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INFINITE DIMENSIONAL ROTATIONS
AND LAPLACIANS IN TERMS
OF WHITE NOISE CALCULUS
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Introduction

The theory of generalized white noise functionals (white noise calculus) initi-
ated in [2] has been considerably developed in recent years, in particular, toward
applications to quantum physics, see eg. [5], [7] and references cited therein. On
the other hand, since H. Yoshizawa [4], {23] discussed an infinite dimensional rota-
tion group to broaden the scope of an investigation of Brownian motion, there have
been some attempts to introduce an idea of group theory into the white noise cal-
culus. For example, conformal invariance of Brownian motion with multi-
dimensional parameter space [6]. variational calculus of white noise functionals
[14], characterization of the Lévy Laplacian [17] and so on.

The paper aims at establishing the fundamentals of infinite dimensional har-
monic analysis within the framework of white noise calculus, namely, based on the
calculus of differential operators 0, and their dual operators 0/, where f runs
over a time parameter space 1. We develop a general theory of operators acting
on white noise functionals and, as a particular case, discuss infinite dimensional
rotations and Laplacians in detail.

Let us now recall some notions of white noise calculus, for more precise in-
formation see Section 1. Let T be a topological space with a Borel measure v. We
consider T as a time parameter space including a multi-time parameter case where
quantum field theory may be formulated. Let £ € L*(T, v; R) = H<C E* be a
Gelfand triple constructed by means of a particular self-adjoint operator A. Let y
be the Gaussian measure on E£* and put (L% = L*(E*, y; C), which is canonical-
ly isomorphic to the Boson Fock space over He. We then obtain a Gelfand triple
(E) © (L*» < (E)* by means of the second quantized operator I"(A). An element
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of (E) (resp. (E)¥*) is called a test (resp. generalized) white noise functional. For
each t € T we define

09(@) = lim PELLD =D g e @), zepr,
0 ,
where 0, € E* is the Dirac d-function at + € 7. Then 8; becomes a continuous
derivation on (E) and 0/ a continuous linear operator on (E)*. They correspond
to the annihilation and creation operators at a point £ € T, respectively, and satisfy
the canonical commutation relation.

In this paper we establish an effective theory of continuous operators on (E)
expressed as superposition of d, and 8 with normal ordering;

(0_1) El,m(ﬁ:) = fT”m K,'(Sl,. ey Si, tly- . ,tm)asT ) 'a;l:atl' ) 'atmdsl' . 'dsldtl' . dtm

By means of duality argument we prove that (0-1) defines a continuous operator
from (E) into (E)* for any £ € (EE"*™)* namely, for any distribution & in
(I + m)-variables (Theorem 2.2). The integral (0-1) is, therefore, understood in a
generalized sense and &, (k) is called an integral kernel operator. Moreover, we
have a criterion for checking when &), (k) defines a continuous operator on (E)
(Theorem 2.6). Since practically most important (usually unbounded) operators
acting on (L?) are expressed as in the form of (0-1), our theory will be effective
to a systematic approach to the operator theory on a Fock space and further ap-
plications as well.

Let O(E; H) denote the infinite dimensional rotation group in the sense of
Yoshizawa, namely, it is the group of orthogonal operators on H which induce
homeomorphisms of E. In other words, it is the automorphism group of the Gel-
fand triple E € H C E* Recalling that z{(f) = 0, + 8 is multiplication operator
by a white noise coordinate (Proposition 4.4), we naturally come to a continuous
operator from (E) into (E)™:

(0-2) x(s)0; — x(£)0s = 850, — 00,

which is a formal analogy of an infinitesimal generator of finite dimensional rota-
tions. Using the general theory established in this paper, we investigate a definite
role of (0-2). Namely, if X is an infinitesimal generator of a regular one-parameter
subgroup of O(E; H), there exists a skew-symmetric distribution ¥ € £ & E*
such that

drx) = fT (s, D@20, — 070 dst,
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where dI is the differential representation (Theorem 4.3).

Infinite dimensional Laplacians have been so far discussed within the
framework of white noise calculus, see e.g., |2], [10], [12], [19]. With our integral
expression (0-1) the Gross Laplacian and the number operator are respectively
expressed as

As = fT (s, Doddsdr,
N= fT (s, DoFDdsdt,

where 7€ EQ E* {s the trace, namely, defined by {r, EQn> = <&, >,
&, n € E. By means of rotation-invariance we will characterize these operators
among second order operators (Theorems 5.1 and 5.2).

The paper is organized as follows. Assembling some basic notions of white
noise calculus in Section 1, we establish in Section 2 a general theory of integral
kernel operators. In Section 3 we investigate some results on one-parameter
groups of transformations in general. As a corollary we obtain the Taylor formula
for white noise functionals. In Section 4 we prove that an infinitesimal generator
of a one-parameter subgroup of the infinite dimensional rotation group is de-
scribed in terms of 050, — 870, Finally, in Section 5 we discuss infinite dimen-
sional Laplacians in connection with their invariance under the infinite dimension-
al rotation group. The Appendix contains a few useful inequalities.

There have been a few approaches to the Lévy Laplacian [15] from the view-
point of white noise calculus [8], [12], {13], [17]. We now have good hope that the
Lévy Laplacian could also be characterized within our setup.

AckNOWLEDGEMENTS. The authors welcome this opportunity to express their
sincere gratitude to Professor J. Potthoff for interesting conversations which im-
proved this paper considerably. The main part of the joint work was completed
during the second named author’s stay in Tiibingen, Germany. He is very grateful
to Professor H. Heyer and the Alexander von Humboldt Foundation for their warm
hospitality.

§ 1. Standard setup of white noise calculus

We begin with some general notation. For a real vector space X we denote its
complexification by Xc. If X is a topological vector space, the dual space £* is al-
ways assumed to carry the strong dual topology. For two topological vector spaces
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X and 9 let £(X, 9) stand for the space of continuous linear operators from %
into 9. If X and 9 are nuclear spaces, we denote simply by X @ 9 the completion
of the algebraic tensor product X & 4g 9 with respect to the 7m-topology, or
equivalently the e-topology, see e.g., [20]. If H and K are Hilbert spaces, we de-
note again by H@ K the completed Hilbert space tensor product (hence H & K is
again a Hilbert space). The somehow ambiguously used symbol, however, will
cause no confusion in the context. If X is a Hilbert space or a nuclear space, let
%én C ¥®” denote the closed subspace of symmetric tensor products. We also use
the symbol (X®") &y for the same meaning in case of dual spaces.

We then assemble some basic notions and notations of white noise calculus
principally following [7], see also {1], [10], {11], [18] and [22].

Let T be a topological space equipped with a Borel measure dv(t) = dt. Let
H = L*T, v; R) be the real Hilbert space of square integrable functions on T
Its norm and inner product will be denoted by \]0 and <{-,-), respectively. Let A
be an operator on H with domain Dom(A). We assume that H admits a complete
orthonormal basis {e;}20 € Dom(4) such that
(A1) Ae, = Aje; for A, € R;

(A2) 1 <A S A4 £ 0> oo
(A3) 20 A% < o0,
Obviously, A7 is extended to an operator of Hilbert-Schmidt class. Put

o 1/2
p=a=lal, 6= (257" =147 us

We also note the following apparent inequalities:
0<p<1, p<a.

For p € R let E, be the completion of Dom(A?) with respect to the Hilbertian
norm | &|, = | A?&|,, & € Dom(A4?), where Dom(A?) = H for p < 0. We then
come to a chain of Hilbert spaces:

. CE;,C Cch... CE,=Hc-- CE—qC CE_;;C cee
0<g<p.
Equipped with the Hilbertian norms {||s},=o0,
E= N E
=0

becomes a nuclear Fréchet space and its dual space is obtained as

E*= U E_,.

p=0
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It is known that the strong dual topology of E* coincides with the inductive limit
topology. The canonical bilinear form on E* X E is denoted again by <-,> and it
is extended to a C-bilinear form on E& X E¢. The symbols ||, and -, > are

used for tensor products as well. For instance, it holds that

(1-1) | flo € 0" flses, FEEE, pER.

By construction &€ € E is a function on T determined up to v-null functions.
We then assume the following three conditions which are suggested by Kubo and
Takenaka [10].
(H1) For every & € E there exists a unique continuous function on T which coin-
cides with & up to v-null functions.
We agree then that £ consists of continuous functions.
(H2) For each t € T the evaluation map d;: & &(t), € € E, is continuous, i.e.,
0r € E*.
(H3) The map t+ §; € E*, t € T, is continuous.
Under these conditions one may prove that any function in E&", n=1,2,..., is a
continuous function on T™
Let ¢ be the Gaussian measure on E* which is uniquely determined by the
characteristic functional:

1
exp (-5 16l) = [ e“Pdu), e<k.
We put (L?) = L*(E*, i1; C) for simplicity and let | - llp denote its norm. The

Wiener-Itd decomposition theorem says (L?) is canonically isomorphic to the Fock
space over He:

(1-2) (wsé@@ﬁ

If ¢ € (L% corresponds to (f)i-o, fn € HE”, we have
H¢%=§/th

In that case we may write

(1-3) p(x) = g) Gx® f, fo € HE".

Here: 2®": € (E®"¥%, is defined inductively as follows:
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(%=1
Zl’®1: =x
:x®n: — I® :x®(n—l): _ (n _ 1) ’Z'® :x®(n—2):’ n 2 2,

where 7 € (EQ E)¥ is defined by
(1-4) r= go 6 ® e
Note that

| o]t = ]io At < 6.

In (1-3) each <:x®™, f,» is defined only as L*-function and the series is con-
verges in (L% according to (1-2).

Through (1-2) and (1-3) we may introduce a second quantized operator. Let
Dom(I"(A)) be the subspace of ¢ € (L? given as in (1-3) such that (i) f, = 0 ex-
cept finitely many #; and (ii) f, € Dom(4) @y * * * Qe Dom(A) (s-times). Then
for ¢ € Dom(I"(A)) we put

(1-5) (T(A) ) (z) = 2_%0 G a® AP

As is easily seen, I'(A) satisfies (A1) and (A3) with replacing A with I"'(A4). As
for (A2) we observe that the smallest eigenvalue of I"'(A) is exactly one. We then
apply the method of constructing E from A to the white noise case.

Let (E,) be the completion of I"(4)? with respect to the Hilbertian norm

gt =T Arels= Zn' | £ 3,

where ¢ and (fu)i=o are related as in (1-3). Equipped with the norms (-} p =0

(E) = N (E)

=0

becomes a nuclear Fréchet space. Moreover, we note the following result due to
Kubo and Yokoi [11], see also Yokoi [22].

Prorosition 1.1. Let ¢ € (L?) be given as in (1-3). Then ¢ € (E) if and only

i fn € EE" for all n=0,1,2,. .. and Sgon!| ful2 < 0 for all p = 0. In that

case the vight hand side of (1-3) converges porntwisely and becomes a unique con-
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tinuous function on E* which coincides with ¢ up to y-wmull functions.

By the above fact we always regard (E) as a space of continuous functions
on E* Let (E)* be the dual space of (E). An element in (E) (resp.(E)¥) is
called a test (resp. gemeralized) white noise functional. We denote by «-,-» the
canonical C-bilinear form on (E)* X (E). When T=R and A=1+ ¢ —
(d/dt)?, (E) and (E)™ are often denoted by (8) and (JS)*, respectively.

We now introduce a differential operator &; which plays a fundamental role
in the white noise calculus. For G, € (EE™)* and fuen € E®<m+") we denote by
G @mfmn € E(%M uniguely determined by

<Gm ®Fny fm+n> = <Fn, Gm ®mfﬂl+n>y Fn € (Egm)*

E®(n+1

For example, if fo1 € then

0 ®1fn+1(t1, R = furr (B0, .. 1)
For ¢ € (E) and ¥y € E* we put

(1-6) D) (x) = i n e x®" Yy Qi f,

where f, € E&” is given as in (1-3), see also Proposition 1.1. Since

{ y®1fn ‘p < qu_l) i Y |—(p+q> |fn ‘p+q, P, q=0,

which is easily verified by Fourier expansion or by Proposition A.1, we obtain

(1-7) IDyl, < M yl-vviol @ llose. o € (E).

where

M, = M (p, q) = supyn oV < oo, ¢g>0.

n=0
Therefore D, is a continuous linear operator on (E). It is known that

(1-8) (D) (@) = lim $EEG =P g e p).

We now denote Ds, simply by 0.
It is often convenient to use so-called exponential vectors. For & € E¢ define

¢e € (E) by

(1-9) P (x) = %ni Ga® E87.
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Then {pe; & € E¢} spans a dense subspace of (E). Note that
(1-10) Kge, o> = 47, &, 7 € Eq,
(1-11) Dype =<y, ¢, yEE*, £€ Ec.
In particular,

(1-12) Ope =EM e, t€T, §E Ec.

These are easily verified.

§ 2. Integral kernel operators

Having introduced the differential operator 0; in the previous section, we now
develop a general theory of operators which are expressed as an integral of d; and
9. We begin with

Lemma 2.1. For ¢, ¢ € (E) we put
(2_1) r]'ﬁ&/’(sla .« -ysly tly e ytm) = << Sﬂ:. T STatl' . 'atm¢, (/)>>'

Then for any p > 0 we have

—b 1+m)/2
22 nwele S ot @mn e (g ) gl g e

In particular, Nge € EEH™.
Proof. For simplicity we put = ng¢ and suppose
px) = = <x®", f and Plx) = ZO Cx®™, g,
n=0 A=

where fn, g, € E(%". Then, by a simple calculation we have
(2_3) n(sl)"'ysl) tl)---)tm)
= <<at1' o atm¢y as,' 0y ¢)>>

= (m+m)!+ !
Z(m n)nl( n)

nn(31y~ . ysly tly .o ~ytm)7

n=0
where

nn(sb ) tly . ~,tm)
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- <(5!1 ® : ® 51‘m) ®mfm+m (531 ® . @ 631) ®l gl+n>

= anfﬁl+ﬂ(tﬂZy' cohy Uy, -,un)glwz(sly- St Us, . -,un)dul' e duty,.

Then, using the Schwarz inequality and Corollary A.2, we obtain

2-4) Ll = 1@y, b0
S l ((Aﬁ) o ® [®n)fm+n [0 [ ((Ap) ! ® [®n)gl+n 10
é pzpn ]fm-Hz 117 [ gH-n lp-

Hence from (2-3) and (2-4) we see that

“ (m+ (L + n)!
), < & lrmly,
n=0 :
<z \/"’ o n! " \  /g~n1n) (OZM vim +n)! [fm+n {D v+ n)! ‘gl+n [D
n=0 : :

1/2

<M (S ot fuenlf) (S At gals)

where
_ ‘m+w! U .
M, ii%\ n! v n! ot < oo, p > 0.
Hence
(2-5) Il < Mol @l

@ +m)
C

and therefore, n = N4 € E, . Finally, using repeatedly an elementary fact

max xe #* = 517. 8> 0,

=0

we obtain

> M, < o=t (I'm™ x/2< o >“+’”)/2
= =0 o)
Then (2-2) follows from {2-5) and (2-6) immediately. QED.

. ~ @ +m) . . .
THLOREN 2.2, For any kK € (E¢ )* there exists a continuous linear operator

Ealg) € LUEY, (EY®) such that
(2-7) LEn(k), o0 = <k, 497, &, ¢ € (E),
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where N g is given in (2-1). Moveover, for any p > 0 with | k|-, < o it holds that

=P 1+m)/2
@8 15m0sl < 07 Ay (—ghye ) kL g e

Proof. Note first that @, ¢ = <k, 044, ¢, ¢ € (E), is a continuous bilinear
form on (£). In fact by Lemma 2.1 we have

(2-9) 1<k, maw | < Tk lop | nols

-p (I+m)/2
< P*”(l’mm)l/z(:—zj‘?eng(;) lel-p U lslt gl

Therefore there is a continuous linear operator H,(k) € LUE), (E)™ such
that

<<El,m(/f)¢a ¢>> = <’f! 77¢,$>, ¢r ¢ = (E)

Hence (2-9) becomes

-p (U+m)/2
| Eunt)p, 9 | < 07 ) (g ) e L gl
from which (2-8) follows immediately. QE.D.

In view of (2-7) we also employ a formal integral expression:
El.m('f) = frl+m K:(Sl, [ -yslv tly .. ~,tm)as>};' ) .a:afl. ) .atmdsl. ) .dsldtl. * 'dtm.

This is called an integral kernel operator with kernel distribution k.

Here we discuss some basic properties of integral kernel operators. We begin
®(U+m)

with the uniqueness of the kernel distribution. For £ € E¢ we difine S;., (k)
e E&“"™ by the formula:
<Sl,m(/c)y /8 - - /s &® & - Em>
1
= W 2 <IC, No Q- ‘Now & Nz Q- - 'Er(m)>y
T ged,
€8,

where &;, 1; € E¢. Then a direct verification implies the following

ProrositioN 2.3, For any kK € Eg““”) it holds that B, p(S1m(K)) = Eim(k). If
Him(k) =0, then sim(k) = 0.
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Recall that (E) is a nuclear Fréchet space and hence reflexive. If 5§ €
Y((E), (E)*), its adjoint F* belongs to Z((E), (E)*) again. For the adjoint of
an integral kernel operator we have

ProPOSITION 2.4, Let k € EE"™ . Then En&)* = B, (b (K)) , wheve
tmi (k) 1s defined by

i), MR =k, (1>, n€EE”, (€ EE.

We next discuss when an integral kernel operator 5., (k) belongs to £((E),
(E)) which is a subclass of £((E), (E)*). For that purpose we first recall the
canonical isomorphism between P(E&”, EE"Y and (E&) ® (EE™* C
(E(?UH”))*, where all the tensor products are topological as we agreed at the
beginning of Section 1. If £ € (EE) ® (EE™* and K € L(EE™, EE") are in
correspondence, then

(2-10) e, @G> = i, KCw>, m € EE', (n € EE™,

for further details, see e.g.,, [20: Chap.50]. The next result is easily derived.

LeMMa 2.5 Fork € (EE (H’"))* the following two conditions ave equivalent:

(i) £ € (EE) ® (EE™M™,;

(ii) for amy p =0 there exist C =0 and q¢ =0 such that | <k, n QO | <
Clnlop| Close forn € EE' and { € EE™.

THEOREM 2.6. Let £ € (EE"™)*. Then Eim(k) € LUE), (E)) if and only
ifk € (EE) Q (EE™*.

Proof. First suppose that £ € (E&) Q (EE™* and let K € $(EE”, EE")
be the corresponding operator determined as in (2-10). Let ¢, ¢ € (£) and we
keep to the notations in the proof of Lemma 2.1. We then observe from (2-3) and
(2-4) that

CEnE)g, 99 = & LERNES)

<k, mw.
Then, by (2-10) we have

2-11) Ein(e)g, p» = 3 T {T WL

n=0 n

<gl+n7 (K® 1®n)fm+n> .

Since K is continuous, for a given p = 0 we may find ¢ =20 and C= C(p, q)
> 0 such that | Kn |, < Cl 1 lpse, 7 € EE™. Then, applying Proposition A.1, we
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obtain

(2-12) | <Grin, (KR I®™) funin? | S| Granlop | KR I®") fnin s
S Cpqn I fm+n ]P+q , Hitn ,-—IJ-
In view of (2-11) and (2-12) we obtain

| B ), ¢ | < 3 It E m)!

C.an | fm+n |p+q [ Si+n |—P

"ot n!
< M, =0v MW frinlpra VAF W] gran |-

<M (S 0nt ! fanlied) (2 @ mtgralzy)”
S Ml ¢ losoll @ -,

where

! !
Ms = Ms(, m, p, ) = sup/(m ). /(l;:n)' Co™ < 0

n=0
for ¢ > 0. Consequently,
I Zm () gy < M ¢ lpsa

This means that &, (1) is a continuous linear operator on (E).
Conversely, suppose that J,,(k) € £((E), (E)). Then, for any p = 0 there
exist C 2 0 and ¢ = 0 such that

1En® el < Clgle ¢ € (E).
Now consider
$x) = ¢x®™, O, o) = <2®, 1,
where 7 € E&' and { € EE™. By definition we have
LEmE) P, ¢» = 1m!e, n ® O,

and therefore,

| @O < o Il $ls = 5 01| e
It then follows from Lemma 2.5 that k € (EE') @ (EE™*. QE.D.

The action of 5, (k) on exponential vectors (see (1-9)) is given explicitly.
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PropositioN 2.7. (1) Let £ € (EEY™)*. Then
<<E[,m(’f)¢§, ¢T)>> = <Ky r/®l ®§®m> e<5,7)>, E) N € EC-

) Let £ € (EE) @ (EE™* and K € £ (EE™, EE") the corresponding operator de-
rmined as in (2-10). Then

Bim(R)e(x) = 32, (K™ © 6.

Y Fory € E* it holds that

D, = 5(y) = |, YD)t

Proof. (1) We need only to combine (2-7), (1-10) and (1-12).

LE () Pe, Pu» = Lk, KByy* " * Opmpe, Os, " 051y

=Lk, n(s) (D&Y - E(tw)> Le, PP
= (g, n® Q&™) o,

) Let ¢(x) be the right hand side of the identity to be verified. By definition,

€ o0 = 3 (+mt (Gl Ke™ @67, gt 1)

I
o 3 3
iMs 1

;%(K om, gy <,
n@l ® €®m> €<5'7]>.

view of (1) we conclude that &, (k) @: = ¢.
) It follows from (2) and (1-11) that

Enr)ge = 5 Gz, <y, © &% = <y, © e = Dig.

1erefore S (y) = D : Q.E.D.

Remark. During the proof of Theorem 2.6 we have observed the following
sult: Let K € L(E&”, E&") and k € (E§") @ (EE™)* be related as in (2-10).
LKnl, < Cl9lpsg with some p=0,g>0 and C >0, then | & k)P ], <
| ¢ up+q with some M = 0. Specializing this result for £k = y € E* and 5,,(y)
D,, we obtain a result due to Yan [21}: If ||, < o and ¢ < p, then | D, |,
Cll ¢ ll». This is, of course, the same as (1-7).

Combining Proposition 2.4 and Theorem 2.6, we come to the following
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TreOREM 2.8, If £ € (E&") ® (EE™)*, then
Em,l(tm,l(/f)) = me” KE(S1y. .58 by yEm) a;‘: o at’fnasx' o asxdtl' cdtyds - ds,
is extended to a continuous linear operator from (E)™* into itself.

If € P((E), (E)*) can be extended to a continuous linear operator from
(E)* into itself, the extension is denoted by =. For example, D: is extended to

D: € $((E)*, (E)*) whenever £ € E.

§ 3. One-parameter groups of transformations in general

In this section X denotes a barreled Hausdorff locally convex vector space
with defining seminorms {|| Ha}aeA. Recall that every Fréchet space is such a
space, for further information see {20]. Let GL(¥X) be the group of linear
homeomorphisms from X onto itself We put £(X) = £(¥, X) for simplicity.
Obviously, GL(X) C £(X).

A one-parameter subgroup {Ggeer C GL(X) is called differentiable if
limp_o(Ge€E — £)/ 0 converges in £ for any & € ¥. If {Gelser is differentiable, a
linear operator X from X into itself is defined by

(3-1) Xe=lmPE=5 cex

6~0
As usual, this operator X is called the infinitesimal generator of the differentiable
one-parameter subgroup {Gglser € GL(X). The next result is immediate from the
Banach-Steinhaus theorem, e.g., see [20: Theorem 33.1].

ProrosiTioN 3.1. Let {Geleer © GL(X) be a diffeventiable one-pavameter sub-
group. Then its infinitesimal genevator X 1s always continuous, ie., X € L(X).
Moreover, the convergence (3-1) is uniform on every compact subset of X, namely,

=0

a

Ge§E — § _
e X

(3-2) lim sup

8-0 (€K
for any & € A and any compact subset K  X.
Remark. When X is a nuclear Fréchet space, every bounded closed subset of

X is compact. Therefore, in that case the topology of £(X) induced from uniform
convergence on every compact subset of X is equivalent to that of uniform con-
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vergence on every bounded subset of X.
A differetiable one-parameter subgroup is uniquely determined by its
infinitesimal generator, namely, we have

ProPOSITION 3.2. Let {Gelper and (Holoer be two differentiable one-parameter
subgroups of GL(X) with the same infinitesimal genevator X. Then Gg¢ = Hy for all
g€ R.

For the proof we need two straightforward results.

Levmma 3.3. Let {Goloer © GL(X) be a differentiable one-parameter subgroup
with infinitesimal genevator X. Then for any 0 € R and any &€ € X we have

GoXE = XGyt = lim Crres — Col

e=0 €

Moreover, the convergence is uniform on every compact subset m X.

LemMa 3.4, Let {Goloer C GL(X) be a differentiable one-parameter subgroup.
Then,

lim sup || Go1c& — Gotlla = 0

e=0 £€K

Jor any a € A and any compact subset K < X.

Proof of Proposition 3.2. Let & € X be arbitrarily fixed. For simplicity we
put £(0) = H_&. It becomes a differentiable curve in X and from Lemma 3.3 we
see that

L E0) = — XH & = — XE(O).

Furthermore, {Go&(8)}ser is also a differentiable curve in ¥. In fact, a simple
verification with Lemma 3.4 leads us to the following

L (GE(0) = Go(— XEO) + XGi£() =0, HER.

Namely, Gs€(8) = Go&E(0) = & for all 8 € R, and therefore Gs& = Hp&p. Since
&y € X is arbitrary, we conclude that Gy = H,. QED.
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In general, not every X € £(X) can be an infinitesimal generator of a diffe-
rentiable one-parameter subgroup of GL{X). We give here a sufficient condition.

ProrosiTioN 3.5. Let X € L(X) and assume that theve exists v > O such that
{(xX)"/ s, is equicontinuous, namely, for every a € A theve exist C = C(a) =0
and B = B(a) € A such that

1
sup 7 | X))l < Cl &l E€ .
n=0 n.
Then there exists a diffeventiable one-parameter subgroup {Gglger € GL(E) with
infinitesimal genevator X.

Proof. By assumpiton, the series

(3-3) GE= 5 hixme, sex, 16]<r,
o 1!

is convergent in X and [[Gella < CA —16]/7)7Els, namely, Go € L(¥)
for | 8| <7 Furthermore, Go =1 and Go,+6, = Gg,Go, whenever 16,1, 6]
| 6, + 6,] <7 We now define Gy for all # € R. For a given 8 € R choose a posi-
tive integer # such that | /x| < 7 and put Gs = (Gem)". As is easily seen, this
definition is independent of the choice of #, and therefore Gays, = (G, Ge, for all
0., 0; € R. Since

| 5475 - xe] < 51 e
<tolcrs (1= el Tl <,

{Gelser is a differentiable one-parameter subgroup of GL(X) with infinitesimal
generator X. QE.D.

During the above proof a somewhat stronger property of {Gslser has been
observed, cf. (3-2): for any a € A there exists 5 € A such that

Ga&" 5 _
7 XS

= 0.

a

lim sup
-0 jlgllp<1

If a differentiable one-parameter subgroup has this property, we call it regular.
This notion will be useful when we consider the second quantization of the action
of the infinite dimensional rotation group, see the next section.
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Remark. For X € L(X) consider the following condition: for any o € A
there exist constant numbers C = 0, 0 < d < 1 and 8 € A such that

1 X"sle < C@aD?NEls, c€ X

This condition is apparently stronger than that in Proposition 3.5. Under this con-
dition Gy is defined by (3-3) for all 8 € R.

We end this section with an example. For y € E* we defined a differential
operator D, on (E) by the formula (1-6). In a similar way as in (1-7), for p = 0
and ¢ > O we obtain

” D} “P C(m) ‘ y[ b+ ” ¢ ”P'le

where

C(n) = sup

k=0

qu < 0,

(k+n)!
k!

By a simple calculation C(n) < #*? whenever ¢ = (~— 2log p)~!. Taking ¢ > 0
large enough to hold | y |_(,,+q> < ©0 too, we obtain

I D7l < n"2 |y 2 pia | @ lore < CBD | B llpaa

for some C =2 0 and 0 < § < 1. (In fact, by the Stirling formula we may take any
§ with 1/2 < ¢ < 1)) Therefore D, is an infinitesimal generator of a regular
one-parameter subgroup of GL((E)). As is expected from (1-8), the
one-parameter subgroup is given by {7} ser, where

(Tog) (x) = ¢(x + by), ¢ € (E).

Furthermore, as a direct consequence of the above Remark, we obtain the Taylor
formula for white noise functionals due to Potthoff and Yan [18].

TueorReM 3.6. For any y € E™* it holds that
_ w1
o= L Dig, §< (E),
where the series is convergent in (E).
§ 4. Infinite dimensional rotations

For X € #(E) we introduce two operators I (X) and - dI'(X) on (E). Let
¢ € (E) be given by
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(4-1) b(x) = §: Gx®, fy, x € E* f, € E&"
as before, see Proposition 1.1. Then we define
(4-2) T @) =5 ¢ X2 f),
n=0
(4-3) @r X)) (x) = i nx® (X QI £

It is not difficult to prove that both I' (X) and dI' (X) belong to £((E)). Howev-
er, it is not clear whether {I'(Gg)} becomes a differentiable one-parameter
subgroup of GL((E)) for any differentiable one-parameter subgroup {Gs}ser of
GL(E). In this connection we have

TueoreM 4.1. Let {Gslser be a vegular one-parameter subgroup of GL(E) with
infinitesimal genevator X. Then, (' (Gg)}per is a regular one-parameter subgroup of

GL((E)) with infinitesimal genervator dI" (X).

For the proof we need some inequalities. Suppose that p 2 0 is given. From
the regularity of {Ge}ser there exists ¢ = 0 such that

(4-4) lim sup %0——8 - Xg| =0

=0 &],,, <1
Moreover, we may assume that with some C = 0,
(4-5) | X& |, < Cl &lpsa,
(4-6) 0p*t + 202 < 1,

Suppose next € > 0 is given. In view of (4-4) there exists 6y > 0 such that
G —
(4-7) Gt Xe| <eléhe 16] <00

Furthermore, by (4-6) we may assume

(4-8) dole + C)Oy + dp*t + 2072 < 1.
We then obtain

(4-9) | GoE — El, < e+ O) | 011 &lpra

and
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(4-10) | Go€ |y < Myl Elpues

where

6|<008HdM4: (E+C)Ho+pq.

Proof of Theovem 4.1. For simplicity we put

n—1
[rn(X) =XIQXQI®"Y, n=1,
k=0
70(X) = 0.
By a simple calculation we have
Cr i A _ " ex Gs— 1 _ & (n—1—k)
. ne) =S 1@ (S - x) @ 6o
4 ”il (I*F @ X ® (G710 — [2mi-iyy
k=0

and therefore, for f, € E&”" it holds that

way OBl 0y,

4

n=1
<2
k=0

(o (@5 - ) oc)r|

n-1
+ IR XR G = I ful.
k=0
In view of (4-7), (4-10) and Corollary A.4, we obtain

(= (G2 - x)@ 6

P
< c M4n—1~kp1+<q+1)k5n~1~k ifn 'p+q+1
= p(@OM)" 0T | £y |y,
Hence,
n-1 o
(4-12) > ‘ <[®k ® <7Q06—l — X> & G@@(ﬂ—l—k)) fn p
k=0

< oMM fulpran
< Epz(pMS)n_l |fn |p+q+2y

where Ms = dM, + p**!. On the other hand, by (4-9), (4-10) and Corollary A.5
we get

(4-13) WGP =1y wl, < ple + OOME 4] 01 @ lpagun
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In view of (4-5), (4-13) and Corollary A.4, we obtain

| (I®k RXR (G‘;zy(n-—l—k) _ I®(n—1—k>))fn Ip-
< Cop(e + C) ME2F| 0] 0" 725G | £y |prgue
= Cop*(e + C) M5 (oMs)" > *p' 2% | 0| | fulprasz
< Cop™ e + C) (oMa)™ 0 25 | | | fu lpsare,

where we used Ms* < p™%*. Therefore we have

(4-14) TIU* @ X® (G20 — 1°"79)) 7,
k=0
< Cop™ e + C) (oMs + 07" 1 01| fo lprgea.

From (4-11), (4-12) and (4-14) we see that

Qn

Golemlo 3001, | < e OM™ | fo lpvare
+ Coo™* (e + C) (oM + 07" | O | fu lpsqra.
Since pMs < pM; + p** < 1 by (4-8), the last quantity is bounded by

{e0®(oMs)™ + Cop™* (e + C) (oMs + 0™ [ O} | fu lprque
< (o7 + Coe+ C) o727 0]) | fulprares
where M; ! < p~%! is used again. Since dI'(X) = 2p-0 7.(X), we conclude that
| HE=2 —arc0rp| < oo +161 Ce + O8N 16 lysae,

whenever ( 6| < 6,. Consequently,

lim sup —j’—uc”)g —? —arx)¢ H =0,
=0 ||g|iprgrz=<1 4
which completes the proof. Q.E.D.

We are now going to a discussion on the infinite rotation group. Following
Yoshizawa [23] a linear homeomorphism g € GL(E) is called a rotation of E if
|g§lo=|€|o, ie., if it can be extended to an orthogonal operator on H =
L2 (T, v; R). Let O(E; H) denote the group of all rotations of E. Obviously, it is
a subgroup of GL(E).

It is noted that (I7, (L?)) is a unitary representation of O(E; H). In fact,

@) =¢g*r), ¢ LY, x< ET
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where g*r is defined by
{zr, g& = g%z, &, x€E*¥ £E€E,

Let U((E); (L*)) be the group of unitary operators on (L? which is defined
similarly as O(E; H). 1t then follows that I'(g) € U{(E); (L¥) for any
g€ O(E; H).

Let {Gglser be a differentiable one-parameter subgroup of O(E; H) with in-
finitesimal generator X. As is easily seen, X is skew-symmetric in the sense that

(4-15) (XE, np> = —XKE, X, &, n€EE.

Prorosition 4.2.  Let X be a continuous operator on E which is skew-symmetric in
the sense of (4-15). Then there exists a skew-symmetric distribution K € EQ E*
such that

(4-16) arx) = fT (s, D00, — 079 dsdt.
Proof. Consider

(4-17) K= % ‘Zo {e,, Xeve, @ e,

i.1=
Since X is continuous, there exist ¢ = 0 and C > 0 such that | Xé|, < C| €|,
Hence,

| <ei, Xep | <leilol Xeslo < Clesly = CA}

and ¥k € (EQ E)* Moreover, by a direct calculation, we have
(4-18) G, @O =5 <, KO

This shows that £ € EQ E* and that « is skew-symmetric. The right hand side
of (4-15) is, therefore, equal to 251, (k) which is a continuous operator on (£) by
Theorem 2.6. Since dI'(X) is also continuous, we need only to show that
28,1 (k)pe = dI' (X) e for exponential vectors ¢¢ € (E) defined as in (1-9). By
(4-3) we have
_ 2 1
dr'(X)¢e) (x) = 2 =1

n=1

<: x@n:’ (XS) ® S@(n—1)>

and therefore
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«ar @ge, p» = 5 n! (7:11),7 (X&) ®E"™, 1%

S n—1
nZ:] o 1), CXE, <&
= (XE&, ) 7.
On the other hand, in view of Proposition 2.7 and (4-18) we have
2B (k) pe, ¢ = 24k, n Q& P (n, X& AL
This completes the proof. QE.D.

In view of Theorem 4.1 and Proposition 4.2 we obtain the following

THEOREM 4.3. Let X be an infinitesimal genmervator of a rvegular one-parameter
subgroup of O(E; H). Then, there exists a skew-symmetric distribution £ € E Q E*
such that

ar(x) = fT (s, (0F0, — 070, dsdt.

For a fixed ¢t € T we define @, € (E)* by
LDy, ¢» = f1(1)

for ¢ € (E) given as in (4-1). It is convenient to use a somewhat formal notation
x(t) = @,(x) which is regarded as a coordinate function in white noise calculus.
Note that a product @¢ = ¢@ € (E)* is defined for ® € (E)* and ¢ € (E) in a
usual manner.

ProrosiTion 4.4. x()¢(x) = (0: + 3F) p(x) for amy ¢ € (E).

The proof is direct, see e.g., [10], [12]. We can thereby regard
as*at - at*as = (as* + as)at - (at* + at)as = x(s)@t - x‘(t)as

as a direct analog of an infinitesimal generator of finite dimensional rotations.
Therefore Theorem 4.3 is a direct extension of a well-known fact on finite dimen-
sional rotations to the white noise case.

§ 5. Infinite dimensional Laplacians

We now discuss rotation-invariance of infinite dimensional Laplacians as a
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simple application of a general theory established in the previous sections.
The distribution 7 € (E & E)* is already defined in (1-4) and, in view of
Theorem 2.6, we see that

Foa(r) = foT 7(s, )0:0; dsdt = Ag

becomes a continuous operator on (E). On the other hand, note that 7 € E® E*.
In fact, since {7, n @ =<y, O for n, { € E, the corresponding operator in
Y(E) is nothing but the identity (see (2-10)). Hence, using Theorem 2.6 again, we
observe that

En@ = [ t(s 0370, dsdt = N

is also a continuous operator on (E). These operators are called the Gross Lapla-
cian and the number operator, respectively. Note that Ap = — N is often called the
Beltrami Laplacian, see e.g. [12]. In fact, with the help of Proposition 2.7, for an ex-
ponential vector ¢, & € E¢, we obtain

EunnDelx) = 5 L ¢x®, (o, E@ O £°7)

n=0

= (&, & ¢elx) = depe(x)

and

Fa (D) delx) = i 1 <:x®(n+1>:’ E®<n+1)>

n=o 1!
= E:On <:x®":, Sn@;n> = Nepe.

In this section we characterize 4¢ and N among quadratic forms of operators 0,
and 8/ in terms of rotation invariance. The main assertions are the following.

THEOREM 5.1. If
Epp(A) = fT TZ(S, 1)0s0; dsdt. A € (Ec ® E¢)¥,
is invariant under O (E; H), then it is a constant numltiple of the Gross Laplacian.

THEOREM 5.2. If
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Ea = [ (s 00Fd,dsdt, 2 € Ec® Eg,
is tnvariant under O(E; H), then it is a constant multiple of the number operator.

First note that if a continuous operator = on (£) is invariant under

O(E; H) then
(5-1) [Z,dI'(X)]1 =0

for any infinitesimal genarator X of a regular one-parameter subgroup {Ge)scr <
O(E; H). In fact, with the help of Theorem 4.1 one can differentiate at § = Q the
identity I'(Ge) BEp = EI'(Go)p, ¢ € (E), to obtain (5-1).

LemMa 5.3, Let A € (EcQ EQ)* and X an infinitesimal generator of a
regular ome-pavameter subgroup of O(E; H). Then, for an exponential vector Qs
& € E¢, we have

[Z52(A), dI" (X)1¢: = 244, XER & ¢,
where A is the symmelrization of A.
LEMMA 5.4. Let A € Ec @ E& and X an infinitesimal genevator of a regular
one-parameter subgroup of O(E; H). Then, we have
[21.(1), dI (X)) = —dI'([X, LD,
where L is a continuwous operator on Ec¢ defined by <A, EQn> = <&, Ly,

&, n € Ec.

First we note that dI'(X) = 25:,(k), where kK € EQ E* is given as in
(4-15). Then, for the proofs of the above lemmas we need only to apply Proposi-
tion 2.7. It is noteworthy that &,,(4) = dI'(L) for A and L being the same as in
Lemma 5.4.

Proof of Theorem 5.1. Suppose that Hy2(4) is invariant under O(E; H). It
then follows from Lemma 5.3 that

Q, XEQRQE =0, £€ Eq,

for any infinitesimal generator of a regular one-parameter subgroup of O(E; H).
Suppose that 1 # j are arbitrarily fixed non-negative integers and define X as
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Xe, = €j
(b-2) Xe; = —e;
Xe, =0, k # 1,5,

Then we obtain

0=4{ X, Qe> =, ¢, e
and

0=, X+ e¢) @ (e;+¢)> =4, Xe. R e, + Xey @ ed
=, e Rey — U, eiRep.

Hence <A, ¢, ® ¢,> = ¢ is independent of 1 =0,1,2,... and <A, & Q@ ¢ = 0 for
i # j. Therefore A = ¢t and we conclude that Fo2(1) = Eoa(d) = Ep2(ct) = cde.
Q.E.D.

Proof of Theorem 5.2. Suppose that 51,;(4) is invariant under O(E; H). It
then follows from Lemma 5.4 that dI'([ X, L1) =0, and therefore [ X, L] = 0.
Let X be the same as in (5-2). Then, for k # ¢, J we have

0=LXe, = XLe, = 2. {Ley, e Xe,
(=0

= {Ley, e;7 Xe, + {Lex, ¢ Xe,
= <L8k, €z> € — <Lek, €/> €;.

Therefore, {Lei, €7 = {Ley, ¢, = 0. In other words,
A, eQe> ={e, Ley =0 i+7.
On the other hand,

(Lej, ep = — {LXe,, ey = —<XLe,, ¢
= <L€J, X€i> = <Lej, €j>.

Namely, {1, e; ® ¢> = {e,, Le;> = c is independent of ¢ = 0,1,2,.... Therefore A
= ¢7 and 511(/1) = El,l(CT) = ¢N. QED

Remark. During the above discussion we used only a subgroup of O(£; H)
consisting of rotations which act identically on the subspace spanned by
{en, €ns1, ...} for some # =0,1,2,. ... This group is sometimes denoted by O
and is an inductive limit of O(n). It is also interesting to consider another sub-
groups, for example, a group of transformations of 7 which is naturally imbedded
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in O(F; H). In general, a one-parameter subgroup of O(F; H) arising from
transformations on T is called a whisker and plays an interesting role in a study of
symmetry of Brownian motion, in this connection see [4], [14], [23]

Appendix. Some inequalities

ProposITION A.1. Let K € (EE™, E&Y) such that | Knlp < Clnlpsey 1 €
E&” for some p, ¢ = 0 and C = 0. Then, for anyn = 0,

L E® I funls < CO™ | fanlpres  Fnin € EE™.
Proof. By Fourier expansion we have

fm+n=‘ Z &i, in®ei1®"’®€;”,

where gi,..i, € EE"
|fm+n |%'= 2 ?:' |g:, ..... z,,|h r = 0.
Hoeerty=
Then,
|(K®I®n)fm+n|p-|ZKg11 ..... ®e'1® ®em’
=22 [ th ,,,,, iy [2
< Z /z?f CZ I gzl ..... iy [p+q
=2y 2;124. . ./L_—an Lz,l(pw). /22<1>+q> ‘ Gipiy |p+q
< C0% | frrin 3ras
whereweused 1 < p ' =2, <4, S, < -0 QE.D.

COROLLARY A.2. For fusn € EE" and p 2 0, we have
[((A”) ®" @ I®") fmin lo < 0| foin s
ProposiTioN A.3. Fori=1,2,...,d, let K; € $(EE™, EE"). Assume that

| KiEily < Cil &g, & € EE™ for some p, qg=0 and C, >O Then, for any i we

have

(K R K)wly < Civ - Cap™0™ ™ | @ |41, w € EE”,
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wheve m = my + - -+ ma.

Remark. Putting m; = max(my, * * *,m,), we obtain the best estimate. Since
o < 8, we have

| (KR R K)wly < Cr+Cyd™ | wlgr1. @ € EE™.

This is also useful.

Proof. It is sufficient to prove the inequality for ¢ = 1. Let B; be the basis of
E&™ namely,

B = {fz' = ¢, & ‘® Ciamny J (1), -7 () = 0}.
Then, each w € E&” is expressed as

w = Z g(fz,"',fd)®f2®"'®fd,

fie®,
2<i<d

where g(fs, "+, fa) € EE&™ and

lw (2= Zlg(fz,...,fd) l%\le%lfd‘%

Then, using the Schwarz inequality, we obtain

K Q QK)o < (Z|Kig(fo,....fd) Is| Kefelp | Kafals)?

SCE - CHEN g oo oS D ol folo ] fulD)?

< 12"'C3(Z|g(fz,"',fd)¢§+1|f2‘%1+1"‘|fd‘3+1)

(Zg(fey.. S B g oy f) Bl ZR 212 faldiid £ald).

Since | g(fz, .. . fa) le < 0™ | g(f2,. .. .f2) les1, We obtain

| ® @ Kl < Ci - Clolipm [T 5 (HAl)

i=2 fieB,

C
C
X

If fi = ejwy @& ejomy, we have | file = Qo ** Ajmyp)?, and therefore

| filg }2 < s 2 L\ _
U = o Aions — — 527}11.
ffi?, < fi q+1> 7'(1>:»-.,]Z(m,-)=o (G Ajomn) <]§0 ; )

Consequently,
| (K@ Q@ K)wly < Ci - Cal @ lger o™ ™1,

This proves the assertion. Q.ED.
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COROLLARY A.4. For i=1,2,...,d let K, € L(EE™, EE"). Assume that
| K&y < C, | Eilpsg, & € EE™, for some p, g = 0 and C; =2 0. Then, for any 1 we
have

i (1®k ® Kl ® . ® Kd)CU Ip < Cl' ) 'QiPWHqH)k(Sm_mi l @ ]p+q+1y wE Eg(kﬂn),

where m = my + -+ my.
Proof. Immediate from Propositions A.1 and A.3. QE.D.

CoROLLARY A.5. Let B € $(Ec) be such that |BE&l, < Cy|E&lpyy and
| (B—1) &l £ Col Elpra. Then,

| (B®" — I®") fulp < 0Co(6C: + 0" | flpsanr, fo € EE".
Proof. We need only simple calculation and Corollary A.4.

| B®" — I® |, < S 1B P @ (B— 1) ® I°Y £, ],

S?r
»-o

Z Cln—l—-kczpl-i-(q+1>k5n—1—k | fn ]p+q+1
k=0

< pCy(0C; + pthHyr! l fn |1>+q+1

This completes the proof. QE.D.
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