6 into the pair ae> </>e where dae/dij,= (d(x) *6(x)) and <j>e(x) 

=0(*)/V(0(*)-0(*)). 
Amongst the more elementary formal properties of the mapping 

L—>UL axe the following: 
(a) tf*~ [£/*]-, 
(b) £ / * I X £ 2 ~ [ / L I x UL* if H1QG1, H2QG2 and Lx and U are unitary 

representations of Hi and H2 respectively, 
(c) UMc^UL if HCHlCG and Af is the representation of H1 in-

duced by L, 
(d) ULl®L*c^ULl® UL2 are more generally 

When L is the one-dimensional identity representation of the sub-
group consisting of the identity alone then UL is easily seen to be the 
regular representation. I t follows from this and the "chain rule," 
(c) above, that UL is the regular representation of G whenever L is 
the regular representation of H. 

To a surprisingly large extent the known infinite-dimensional ir-
reducible representations of groups can be thrown into the form UL 

where L is a one-dimensional representation of a suitable closed sub-
group. For this reason it is useful to have criteria for the irreducibility 
of induced representations. Irreducibility of L is of course necessary 
but far from sufficient for the irreducibility of UL. In the very special 
case in which there are only a finite number of right H cosets the 
following necessary and sufficient conditions can be given. If a is an 
automorphism of G let L° denote the representation of arl(H) which 
carries arl(h) into Ln and let ix denote the inner automorphism 
y—^xyx"1. Then UL is irreducible if and only if for every x not in H, 
Lix and L are disjoint when restricted to HOx^Hx. This theorem 
makes sense no matter how many right H cosets there are but is 
only known to be true in rather special cases. There are also cases in 
which it is known to be false and one of the more interesting unsolved 
problems of the theory is that of finding a suitably modified theorem 
which is true under reasonably general conditions. When H is normal 
and a type I group the theorem is true as it stands no matter how big 
G/H is. I t then takes the following simplified form : UL is irreducible 
if and only if U* and L are inequivalent irreducible representations of 
H for all x not in H. As an example of the application of this last theo-
rem consider the case in which G is the group of all sense preserving 
rigid motions of the plane and H is the subgroup of all translations. 
The theorem tells us, more or less immediately, that UL is irreducible 
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for every nontrivial irreducible representation L of H. Necessary and 
sufficient conditions for the irreducibility of UL are known when L is 
finite-dimensional and G/H is countable and useful sufficient condi-
tions are known when G is a Lie group and L is finite-dimensional. 

Let Hi and H2 be closed subgroups of G such that the coset spaces 
G/Hi and G/H2 are finite. The irreducibility theorem described above 
is an immediate consequence of the following theorem about the 
dimension of (R(UL

f UM) where L and M are irreducible representa-
tions of Hi and H2 respectively. For each x and y in G let J{x, y, L, M) 
denote the dimension of (R(Z> \ , M * \ ) where \ applied to each 
representation denotes its restriction to their common domain 
x~1HixC\y~1H2y. Then J(x, y, L, M) depends only upon the double 
coset c = Hixy~1H2 to which xy~l belongs so that we may write 
J(c, L, M). Moreover dim (R(C/L, UM) = J^cec J(c, L, M) where C 
is the set of all Hi'.Hz double cosets. Applied to the case in which 
H* —G this theorem implies the Frobenius reciprocity theorem 
dim (R(UL, Af)=dim (R(L, restriction of M to Hi). In addition it 
implies a criterion for the equivalence of UL and UM when L and M 
are both irreducible. When L and M are both finite-dimensional the 
theorem about dim (R([/L, UM) is an immediate consequence of a 
theorem representing UL ® UM as a direct sum over Hi : H% double 
cosets on certain other induced representations of G. This theorem of 
Kronecker products is independent of the hypothesis about the finite-
ness of G/Hi and holds at least when there are only countably many 
H\\H% double cosets. It actually holds more generally if we are willing 
to replace direct sums by direct integrals. Moreover it is a conse-
quence of an equally general theorem about the restriction of UL to 
H2. Let C denote the set of all Hi'.Hi double cosets and let ir denote 
the mapping taking each xÇzG into H1XH2ŒC. We define a subset 
E of C to be a Borel set if ir"l(E) is a Borel set in G. If the points of C 
are separated by countably many Borel sets we shall say that Hi 
and H2 are regularly related. The unique measure class in C whose 
null sets are the sets E such that ir~l(E) is a null set in G will be called 
the canonical measure class in C Let Hi and H2 be regularly related 
and let L be a unitary representation of Hi. For each x £ G let x V de-
note the representation of H2 induced by the restriction of Z> to 
H2C\x~lHix. Then XV is determined to within equivalence by the 
double coset c = 7r(#) to which x belongs so that we may write CV. 
Moreover UL restricted to H2 is equivalent to fc cVd^(c) where JU is 
any measure in the canonical measure class. To deduce the Kronecker 
product theorem from the restriction theorem we recall that UL® UM 

may be regarded as the restriction to the diagonal of G X G of ULX UM 
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and that ULXUMcx.ULXM. We leave details to the reader. When 
UL and UM are infinite dimensional the Kronecker product theorem 
does not have implications about irreducibility because the operators 
in W(UL)®3C(UM) are only the Hilbert-Schmidt operators. How-
ever both the restriction theorem and the Kronecker product theorem 
are useful tools in dealing with induced representations. 

The Frobenius reciprocity theorem, classical for finite groups, was 
stated above only in the very special case in which G/H is a finite set. 
Much more general formulations are possible. For example let H 
and G both be groups whose regular representation are of type I. Let 
JoF8dÇ(s) be quasi equivalent to the regular representations of G and 
let fH^drjÇt) be quasi equivalent to the regular representation of H 
where f and r\ are finite measures in G and Ê respectively. Then there 
exists a measure a in ÔXÊ> an a measurable function n from GXH 
to the countable ordinals, a function 5—»j38 from G to measures in Ê 
and a function t—*yt from Ê to measures in ô such that 

(1) a = fMt(s)=fy4n(t), 
(2) UNtc~fn(s, t)F«dyt(s) for almost all t> 
(3) F8 restricted to H is c*fn(sf t)N'dp9(t) for almost all s. 

In particular if one knows the restriction of F* for almost all s then 
one knows UN* for almost all / and vice versa. 

Again let L be a unitary representation of the closed subgroup H 
of G and for each Borel set E in G/H let F E denote the operator 
taking the pair a, <j> into the pair ce#, <j> where OLB(F) ~a{Er\F). I t is 
easy to see that each PE is a projection in H(UL) and that E-*PE is 
a projection-valued measure. For each x in G and each Borel set in 
G/H we have U^PEV^ — P{E]X where [E]x denotes the transform 
of E by x under the natural action of G on G/H. More generally let 
2fft be a G space and let F be a unitary representation of G. A projec-
tion-valued measure P1 defined on 9TC with each PE an operator in 
5C( V) will be said to be a system of imprimitivity for V based on 9TI 
provided that VX-IPEVX — P1[E]X for all E and x. The system of im-
primitivity P for UL defined above will be called the canonical system 
of imprimitivity for UL. To within equivalence it is the only system of 
imprimitivity for UL based on G/H and together with U determines 
L uniquely. More specifically we have the following theorem. Let H 
be any closed subgroup of the separable locally compact group G 
and let V be any unitary representation of G. Let Q be any system of 
imprimitivity for V based on the Borel G space G/H. Then there 
exists a unitary representation L of H> unique to within equivalence, 
and a unitary mapping W of 3C(£/L) on 5C(F) such that WU*W~l 

« Vx for all x in G, and WPEW~1~QE for all Borel subsets of E of 
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G/H where P is the canonical system of imprimitivity for UL. More-
over (R(L, L) is isomorphic to the intersection of (ft(£/L, UL) with 
(R(P, P ) . This theorem, whose proof is rather long, has many applica-
tions. We shall refer to it as the imprimitivity theorem. 

6. The relationship between ft and ô when N is normal in G. 
When the group G has a closed normal subgroup N it is to some ex-
tent determined by the two "smaller" groups N and G/N and one 
can reasonably at tempt to describe ô in terms of ft and (G/N)*. 
Consider first the special case in which G is isomorphic to NXG/N. 
The mapping L, M-+LXM is one-to-one from ftX(G/N)* into ô 
and, for any irreducible representation F of G, its restrictions to NXe 
and eXG/N are primary. However V will be of the form LXM if 
and only if these primary restrictions are both of type I. If either N 
or G/N is a type I group this will always be the case and we have 
a natural one-to-one mapping of ft X (G/N) onto ô. 

Consider next the case in which N is commutative and G is a "semi-
direct product" of N and a second closed subgroup H in the sense 
that NC\H=e and NH=G. Of course H is isomorphic to G/N. Since 
N is commutative every irreducible representation of N is of the 
form £—>X(£)I where I is the identity operator in a one-dimensional 
space and X is a continuous complex-valued function on N such that 
9C(Éifc) = 9C(Éi)9C(&) and |9C(£i)| = |9C(&)| = 1 for all & and £2 in tf. 
We shall identify the function X with the corresponding representa-
tion. For any automorphism a of N there is a unique automorphism 
a* of iV" such that a*(9C)(£) = 9C(a(£)). Let o^ denote the automor-
phism (•—»A(#r1 defined by each h in H. By the örW 7r(9C) of XÇzft 
we shall mean the set of all a%(X) with h(~H. By the isotropy group 
Hc£ of 9C we shall mean the subgroup of all hÇzHx s u c ^ that <**(iX!) = 9C. 
For each pair 9C, L consisting of a member X ol ft and a primary 
representation L of iTc^ let XL denote the primary representation of 
NHc£ which takes %h into X(£)Lh. Then the induced representation 
U^L is a primary representation of G which is of t y p e j , j = I, II, III 
if and only if L is of type j . Moreover it is irreducible if and only if 
L is irreducible. The restriction of U^L to N is a multiple of a direct 
integral of the members of ir(X) and every primary representation of 
G whose restriction to N "lies in w(X)" in this sense is of the form 
U^L where L is uniquely determined to within equivalence. If the 
orbits define a "smooth" equivalence relation in N, in the sense that 
there exists a Borel set which cuts each orbit just once then every 
primary representation of G is of the form U^L for some X and some 
primary representation L of Hc£. Thus as X varies over a cross section 
C for the orbits and, for each 9C, L varies over the primary représenta-
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tions of Hc£, the representations U%L vary over all primary repre-
sentations of G—each occurring just once. In particular if each Hx 
is a type I group then G is a type I group. However the orbits need 
not define a smooth equivalence relation and when they do not there 
are many irreducible and primary representations in addition to the 
U^L. We shall have more to say about these extra representations 
later but unfortunately nothing like a complete analysis of them is 
possible. On the other hand the theorem just quoted makes possible 
a very complete and satisfying description of all the irreducible repre-
sentations of numerous noncompact, noncommutative groups. The 
proof of this theorem leans heavily on the imprimitivity theorem. 

Much of what has just been said may be extended to the case in 
which N need not be commutative and H need not exist provided 
that N is a type I group. However we may have to replace the repre-
sentations L of the groups Hc£ by so called projective or ray represen-
tations of certain subgroups of G/N. 

A projective unitary representation differs from an ordinary uni-
tary representation in that the requirement that Lxy — LXLV is re-
placed by the requirements Lxy = a(x1 y)LxLy and Le = I where <r is a 
complex-valued function on GXG. We call <r the multiplier of the 
representation and we call a projective representation whose multi-
plier is <r a a-representation. It is easy to see that any multiplier a 
must be a Borel function from GXG to the complex numbers of 
modulus one which satisfies the identity 

<r(x, yz)a(y, z) = <r(*, y)<r(xy, z) 

and the normalizing condition <r(e, x) =cr(x, e) = 1. Conversely given 
any function a with these properties it can be shown that there exist 
projective representations with multiplier <r. If L is a cr-representation 
and p is a complex-valued Borel function with p(e) = \p(x)\ = 1 then 
x—>p(x)Lx is a (^-representation where 

p(xy) 

In particular x, y-*p(x)p(y)/p(xy) is always a multiplier. Multipliers 
of this form (coboundaries) are said to be trivial and two multipliers 
whose quotient is trivial are said to be similar. I t is clear that the 
product of two multipliers is a multiplier and that the multipliers 
form a group under multiplication. The trivial multipliers constitute 
a subgroup and the corresponding quotient group is called the multi-
plier group of G. It can reduce to the identity but need not do so. The 
structure of the multiplier group is known for some groups G but 
much work remains to be done. 
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For a fixed cr one can develop a theory of the ^-representations of 
G which is quite analogous to the theory of the ordinary representa-
tions of G. In particular practically everything discussed in §§2, 
3 and 5 of these lecture notes may be extended to (T-representations. 
Characters for ^-representations do not seem to have been investi-
gated. On the other hand if <x\ and 02 are nonsimilar multipliers for 
the same G the theory of the ov-representations of G can be as different 
from the theory of the (^-representations of G as the representation 
theories of two different groups. For example, let G — HXÊ where H 
is locally compact and commutative and Ê is its character group. Let 
<r(hu 9Ci; A2, %) = 9Ci(A2). Then <r is a nontrivial multiplier for the 
commutative group G and it can be shown that, to within equiva-
lence, G has just one irreducible cr-representation and that this repre-
sentation is infinite-dimensional. Commutative groups can also have 
type II and type III cr-representations. 

To return to the main theme of this section let N be a type I nor-
mal subgroup of G. For each irreducible unitary representation W 
of N and each x in G we may form the representation n-*Wxnx-i = W%. 
To within equivalence Wx depends only upon the image of x in G/N. 
Thus N is a Borel G/N space in a natural way and we may look at 
the orbits of the members of Ê under the action of G/N. For each 
W let Hw denote the group of all x in G such that Wxc^W. Then 
Hw^N and Hw/N is isomorphic to a subgroup of G/N. Just as in 
the more special case considered above, we may set up a natural one-
to-one correspondence between those primary representations of G 
whose restrictions to N lie in the orbit of W and the primary repre-
sentations of Hw/N. However there is one important difference. The 
relevant primary representation of Hw/N may be a cr-representation 
for some nontrivial cr. Since Wxc^W for each xÇîHw there must exist 
a unitary Vx such that V»WZV71*=Wn for all n in N. When x£N we 
may take Vx — Wx but in general Vx is arbitrary up to a multiplicative 
constant of modulus one and there is no canonical way of choosing 
this constant. Choosing it arbitrarily (but so that (Vx(</>) -\p) is always 
a Borel function) we get a projective representation x-±Vx of Hw 
which reduces on N to W. The multiplier for this representation is 
uniquely determined up to similarity and may be chosen to be of the 
form x, y—xr(x°, y0) =(r°(x, 3O where cr is a multiplier for Hw/N and 
x—>xQ is the canonical mapping of Hw on Hw/N. I t i s the (l/(r)-primary 
representations of Hw/N which correspond to primary representa-
tions of G and the one-to-one mapping is that taking L into J/7®1*0 

where L° is the (l/<r°)-representation x—>Lxo of Hw. Just as before, 
the induced representations UV®L° can be shown to include all pri-
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mary representations when the orbits in N define a smooth equiva-
lence relation. 

The fact that we may have to consider projective representations 
of the Hw/N seems at first sight a serious obstacle to using the above 
described theory inductively to determine the unitary representations 
of complicated groups in several stages. However it turns out to be 
possible to carry out the whole discussion starting with projective 
representations. Thus we can proceed inductively if we consider all 
possible multipliers for each group concerned. 

7. Ergodic systems of imprimitivity and virtual subgroups. Let the 
separable locally compact group G be a semidirect product of the 
closed subgroups N and H where N is commutative and normal as 
in the second paragraph of §6. Let V be any unitary representation 
of G. Let V° be the unique (to within equivalence) multiplicity free 
representation quasi equivalent to the restriction VN of V to N. By 
the theory described in §2, V° is as associated with a measure class 
Cv in Ê which determines it to within equivalence. For each Borel 
subset E of N there is a unique measure class Cy(~^E whose null sets 
are the sets F such that FC\E is of measure zero with respect to C. 
Let P\ denote the unique projection in the center of 01(7^, VN) such 
that {VN)P\ is quasi equivalent to the representation defined by 
CVHE. Then £—»Pf is a projection-valued measure called the spectral 
measure of V. It is not hard to see that Pv is a system of imprimitivity 
for V and hence also for the restriction VH of V to H. Conversely, 
given a pair consisting of a unitary representation W of H and a sys-
tem of imprimitivity P for H based on iV", there exists a unique repre-
sentation V oî G such that VH~W and PV = P. If V is primary then 
P is ergodic in the sense that PB^P[E\K for all h in H if and only if 
PE = 0 or P(N-E) = 0. Conversely if P is ergodic then V is primary if 
and only if (Si{VH

i V
H)C\($\,(P, P) has a trivial center. Thus, to survey 

all primary unitary representations of G with a given restriction to N 
is to survey all unitary representations W of H having a fixed ergodic 
system of imprimitivity P based on N and such that (R(Wt W) 
H(R(P, P) has a trivial center. 

Let P be a projection-valued measure on Ê which is an ergodic 
system of imprimitivity for some W. Then either Pr{X) ^ * f ° r s o m ^ 
orbit 7r(9C) or P ^ g c ^ O for all orbits T(X). In the first case we shall 
say that P is transitive and in the second that P is strictly ergodic. 
When P is transitive it may be regarded as based on 7r(9C) and hence 
on the coset space H/Hc£. By the imprimitivity theorem the corre-
sponding representations of H correspond one-to-one to the primary 
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representations of Hc£ and this is how the imprimitivity theorem is 
used to deduce the analysis of ô given in §6. Now suppose that P is 
strictly ergodic and let 0 be a vector in 5C(P) such that PE{4>) = 0 im-
plies PE = 0. Then E—>(Pu(<£) -0) is a Borel measure whose null sets 
are invariant under the action of H. Hence the measure class C to 
which this measure belongs is invariant. It is ergodic in the sense that 
any Borel set which is invariant under the action of H (modulo sets 
of measure zero) is either a set of measure zero or the complement of 
one. It is strictly ergodic in the sense that every orbit has measure zero. 
Conversely it can be shown (see below for further details) that, every 
ergodic measure class C arises in this way from an ergodic system of 
imprimitivity P for a unitary representation W of H, that P is strictly 
ergodic if and only if C is and that P is determined to within equiva-
lence by C and a cardinal number. 

I t follows from the above that every strictly ergodic invariant 
measure class in N gives rise to a class of "extra" primary (and ir-
reducible) representations of G not covered by the analysis of §6. To 
find all primary (and irreducible) representations of G when N admits 
strictly ergodic invariant measure classes one must first find all such 
measure classes and then for each find all associated primary repre-
sentations. The second of these difficult problems is essentially the 
same as that of finding all representations W of H with a fixed strictly 
ergodic system of imprimitivity P and will be considered to some ex-
tent below. Next to nothing can be said at present about the first. 

Let C be any ergodic invariant measure class in Ê. Let 3C0 be a 
separable Hubert space. Let 5C(C, 5C0) denote the set of all pairs a, <f> 
where a is a finite Borel measure in Ê, <f> is a Borel function from Ê 
to the unit sphere of 3Co, and a(E) = 0 whenever E is a C null set. We 
identify «, <£ with a, <j>1 whenever <£(9C) =$1(9C) outside of an a null 
set and make 3C(C, 5C0) into a Hilbert space via the inner product 

(«i, *i:«i , *0 - ƒ (*i(9C)-#t(9C))rfV(aiai)(9C). 

Just as with the definition of 3C([/L) in §6, the action of H on Ê 
defines a unitary representation Wl of H and E—*PE where P^(ce, (p) 
= asi <t> defines an ergodic system of imprimitivity for W1*PE = 0 if 
and only if E is a C null set. Let Q be any function from NXH to the 
unitary operators in 3Co which has suitable measurability properties 
and satisfies the following identities almost everywhere with respect 
to C. 

(*) (?(9C> #) ~ I, 
(**) Q(X,h1h2) = e(9C,*i)Ö([9C]*i,*i). 
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Let Qh denote the unitary operator taking a, <f> into a, Qh<t> where 
Qh<t>(%) = <2(9C, A)(0(9C)). Then h->QhWl=*W2 is a unitary representa-
tion WQ of H having P as system of imprimitivity. Every unitary 
representation W of H having P as system of imprimitivity is equiva-
lent so some WQ via an equivalence which leaves P fixed. Moreover 
the pair P , WQl is equivalent to the pair P , WQ2 if and only if there 
exists a measurable function 9C—»̂ 4(9C) from # to the unitaries in 
3Co such that for each A, 

(***) ()2(9C,A) = -4(9C)Q1(9C,^)^([9C]^)""1 

for C almost all 9C. Finally the commuting algebra intersection 
(R(P, P)C\<Si(WQ, WQ) is isomorphic to the algebra a« of all measura-
ble functions 9C—>JB(9C) from N to the unitaries in 3C0 such that for 
all h, 

(***)' £([9C]*)e(9C, A) = B(X)Q(Xy h) 
for C almost all 9C. Of course B\ and J52 are to be identified when al-
most everywhere equal. Finding the most general primary represen-
tations of G associated with a given ergodic quasi invariant measure 
class C is thus equivalent to finding the most general solution Q of 
(*) and (**) such that Cta has a trivial center—identifying two solu-
tions when (***) holds. 

When C is concentrated in an orbit 7r(9C) then (**) can be solved 
and the solutions correlated with the representations of JET®. In fact 
this is one way of proving the imprimitivity theorem. On the other 
hand when C is strictly ergodic we have a well nigh unapproachable 
problem in noncommutative cohomology theory. One can find ex-
plicit solutions of (**)—even all of them in certain rather special 
cases—but deciding when two are equivalent seems very difficult 
indeed. Yet there is a much closer analogy with the transitive case 
than at first meets the eye. There is a sense in which the "generalized 
orbit" defined by C may be associated with a "virtual" subgroup 
He of H and the equivalence classes of solutions of (*) regarded as 
representations of this "virtual" subgroup. While no actual subgroup 
of H is involved the abstract objects He behave like subgroups in 
many ways. One can speak of one virtual subgroup^ being contained 
normally in another, one can consider homomorphisms of one into 
or onto another, one can form direct products etc. Moreover the 
theory of the unitary representations of a "virtual" subgroup is very 
close in structure to the theory of the unitary representations of an 
actual group. The theory described in §§2 and 3 goes over almost 
without change though virtual subgroups of type I probably do not 
exist. One can define characters and Kronecker products and do a t 
least part of the theory of §4. In addition one can induce from one 
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virtual subgroup to a larger one and carry over much if not all of the 
theory described in §§5 and 6. Indeed parts of this theory take on an 
improved appearance when virtual subgroups are admitted. In the 
restriction theorem for induced representations, for example, one can 
omit the assumption that Hi and ft are regularly related if one is 
willing to accept representations induced from virtual subgroups 
of ft. 

The basic idea behind the introduction of the notion of virtual sub-
group may be explained as follows. Let 5 be a standard Borel G 
space which is transitive in the sense that for each si and 52 in S there 
exists x in G with Six = s%. For each s in S let ft denote the group of 
all x in G for which sx~s. The groups ft are mutually conjugate 
closed subgroups and for each s the coset space G/H8 is equivalent 
as a G space (in an obvious sense) to the G space 5. Since G/H is a 
transitive standard Borel G space for every closed subgroup H it 
follows that we have a natural one-to-one correspondence between 
equivalence classes of transitive standard Borel G spaces on the one 
hand and conjugate classes of closed subgroups of G on the other. 
This suggests that notions and theorems about closed subgroups of G 
should be capable of reformulation so as to be expressed in terms of 
the corresponding transitive G spaces. It suggests further that— 
when so reformulated—some of these notions and theorems will apply 
to G spaces which admit an ergodic invariant measure class but are 
not strictly transitive and hence not equivalent to coset spaces. 
When they do we may think of them as being about the nonexistent 
"virtual" subgroups of G which would define the G spaces if only 
they were transitive. For example Hi is continued in some conjugate 
of ft if and only if there is a Borel map 9 of GI Hi on G/ft such that 
0([s]x)— [0(s)]# for all s in G/ft and all x in G. Correspondingly 
when such a mapping of the ergodic G space Si on the ergodic G 
space £2 exists we shall say that the virtual subgroup defined by S\ 
is a subgroup of the virtual subgroup defined by S%. 

As a less trivial example let us consider the meaning to be attached 
to the notion of a homomorphism of a virtual subgroup into a group. 
If 0 is a continuous homomorphism of the closed subgroup Hi of 
Gi into the group G2—then the subgroup H^ of Gi X G2 consisting of 
all pairs h, <j>(h) with &£f t closed, uniquely determines <£ and is 
determined to within conjugacy by the G1XG2 space (GiXG2)/H<t>. 
Let Si be a Borel subset of Gi which meets each coset Hix just once. 
Then S1XG2 meets each H+ coset just once and the natural maps of 
Si on G1/H1 and of S1XG2 on (GiXG2)/H<f> are one-to-one. Using these 
natural maps, Si and 5iXG2 become G\ and Gj XG2 spaces equivalent 
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to the coset spaces G/H\ and {GiXG^/H^ respectively. Moreover 
(5, y)(x, z) =sx, z~~lyir(s> x) where sx is the G\ space action of x on s, 
ir is a Borel mapping of S i X d into G% and zrlyr{s9 x) is the product 
of three members of the group G2. If T is any Borel mapping from 
•S1XG1 into G2 and S% is any standard Borel G space then, as is easy 
to verify (s, y)(x, z)=sx, z^lyir{si x) makes S1XG2 into a Borel 
G1XG2 space if and only if we have 

(t) n(s> e)=e for all 5 in Si, 
( t t ) fl"(s, #iX2)=?r(s, XI)T(SXU X2) 

for all 5, xi, #2 in SXGiXG2 . Moreover if Si is transitive then S1XG2 
is transitive and the subgroup leaving si, e fixed is the set of all h, 
<l>(h) where sih = si and $ is a Borel (and hence continuous) homo-
morphism of the subgroup H8l into G2. Choosing a different cross 
section S{ has the effect of changing TT to TT' where 

( t t t ) ir'(s, x)=a(s)T(s, x)a"1(sx) 
and a is a Borel function from S to G2. Thus the notion of a Borel 
homomorphism of Hi into G2 is equivalent to the notion of an equiva-
lence class of functions satisfying (f) and (ft)» the equivalence rela-
tion being defined by (f f f). This latter notion does not explicitly in-
volve Hi and makes sense for virtual subgroups. Comparing (f), ( f t ) , 
and ( t t t ) with (*), (**), and (***) above we see how the unitary repre-
sentations of G associated with a given ergodic invariant measure 
class in N may be regarded as being defined by unitary representations 
of a virtual subgroup of H. 

When îiïl is a G1XG2 space each GiXe orbit is carried into another 
by each element of eXG2. Thus the set M01 of all GiXe orbits is a G2 
space in a natural way. When 9ÏI is of the form (GiXGù/Hj» where <p 
is a continuous homomorphism of Hi into G2, then Sfîl̂ 1 will be a 
standard Borel space in a natural way if and only if <£(iïi)=iÏ2 is 
closed in G2. When this is the case G2/H2 is equivalent to WL°K In 
other words H"2 will be a homomorphic image of Hi if and only if G2/H2 
is 2fTCö* for an 2TC defined in G1/H1XG2 by a TT satisfying (t) and ( t t ) . 
A definition for the notion of homomorphism of one virtual subgroup 
onto another virtual subgroup at once suggests itself. We leave the 
precise formulation to the reader. 

Results in the ergodic theory of flows and measure preserving trans-
formations may be regarded as results about virtual subgroups of the 
additive group of the real line and of the additive group of the inte-
gers respectively. When this point of view is taken some known re-
sults receive interesting new interpretations. For example Ambrose 
has shown how to construct a more or less general ergodic flow from 
a single measure preserving transformation T on a space S and a posi-
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tive measurable real function ƒ on 5. This construction is a special 
case of the above construction of M°l from Si and T. Since G\ is 
infinite cyclic w is determined by a single function from Si to Gi and 
G2 in this case is the real line. Ambrose's result may thus be looked 
upon as asserting something about the realizability of virtual sub-
groups of the real line as homomorphic images of virtual subgroups 
of the integers. Similar interpretations may be given to Kakutani 's 
notion of induced measures preserving transformations and Anzai's 
skew product transformations. 

Let C\ be an ergodic invariant measure class in the standard Borel 
G space S\. Let S2 be a second standard Borel G space and let 0 be 
a Borel map from S± to S% such that d(sx) *=6(s)x for all x and s. Let 
C2 be the measure class in S2 whose null sets E are the sets such that 
Q~l(E) is a C\ null set. Then C* is also ergodic and invariant and de-
fines a virtual subgroup of G containing that defined by S\ and C\. 
Now an equivalence class of irreducible representations of the virtual 
subgroup defined by Si and C\ determines and is determined by an 
equivalence class of pairs consisting of a unitary representation V of 
G and a system of imprimitivity P for V based on Si. Given such a 
pair let P^^PO-HE) for each Borel set E contained in S2. Then P 1 

is a system of imprimitivity for V based on S2. The pair P 1 , V defines 
an equivalence class of unitary representation of the virtual subgroup 
defined by S2 and C2 which depends only upon the equivalence class 
of the pair P , V. In this way we may pass in a canonical way from 
unitary representations of virtual subgroups to unitary representa-
tions of larger virtual subgroups. When the virtual subgroups are 
actual this passage coincides with that from L to the induced repre-
sentation UL described in §5. This generalization of the inducing 
process may be defined directly in terms of the functions Q. The sec-
ond form of the definition is the most convenient for many purposes 
but is rather more complicated. 

For further details about virtual subgroups and their unitary repre-
sentations the reader must be referred to the lecturer's as yet unwrit-
ten introductory article on the subject. 

8. Nonunitary representations. It is natural to attempt to extend 
the theory we have been describing by allowing the operators Lx to 
be continuous linear operators in an arbitrary (separable) Banach 
space or perhaps even in a complete topological vector space. How-
ever, very serious obstacles stand in the way of obtaining nearly so 
complete a theory—even if one sticks to operators in Hubert space 
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and drops only the condition that the Lx be unitary. Perhaps the 
most important of these obstacles is the fact that subrepresentations 
of nonunitary representations need not have complementary sub-
representations and that correspondingly a nonunitary representation 
may be reducible without being decomposable as a direct sum. Be-
cause of this there is little if any hope of being able to reduce the prob-
lem of finding all representations to that of finding all irreducible 
representations. For example though one knows quite explicitly the 
finite-dimensional irreducible representations of an w-dimensional 
vector group one does not know the finite-dimensional representations 
of such a group when n> 1. The at tempt to determine them all leads 
to complicated and apparently unsolved problems in the ideal theory 
of polynomial rings. Moreover for any bounded linear operator A in a 
Banach space one may form eAt for all real t and thus obtain a repre-
sentation of the real line. I t follows that the problem of classifying all 
representations of the real line includes as a special case that of 
classifying all bounded linear operators—a problem known to be 
highly inaccessible even if one considers only operators in Hubert 
space. Another difficulty is illustrated by the following. Let C denote 
the set of all continuous functions with compact support on the sep-
arable locally compact group G. This space can be given a tremendous 
number of different norms which are invariant under translation. The 
completion of C in any of them yields a Banach space representation 
of G which is analogous to the regular representation and yet not 
equivalent to it under the obvious notion of equivalence. If we con-
sider these representations as inequivalent our classification problem 
is enormously complicated by having appended to it a large chunk of 
the (apparently hopeless) classification problem for Banach spaces. If 
we do not we must find a new notion of equivalence which identifies 
them and is satisfactory in other respects. Such a notion has been pro-
posed (and will be discussed below) but has satisfactory properties 
only in certain important special cases. This difficulty makes itself felt 
even for irreducible representations as one can see by replacing the 
regular representation by an irreducible induced representation. Yet 
another difficulty appears in the very concept of irreducibility. An 
important property of irreducible unitary representations is that any 
bounded linear operator in the space of such a representation L may 
be approximated arbitrarily closely in the strong operator topology by 
operators of the form CiLXl+ • • • +cnLXn. However for nonunitary 
representations it seems to be very difficult if not impossible to prove 
that this property is implied by the nonexistence of closed invariant 
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subspaces. These irreducible representations which have it are said 
to be completely irreducible and those which do not—if indeed they 
exist—are left in an unexplored limbo. 

In spite of the discouraging facts recounted above there are cogent 
reasons for giving at least some attention to nonunitary representa-
tions. In studying the irreducible unitary representations of certain 
groups, especially the semisimple Lie groups, one gets a more natural 
and well rounded theory by including the completely irreducible 
nonunitary representations. The unitary ones form a rather artificial 
subset of the whole. Indeed when one studies the representations of 
semisimple Lie groups via their Lie algebras it is not always easy to 
see which Lie algebra representations are going to correspond to uni-
tary representations of the group. A more pressing (but closely re-
lated) reason for studying nonunitary representations is that there 
exist irreducible unitary representations which may be thrown into 
the form UL where L is a nonunitary one-dimensional representation 
of a subgroup and (apparently) may not be so expressed for unitary 
L. Of course the definition of UL has to be adapted so that it applies 
to nonunitary L. In addition (as we shall see below) the problem of 
studying all nondirect sum "extensions" of one irreducible unitary 
representation by another gives promise of adding interesting new 
structural features to the "dual object" ô. Finally in so far as one 
conceives of the theory of infinite-dimensional group representations 
as being a natural generalization of classical harmonic analysis one 
hopes ultimately to generalize more than the relatively trivial <£2 

theory. 
Let L and M be strongly continuous nonunitary representations of 

the separable locally compact group G in separable Banach spaces 
5C(L) and 3C(M). It has been proposed (by Naimark) to say that L 
and M are equivalent if there exists a closed one-to-one linear operator 
T from a dense invariant subspace of 3C(L) to a dense invariant sub-
space of 3C(M) such that TLX{<I>) = MxT(<j>) for all x in G and all <f> in 
the domain of T. We shall call this notion weak equivalence. I t is not 
hard to show that weak equivalence implies equivalence whenever 
L and M are unitary. On the other hand it is by no means clear that 
weak equivalence is even an equivalence relation except in special 
cases. Suppose that G has a large compact subgroup K in the sense of 
§4. For each completely irreducible representation L of G and each 
irreducible unitary representation d of K one can define the spherical 
functions <fâ more or less as in §4 and it can be shown that L and M 
are weakly equivalent if and only if 4% ~<t>f for all d. It follows that 
weak equivalence is an equivalence relation in this case and that it 
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coincides with the "infinitesimal equivalence" of H arish-Chandra 
when G is a semisimple Lie group with a finite center. 

For some purposes it is convenient to reformulate the notion of 
weak equivalence as follows. Let X be a vector space and let Y be 
a subspace of the algebraic dual X* of X which is total in the sense 
that f((j>) = 0 for all ƒ in F implies 0 = 0. We shall call such a pair a 
linear system. By an isomorphism of the linear system X%, Y\ with the 
linear system X2, Y% we shall mean a one-to-one linear transformation 
A from Xi onto -X*2 such that A * is one-to-one from F2 onto Y\. Here 
A * is defined by the identity A *(ƒ) (<£) =f(A (0)). By an automorphism 
of X, Y we shall mean an isomorphism of X, Y with itself. By a 
linear system representation L of G we shall mean a homomorphism 
x—>Lx of G into the group of automorphisms of a linear system X, F. 
If L is a linear system representation of G in X, F, and Xx and Fx 

are total subspaces of X and F invariant under the Lx and L* respec-
tively then restricted to Xit the Lx define a linear system representa-
tion of G in JSTi, Fi. We shall call this second representation a tteflse 
contraction of the first. Two linear system representations L1 and L2 

in X1, F 1 and X2, F2 respectively will be said to be equivalent if there 
exists an isomorphism A of X1, F 1 with X2, F2 such that ALl = LlA 
for all x in G. Now let L be a Banach space representation. Then L is 
determined to within (strong) equivalence by the corresponding 
linear system representation in the linear system 3C(L), [3C(L)]"~. If 
T sets up a weak equivalence between L and M then the range and 
domain of T and T* define dense contractions of these linear system 
representations and these dense contractions are equivalent. Con-
versely if L and M have equivalent dense contractions and A sets 
up the equivalence then A has a closed extension which defines a 
weak equivalence between L and M. Thus L and M are weakly 
equivalent if and only if they have equivalent dense contractions. In 
particular a unitary representation is determined to within equiva-
lence by any dense contraction and, given a linear system representa-
tion, we may speak unambiguously of its unitary expansion whenever 
this exists. 

Now let L be a Banach space representation of the closed subgroup 
H of G. Let °XL denote the vector space of all Borel functions ƒ from 
G to 3C(L) which are bounded on compact sets and satisfy the identity 
ƒ (£#) == !*$ ƒ (x) for all x in G and all £ £ i ï . Let °F L denote the vector 
space of all Borel functions g from G to [3C(L) ]~ which are bounded 
on compact sets and satisfy the identity g(£x) — Lç~i(g(x)) for all x 
in G and all £ £ i ï . Then g(x)(f(x)) as a function of x is a Borel func-
tion on G which is constant on the H cosets and hence defines a Borel 
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function on G/H which is bounded on compact sets. Let 00XL denote 
the set of all pairs consisting of a member ƒ of QXL and a finite meas-
ure a of compact support which is absolutely continuous with respect 
to the unique invariant measure class in G/H. Let 00 YL be similarly 
defined with respect to ° YL. Given ƒ, a in 00XL and g, /3 in 00 YL let 
(ƒ> OÙ: gf /3) z=JoiHg{x){f{x))d\/a^. Let us identify two members ƒ, a 
and ƒ', a! of 00XL if (ƒ, a: g, |3) = (ƒ', a ' : g, |8) for all g, j8 in X and let 
us identify two members g, /3 and g', /3' of 00FX ' correspondingly. Let us 
denote the sets of equivalence classes by XL and YL respectively. 
(ƒ> « :g , ]8) of course depends only upon the equivalence classes of 
the arguments. I t can be shown that there is a unique way of defining 
the linear operations in XL and YL so that XL, YL becomes a linear 
system in which the linear function defined by g, /3 i s / , a—>(ƒ, a: g, j3). 
XL, YL and (ƒ, a :g , /3) are invariant under group translation so 
group translation defines a linear system representation of G in XL, 
YL. If this linear system representation has a unitary expansion we 
call it the unitary representation of G induced by L and denote it by 
UL. When L itself is unitary it is easy to see that this definition is 
equivalent to that given in §5. For any given H one can raise the 
following rather interesting question : For which nonunitary irreduci-
ble representations of H is UL defined? 

Let L and M be Banach space representations of G and let x-^Ax 

be any strongly continuous function from G to the bounded linear 
operators from 3C(ilf) to 5C(L) which is a derivation in the sense that 
it satisfies the identity 

(*) AXy = LxAy+AXMy 
for all x and y in G. For each x let Vi be the operator taking $, \f/ 
in 3C(L)03C(M) into Lx(<f>)+Ax(\l/), Mx(<j>). Then x-*Vi will be 
Banach space representation of G having L as a subrepresentation and 
AT as a quotient representation. Moreover it can be shown rather 
easily tha t every representation V having L as a subrepresentation 
and M as a quotient representation is equivalent to some FA provided 
that the invariant subspace defining the subrepresentation L has a 
(in general nonvariant) complementary closed subspace. A necessary 
and sufficient condition that there should exist an invariant comple-
mentary closed subspace so that Vo^L ® M is that A be of the form 
X—>LXAQ--AOMX where A0 is some fixed bounded linear operator from 
3C(ikT) to 3C(L). Let us call such a derivation exact. The set of all con-
tinuous derivations is a vector space and the set of all exact deriva-
tions is a subspace of it. The dimension of the quotient space is a 
measure of the number of essentially distinct extensions of L by M 
tha t exist. I t can of course be zero—indicating that L®M is the only 
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possibility. Let us denote this quotient space by £>(L, M). It can be 
different from zero even when L and M are unitary. When G is com-
mutative it is easy to show that 3D(L, M)=0 whenever L and M are 
inequivalent and irreducible. On the other hand if G is commutative, 
G is a commutative Lie group, and L is irreducible and defined by 
9C£<? then there exists a natural isomorphism of £)(L, L) with the 
complexification of the tangent space to G at 9C. This suggests the 
possibility of giving some sort of generalized manifold structure to ô 
in the general case whenever it is found that £>(£, L) 9^0 over a large 
subset. It would be interesting to know under what circumstances 
£>(L, L) has a finite nonzero dimension. 

9. The representations of semisimple Lie groups. In §§6 and 7 we 
discussed a method for finding the irreducible unitary representations 
of particular groups. This method applies only to groups having 
proper closed normal subgroups and replaces the given problem by 
the corresponding one for certain "smaller" groups. It leads to com-
plete results only when at some stage all of the smaller groups are 
commutative with "known" character groups and various other con-
ditions are satisfied. It must be supplemented by other methods 
whenever one of the smaller groups is topologically simple in the sense 
that it admits no proper closed normal subgroup—unless of course 
this smaller group is commutative. In this section we shall discuss the 
extent to which it has been possible to determine the irreducible repre-
sentations of separable locally compact groups which are topologically 
simple. Let G be such a group. Since the connected component of the 
identity is a closed normal subgroup G must be either connected or 
totally disconnected. The study of nondiscrete totally disconnected 
simple groups has barely begun and we shall say no more about it 
here. When G is simple and discrete it almost certainly is not of type I 
unless it is finite and there seems to be little if any hope of giving a 
satisfying analysis of the irreducible representations of a nontype I 
group. For some, but not all, of the known simple finite groups it has 
been found possible to give a complete list of their irreducible repre-
sentations—or at least the characters of these representations. How-
ever there seems to be little in the way of a general theory and the 
results are too finite and algebraic in character to fit naturally into 
this account. We are left with the connected ones and it follows from 
the solution to Hubert's fifth problem that a connected topologically 
simple locally compact group is in fact a simple Lie group. 

The simple Lie groups are all known, and extensive (though still 
incomplete) work has been done on the problem of determining their 
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irreducible representations, the characters of these and the Plancherel 
measure in (5. Much of this work can be formulated so that it applies 
to general semisimple Lie groups, i.e. groups which are locally iso-
morphic to direct products of connected simple Lie groups. For sim-
plicity of exposition we shall consider only those semisimple Lie 
groups which have finite centers and no compact components. The 
irreducible representations of compact simple Lie groups are all finite-
dimensional and their complete determination is classical. Basic to 
the general formulation is the Iwasawa structure theorem which may 
be stated as follows in our special case. Let G be a semisimple Lie 
group with a finite center and no compact components. Then G has 
closed connected subgroups N, D and K having the following prop-
erties : 

(1) N is nilpotent, D is a vector group and K is compact. 
(2) The mapping ny d, k —>ndk from NXDXK to G is a homeo-

morphism onto. 
(3) If A is the centralizer of D in K then S~NDA is a semidirect 

product of N and DA. 
(4) K is contained in no properly larger compact subgroup of G. 

As an example of the Iwasawa structure theorem it is illuminating to 
consider the group SL(w, C) of all nXn complex matrices of deter-
minant one, Here we may choose N9 D and K as follows: N is the 
group of all matrices in SL(w, C) which are one on the main diagonal 
and zero above it. D is the group of all matrices in SL(n, C) which are 
real on the main diagonal and zero off of it. K is the group of all 
unitary matrices in SL(w, C). With these choices of N, D and K, A 
comes out to be the group of all matrices in SL(w, C) which are zero 
off of the main diagonal and of absolute value one on it and 5 comes 
out to be the group of all matrices in SL(w, C) which are zero above 
the main diagonal. 

Returning to the general case let W be the normalizer of D in K. 
Then AÇ1W and W/A defines a finite group of automorphisms of DA 
and hence of ÔXÂ. Let (ÔXÂ)' denote the set of all members of 
Ô X Â whose transforms under W/A are all distinct. For each 
XÇzÔXA let 9C° denote the one-dimensional representation of 5, 
nda—>da-^X(da)T. I t can be shown that the induced unitary repre-
sentation U^*° of G is irreducible whenever XÇz(ÔXÂ)'. I t has been 
conjectured that U^° is irreducible for all 9C and this has been proved 
for the classical complex groups and for the group of all nXn real 
matrices of determinant one. If SCi and 9C2 are in (ÔXÂ)' then the 
irreducible representations U^1 and U^** are equivalent if and only 
if 9CX and 9C2 belong to the same W/A orbit. Let C be a cross section 
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for the orbits in (DXA)' under W/A. Then X->U^° defines a one-
to-one mapping 0 of C into (5. In the important special case in which 
G is a complex analytic Lie group it can be shown that ó—0(C) is of 
measure zero with respect to the Plancherel measure fi. Thus in this 
case there is a sense in which the U^° comprise "almost all" unitary 
representations of G. Moreover the Plancherel measure can be de-
scribed without finding any further irreducible representations of G. 
It can be shown that the "transformed measure" 0(j&) such that 
0(j&(E))=j&(0(E)) is absolutely continuous with respect to the re-
striction of Haar measure in DXA to C and the Radon-Nikodym 
derivative has been explicitly computed. 

Even when G is complex analytic the U^° for X£Î>XÂ are known 
not to exhaust the irreducible representations of G. Further irreducible 
representations of G may be constructed in two ways. If X(£(OXA)f 

it will be possible to extend X° from 5 to a larger subgroup and con-
sider the representations of G induced by this extended one dimen-
sional representation. For example let G be the group of all nXn uni-
modular complex matrics and let G>,w_r denote the subgroup of all 
matrices which have zeros in the upper right submatrix of r rows and 
n — r columns. Let Gr,n-r denote the subgroup of Gr,n-r having zeros 
in the lower left submatrix of r columns and n—r rows. For each ele-
ment of Gr,n-r we may compute the determinant of the rXr matrix 
in the upper left hand corner and obtain in this way a homomorphism 
of Grtn-r and hence of Gr,n-r into the multiplicative group of nonzero 
complex numbers. Every one-dimensional unitary representation of 
this last group defines one of Gr,n-r which is not in (DXA)' when 
restricted to DXA. These unitary representations of Gr,n-r induce 
unitary representations of G which can be shown to be irreducible. 
They belong to what Gelfand and Naimark call the degenerate series. 
There are analogous degenerate series associated with partitions of 
n into more than two summands. Returning to the general case again 
let X be a homomorphism of DXA into the multiplicative group of 
all nonzero complex numbers such tha t | 9C(da)| ^1. Let X° be the 
corresponding nonunitary one-dimensional representation of S. Then, 
as explained in §8, U^° might exist as the unique unitary expansion 
of a certain linear system representation. Moreover U^ has been 
shown to be irreducible, when it exists, under conditions analogous 
to those described above. For the classical complex groups sufficient 
conditions for the existence of U^° are known and the corresponding 
irreducible representations of G constitute what Gelfand and Nai-
mark call the supplementary series. Of course one can form U* also 
when X° is a nonunitary one-dimensional representation of a subgroup 
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containing S. The representations obtained in this way are said to 
belong to the supplementary degenerate series. Whether the prin-
cipal, supplementary, degenerate, and supplementary degenerate 
series exhaust the irreducible representations of the complex semi-
simple Lie groups is an open question. Naimark and Berezin have 
independent papers purporting to show that the answer is yes for 
the classical complex groups but Berezin's argument seems to have a 
serious obscurity or two if not an actual gap and the completion of 
Neumark's argument has yet to be published. For the special case 
of the group of all 2 X2 complex matrices of determinant one there is 
no degenerate series and an affirmative answer has been established. 

When G is not a complex analytic group much less information is 
available. In particular G — 0(C) is not of p, measure zero and the repre-
sentations in 0(C) are not sufficient to define p, and the Plancherel 
formula. This fact seems to be closely related to the fact that it is 
only for the complex groups that almost every grpup element is 
conjugate to a member of the maximal commutative subgroup DA, 
For more general semisimple Lie groups one has a finite number 
(greater than one) of mutually nonconjugate maximal commutative 
subgroups and each one seems to have associated with it a series of 
irreducible unitary representations whose jit measure is not zero. How-
ever the situation has been completely elucidated only for the group 
Sh(tiy R) of all nXn real matrices of determinant one and even here 
one does not know all irreducible unitary representations—only 
enough so that the rest have Plancherel measure zero. It is only for 
the group SL(2, R) that all irreducible representations are known. 
This group has to within conjugacy one maximal commutative sub-
group other than DA = D. This is the compact group K of all matrices 
of the form 

cos 0 sin 0 

1 — sin 0 cos0 

For each irreducible representation 

c 

1 — s 

:os 0 sin 0 

sin 0 cos 0 
— • » einB 

of this group we have an irreducible representation Vn of G = SL(2, R) 
defined by an analogue of the inducing process in which Borel func-
tions are replaced by complex analytic functions. The coset space 
G/K is in a natural way a complex analytic manifold analytically 
equivalent to the upper half-plane. The representations Vn and the 
members of the principal and supplementary series exhaust the ir-
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reducible representations of G. For SL(w, R) a typical maximal com-
mutative subgroup is defined by a positive integer k with 2kSn and 
consists of all matrices in SL(#, R) such that each submatrix 

with j ^ k is of the form 

X; 
cos 0y sin 0/ 

— sin 0y cos0y 

with Xy>0 and all other nondiagonal elements are zero. Let us denote 
this commutative subgroup by Dk. Let Gk denote the subgroup of all 
matrices in SL(w, R) whose elements are zero except on the main di-
agonal and in the submatrices 

&2j,2j (l2j,2j+l 

Ü2j+l,2j ^2 i+l ,2y+l 
with j g k. 

Then Gk is isomorphic to the direct product of k replicas of SL(2, R), 
n — k — 1 replicas of the multiplicative group of the positive real num-
bers and n~ 1 — 2k two element groups. Let us denote the product of 
the noncommutative factors by Gk and the product of the commuta-
tive factors by A*.. Then Dk = (Gk r\Dk)Ak and the general member of 
Dk is defined by a k tuple #1, • • • , w* of integers and a character 9C of 
Ak. flu ' • • , nk and 9C may in turn be associated with the irreducible 
representation VnlXVn*X • • • XFW*X9C of Gk. Now let Nk be the 
group of all matrices in SL(n, R) which are one on the main diagonal, 
zero above it, and have a2/+i,2y = 0 for j^k. Then NkGk is a semidirect 
product of Nk and Gk and the representation VniX • • • XFn*X9C 
of Gk defines one of NkGk which is the identity on Nu. We shall denote 
it by Z,ni'n2»",'n*»^é The representations 

u* ni.nj, *,9C 

of SL(rc, I?) i n d u c e d b y Ln*»na> • * • >nh& h a v e b e e n s h o w n t o b e i r reduc i -
b l e for all ni, • • • , wjb, 9C. I n t h e a g g r e g a t e t h e y a r e of n o n z e r o 
Plancherel measure and constitute the part of the principal series 
associated with Dk. 

In the general case, Harish-Chandra has indicated a method for 
reducing the problem of finding a series of irreducible representations 
for each maximal abelian subgroup A to the case in which A is com-
pact. Moreover he has solved the problem for compact A when the 
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maximal compact subgroup K has a one-dimensional center. In this 
case one obtains a discrete series of square integrable representations 
quite analogous to the representations Vn of SL(2, R). 

There are a number of things that one can say in general about the 
representations of semisimple Lie groups. The subgroup K of the 
Iwasawa decomposition is always large in the sense of §4 so that one 
can define spherical functions and one knows that all representations 
are of type I. Moreover all irreducible representations have char-
acters in the sense of §4 and these characters may be described by 
Schwartzian distributions on the group. In many concrete cases these 
distributions are actually functions and in all cases it has been shown 
that the distributions reduce to functions—in fact analytic functions 
—on a dense open subgroup. In addition to the distribution char-
acters one has the infinitesimal characters defined at the end of §4. 
There is a natural mapping of the complex linear functionals on a 
Cartan subalgebra of the Lie algebra of the group onto the maximal 
ideals of the center of the infinitesimal group algebra and hence onto 
the "potential" infinitesimal characters. One knows which of these 
"potential" infinitesimal characters can actually arise from Banach 
space representations and those that arise from unitary representa-
tions in a Hubert space form a small subset. In the case of the group 
of all 2X2 complex matrices of determinant one the irreducible Ba-
nach space representations have all been determined—of course only 
to within weak equivalence. 

10. Applications to quantum mechanics. Let M denote the "con-
figuration space" of a classical mechanical system. For example, if 
the classical system describes the motion of n particles subject to no 
constraints 9TC will be an open subset of a 3w-dimensional vector space. 
We shall suppose for the time being that 9TC is an open subset of a 
finite-dimensional vector space V so that the phase space of the sys-
tem may be taken to be the direct product îiïlXV* where F* is the 
algebraic dual of V. An observable in classical mechanics is a real 
valued Borel function on 9TCX V*. In order to facilitate the passage 
to quantum mechanics it will be convenient to call a point in MX V* 
a pure state and use the word state to denote a probability measure 
in MXV*. Here of course we identify a point in MXV* with the 
probability measure concentrated in that point. The dynamical group 
of the system is a homomorphism t—>Ut of the additive group of the 
real line into the group of all one-to-one differentiable maps of SflZX V* 
onto itself. It is usually defined by the vector field in MX V* which 
is its "infinitesimal generator" and is restricted by further require-
ments which we shall not describe here. If A is an observable, q, p 



1963] INFINITE-DIMENSIONAL GROUP REPRESENTATIONS 665 

a pure state and t a real number, then A(q, p) is the value of the 
observable A in the pure state q, p and Ut(q, p) is the (pure) state 
of the system t time units after it was in the pure state q, p. If A is 
an observable, a is a state and £ is a Borel subset of the real line, then 
a(A-~l(E)) is the probability that a measurement of A will lead to a 
value in E when the system is in the state a. In classical statistical 
mechanics one studies states rather than pure state. Clearly the 
dynamical group U induces a one parameter group of transformations 
of the space of all states onto itself. The states form a convex set in 
a natural way and the pure states are just the extreme points of this 
convex set. 

Let £0 denote the <r-Boolean algebra of all Borel subsets of 9ÏIX F*. 
Then the observable A is completely determined by the mapping 
E—*A~l(E) of the cr-Boolean algebra of all Borel subsets of the real 
line into £c, the state a is the mapping F-*a(F) from <£c to the unit 
interval and the dynamical group t-+Ut is completely determined by 
the homomorphism which it defines of the real line into the group of 
all automorphisms of <£c. Quantum mechanics differs from classical 
mechanics in that the cr-Boolean algebra £0 is replaced by the com-
plete lattice <£fl of all projections in a complete separable infinite-
dimensional Hubert space 3C. The observables correspond one-to-one 
to the projection-valued measures on the line (see §3) and the states 
to the probability measures on the projections, that is to the functions 
a from the projections to the unit interval such that a (Pi+P2+ • • •) 
=a(Pi)+a(P2) + • • • whenever P i P / =P / P^ = 0 and such that 
a(0) = 0, a(I) = 1. If E-+QB "is" an observable and a "is" a state then 
OC(QE) is the probability that a measurement of the observable will 
lead to a value in E when the system is in the state a. For each unit 
vector <}> in 5C, P—»(P(#), <t>) is a probability measure on the projec-
tions which we shall denote by ce$. It has been shown that every 
probability measure on the projections may be put into the form 
71^+720^,+ • • • where the 0/ are mutually orthogonal, the y§ are 
positive and 71+72+ • • • = 1 . The pure states, that is the extreme 
points in the convex set of all states, are just the a$. Via the spectral 
theorem there is a natural one-to-one correspondence between self-
adjoint operators and projection-valued measures on the line—hence 
a natural one-to-one correspondence between observables and self-
adjoint operators in 3C. If A is a self adjoint operator and </> a unit 
vector let E—>QE denote the projection-valued measure corresponding 
to A. Then in the pure state defined by <f> the observable correspond-
ing to A has the probability distribution E—>(öl(^), <£). This is the 
basic statistical assertion of quantum mechanics as formulated by 
von Neumann. 
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The dynamical group in quantum mechanics is a continuous homo-
morphism t—>Ut of the additive group of the real line into the 
(suitably topologized) group of all automorphisms of <£«. In general 
an automorphism of £ a will be defined by a unitary or antiunitary 
operator in 0C which is unique to within multiplication by a complex 
constant of modulus one. It can be shown that the Ut may all be de-
fined by unitary operators in 3C and that the ambiguous constants 
may be chosen so that Ut is defined by the unitary operator Wt where 
t—*Wt is a unitary representation of the real line. We shall call W 
the unitary dynamical group of the system. It is uniquely determined 
by U to within multiplication by eiat where a is a real constant. Using 
Stone's theorem we may write W%~e-iBi where H is a selfadjoint 
operator. When units are suitably chosen (so that Planck's constant 
is 2ir) the observable associated with H is the quantum mechanical 
analogue of the total energy. H is called the Hamiltonian of the sys-
tem. Let <t> be a unit vector defining the state of the system at some 
instant of time. Then t units of time later, the state is described by 
Wt(<t>) ~ e~mt((l>) and when the derivatives exist d(Wt{<t>))/dt 
= — iHWt(<t>)- This last equation is Schrödinger's equation in abstract 
form. 

Since classical mechanical observables are in a sense "limiting 
cases" of quantum mechanical observables no one-to-one correspond-
ence is to be expected. On the other hand those classical observables 
corresponding to functions A on SflZ X V* such that A (g, p) is inde-
pendent of pi i.e. the configuration observables, have unique quantum 
counterparts and the corresponding selfadjoint operators commute. 
Let PF be the operator corresponding to the function on 3ft which is 
1 on the Borel subset F of 9ft and zero outside it. Then F->PF is a 
projection-valued measure defined on 9ft and for any Borel function 
A on 9ft the corresponding quantum observable is that defined by the 
projection-valued measure on the line: E~->PA~HE). Thus the con-
figuration observables in quantum mechanics are completely specified 
by giving a projection-valued measure P on the classical configura-
tion space 9ft, Moreover in so far as there are no observables except 
those expressible in terms of the configuration observables and their 
time derivatives the entire system is determined by giving the projec-
tion-valued measure P and the unitary dynamical group W. 

Suppose now that our system is symmetric under the action of a 
separable locally compact group G and that there is a closed subgroup 
Go of G such that 9ft is a Go space in a natural way (see §1). The first 
supposition means that there is a natural homomorphism /3— Ĵ'/s of 
G into the group of automorphisms of £q and assuming (for simplic-
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ity) that G is connected we may realize each Tp by a unitary Sp in 
our Hubert space 3C. The Sp may be chosen so that /8—>*Ŝ  is a cr-
representation of G for some (not necessarily trivial) <r. Moreover it 
follows from general invariance principles that the PE and the Sp 
must be related as follows: SQPES^ — PIEW for all (3 in Go and all 
EQffî. In other words P must be a system of imprimitivity for the 
restriction S° of S to Go. This fact has many interesting implications. 
In the appropriate context and slightly strengthened it is a restate-
ment of the celebrated Heisenberg commutation relations. In what 
sense this is so will appear below. 

For each continuous homomorphism x—>$x of the real line into G, 
x—>Spx is a (^-representation of the real line which becomes an ordinary 
unitary representation on multiplying by a suitable complex-valued 
function of x. By Stone's theorem this unitary representation may be 
put into the form x—>eiAx where A is a self adjoint operator. When the 
/?a, all belong to Go, the observable corresponding to A is called the 
momentum observable associated with the corresponding one param-
eter group of transformations of SfTC. It is unique up to an additive 
constant. Modulo this additive constant, the momentum observables 
in quantum mechanics correspond one-to-one to the so called general-
ized momenta in classical mechanics. If Go contains the group of all 
translations in physical space then the observable defined by the one 
parameter subgroup of all translations in a particular direction is 
called the total linear momentum in that direction. If Go contains the 
group of all rotations about a particular axis in space then the ob-
servable defined by the corresponding one parameter subgroup is 
called the total angular momentum about that axis. 

Suppose now that our system is a one particle system in the sense 
that 911 is three-dimensional Euclidean space and that Go is the group 
of all rigid motions in SOI. Then the projection valued measure P on 
9TC is a transitive system of imprimitivity for 5° and we may apply the 
imprimitivity theorem of §5 to obtain rather detailed information 
about the form of P and S and hence of the configuration and momen-
tum observables. The subgroup K leaving the origin 0 in 9ÏI fixed is 
the three-dimensional rotation group and the pair P, 5° is determined 
to within equivalence by a projective representation L of K. Using 
the fact that Go is a semidirect product of 9U and K we can rewrite 
the conclusion of the imprimitivity theorem as follows: 3C may be 
realized as the space of all functions <j> from Stfl to 3C(L) which are 
square integrable with respect to Lebesgue measure ju in 9TI in such a 
manner that 

(a) PE is multiplication by the characteristic function of E and, 
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more generally, for any function A on M the corresponding quantum 
mechanical observable is that associated with the operator ^—»-4 .̂ 

(b) If 0 is a translation in G0 then S%(\p)(g) =^(g/3). If j3Gi£ then 

From (b) we deduce at once that the self adjoint operator defining 
the x component of linear momentum is yp—nd^/dx and similarly for 
y and z. (We are of course assuming that Planck's constant is 2w.) 
If we add the assumption that there are no observables except those 
which can be obtained as weak limits of the configuration and momen-
tum observables we may conclude that L is irreducible. As is well 
known there is to within similarity just one multiplier 0*0 for K other 
than the identity. Moreover there is to within equivalence just one 
irreducible projective representation of K of each finite dimension. 
Those of odd dimension are ordinary representations and those of 
even dimension are avrepresentations. It is customary to denote the 
irreducible 2j + l dimensional projective representation of K by Dj 
where j = 0, 1/2, 1, 3/2, 2, • • • . The integer or half integer j is an 
important invariant of the one particle system. It is called the spin 
of the particle. Each angular momentum operator can be written 
naturally in the form Q+Q' where Q is independent of j and Ö' has 
2j+l proper values varying from —j toj in steps of 1. Q' is called the 
spin angular momentum. 

To obtain information about the form of the unitary dynamical 
group t-^e"itH we must make further assumptions. Assuming that 
the spin is zero and that H commutes with the S% it is easy to deduce 
that H must be of the form 0(Ho) where 0 is a Borel function and Ho 
is the Laplacian. Similar but more complicated conclusions can be 
drawn for particles of higher spin. The possibilities for 0 can be 
sharply reduced by taking into account the nonabsolute character of 
space. This is done by imbedding Go in the group G of all automor-
phisms of space-time and demanding (a) that S° be the restriction to 
Go of some projective representation S of G and (b) that W be the 
restriction of S to the group of translations in time. When G is the 
Galilean group we find that 0 must be multiplication by a negative 
real number which turns out to be —1/2 times the "mass" of the 
particle. In particular we recover the classical free particle Schrödin-
ger equation. More generally we may forget about 0 and analyze the 
possibilities for relativistic free particles of arbitrary spin by studying 
the possible extensions of 5° from Go to G as above. When G is the 
inhomogeneous Lorentz group we find that there is a one-parameter 
family of possibilities for each possible spin and that this parameter 
may be identified as above with the mass of the particle. The same 
is true when G is the Galilean group. One obtains the usual Schrö-
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dinger equation for a particle in a potential field by assuming that the 
velocity observables are the same as they are for a free Galilean parti-
cle of spin zero. 

Now let us change our assumption on 2fE by supposing that it is 
an arbitrary finite-dimensional vector space. Let Go be the group of 
all translations in Sfïl and suppose that S° is an ordinary representa-
tion of Go. Each vector 0 in 9TC defines a one-parameter subgroup of 
Go and hence a monentum observable with self adjoint operator B^. 
Each dual vector ƒ in Sflfl* is a Borel function on 2HX and hence defines 
a configuration observable with operator A/. The fact that the pro-
jection-valued measure on 9TC defining the Af is a system of impri-
mitivity for S° translates at once into the identity eiAfeiB<t> = eiB<i>eiA/eif(<t>K 
If we let 0i, 02, • • • , 0n be a basis for 9TC and let jfi, ƒ2, • • • , fn be the 
dual basis for 2ftl* we get the Heisenberg commutation relations in 
integrated or Weyl form. To within equivalence these relations have 
a unique irreducible solution. This theorem, first proved by Stone 
and von Neumann, is an immediate consequence of the spectral 
theorem and the imprimitivity theorem. Indeed, modulo the spectral 
theorem, it is equivalent to the special case of the imprimitivity theo-
rem in which the group is a vector group and acts on itself by way of 
the group operation. 

The interaction of matter with the electromagnetic field is handled 
in quantum mechanics by regarding the electromagnetic field as a 
classical mechanical system with an infinite number of degrees of 
freedom, i.e. having infinite-dimensional configuration and phase 
spaces. The corresponding quantum system turns out to be equivalent 
to that for a system of an "indefinite number" of "indistinguishable 
particles. " These particles are identified with the photons of the old 
quantum theory and in this way the wave-particle paradox is neatly 
resolved. There is reason to believe that all of the elementary parti-
cles of physics—electrons, mesons, etc.—can be best understood as 
related to some "field" as photons are related to the electromagnetic 
field. On the other hand the problem of "quantizing a field," that is 
finding the quantum system corresponding to a classical mechanical 
system with an infinite-dimensional phase space of a certain kind, 
is not nearly so well understood as the problem of "quantizing" a 
system with a finite number of degrees of freedom. When one at-
tempts to adapt the procedures described above one meets all sorts 
of difficulties and ambiguities corresponding to the complications 
one encounters on passing from finite-dimensional linear algebra to 
linear algebra in function spaces and from ordinary to partial differ-
ential equations. 

It is usual to start by assuming that the Heisenberg commutation 
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relations hold (or in dealing with particles of half integral spin that 
the so called anticommutation relations hold). The Heisenberg com-
mutation relations are easily extended to the infinite-dimensional 
case—once one has decided what function space to choose for 2fïl and 
what subspace of the algebra dual to use for 9fti*. However a serious 
obstacle immediately arises in that these relations now have a con-
tinuous infinity of inequivalent irreducible solutions. Moreover the 
solution which it is appropriate to use in any given problem is not 
only hard to determine but seems to be sensitive to small changes in 
the parameters of that problem. For this reason considerable atten-
tion has been given to the problem of determining all solutions of 
these relations. Unfortunately this problem differs from that pre-
sented by the finite-dimensional case in that a transitive system of 
imprimitivity is replaced by a strictly ergodic one—and one is 
brought face to face with the difficulties discussed in §7. Since a vec-
tor space acts transitively on itself one might wonder where the strict 
ergodicity comes from. The answer is that one cannot allow Go to 
consist of all translations in 9TI without reaching a contradiction—due 
essentially to the fact that an infinite-dimensional vector space can-
not have an invariant measure class. One must either weaken the 
requirement that PE be a projection-valued measure defined on all 
Borel subsets of Sfft or else replace Go by a proper subgroup of the 
translation in 9Tt. These alternatives are more or less equivalent and 
both lead to strict ergodicity. 

Many other difficulties present themselves and the problem of ex-
tending quantum mechanics to infinite-dimensional systems must be 
considered largely unsolved. Of course the physicists have their heu-
ristic formulations—and these work surprisingly well in certain con-
texts, at least when certain semi ad hoc "renormalizations" are made 
to eliminate annoying divergent integrals. However even they are 
not satisfied with the present form of the theory and a mathematician 
naturally would like an infinite-dimensional theory as complete and 
satisfying as the existent finite-dimensional one. Perhaps one can 
hope that the theory of infinite-dimensional group representations 
will be instrumental in producing one. 

11. Historical and bibliographical remarks. The purpose of the 
following is to orient the reader in the literature of the material 
covered in the preceding sections. No attempt has been made to list 
all relevant papers and it is quite probable that several important 
ones have been omitted through oversight. We apologize in advance 
to their authors. 
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The material on primary representations and their classification 
into types I, II, and III is essentially a translation into the language 
of group representations of the fundamental work of Murray and von 
Neumann [91 ] on the dimension theory of operator rings. The 
"global" theory in which the notion of type is applied to nonprimary 
representations is correspondingly a translation of work of Dixmier 
[9] and Kaplansky [68]. This point of view toward the Murray-von 
Neumann theory was first published by Mackey [80 ]. Direct inte-
gral decompositions were invented by von Neumann in 1938, but 
his results were not published until 1949 [94]. They were first sys-
tematically applied to general group representations by Mautner 
[83], [84]. However direct integral decompositions were used in 
special cases by Gelfand and Naimark in 1947 [30] and Kolmogoroff 
and Adelson-Velskii may be given credit for having anticipated at 
least a part of the general theory. Various authors have given alterna-
tive treatments including Godement [40 ], Segal [97] and Mackey 
[79]. 

The study of the problem of classifying groups according to whether 
they have only type I representations or not was begun by Mautner 
in the two papers cited above and continued in later papers [85], 
[87]. Kaplansky [70] simplified and extended some of Mautner's 
work. The fact that semisimple Lie groups have only type I repre-
sentations is due to Harish-Chandra [50 ], For the case of finite center, 
substantial simplifications have been achieved by Godement [44] 
and Stinespring [lOO] using a device due to Kaplansky. 

The theorem connecting measure classes in ô and multiplicity free 
representations of G generalizes the classical Hahn-Hellinger theory 
for self adjoint operators in Hilbert space. This generalization is due 
to Mackey [81 ] who at the same time defined the Borel structure in 
<$. The theorem was proved under the dual assumption that ô has 
a metrically standard Borel structure and G has only type I repre-
sentations. In a recent paper [35] Glimm proved that these two 
assumptions are equivalent, that they imply that ô is standard and 
that they are equivalent to a number of other important regularity 
properties of G. Certain extensions and refinements (of the results in 
the cited Transactions paper) have been found by Ernest [2l] and 
Guichardet [46]. Ernest considers measure classes in the space of all 
quasi equivalence classes of primary representations and his results 
have been improved in an unpublished work of Dixmier. We remark 
that the notions and results of §§2 and 3 apply equally well to the 
* representations of * algebras and that much of the quoted literature 
deals with the algebra formulation. 



672 G. W. MACKEY [September 

The introduction of the Borel structure in ô was inspired by the 
fact that the natural topology in ô is seldom Hausdorff—even for 
quite well-behaved groups—and the fact that only the Borel sets 
are needed for direct integral theory. On the other hand, the topology 
is not as bad as it appears to be and there is a growing literature de-
voted to its study. In addition to a fundamental paper published by 
Kaplansky in 1951 [69], there are recent contributions due to Fell 
[22], [23] and Dixmier [19], [20]. The paper of Glimm cited above 
is also relevant here. 

The fact that every separable locally compact group G has a suffi-
cient number of irreducible unitary representations may be proved by 
applying the direct integral decomposition theorem to the regular 
representation of G. However it was first proved (for not necessarily 
separable groups) by applying the Krein-Milman theorem to the 
convex set of all "positive definite functions" on the group. This was 
done by Gelfand and Raikov [33] and a general theory of positive 
definite functions and their connections with representations was 
later published by Godement [38]. In dealing with representations 
of * algebras instead of groups the positive definite functions are re-
placed by the positive linear functionals or "states" as they are often 
called. The theory of states for operator algebras has had an exten-
sive development which we shall not attempt to summarize here. We 
shall only mention a paper of Kadison [67] in which representations 
of general operator algebras are described by ideals of null sets in the 
"pure state space" of the algebra in partial analogy with Mackey's 
generalization of the Hahn-Hellinger theory. 

The general theory of characters as linear functionals on ideals in 
group algebras described in §4 is a mild reworking of ideas of Gode-
ment [43], [44]. An earlier and less widely applicable theory is also 
due to Godement [41 ]. Godement's two 1954 papers are closely 
connected with work of Segal on "noncommutative integration" [98] 
on the one hand and work of Dixmier on "quasiunitary algebras" 
[lO] on the other. Godement did not complete the program begun in 
his 1954 Annals papers but it has been recently resumed by Gui-
chardet [47]. The abstract Plancherel theorem (for the regular repre-
sentation) was first found by Segal [95], [96] and Mautner [84]. 

Orthogonality relations for infinite-dimensional irreducible repre-
sentations were first found by Bargmann [l] in connection with 
his studies of SL(2, R). His results were generalized and thrown into 
abstract form by Godement [36], [37]. The connection between 
the orthogonality relations and the Plancherel measure was estab-
lished for semisimple Lie groups by Harish-Chandra [58]. That this 
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connection holds for arbitrary unimodular separable locally compact 
groups is an unpublished result of Mackey. 

The spherical functions $J were introduced by Gelfand [26] in the 
special case in which d is the one-dimensional identity and G is a 
Lie group. For d general and G a semisimple Lie group they were first 
defined by Harish-Chandra [49 ]. Returning to the case in which d 
is the one-dimensional identity, some of Gelfand's ideas were gen-
eralized to arbitrary locally compact groups by Mautner [86]. A 
study of the general case was made by Godement [42]. Godement's 
paper makes quite clear and explicit the role played by large compact 
subgroups in the theory of semisimple Lie groups and is an excellent 
introduction to the work of Harish-Chandra. Gelfand's ideas are 
developed more fully in a joint work with Berezin [5]. The few re-
marks made in §4 are far from doing justice to the extensive theory 
involved here. The interested reader is referred to the above cited 
literature for further details. 

Infinitesimal characters were introduced by Harish-Chandra [48] 
and Gelfand [25] but not in terms of the algebra ®(G) as described 
in §4. That a(G) is isomorphic to the universal enveloping algebra 
of Harish-Chandra is quoted in Godement's paper [42] as an un-
published result of L. Schwartz. The theorem stated at the end of §4 
is also due to Harish-Chandra [50]. 

The imprimitivity theorem and the definition and properties of 
induced representations will be found in various papers of Mackey 
[77], [78], [79], [80 ]. For finite groups the notion of induced repre-
sentation is due to Frobenius. This definition and the Frobenius 
reciprocity theorem were extended to compact groups by Weil in his 
book. Mackey's definition in the general case was in part inspired by 
a construction in a note of Godement [39]. The notion of induced 
representation—at least when the inducing representation is one-
dimensional—is implicit in the early work of Bargmann [l] and Gel-
fand and Naimark [30 ] on the 3- and 4-dimensional Lorentz group. 
The first analysis of a semidirect product in the infinite case was 
Wigner's study of the inhomogeneous Lorentz group [103]. The sec-
ond was Gelfand and Naimark's determination [3l] of the irreduci-
ble representations of the group of projective transformations of the 
real line. The general theory of semidirect products which follows 
from the imprimitivity theorem is described in [77] and [79]. The 
extension of the semidirect product theory to the case in which JV 
is an arbitrary closed type I normal subgroup of G and in which one 
deals with projective unitary representations is due to Mackey [82]. 
Projective representations of the inhomogeneous Lorentz group are 
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considered by Wigner [103] and multipliers for projective represen-
tations of Lie groups are studied systematically by Bargmann [2]. 

A considerable development of the theory of induced representa-
tions has been given by Bruhat in his thesis [7]. He restricts himself 
to Lie groups but compensates for this by considering representations 
in topological vector spaces. Using the distributions of L. Schwartz 
he is able to obtain useful sufficient conditions for the irreducibility 
of induced representations. Quite recently [8] he has been able to 
extend many of his results to arbitrary locally compact groups by 
way of an extension of the notion of distribution and has applied 
them to demonstrate the irreducibility of certain representations of 
totally disconnected analogues of the classical groups. Blattner [ó] 
has improved one of the results in Bruhat's 1956 paper and made 
several other contributions to the theory. Loomis has given a new 
proof of the imprimitivity theorem which uses positive definite func-
tions and avoids separability assumptions [76]. 

There is some material on ergodic systems of imprimitivity in [82] 
but most of §7 is to be regarded as a preliminary announcement of 
work in progress by Mackey. 

At an early stage (1951) of his extensive development of the repre-
sentation theory of semisimple Lie groups (see below), Harish-
Chandra decided, at the suggestion of Che valley, not to restrict him-
self to unitary representations. The paper of Godement on spherical 
function cited above is concerned throughout with Banach space 
representations and introduces the notion of complete irreducibility. 
Naimark gave his definition of equivalence for Banach space repre-
sentations in [92] which at the same time announced a solution of 
the problem of determining (to within equivalence) all completely 
irreducible Banach space representations of the Lorentz group. De-
tails are published in his book [93]. The paper of Berezin mentioned 
in §9 [4] deals with the problem of extending Naimark's results to 
all the complex classical groups. The papers of Bruhat cited above 
deal with nonunitary representations and so do two recent notes of 
Zhelobenko [104], [lOS]. Zhelobenko announces some preliminary 
but provocative results on the classification of reducible nonunitary 
representations. 

In §8 the statements about linear system representations, the 
definition of UL when L is nonunitary and the definition of £>(L, M) 
are unpublished remarks of Mackey. The definition of £>(L, M) was 
in part inspired by a note of Zhelobenko. 

The problem of doing non £2 harmonic analysis on noncompact 
noncommutative groups has barely begun but the important special 
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case of the 2X2 real unimodular group has been extensively studied 
in three long papers by Mautner and Ehrenpreis [88], [89], [90 ]. 
Kunze and Stein [75] have done further work on this group and 
Kunze [74] has proved a rather general theorem about <£p Fourier 
transforms. A note of Gelfand [27] is also relevant here. 

The unitary representation theory of semisimple Lie groups began 
with studies of the 2X2 real and complex unimodular groups by Barg-
mann [l ] on the one hand and Gelfand and Naimark on the other. 
Bargmann's paper [l ] contained a detailed study of the real case and 
some indications concerning the complex one. Gelfand and Naimark 
[30] treated the complex case only. Later they wrote a series of 
papers extending their results to all of the classical complex groups. 
This work was published in book form [32] by the Steklov Institute 
in 1950. Another approach to the Plancherel formula for these groups 
will be found in a paper by Gelfand and Graev [28]. The cited results 
on the nXn real unimodular group with n>2 are due to Gelfand and 
Graev [29]. As with all the results described in §9 the lecturer has 
taken liberties with the original formulations in order to bring out 
the connection with the theory of induced representations. Graev 
has undertaken further studies of real simple Lie groups on his own. 
Most of his results [45] concern the group of all nXn complex non-
singular matrices which leave invariant an indefinite Hermitian form. 

The study of the infinite-dimensional irreducible representations of 
abstract semisimple Lie groups was begun by Harish-Chandra and 
has led to a long series of articles [48], [49], • • • , [66]. Insofar as 
possible Harish-Chandra works with the Lie algebra of the group 
rather than the group itself. Many of his results are theorems about 
Lie algebras and a large part of his 1953 Transactions paper is de-
voted to developing the theory necessary to transform results about 
infinite-dimensional representations of Lie algebras into results about 
infinite-dimensional representations of Lie groups. The general re-
sults cited in §9 about infinitesimal and distribution characters and 
about the Plancherel formula for complex groups are due to Harish-
Chandra and are proved in the Transactions papers. The American 
Journal papers are devoted to various aspects of the still unsolved 
problem of finding almost all irreducible representations and the 
Plancherel measure for the general real semisimple Lie group. 

A systematic study of the unitary representations of simply con-
nected nil potent Lie groups has been undertaken by Dixmier [ l l ] , 
[12], [14], [IS], [16], [17], [18]. Not only are all such groups of type 
I but their irreducible representations have distribution characters. 
Moreover barring a certain exceptional set of Plancherel measure 
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zero the irreducible representations are determined by their infinitesi-
mal characters. Various particular cases are examined in detail. Fur-
ther contributions to the theory of nilpotent groups have been made 
by Kirillov [71 ], [72, [73], Takenouchi [lOl], and Fell [24]. 

The ideas and viewpoints of §10 have occurred in various forms 
with varying degrees of rigor to a number of people and it would be 
difficult indeed to attach them to their "true" inventors. We shall 
content ourselves with two more or less indisputable attributions 
and a few references to papers where further details may be found. 
We remark that the purpose of §10 is less to give a survey of known 
results than to give some idea of what quantum mechanics is about 
and how infinite-dimensional group representations may be applied 
toi t . 

The result concerning the form of the general probability measure 
on the projections is a theorem of Gleason [34]. The relationship be-
tween the irreducible unitary representations of the inhomogeneous 
Lorentz group and the possible elementary particles was first pointed 
out by Bargmann and Wigner [3]. 

A treatment of elementary quantum mechanics from the point of 
view of §10 will be found in Harvard lecture notes of Mackey.4 

The Centre National de la Recherche Scientifique in France has 
issued a volume containing the proceedings of a conference held in 
Lille in 1957 and entitled Les problèmes mathématiques de la théorie 
quantique des champs. This volume contains a long survey article by 
Segal [99] and another by Wightman [102]. These articles together 
form an excellent introduction to the various attempts to put the 
quantum theory of fields on a rigorous basis and refer to most of the 
relevant literature up to that time. 

APPENDIX 

(Added June 1963) 

In this appendix I shall mention briefly a number of recent de-
velopments but shall make no attempt to be exhaustive. Some of 
these could have been included in the main text. Others had not been 
published in the summer of 1961 when the main text was written. 

A good deal of recent work has been devoted to the problem of 
decomposing unitary representations of the form UL (see §5) where 
L is a finite-dimensional unitary representation of the closed sub-
group H of G and G is a semisimple Lie group with a finite center. 

4 To be published in October by W. A. Benjamin Inc., New York. 
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In most of this work H is either a discrete group such that G/H has 
a finite invariant measure or the subgroup of fixed elements for some 
involutary automorphism of G. For the case in which L is the one-
dimensional identity and H is a maximal compact subgroup the 
theory of UL is very closely related to the theory of spherical func-
tions. Harish-Chandra in [130] and [l3l] has worked toward finding 
a Plancherel formula for the decomposition in this case and further 
results have been announced by Gindinkin and Karpelevich in [127]. 

In [l2l] , [l22] and [123] Gelfand and Graev describe a general 
method for attacking the problem of decomposing UL when L is the 
one-dimensional identity and apply it to a number of examples. The 
method may be formulated quite generally but works effectively only 
when the subgroup N (the horospherical subgroup) is properly 
chosen. If S— G/H and N is any closed subgroup of G then a horo-
sphere (with respect to N) is a subset of 5 of the form sxNx~* where 
5 and x are arbitrary fixed elements of S and G respectively. G acts 
in a natural way on the space SN of all horospheres; though not in 
general transitively. Each horosphere may be equipped with a meas-
ure in a natural way as may the space SN. If ƒ is a suitably restricted 
function on S we may integrate it over each horosphere and thus 
obtain a function ƒ' on SN. The mapping ƒ—»ƒ' intertwines UL with 
the representation defined in £2(SN) by the action of G (for simplic-
ity we consider only the special case in which L is the identity). When 
N is suitably chosen it is usually quite easy to analyze this second 
representation. Thus the analysis of UL reduces to the analysis of 
the "Radon transform" ƒ—»ƒ' and its inverse. This is the problem in 
integral geometry to which the titles of [l2l] and [122] refer. This 
problem is discussed at length in [124]. 

The case in which H is discrete and G/H has finite invariant meas-
ure is of special interest because of its connection with problems in 
number theory and the theory of automorphic functions. When G/H 
is compact it is not hard to show [125] that UL is a discrete direct 
sum of irreducible representations each of which occurs with finite 
multiplicity. When G/H is not compact UL may not be a discrete 
direct sum of irreducibles but Harish-Chandra has shown [132] that 
such direct summands as do exist all occur with finite multiplicity— 
at least when L is the one-dimensional identity. His argument re-
quires that H satisfy certain auxiliary conditions too complicated to 
state here. Gelfand and Pyatetzki-Shapiro [126] give a somewhat 
different theorem for noncompact G/H. Assuming that L is the one-
dimensional identity and that H satisfies auxiliary conditions related 
to those of Harish-Chandra they single out a closed invariant sub-
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space 3Co of &*(G/H) (defined by means of compact horospheres) 
and sketch a proof of the fact that this space is a discrete direct sum 
of irreducible invariant subspaces. When G/H is compact this sub-
space coincides with the whole space. 

In the theory of G/H, when H is discrete, a central role is played 
by a noncommutative generalization of the Poisson summation 
formula known as the Selberg trace formula. For the moment let G 
be a finite group and let H be any subgroup of G. Then Vh is finite-
dimensional and hence has a character 9C: X(x) =*Trace(£/*). Let 
X(x)^niXi(x)+fi2dC2(x)+ • - • +nk$Ck(x) where the nj are positive 
integers and the 9Cy are the characters of the irreducible constituents 
of UL. Let 9C° be the character of L and let 9C00 be the function on G 
which coincides with 9C° in H and is zero outside of H. By a well-
known elementary formula we have 9C(x) *= (l/o(H)) ^2vea dC00(yxy~l). 
The Selberg trace formula for finite G is obtained by equating the two 
expressions for 9C, multiplying by an arbitrary complex-valued func-
tion ƒ on G, summing over G and rearranging the left side. It is 

(l/0(ff)) £ E/fcr^W*) = £ »,( £/(*)9Cy(A 

Note that the inner sum on the left-hand side, as a function of y, 
is a constant on the right H cosets. Thus the left side is really 
a sum over G/H. Once this has been observed it is clear that the 
trace formula may be stated (though not necessarily proved) 
when H is any discrete subgroup of a separable locally compact 
group G such that (a) G/H has a finite invariant measure JU and 
(b) UL is a discrete direct sum of irreducible representations each of 
which has a character and occurs with finite multiplicity. One need 
only replace 2*e *ƒ(*)£ƒ(*) by faf(x)Xj(x)dx and (l/o(H)) YlvzQ 
by an integral with respect to /*• Proofs under various hypotheses have 
been given in [125], [146] and [147]. In [146] and [147] it is as-
sumed that G has a large compact subgroup (cf. §4) and only those 
functions ƒ are considered which are constant on the right K cosets. 
Under these circumstances the integrals ff(x)$Cj(x) may be expressed 
in terms of spherical functions and one need make no assumption 
about the existence of characters for the irreducible constituents of 
UL. In [125] attention is restricted to the case in which L is the one-
dimensional identity. 

Answering two questions raised by Kaplansky, Mackey [l4l] has 
shown that a nontype I group can have a type I regular representa-
tion and Thoma [148] has shown that a discrete group G cannot be 
of type I unless it has a commutative normal subgroup N such that 
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G/N is finite. Dixmier [ i l l ] has shown that the universal covering 
group of a Lie group need not be of type I even if the group itself is 
of type I. 

The details of Ernest's paper [21 ] have been published [ll8] and 
the "unpublished" supplementary remarks of Dixmier referred to in 
the main text will be found in [115]. Closely related results will be 
found in [149]. Further results about the Borel structure in ô and re-
lated spaces will be found in the thesis of Guichardet [129] and in 
papers of Effros [117] and Naimark [145]. Guichardet considers the 
Borel structure in the space of all "normal" irreducible representa-
tions showing it to be analytic and identical with that derived from 
a certain natural topology in this space. He also gives an example 
showing that a group with a complete system of finite-dimensional 
irreducible representations need not have a smooth dual. Effros is 
concerned with the Borel structure in the space of primitive ideals 
of a C* algebra. 

The work of Dixmier and Fell on the topology of G has been carried 
further in [l l2], [113], [116], [119], and [l20]. Fell in particular 
has studied the continuity properties of the inducing process and 
Glimm [128] has introduced and studied a topology in the space of all 
irreducible pairs P, L where P is a system of imprimitivity for the 
representation L of G. The G space on which P is defined is fixed and 
given in advance. Results close to those in [119] will be found 
in [150]. 

Guichardet^ reworking of Godement's character theory as an-
nounced in [47] is carried out in detail in the first chapter of [129]. 

Various contributions to the general theory of induced representa-
tions have been made by Blattner [lOó], [107], [108], Kleppner 
[136], [137] and Moore [144]. [106] concerns an abstract formula-
tion of the analogue of the inducing process in which Borel functions 
are replaced by functions which are "partially analytic." Kunze [139] 
and Kobayashi [138] have proved theorems about the irreducibility 
of such representations in which the inducing representation is one-
dimensional and the analyticity is complete. In [144] Moore con-
siders a variant of the notion of induced representation in which, 
roughly speaking, summability replaces square summability. The 
induced representations defined in this way are not Hilbert space 
representations but yield a rather elegant version of the Frobenius 
reciprocity theorem in which one has a linear isometry between the 
relevant spaces of intertwining operators. This work of Moore has 
been extended and developed further by Kleppner in [137]. These 
generalizations of the Frobenius reciprocity theorem go in quite a 
different direction from those in [80 ] since an irreducible représenta-
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tion L admits a nonzero intertwining operator with a reducible 
representation M only if M has discrete irreducible components. 

The generalized distributions studied by Bruhat in [8] were intro-
duced and studied independently by Maurin [142] and G. I. Kac 
[l34]. Kunze and Stein have continued their work on nonunitary 
representations in [140]. 

A start on the problem of determining the irreducible representa-
tions of totally disconnected simple groups is made in [8], [109], 
[llO], and [143]. Mautner in [143] develops a theory of spherical 
functions for 2X2 unimodular matrix groups over totally discon-
nected fields using the subgroup of matrices with integer coefficients 
as compact subgroup. Among other things he obtains the Plancherel 
formula for the coset space. Bruhat in [109] studies the nXn case 
and attempts to prove that the compact group in question is large 
(§4). He is only partially successful and the problem of deciding 
whether the totally disconnected analogues of the classical groups are 
type I groups or not remains a challenging open question. In [llO] 
the results of [109] are extended to totally disconnected analogues 
of the unitary symplectic and orthogonal groups. 

Dixmier in [114] gives a complete determination of the irreducible 
representations of the DeSitter group—correcting and rigorizing 
earlier formal work of L. H. Thomas and T. D. Newton. He indicates 
that analogous arguments can be used to deal with all semisimple Lie 
groups. He also investigates the iiitegrability and square integrability 
of the representations and in this particular case verifies a conjecture 
of Harish-Chandra. 

Harish-Chandra in [133] announces some results (too involved to 
quote here) allowing him to associate square integrable representa-
tions with every character of every maximal abelian subgroup of a 
semisimple Lie group with finite center. This accomplishes an essen-
tial step in his program of determining the Plancherel formula for 
general semisimple Lie groups. 

The details of the work of Kirillov on nilpotent Lie groups appear 
in [ l35]. He shows among other things that the equivalence classes 
of irreducible unitary representations of a simply connected nilpotent 
Lie group correspond in a natural one-to-one manner to the orbits of 
the canonical action of the group on the dual of its Lie algebra. This 
correspondence has elegant properties with respect to the formation 
of tensor products and the restriction of representations to subgroups. 
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