Infinite-Dimensional Hamilton-Jacobi-Bellman Equations in Gauss-Sobolev Spaces

Pao-Liu Chow
University of Maryland, College Park, plchow@math.wayne.edu
Jose-Luis Menaldi
Wayne State University, menaldi@wayne.edu

Recommended Citation

CHOW P.-L. \& MENALDI J.-L., Infinite-dimensional Hamilton-Jacobi-Bellman equations in Gauss-Sobolev spaces, Nonlinear
Analysis 29, 415-426 (1997). doi: 10.1016/S0362-546X(96)00043-0
Available at: https://digitalcommons.wayne.edu/mathfrp/39

INFINITE-DIMENSIONAL HAMILTON-JACOBI-BELLMAN EQUATIONS IN GAUSS-SOBOLEV SPACES*

Pao-Liu Chow ${ }^{\dagger}$ and Jose-Luis Menaldi ${ }^{\ddagger}$
Department of Mathematics, Wayne State University
Detroit, Michigan 48202, USA

Abstract

We consider the strong solution of a semi linear HJB equation associated with a stochastic optimal control in a Hilbert space H. By strong solution we mean a solution in a $L^{2}(\mu, H)$-Sobolev space setting. Within this framework, the present problem can be treated in a similar fashion to that of a finite-dimensional case. Of independent interest, a related linear problem with unbounded coefficient is studied and an application to the stochastic control of a reaction-diffusion equation will be given.

Key words and phrases: Dynamic programming, Gaussian and invariant measures, coercivity, monotone operator.

[^0]
1 Introduction

Consider the optimal control problem with the state equation in a Hilbert space H :

$$
\left\{\begin{align*}
d u_{t} & =\left\{A u_{t}+B\left(u_{t}, \alpha_{t}\right)\right\} d t+d W_{t} \tag{1.1}\\
u_{0} & =v \in H
\end{align*}\right.
$$

where A is an unbounded linear operator, $B(\cdot, \cdot)$ is a, generally, nonlinear operator depending on the control $\alpha_{t} \in K$ and W_{t} is a H-valued Wiener process with covariance operator R. We are interested in finding, from the set \mathcal{K} of admissible controls α. the optimal control α^{*} that minimizes the cost function:

$$
\begin{equation*}
J_{v}(\alpha .)=E \int_{0}^{\infty} e^{-\Lambda_{t}} F\left(u_{t}, \alpha_{t}\right) d t \tag{1.2}
\end{equation*}
$$

where $F: H \times K \rightarrow \mathbb{R}^{+}$is the running cost function with

$$
\begin{equation*}
\Lambda_{t}=\int_{0}^{t} \lambda\left(u_{s}\right) d s \tag{1.3}
\end{equation*}
$$

and λ is the discount rate function. Denote the optimal cost or the value function by Φ defined by

$$
\begin{equation*}
\Phi(v)=\inf _{\alpha \in \mathcal{K}} J_{v}(\alpha .)=J_{v}\left(\alpha_{.}^{*}\right) . \tag{1.4}
\end{equation*}
$$

Then, by formally applying the dynamic programming principle, we deduce that Φ satisfies the (stationary) Hamilton-Jacobi-Bellman (HJB) equation:

$$
\begin{equation*}
\frac{1}{2} \operatorname{Tr} \cdot\left[R D^{2} \Phi(v)\right]+(A v, D \Phi(v))-\lambda(v) \Phi(v)+\mathcal{B}(\Phi)(v)=0 \tag{1.5}
\end{equation*}
$$

where $D \Phi$ and $D^{2} \Phi$ denote the first two Fréchet derivatives, Tr. means the trace, (\cdot, \cdot) is the inner produce in H and

$$
\begin{equation*}
\mathcal{B}(\Phi)=\inf _{\alpha \in K}\{(B(\cdot, \alpha), D \Phi)+F(\cdot, \alpha)\} . \tag{1.6}
\end{equation*}
$$

Even at the formal level, the equation (1.5) makes sense only when v belongs to the domain $\mathcal{D}(A)$ of an unbounded operator A. But, with respect to the Wiener measure, the set $\mathcal{D}(A)$ may be negligible. However, as shown in the linear case [1], it is possible to define the
equation in H almost everywhere with respect to the invariant measure μ for Eq. (1.1) with $B \equiv 0$.

The paper is mainly concerned with the strong solution of the HJB equation (1.5), interpreted properly, in an $L^{2}(\mu, H)$-Sobolev space setting. Within this framework, the present problem can be treated in a similar fashion to that of a finite-dimensional case. Of independent interest, a related linear problem with unbounded coefficient is studied and an application to the stochastic control of a reaction-diffusion equation will be given.

This work was inspired by an interesting paper [2] of DaPrato, who studied a special form of Eq. (1.4). In contrast with the L^{2}-theory, he considered a mild solution in a certain Banach space of continuously differentiable functions with sup-norm. Since then several papers have been written by him and his associates on this subject (see, e.g. [3], [4] and [5]). When A is bounded and $\mathcal{B}(\Phi)=\frac{1}{2}(D \Phi, D \Phi)$ in (1.5), this special case was treated by Havarneanu [6] in an Abstract Wiener space setting. However his approach cannot be applied to the general case (1.5). Along an entirely different direction, full nonlinear HJB equations were studied by P.L. Lions [7] in the sense of viscosity solutions.

2 Preliminaries

Let H be a real separable Hilbert space with inner product (\cdot, \cdot) and norm $|\cdot|$. Let $V \subset H$ be a reflexive Banach space with norm $\|\cdot\|$. Denote the dual space of V by V^{\prime} and the duality pairing by $\langle\cdot, \cdot\rangle$. Assume that the inclusions: $V \subset H \subset V^{\prime}$ are dense and continuous.

Let $A: V \rightarrow V^{\prime}$ be a continuous linear operator and let W_{t} be a H-valued Wiener process with covariance operator R. Consider the linear stochastic equation in V^{\prime} :

$$
\left\{\begin{align*}
d u_{t} & =A u_{t} d t+d W_{t} \tag{2.1}\\
u_{0} & =h \in H
\end{align*}\right.
$$

We suppose that the following conditions hold:
(C.1) Let $A: V \rightarrow V^{\prime}$ be a self-adjoint operator whose normalized eigenfunctions $e_{k}^{\prime} s \in V$ and corresponding eigenvalues $\mu_{k}^{\prime} s$ are strictly negative with $0>\mu_{1}>\mu_{2}>\cdots>\mu_{k}$ and $\mu_{k} \rightarrow-\infty$ as $k \rightarrow \infty$.
(C.2) The resolvent operator $R_{\gamma}(A)$ of A commutes with covariance operator R.
(C.3) $R: H \rightarrow H$ is bounded such that $T r . A^{-1} R<\infty$.

Then, by a direct computation or by applying a general theorem of invariant measures $[8,9]$, we can claim that

Lemma 2.1 Under conditions (C.1), (C.2) and (C.3), the stochastic equation (2.1) has a unique invariant measure μ on H, which is a centered Gaussian measure supported in V with covariance operator $\Gamma=-\frac{1}{2} A^{-1} R$.

Let $\mathcal{H}=L^{2}(\mu, H)$ with norm $\|\cdot\| \|$ defined by

$$
\begin{equation*}
\|\Phi\|=\left\{\int|\Phi(v)|^{2} \mu(d v)\right\}^{1 / 2} \tag{2.2}
\end{equation*}
$$

and inner product $[\cdot, \cdot]$ given by

$$
\begin{equation*}
[\Phi, \Psi]=\int \Phi(v) \Psi(v) \mu(d v) \text { for } \Phi, \Psi \in \mathcal{H} \tag{2.3}
\end{equation*}
$$

where the integration is over H (or V).
Let $n=\left(n_{1}, n_{2}, \ldots, n_{k}, \ldots\right)$, where n_{k} is a nonnegative integer and $n_{k}=0$ except for a finite number of k 's. For $v \in H$, define the Hermite (polynomial) functional of degree n by

$$
\begin{equation*}
H_{n}(v)=\Pi_{k=1}^{\infty} h_{n_{k}}\left[\ell_{k}(v)\right], \tag{2.4}
\end{equation*}
$$

where $h_{j}(x)$ is the standard one-dimensional Hermite polynomial of degree j and $\ell_{k}(v)=$ $\left(v, \Gamma^{-\frac{1}{2}} e_{k}\right)$. For a smooth functional Φ, let $D \Phi$ and $D^{2} \Phi$ denote the Fréchet derivatives of first and second orders, respectively. Introduce the differential operator

$$
\begin{equation*}
\mathcal{A} \Phi(v)=\frac{1}{2} \operatorname{Tr} \cdot\left[R D^{2} \Phi(v)\right]+\langle A v, D \Phi(v)\rangle, \tag{2.5}
\end{equation*}
$$

which is defined for a polynomial functional Φ with $D \Phi(v)$ lies in the domain $\mathcal{D}(A)$. It can be shown that [1]

Lemma 2.2 The set of all Hermite functionals $\left\{H_{n}\right\}$ formed a complete orthonormal system (CONS) in \mathcal{H}. Furthermore we have

$$
\begin{equation*}
\mathcal{A} H_{n}(v)=-\Lambda_{n} H_{n}(v), \tag{2.6}
\end{equation*}
$$

where $\Lambda_{n}=\sum_{k} n_{k} \mu_{k}$ and the summation is over the finite number of nonzero n_{k} 's.

Definition 2.3 Let \mathcal{H}_{k} be the Gauss-Sobolev space of order k defined by

$$
\mathcal{H}_{k}=\left\{\Phi \in \mathcal{H}:\|\Phi\|_{k}<\infty\right\} \text { for } k>0
$$

and $\mathcal{H}_{0}=\mathcal{H}$, where

$$
\begin{equation*}
\|\Phi\|_{k}=\left\|(I-\mathcal{A})^{k / 2} \Phi\right\|=\left\{\sum_{n}\left(1+\Lambda_{n}\right)^{k}\left|\Phi_{n}\right|^{2}\right\}^{1 / 2} \tag{2.7}
\end{equation*}
$$

with I being the identity operator and $\Phi_{n}=\left[\Phi, H_{n}\right]$. Let \mathcal{H}_{-k} denote the dual space of \mathcal{H}_{k}, and the duality between \mathcal{H}_{k} and \mathcal{H}_{-k} will be denoted by $\langle\langle\cdot, \cdot\rangle\rangle$.

Clearly, by identifying \mathcal{H} with its dual \mathcal{H}^{\prime}, we have

$$
\mathcal{H}_{k} \subset \mathcal{H} \subset \mathcal{H}_{-k}, k>0
$$

and the inclusions are dense and continuous.
Similar to the Laplacian operator in \mathbb{R}^{d}, the following properties of \mathcal{A} are crucial in the subsequent analysis.

Lemma 2.4 The operator \mathcal{A} can be defined as a self-adjoint linear operator in \mathcal{H} with domain $\mathcal{D}(\mathcal{A}) \supset \mathcal{H}_{2}$. Moreover the following integral identity holds:

$$
\begin{equation*}
\int(\mathcal{A} \Phi) \Psi d \mu=-\frac{1}{2} \int(R D \Phi, D \Psi) d \mu \tag{2.8}
\end{equation*}
$$

for $\Phi, \Psi \in \mathcal{H}_{2}$. The above identity can be extended to yield a linear operator $A: \mathcal{H}_{1} \rightarrow \mathcal{H}_{-1}$ defined by

$$
\begin{equation*}
\langle\langle\mathcal{A} \Phi, \Psi\rangle\rangle=-\frac{1}{2}[R D \Phi, D \Psi], \quad \forall \Phi, \Psi \in \mathcal{H}_{1} . \tag{2.9}
\end{equation*}
$$

We see that, with respect to the invariant measure μ, \mathcal{A} can be defined μ - a.e. in H and it behaves like the Laplace operator in \mathbb{R}^{d}.

3 Linear Equation with Unbounded Coefficient

Suppose that $B(v, \alpha)=B(v)$ in Eq. (1.5). Consider an associated linear elliptic problem of the form:

$$
\begin{equation*}
\{\mathcal{A}-\lambda(v) I\} \Phi+\mathcal{B}_{0} \Phi=F(v), \quad \mu-\text { a.e. } v \in H \tag{3.1}
\end{equation*}
$$

where $\mathcal{A}: \mathcal{H}^{2} \rightarrow \mathcal{H}$ is defined as in Lemma 2.4,

$$
\mathcal{B}_{0} \Phi(v)=(B(v), D \Phi(v))
$$

and λ, F are given functions to be specified. If the coefficient $B(v)$ is bounded and λ is a constant, given $F \in \mathcal{H}_{-1}$, it was proved in [1] that there exists a positive constant λ_{0} such that the problem (3.1) has a unique strong solution $\Phi \in \mathcal{H}_{1}$ for any $\lambda>\lambda_{0}$. Now we deal with the case of unbounded B satisfying the following growth condition:
(A.1) $B(\cdot): V \rightarrow H_{0}=\overline{R^{1 / 2}(H)}$ is continuous such that

$$
|B(v)|_{0}=\left|R^{-1 / 2} B(v)\right| \leq b_{0}\left(1+\|v\|^{2}\right)^{m / 2}, \quad \forall v \in V,
$$

for some $b_{0}>0$ and $m \geq 2$.
For reason which will become clear later, we assume that
(A.2) $\lambda(\cdot): V \rightarrow \mathbb{R}^{+}$satisfies the growth condition:

$$
\lambda_{0}\left(1+\|v\|^{2}\right)^{m} \leq \lambda(v) \leq \lambda_{1}\left(1+\|v\|^{2}\right)^{m}, \quad \forall v \in V,
$$

for some positive constants $\lambda_{0} \leq \lambda_{1}$.

To control the unbounded coefficient, we need to introduce the space $\mathcal{H}_{0, m}$ defined as follows.

Definition 3.1 Let $\mathcal{H}_{0, m}$ be a Hilbert subspace of \mathcal{H} defined by

$$
\mathcal{H}_{0, m}=\left\{\Phi \in \mathcal{H}:\|\Phi\|_{0, m}<\infty\right\}, m>0,
$$

where the norm is given by

$$
\|\Phi\|_{0, m}=\left\{\int \Phi^{2}(v) \rho_{m}(v) \mu(d v)\right\}^{1 / 2}=\left\|\rho_{m}^{1 / 2} \Phi\right\|,
$$

and

$$
\rho_{m}(v)=\left(1+\|v\|^{2}\right)^{m} .
$$

Under conditions (A.1) and (A.2), new function spaces $\mathcal{H}_{k, m}, k=1,2, \ldots$ and $m>0$, need to be introduced.

Definition 3.2 For $k=1,2, \ldots$ and $m>0$, define

$$
\mathcal{H}_{k, m}=\mathcal{H}_{k} \cap \mathcal{H}_{0, m},
$$

with norm $\|\cdot\|_{k, m}=\left\{\| \| \cdot\left\|_{k}^{2}+\right\| \cdot \|_{0, m}^{2}\right\}^{1 / 2}$, where $\|\cdot\|_{k}$ is the k-th order Gauss-Sobolev norm in Def. 2.3. By convention, we set $\mathcal{H}_{k, 0}=\mathcal{H}_{k}$ and $\mathcal{H}_{0,0}=\mathcal{H}$.

Clearly, by identifying \mathcal{H} with its dual \mathcal{H}^{\prime}, we have the following inclusions:

$$
\mathcal{H}_{k, m} \subset \mathcal{H}_{0, m} \subset \mathcal{H} \cong \mathcal{H}^{\prime} \subset \mathcal{H}_{0, m}^{\prime} \subset \mathcal{H}_{k, m}^{\prime}
$$

and $\mathcal{H}_{k^{\prime}, m^{\prime}} \subset \mathcal{H}_{k, m}$ if $k^{\prime} \geq k$ and $m^{\prime} \geq m$, where the inclusions are dense and continuous and the duality pairing between $\mathcal{H}_{k, m}$ and $\mathcal{H}_{k, m}^{\prime}$ will be denoted by $\langle\cdot, \cdot\rangle_{k, m}$. Note that, in view of the formula (2.8),

$$
\begin{align*}
\|\Phi\|_{1, m}^{2} & =\frac{1}{2} \int(R D \Phi, D \Phi) d \mu+\int \Phi^{2} \rho_{m} d \mu \tag{3.2}\\
& =\int\left\{\frac{1}{2}\left|R^{1 / 2} D \Phi\right|^{2}+\left|\rho_{m}^{1 / 2} \Phi\right|^{2}\right\} d \mu
\end{align*}
$$

Lemma 3.3 Let $\mathcal{L}_{\lambda}=(\mathcal{A}-\lambda I)+\mathcal{B}_{0}$. Then, under conditions (A.1) and (A.2), the linear operator $\mathcal{L}_{\lambda}: \mathcal{H}_{1, m} \rightarrow \mathcal{H}_{1, m}^{\prime}$ is well defined and bounded such that

$$
\begin{equation*}
\left|\left\langle\mathcal{L}_{\lambda} \Phi, \Psi\right)\right\rangle_{1, m} \mid \leq C\|\Phi\|_{1, m}\|\Psi\|_{1, m}, \quad \forall \Phi, \Psi \in \mathcal{H}_{1, m}, \quad \text { for some } C>0 . \tag{3.3}
\end{equation*}
$$

(Proof.) For $\Phi, \Psi \in \mathcal{H}_{1, m}$, let β_{λ} be a bilinear form on $\mathcal{H}_{1, m} \times \mathcal{H}_{1, m}$ defined by

$$
\begin{equation*}
\beta_{\lambda}(\Phi, \Psi)=\int\left\{\frac{1}{2}(R D \Phi, D \Psi)+(\lambda \Phi, \Psi)-\left(\mathcal{B}_{0} \Phi, \Psi\right)\right\} d \mu \tag{3.4}
\end{equation*}
$$

which defines uniquely a linear operator $\mathcal{L}_{\lambda}: \mathcal{H}_{1, m} \rightarrow \mathcal{H}_{1, m}^{\prime}$ by setting

$$
\begin{equation*}
\left\langle\mathcal{L}_{\lambda} \Phi, \Psi\right\rangle_{1, m}=-\beta_{\lambda}(\Phi, \Psi) \tag{3.5}
\end{equation*}
$$

To show the boundedness of \mathcal{L}_{λ}, it suffices to prove that the inequality (3.3) holds. By conditions (A.1) and (A.2), this follows easily from the estimate

$$
\begin{gathered}
\left|\beta_{\lambda}(\Phi, \Psi)\right| \leq \int\left\{\left.\frac{1}{2} \right\rvert\, R^{1 / 2} D \Phi \|\left(R^{1 / 2} D \Psi\left|+\lambda_{1}\right| \rho_{m}^{1 / 2} \Phi \| \rho_{m}^{1 / 2} \Psi \mid+\right.\right. \\
\left.\quad+b_{0}\left|R^{1 / 2} D \Phi\right|\left|\rho_{m}^{1 / 2} \Psi\right|\right\} d \mu \leq \\
\leq C| | \Phi\left\|_{1, m}\right\| \Psi \|_{1, m}, \text { for some } C>0
\end{gathered}
$$

by applying the Cauchy-Schwarz inequality and noting (3.2).
Next we introduce the notion of a strong solution.

Definition 3.4 Given $F \in \mathcal{H}_{1, m}^{\prime}$, a function Φ on H is said to be a strong solution of Eq. (3.1) if $\Phi \in \mathcal{H}_{1, m}$ satisfies the following equation

$$
\begin{equation*}
\left\langle\mathcal{L}_{\lambda} \Phi, \Psi\right\rangle_{1, m}=\langle F, \Psi\rangle_{1, m}, \quad \forall \Psi \in \mathcal{H}_{1, m} . \square \tag{3.6}
\end{equation*}
$$

Now we are ready to state and prove the following existence theorem.

Theorem 3.5 Let the conditions (A.1) and (A.2) hold. Then for given $F \in \mathcal{H}_{1, m}^{\prime}$, the elliptic problem has a unique strong solution, provided that $\lambda_{0}>b_{0}^{2} / 2$.
(Proof). The key to the existence proof is to establish the coercivity property of $\left(-\mathcal{L}_{\lambda}\right)$:

$$
\begin{equation*}
\exists \delta>0 \ni \quad\left\langle-\mathcal{L}_{\lambda} \Phi, \Phi\right\rangle_{1, m}=\beta_{\lambda}(\Phi, \Phi) \geq \delta\|\Phi\|_{1, m}^{2}, \quad \forall \Phi \in \mathcal{H}_{1, m} \tag{3.7}
\end{equation*}
$$

To this end, we note, by (3.4) and conditions (A.1) and (A.2), that

$$
\begin{aligned}
\beta_{\lambda}(\Phi, \Phi) & =\int\left\{\frac{1}{2}(R D \Phi, D \Phi)+(\lambda \Phi, \Phi)-\left(\mathcal{B}_{0} \Phi, \Phi\right)\right\} d \mu \\
& \geq \int\left\{\frac{1}{2}\left|R^{1 / 2} D \Phi\right|^{2}+\lambda_{0}\left|\rho_{m}^{1 / 2} \Phi\right|^{2}-b_{0}\left|R^{1 / 2} D \Phi\right|\left|\rho_{m}^{1 / 2} \Phi\right|\right\} d \mu \\
& \geq \int\left\{\frac{1}{2}(1-\varepsilon)\left|R^{1 / 2} D \Phi\right|^{2}+\left(\lambda_{0}-\frac{b_{0}^{2}}{2 \varepsilon}\right)\left|\rho_{m}^{1 / 2} \Phi\right|^{2}\right\} d \mu,
\end{aligned}
$$

for any $\varepsilon>0$. Therefore, by choosing $\varepsilon<1$ so that $\lambda_{0}>b_{0}^{2} / 2 \varepsilon$, the inequality (3.7) holds with $\delta=\min \left\{\frac{1}{2}(1-\varepsilon),\left(\lambda_{0}-b_{0}^{2} / 2 \varepsilon\right)\right\}$.

By Lemma 3.3, β_{λ} is a bounded bilinear form on $\mathcal{H}_{1, m} \times \mathcal{H}_{1, m}$, where $\mathcal{H}_{1, m} \subset \mathcal{H}$ is a Hilbert space. If follows immediately from the Lax-Milgram theorem [10] that the equation (3.36) has a unique solution Φ, which, by Definition 3.3, is the desired strong solution.

4 Hamilton-Jacobi-Bellman Equations

Now we consider the nonlinear elliptic problem arising from the controlled stochastic PDE (1.5). Recall that K denotes an admissible set and the nonlinear operator \mathcal{B} is defined as

$$
\begin{equation*}
\mathcal{B}(\Phi)(v)=\inf _{\alpha \in K}\{(B(v, \alpha), D \Phi(v))+F(v, \alpha)\}, \tag{4.1}
\end{equation*}
$$

on which we impose the following conditions:
(B.1) $B(\cdot, \cdot): V \times K \rightarrow H_{0}$ satisfies the condition:

$$
|B(v, \alpha)|_{0}=\left|R^{-1 / 2} B(v, \alpha)\right| \leq b_{0}\left(1+\|v\|^{2}\right)^{m / 2}, \text { for } m \geq 2, b_{0}>0, \forall \alpha \in K .
$$

(B.2) Same as (A.2), let $\lambda(\cdot)=V \rightarrow \mathbb{R}^{+}$be bounded so that

$$
\lambda_{0}\left(1+\|v\|^{2}\right)^{m} \leq \lambda(v) \leq \lambda_{1}\left(1+\|v\|^{2}\right)^{m}, \quad \forall \alpha \in K,
$$

for some positive constants $\lambda_{0} \leq \lambda_{1}$.
(B.3) There exists a constant $f_{0}>0$ such that $F(\cdot, \cdot): V \times K \rightarrow \mathbb{R}^{+}$has the following bound:

$$
|F(v, \alpha)| \leq f_{0}\left(1+\|v\|^{2}\right)^{m / 2}, \quad \forall v \in V, \alpha \in K .
$$

Let \mathcal{M}_{λ} be defined by

$$
\begin{equation*}
\mathcal{M}_{\lambda}(\Phi)=-(\mathcal{A}-\lambda I) \Phi-\mathcal{B}(\Phi) \tag{4.2}
\end{equation*}
$$

Then the Hamilton-Jacobi-Bellman equation (1.5) can be written as

$$
\begin{equation*}
\mathcal{M}_{\lambda}(\Phi)=0 \tag{4.3}
\end{equation*}
$$

Before presenting an existence theorem, we will prove two technical lemmas.

Lemma 4.1 Under conditions (B.1) - (B.3), the nonlinear operator $\mathcal{M}_{\lambda}: \mathcal{H}_{1, m} \rightarrow \mathcal{H}_{1, m}^{\prime}$ is locally bounded and Lipschitz continuous.
(Proof). For $\Phi, \Psi \in \mathcal{H}_{1, n}$, we have

$$
\begin{equation*}
-\left\langle\mathcal{M}_{\lambda}(\Phi), \Psi\right\rangle_{1, m}=\langle\langle(\mathcal{A}-\lambda I) \Phi, \Psi\rangle+[\mathcal{B}(\Phi), \Psi] \tag{4.4}
\end{equation*}
$$

Clearly, by (2.8) and (B.2),

$$
\begin{align*}
|\langle\langle(\mathcal{A}-\lambda I) \Phi, \Psi\rangle\rangle| & \left.\left.\leq \frac{1}{2} \right\rvert\,[R D \Phi, D \Psi]\right]+[\lambda \Phi, \Psi] \mid \\
& \leq\|\Phi\|_{1}\|\Psi\|_{1}+\lambda_{1}\|\Phi\|_{0, m}\|\Psi\|_{0, m} \tag{4.5}\\
& \leq\left(1+\lambda_{1}\right)\|\Phi\|_{1, m}\|\Psi\|_{1, m} .
\end{align*}
$$

By (4.1) and the assumptions,

$$
\begin{align*}
|[\mathcal{B}(\Phi), \Psi]| \leq & \int\{|(B(v, \alpha), D \Phi(v)) \| \Psi(v)|+ \\
& +|F(v, \alpha) \| \Psi(v)|\} \mu(d v) \tag{4.6}\\
\leq & \sqrt{2} b_{0}\|\Phi\|_{1,0}\|\Psi\|_{0, m}+f_{0}\|\Psi\|_{0, m} .
\end{align*}
$$

In view of (4.4), (4.5) and (4.6), there exists $b_{1}>0$ such that

$$
\left|\left\langle\mathcal{M}_{\lambda}(\Phi), \Psi\right\rangle_{1, m}\right| \leq b_{1}\left(1+\|\Phi\|_{1, m}\right)\|\Psi\|_{1, m},
$$

for some $b_{1}>0$, or \mathcal{M}_{λ} is locally bounded.
To show the Lipschitz condition, it suffices to deal with the nonlinear operator \mathcal{B}. Let Φ, Φ^{\prime} and $\Psi \in \mathcal{H}_{1, m}$. Then, by noting conditions (B.1) and (B.2),

$$
\begin{align*}
&\left|\left\langle\mathcal{B}(\Phi)-\mathcal{B}\left(\Phi^{\prime}\right), \Psi\right\rangle_{1, m}\right|= \\
&=\left|\left[\mathcal{B}(\Phi)-\mathcal{B}\left(\Phi^{\prime}\right), \Psi\right]\right| \\
& \leq \int \mid \inf _{\alpha \in K}\{(B(v, \alpha), D \Phi(v))+F(v, \alpha)\} \\
& \quad \quad-\inf _{\alpha \in K}\left\{\left(B(v, \alpha), D \Phi^{\prime}(v)\right)+F(v, \alpha)\right\}| | \Psi(v) \mid \mu(d v) \\
& \leq \int \sup _{\alpha \in K}\left\{\left|\left(B(v, \alpha), D \Phi(v)-D \Phi^{\prime}(v)\right)\right|\right\}|\Psi(v)| \mu(d v) \tag{4.7}\\
& \leq b_{0} \int\left|R^{1 / 2} D\left(\Phi-\Phi^{\prime}\right)\right|\left|\rho_{m}^{1 / 2} \Psi\right| d \mu \\
& \leq \sqrt{2} b_{0}\left\|\Phi-\Phi^{\prime}\right\|_{1,0}\|\Psi\|_{0, m},
\end{align*}
$$

which shows the desired continuity.

Lemma 4.2 Let conditions (B.1) - (B.3) hold. Then, if $\lambda_{0}>b_{0}^{2} / 2$, the operator $\mathcal{M}_{\lambda}(\cdot)$: $\mathcal{H}_{1, m} \rightarrow \mathcal{H}_{1, m}^{\prime}$ is monotone, or there exists $\delta>0$ such that

$$
\begin{equation*}
\left\langle\mathcal{M}_{\lambda}(\Phi)-\mathcal{M}_{\lambda}(\Psi), \Phi-\Psi\right\rangle_{1, m} \geq \delta\|\Phi-\Psi\|_{1, m}^{2}, \quad \forall \Phi, \Psi \in \mathcal{H}_{1,} . \tag{4.8}
\end{equation*}
$$

(Proof). By (4.2), we have

$$
\begin{aligned}
& \left\langle\mathcal{M}_{\lambda}(\Phi)-\mathcal{M}_{\lambda}(\Psi), \Phi-\Psi\right\rangle_{1, m} \\
& \quad=-\langle(\mathcal{A}-\lambda I)(\Phi-\Psi), \Phi-\Psi\rangle_{1, m}-\langle\mathcal{B}(\Phi)-\mathcal{B}(\Psi), \Phi-\Psi\rangle_{1, m}
\end{aligned}
$$

$$
\begin{align*}
& \geq \frac{1}{2} \int\left|R^{1 / 2} D(\Phi-\Psi)\right|^{2} d \mu+\int \lambda(\Phi-\Psi)^{2} d \nu \tag{4.9}\\
& \quad-|[\mathcal{B}(\Phi)-\mathcal{B}(\Psi), \Phi-\Psi]| \\
& \geq \frac{1}{2} \int\left|R^{1 / 2} D(\Phi-\Psi)\right|^{2} d \mu+\lambda_{0}| | \Phi-\Psi \|_{0, m}^{2}-|[\mathcal{B}(\Phi)-\mathcal{B}(\Psi), \Phi-\Psi]|
\end{align*}
$$

Similar to (4.7), we get

$$
\begin{align*}
& |[\mathcal{B}(\Phi)-\mathcal{B}(\Psi), \Phi-\Psi]| \leq \\
& \quad \leq \quad b_{0} \int\left|R^{1 / 2} D(\Phi-\Psi)\right|\left|\rho_{m}^{1 / 2}(\Phi-\Psi)\right| d \mu \tag{4.10}\\
& \quad \leq \frac{1}{2}\left\{\varepsilon \int\left|R^{1 / 2} D(\Phi-\Psi)\right|^{2} d \mu+\frac{b_{0}^{2}}{\varepsilon}|\Phi-\Psi|^{2} \rho_{m} d \mu\right\}
\end{align*}
$$

By invoking (4.10), the inequality (4.9) yields, for any $\varepsilon>0$,

$$
\begin{aligned}
& \left\langle\mathcal{M}_{\lambda}(\Phi)-\mathcal{M}_{\lambda}(\Psi), \Phi-\Psi\right\rangle_{1, m} \\
& \quad \geq \frac{1}{2}(1-\varepsilon) \int\left|R^{1 / 2} D(\Phi-\Psi)\right|^{2} d \mu+\left(\lambda_{0}-\frac{b_{0}^{2}}{2 \varepsilon}\right) \int|\Phi-\Psi|^{2} \rho_{m} d \mu
\end{aligned}
$$

which gives rise to the desired inequality (4.8) for $\lambda_{0}>b_{0}^{2} / 2$, if we choose $\varepsilon<1$, but sufficiently close to 1

Similar to the linear problem, $\Phi \in \mathcal{H}_{1, m}$ is said to be a strong solution of Eq. (4.3) if the following holds:

$$
\begin{equation*}
\left\langle\mathcal{M}_{\lambda}(\Phi), \Psi\right\rangle_{1, m}=0, \quad \forall \Psi \in \mathcal{H}_{1, m} . \tag{4.11}
\end{equation*}
$$

With the aid of the above lemmas, the existence theorem can be proved easily.

Theorem 4.3 Let the conditions (B.1), (B.2) and (B.3) hold. Then, if $\lambda_{0}>b_{0}^{2} / 2$, the Hamilton-Jacobi-Bellman equation (4.3) has a unique strong solution Φ and, in fact, $\Phi \in$ $\mathcal{H}_{2, m}$.
(Proof.) By Lemma 4.1 and Lemma 4.2, we know that $\mathcal{M}_{\lambda}: \mathcal{H}_{1, m} \rightarrow \mathcal{H}_{1, m}^{\prime}$ is a locally bounded, Lipschitz continuous and monotone operator on a Hilbert space. Note that, by (4.1) and condition (B.3),

$$
\begin{equation*}
\left|\mathcal{M}_{\lambda}(0) \Phi\right|_{1, m} \leq f_{0}\|\Phi\|_{0, m} \tag{4.12}
\end{equation*}
$$

It follows from (4.8) and (4.12) that

$$
\begin{aligned}
\left\langle\mathcal{M}_{\lambda}(\Phi), \Phi\right\rangle_{1, m} /\|\Phi\|_{1, m} & \geq\left\{\delta\|\Phi\|_{1, m}^{2}-f_{0}\|\Phi\|_{0, m}\right\} / \mid \Phi \|_{1, m} \\
& \rightarrow \infty \text { as }\|\Phi\|_{1, m} \rightarrow \infty
\end{aligned}
$$

Therefore, by applying a theorem for monotone operator in Lions (p. 171, [11]), the equation (4.3) has a unique strong solution $\Phi \in \mathcal{H}_{1, m}$ satisfying Eq. (4.11). Now, from Eq. (4.11) and estimate (4.6) we have

$$
\begin{aligned}
|\langle(\mathcal{A}-\lambda I) \Phi, \Psi\rangle\rangle \mid & =\mid[\mathcal{B}(\Phi), \Phi)] \mid \leq \\
& \leq b_{1}\left(1+\|\Phi\|_{1, m}\right)\|\Psi\|_{0, m},
\end{aligned}
$$

so that $(\mathcal{A}-\lambda I) \Phi \in \mathcal{H}_{0, m}$ hence $\Phi \in \mathcal{H}_{2, m}$ as claimed.

Remark 4.4 Instead of (B.2), the rate function λ may be allowed to depend on the control α so that

$$
\lambda_{0}\left(1+\|v\|^{2}\right)^{m} \leq \lambda(v, \alpha) \leq \lambda_{1}\left(1+\|v\|^{2}\right)^{m}, \quad \forall v \in V .
$$

The same results in Thm. 4.3 hold true.

Remark 4.5 A similar approach can be adopted to prove the existence of strong solutions to the corresponding time-dependent HJB equations.

5 Example

Consider the stochastic control of the reaction-diffusion equation in one space-dimension:

$$
\left\{\begin{align*}
\frac{\partial u(t, x)}{\partial t} & =\frac{\partial^{2} u(t, x)}{\partial x^{2}}+b\left(u, u_{x}, \alpha\right)(t, x)+\dot{W}(t, x), t>0,0<x<1 \tag{5.1}\\
u(0, x) & =v(x) \\
u(t, 0) & =u(t, 1)=0
\end{align*}\right.
$$

where $u_{x}=\frac{\partial u}{\partial x}, b\left(u, u_{x}, \alpha\right)(t, x)=b\left[u(t, x), u_{x}(t, x), \alpha(t, x)\right], \alpha(t, x)$ is the control, $\dot{W}(t, x)=$ $\frac{\partial}{\partial t} W(t, x)$ with $W(t, \cdot)$ being a Wiener process in $L^{2}(0,1)$, and $v \in L^{2}(0,1)$. Let $r(x, y)$ denote the covariance function, the kernel of the covariance operator R. Let $H=L^{2}(0,1), V=$ $H_{0}^{1}(0,1)$: the first-order Sobolev space $H^{1}(0,1)$ of functions on $(0,1)$ vanishing at $x=0,1$,
and $A=\frac{\partial^{2}}{\partial x^{2}}: V \rightarrow V^{\prime}=H^{-1}(0,1)$. The normalized eigenfunctions e_{k} of A and the corresponding eigenvalues μ_{k} are given by

$$
\begin{equation*}
e_{k}(x)=\sqrt{2} \sin k \pi x \text { and } \mu_{k}=-(k \pi)^{2}, k=1,2, \ldots, \tag{5.2}
\end{equation*}
$$

With respect to the basis $\left\{e_{k}\right\}$, the following representation holds:

$$
W(t, \cdot)=\sum_{k=1}^{\infty} \sqrt{\gamma_{k}} b_{t}^{k} e_{k}, \quad \text { a.s. }
$$

where b_{t}^{k} 's are i.i.d. Brownian motions in \mathbb{R}^{1}, and γ_{k} 's are the eigenvalues of R so that

$$
\left(R e_{k}\right)(x)=\int_{0}^{1} r(x, y) e_{k}(y) d y=\gamma_{k} e_{k}(x), \quad k=1,2, \ldots
$$

or

$$
\begin{equation*}
r(x, y)=\sum_{k=1}^{\infty} \gamma_{k} e_{k}(x) e_{k}(y) \tag{5.3}
\end{equation*}
$$

in an L^{2}-sense. Suppose that

$$
\begin{equation*}
\sum_{k=1}^{\infty} \gamma_{k} / k^{2}<\infty \tag{5.4}
\end{equation*}
$$

which implies that

$$
\operatorname{Tr} .\left\{(-A)^{-1} R\right\}=-\sum_{k=1}^{\infty}\left(A^{-1} R e_{k}, e_{k}\right)=\frac{1}{\pi^{2}} \sum_{k=1}^{\infty} \gamma_{k} / k^{2}<\infty .
$$

In view of (5.2), (5.3) and (5.4), the conditions (C.1), (C.2) and (C.3) are met. In the value function J_{v}, for simplicity, we assume that both F and λ are of quadratic form:

$$
\begin{equation*}
\lambda(v)=\lambda_{0}\left\{1+\|v\|^{2}\right\} \tag{5.5}
\end{equation*}
$$

and

$$
\begin{equation*}
F(v, \alpha)=f_{0}\left\{|\alpha|^{2}+\|v\|^{2}\right\}^{1 / 2}, \tag{5.6}
\end{equation*}
$$

where λ_{0} and f_{0} are positive constants and $\alpha \in K$ with K being a compact subset of H. Then the conditions (B.2) and (B.3) are trivially satisfied with $m=1$. To apply the existence Thm. 4.3 to the associated HJB equation, we need to check the condition (B.1). This will be done for two special cases according to a finite or infinite Tr.R.
(Case 1). Suppose that $\operatorname{Tr} . R=\sum_{k=1}^{\infty} \gamma_{k}=\infty$ and the inverse R^{-1} exists and bounded. In this case we get

$$
B(v, \alpha)=b\left(v, v_{x}, \alpha\right)(\cdot),
$$

and impose the condition:

$$
\begin{align*}
& |b(x, y, z)|^{2} \leq b_{1}^{2}\left\{1+|x|^{2}+|y|^{2}\right\} \\
& \forall x, y, z \in \mathbb{R}^{1}, \text { for some } b_{1}>0 \tag{5.7}
\end{align*}
$$

Then, for the operator norm $\left\|R^{-1}\right\| \leq c^{2}$, we have

$$
\begin{aligned}
\left|R^{-1 / 2} B(v, \alpha)\right|^{2} & \leq c^{2}\left|b\left(v, v_{x}, \alpha\right)(\cdot)\right|^{2} \\
& =c^{2} \int_{0}^{1}\left|b\left[v(x), v_{x}(x), \alpha(x)\right]\right|^{2} d x \\
& \leq c^{2} b_{1}^{2} \int_{0}^{1}\left\{1+|v(x)|^{2}+\left|v_{x}(x)\right|^{2}\right\} d x \\
& =c^{2} b_{1}^{2}\left(1+\|v\|^{2}\right),
\end{aligned}
$$

so that condition (B.1) holds with $b_{0}=b_{1} c$ and $m=1$. Therefore, by Thm. 4.3, if the conditions (5.6), (5.7) and (5.8) hold with $\lambda_{0}>\frac{1}{2}\left(b_{1} c\right)$, the HJB equation for this case has a unique strong solution $\Phi \in \mathcal{H}_{2,1}$.
(Case 2). Suppose that Tr. $R=\sum_{k=1}^{\infty} \gamma_{k}<\infty$ and

$$
\inf _{k}\left\{-\mu_{k} \gamma_{k}\right\} \geq \delta, \text { for some } \delta>0,
$$

which implies that $\mathcal{D}\left(R^{-1 / 2}\right) \subset \mathcal{D}\left\{(-A)^{1 / 2}\right\}=V$ and

$$
\begin{equation*}
\left|R^{-1 / 2} v\right|^{2} \leq \frac{1}{\delta}\langle-A v, v\rangle \tag{5.8}
\end{equation*}
$$

In this case we have to impose some more stringent conditions:
Let $B(v, \alpha)=b(v, \alpha)(\cdot)$ be independent of v_{x} such that $b(0,0)=0$ and

$$
\begin{equation*}
\left|\frac{\partial b(x, y)}{\partial x}\right|^{2}+\left|\frac{\partial b(x, y)}{\partial y}\right|^{2} \leq b_{2}^{2}, \quad \forall x, y \in \mathbb{R}^{1}, \tag{5.9}
\end{equation*}
$$

for some $b_{2}>0$, and K is a bounded set in $H_{0}^{1}(0,1)$. Then we have

$$
\left|R^{-1 / 2} B(v, \alpha)\right|^{2} \leq \frac{1}{\delta}<-A b(v, \alpha), b(v, \alpha)>
$$

$$
\begin{aligned}
& =-\frac{1}{\delta} \int_{0}^{1}\left[\frac{\partial^{2}}{\partial x^{2}} b(v, \alpha)\right] b(v, \alpha) d x \\
& =\frac{1}{\delta} \int_{0}^{1}\left(\frac{\partial b(v, \alpha)}{\partial v} \cdot v_{x}+\frac{\partial b(v, \alpha)}{\partial \alpha} \alpha_{x}\right)^{2} d x \\
& \leq 2 \frac{b_{2}^{2}}{\delta} \int_{0}^{1}\left\{v_{x}^{2}+\alpha_{x}^{2}\right\} d x \\
& \leq 2 \frac{a^{2} b_{2}^{2}}{\delta}\left(1+\|v\|^{2}\right) .
\end{aligned}
$$

where $a^{2}=\max \left\{1, a_{0}^{2}\right\}$ and $a_{0}^{2}=\max _{\alpha \in K} \int_{0}^{1} \alpha_{x}^{2} d x$. The above verifies condition (B.1) with $b_{0}=\sqrt{2}\left(a b_{2}\right) / \sqrt{\delta}, m=1$. Therefore, under the conditions (5.6), (5.7) and (5.10), the HJB equation for this case has a unique solution $\Phi \in \mathcal{H}_{2,1}$, by Thm. 4.3, if $\lambda_{0}>\frac{1}{\sqrt{2}}\left(a b_{2}\right) / \sqrt{\delta}$.

Remark 5.1 If R has a finite range, i.e. $\gamma_{k}=0$ for $k \geq\left(k_{0}+1\right)$, the Wiener process becomes a k_{0}-dimensional Brownian motion and the operator $B(v, \alpha)$ needs to have a finite range.

References

1 Chow, P.L., Infinite-dimensional Kolmogorov equations in Gauss-Sobolev Spaces, J. Stoch. Analy. and Appl. (to appear).

2 Da Prato, G., Some results of Bellman equation in Hilbert spaces. SIAM J.Control and Optim., 23, 61-71 (1985).

3 Cannarsa P. \& Da Prato G., Second Order Hamilton-Jacobi equations in infinite dimensions, SIAM J. Control and Optim., 29, 474-492. (1991).

4 Cannarsa, P. \& Da Prato G., Direct solutions of second order Hamilton-Jacobi equation in Hilbert spaces, Stochastic Partial Differential Equations and Applications, G. DaPrato and L. Tubaro, Editors, Pitman Research Notes in Math. 268, 72-85, Longman, New York (1992).

5 Gozzi, F., Regularity of solutions of a second order Hamilton-Jacobi equation and application to a control problem, Preprints di Matematica \# 09, Seuola Normale Superiore, Pisa (1994).

6 Havarneau, T., Existence for the dynamic programming equation of control diffusion process in Hilbert space, Nonlinear Analysis. Theory, Methods \& Applications, 9 619628 (1985).

7 Lions, P.L., Viscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions. Part III: Uniqueness of viscosity solutions for general second-order equations. J. Funct. Analy. 86, 1-18 (1989).

8 Da Prato G., \& Zabczyk J., Stochastic Equations in Infinite Dimensions, Cambridge Univ. Press, Cambridge, UK (1992).

9 Chow, P.L. \& Khasminskit R.Z., Stationary solutions of nonlinear stochastic evolution equations, J. Stoch. Analy. \& Applic. (to appear).

10 Yosida K., Functional Analysis, 2nd Ed., Springer-Verlag, Heidelberg-Berlin (1968).
11 Lions, J.L., Equations Differentielles Operationnelles et Problems aux Limites, Spring-er-Verlag, Berlin (1961).

[^0]: *This work was supported in part by the NSF grant DMS-91-03160.
 ${ }^{\dagger} \mathrm{e}$-mail: plchow@cms.cc.wayne.edu
 ${ }^{\ddagger} \mathrm{e}$-mail: jlm@math.wayne.edu

