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towards understanding global aspects of the distance conjecture in field spaces. Our results

follow from a deep mathematical structure captured by the so-called orbit theorems, which

gives a handle on singularities in the moduli space through mixed Hodge structures, and

is related to a local notion of mirror symmetry thereby allowing us to apply it also to the

large volume setting. These theorems are general and apply far beyond Calabi-Yau moduli

spaces, leading us to propose that similarly the infinite distance structures we uncover are

also more general.
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1 Introduction

There are a number of proposed consistency constraints on effective quantum field theories

that could potentially arise from string theory. One of them, the Swampland Distance

Conjecture (SDC), states that infinite distances in moduli space lead to an infinite tower

of states becoming massless exponentially fast in the proper field distance [1]. So if we

consider two points in field space P and Q, with a geodesic proper distance between them

of d (P,Q), then upon approaching the point P there should exist an infinite tower of states

with characteristic mass scale m such that

m (P ) ∼ m (Q) e−γd(P,Q) as d (P,Q) → ∞ . (1.1)

Here γ is some positive constant which depends on the choice of P and Q but which is not

specified in generality. The distance conjecture has been studied in a number of different

settings and utilising different approaches [2–17]. It has also been generalised and refined

to a proposal which should hold for fields with a potential and for any super-Planckian

variations in field space [3, 4]. It therefore has potentially important phenomenological

implications within cosmology, particularly in the context of large field inflation, see [18]

for a review. More recently, it has also been utilised in [19] in relation to the Swampland

de Sitter conjecture [19–21].

The distance conjecture, as stated in (1.1) is rather coarse. It does not say anything

about properties of the tower of states beyond their mass, and in particular, about what is

the overall structure of different infinite distances in the field space. In order to build up

intuition about these questions, and evidence for the conjecture, it is useful to study large

rich classes of field spaces in string theory. In [12] such a systematic study was initiated

for the complex structure moduli space of Calabi-Yau manifolds in compactifications of

type IIB string theory to four dimensions. We will retain this setting in this paper.1 The

conjecture was shown to hold for a large class of infinite distances without referring to any

specific example. The reason such a general approach is possible is because infinite distance

loci in moduli space have some very general properties. In particular, they have a discrete

set of data associated to monodromies when circling them, and this data determined the

local form of the moduli space as well as the spectrum of charged states. In this paper

we will build on these ideas and uncover more of the structure contained in this discrete

data. In terms of the distance conjecture, this structure will ‘resolve’ the infinite distance

divergence into a fine classification of different types of infinite distances, and begin to

shed light on how such infinite distance types can intersect and form a complex network

of infinite distance loci. It will also determine how the towers of states can arise and be

inter-related within such a network.

First, we recall the local aspect of the data. The results of [12] showed that infinite

distance loci are singular loci in the moduli space and have an associated discrete mon-

odromy transformation, denoted by T . This transformation determines the local geometry

1See [16, 17] for a general analysis of weak gauge coupling limits in compactifications of F-theory to

six-dimensions.
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Figure 1. Figure illustrating the relation between the distance conjecture and monodromy. The

point P is at infinite distance and the monodromy about it is denoted by T. The monodromy

determines the local singular geometry of the moduli space, which leads to the exponential behaviour

of the mass of the tower of states. The monodromy also acts on the spectrum of states picking out

a specific infinite set of states.

of the moduli space. It also picks out an infinite tower of states where it acts as the trans-

formation moving one step up the tower. This general picture is illustrated in figure 1. The

presence of such a universal structure allowed for a very general analysis and so to proofs

of very general results. It was also proposed that the infinite distance is itself induced by

integrating out the tower of states. In this sense, it is quite natural that the same object

T controls both the tower of states and the infinite distance behaviour.

So far we have only considered a single point P at infinite distance. But the moduli

space is a high-dimensional space, and P actually belongs to a continuous set of points

which together form an infinite distance locus. This full locus can be characterised by

discrete data related to T . The locus can also intersect other similar infinite distance loci.

Together, all these loci form a network of infinite distances. This structure is perhaps best

illustrated with an example. In figure 2 we present an example field space, the complex

structure moduli space of a particular Calabi-Yau manifold. Each locus of infinite distance

in the moduli space is denoted by a solid line, and the full structure of the network is

manifest. The loci in figure 2 are labelled by a type, which (for Calabi-Yau threefolds) can

be I, II, III, or IV. Type I loci are at finite distance in moduli space. Type II, III or IV

loci are at infinite distance and the increasing type denotes a sense of increasingly strongly

divergent distances. In [12] a generic point P on one of the infinite distance loci was

assigned a type inherited from the locus type.2 This was done away from the intersection

points and is in this sense a purely local analysis.

In this paper we will begin to explore the global structure of the infinite distance

network. The first thing we will introduce is a more refined classification of the infinite

distance loci which takes into account important additional data. The type will now be

supplements by a numerical sub-index, so for example, will take the form II2. This more

refined type can then change, or enhance, at points where the loci intersect. In figure 3

we give a different example of an infinite distance network where we now focus in on the

2The notation in [12] is that types I, II, III, IV are labelled by d = 0, 1, 2, 3 respectively.
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Figure 2. Figure showing an example field space with multiple infinite distance loci. The example

is the (resolved) complex structure moduli space of the (mirror of the) two parameter Calabi-Yau

P1,1,2,2,2[8] as studied in [22]. Each infinite distance locus is denoted by a solid line and assigned a

type labelled by II, III, or IV. We also show special finite distance loci with dashed lines, and these

are associated to type I. Some well-known loci are labelled explicitly, the finite distance conifold

and orbifold loci, and the infinite distance large complex-structure point.

IV1

IV1

IV1

I1

III0

IV2

IV2

IV1
IV1

Figure 3. Figure showing an example intersecting network for the (mirror of the) Calabi-Yau

P1,1,1,6,9[18] as studied in [23]. In this case we focus in one a particular region of the network,

within the box, and show the more refined data for each locus including the sub-index. At the

points of intersections the type of a locus can be modified. We show the types associated to each

intersection point in the focused region.

intersection structure in a particular region. We see that the loci are assigned a more

refined data type and also each intersection locus has an associated type which may differ

from the generic point on the locus. We will explain what the more refined data captures,

and how it can be calculated from the monodromy T .
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II0
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IV2
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I3

II0

II1

II2

III0
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IV1

IV2

IV3

h2,1 = 2 h2,1 = 3

Figure 4. Graphs of allowed type enhancements for field spaces with h2,1 complex fields. In terms

of Calabi-Yau geometries, h2,1 is the associated Hodge number. An arrow denotes that a starting

type of locus may enhance over a sub-locus, corresponding to an intersection, to the end type. Note

that the enhancement relations are not transitive. For example, in the h2,1 = 2 case, there is a

chain of II0 → II1 → IV2 enhancements, but there is no direct enhancement from II0 to IV2.

The next step will be to understand the distance conjecture when approaching the

intersection points themselves. The whole notion of the nature of the infinite distance is

vastly more complicated at the intersection points. In particular, the finiteness of the dis-

tance itself, as well as the masses of states, become path dependent questions. So whether

a state becomes massless or not at the intersection loci depends on how one approaches

them. We will show how to incorporate this path dependence into the formalism.

The refined discrete data not only gives the properties of the infinite distance loci but

also the rules for which types of infinite distance loci can intersect each other and what are

the possible types to which they could enhance on the intersection points. We therefore find

rules for what type of infinite distance networks could be built. These intersection rules

have deep mathematics behind them, as initially developed in [24] and studied recently

in [25]. The rules can be expressed in terms of which types of infinite distance loci can

enhance to which types over certain sub-loci corresponding to intersections. Expressed this

way the intersection, or enhancement, rules for two example classes of networks are shown

in figure 4. The example network in figure 3 falls into the type h2,1 = 2. One can then

readily check that the enhancement of the locus types at the intersections indeed follows

the general rules.

In [12] the tower of states was identified as generated by an infinite action of the

monodromy matrix T on some BPS state charge. In this work we will introduce a more

general notion of such a tower that is associated to the monodromy action, which we term a

charge orbit. A crucial aspect of the charge orbit is that it will not be associated to a point

on an infinite distance locus, but to a patch, which means that it can capture the structure

of intersections. This will therefore form a first step towards connecting the towers of the

different infinite distance loci into a network. A non-trivial result which we will be able

to prove already is that if the type of the infinite distance increases at the intersection,

then there is an infinite charge orbit of states which become massless approaching the locus

even away from the intersection point itself. We call this an inheritance of a charge orbit

– 4 –
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by a locus from its intersection point. It is important to note, however, that in [12] the

monodromy induced tower was shown to be populated by BPS states, while in this paper

we will identify the charge orbit but will be unable to prove that it is populated by BPS

states. Nonetheless, we propose that it indeed captures the tower of states of the distance

conjecture, while leaving a proof in terms of BPS states for future work.

The paper is structured as follows. In section 2 we introduce the formalism and

underlying theorems which we will use in the paper. In section 3 we show how the data

of the type of infinite distance locus can be used to form a complete classification of such

loci, and how this type can be extracted from the discrete monodromy. In section 4 we

utilise these results to define the charge orbits at intersections of infinite distance loci. We

summarise our results, and discuss extensions and interpretations of them in section 5. In

the appendix we present a detailed analysis of some example intersection loci as well as

collect some of the more technical formalism.

2 Monodromy and orbit theorems in Calabi-Yau moduli spaces

In this section we introduce, and develop in a way adapted to our needs, the crucial

mathematical theorems and structures associated to so-called orbits. The central elements

are the nilpotent orbit theorem, the Sl(2)-Orbit theorem and the growth theorems. The

theorems lead to a detailed and powerful description of the moduli space locally around any

singular loci. In particular, we will utilise their multi-variable versions which will allow for a

description of a patch of moduli space that can include intersections of infinite distance loci.

2.1 Complex structure moduli spaces and monodromy

The focus of this paper lies on a particular sector of Type II string compactifications on

Calabi-Yau threefolds. More precisely, we will investigate the geometry of the field space

spanned by the scalars in the N = 2 vector multiplets arising in these compactifications.

These scalars correspond to complex structure deformations of the Calabi-Yau threefold in

Type IIB string theory and complexified Kähler structure deformations in Type IIA. Since

these two compactifications are deeply linked via mirror symmetry, it will often suffice to

address only one of the two sides. In particular, it is important to recall that the complex

structure side captures the more general perspective and hence will be the focus for the

first part of our exposition. Later on, we will address aspects of the Kähler structure side

by discussing large volume compactifications.

To begin with, let us denote the complex structure moduli space by Mcs and introduce

the Weil-Petersson metric gWP that arises in the Type IIB string theory comactification.

The space Mcs has complex dimension h2,1, where hp,q = dimC(H
p,q(Y3)) are the Hodge

numbers of the Calabi-Yau threefold Y3. In a local patch we can thus introduce complex

coordinates zI , I = 1, . . . , h2,1, which are called the complex structure moduli. The metric

gWP on Mcs is special Kähler and determined by the complex structure variations of the

holomorphic (3, 0)-form Ω on Y3 [26–28]. Its components gIJ̄ = ∂zI∂z̄JK can locally be

– 5 –
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obtained from the Kähler potential

K(z, z̄) = − log

[

i

∫

Y3

Ω ∧ Ω̄

]

≡ − log
[

i Π̄IηIJΠ
J
]

. (2.1)

In the second equality we have expanded Ω into a real integral basis γI , I = 1, . . . , 2h2,1+2

spanning H3(Y3,Z). More precisely, we introduced

Ω = ΠI γI , ηIJ = −

∫

Y3

γI ∧ γJ . (2.2)

In order to simplify notation we will introduce bold-faced letters to denote coefficient

vectors in the three-form basis γI , i.e.

Π ≡
(
Π1, . . . ,Π2h2,1+2

)T
. (2.3)

The complex coefficients ΠI can be shown to be holomorphic function and are called the

periods of Ω. Let us stress that zI , ΠI , and γI are adapted to the considered patch in Mcs

and can very non-trivially change when moving to different patches in Mcs.
3

It is important to discuss the possible transformations preserving the above structure.

To begin with, we note that η = (ηIJ ) is an anti-symmetric matrix. It defines an anti-

symmetric bilinear form

S(v, w) ≡ S(v,w) = vT ηw ≡ −

∫

Y3

v ∧ w , (2.4)

where v, w are three-forms in H3(Y3,C) and v, w are their coefficient vectors in the integral

basis γI . We will use the notations S(v, w) and S(v,w) interchangeably. One shows that

the group preserving η is the real symplectic group Sp(2h2,1 + 2,R) acting as

MTηM = η , M ∈ Sp(2h2,1 + 2,R) . (2.5)

The action of this group thus corresponds to actions on the basis that preserve S(v,w) =

S(Mv,Mw). Crucially, we stress that they do not correspond to a symmetry of the effec-

tive theory, but rather to a choice of frame in which to consider the fields. The true symme-

try of the effective theory is encoded by the so-called monodromy group Γ ⊂ Sp(2h2,1 + 2),

which we will discuss next.

A crucial fact about the complex structure moduli space Mcs is that it is neither

smooth nor compact. It generally admits points at which the Calabi-Yau manifold becomes

singular. These form the so-called discriminant locus. Clearly, it is non-trivial to show

general results about these discriminant loci and we first summarize some of the main

abstract results. Later on we will give a more detailed classification of what actually

can happen at this locus. Firstly, we note that the moduli space of smooth Calabi-Yau

threefolds is quasi-projective [29], which roughly implies that as long as one removes a

3Furthermore, there is the freedom to rescale the whole vector Π with a holomorphic function f(z),

which corresponds to a Kähler transformation of (2.1). While one should keep this freedom in mind, we

will not mention it again.

– 6 –
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Figure 5. Two normally intersecting divisors of the discriminant locus ∆. The singularity of the

Calabi-Yau threefold, here depicted as genus-two Riemann surface, worsens at the intersection.

divisor ∆s corresponding to singular Calabi-Yau manifolds it can be embedded into a

projective space. The discriminant locus ∆s can have a very non-trivial structure, since it

will generically consist of many intersecting components. Crucially the singularities of the

Calabi-Yau manifolds can get worse when moving along ∆s. A cartoon picture of this is

shown in figure 5 and we already gave a more realistic description of an actually occurring

moduli space in the introduction, see figures 2 and 3. It was also shown [29, 30] that one can

resolve ∆s to ∆ = ∪k∆k such that it consists of divisors ∆k that intersect normally. This

result is crucial to justify the local model that we employ to describe the individual patches

of the moduli space. Hence, in the following we will always work with the desingularized

discriminant locus ∆. It will also be convenient to introduce a shorthand notation for the

intersection of l divisors we define

∆k1...kl = ∆k1 ∩ . . . ∩∆kl . (2.6)

Another important aspect of the above description of Mcs is the fact that Π can be

understood as being multi-valued and experience monodromies along paths encircling the

divisor components ∆k of ∆. To make this more precise, let us introduce local coordinates

zI , such that the divisor ∆k is given by zk = 0 for some k ∈ {1, . . . , h2,1}. The intersection of

divisors ∆k and ∆l can be parametrized if one introduces several vanishing local coordinates

zk = zl = 0. We encircle ∆k by sending zk → e2πizk. In general the periods will non-

trivially transform with a matrix Tk. When defining the monodromy, especially when

writing Tk as a matrix, there is a choice between whether the Tk is defined to act on

the homology 3-cycles or the cohomology 3-forms. Our convention in this paper is to let

the monodromy act on the integral basis of the 3-forms. Explicitly, with a multi-valued

integral basis of 3-forms chosen to be {γI}, the monodromy operator Tk induced by the

loop zk → e2πizk is defined by

γI(. . . , e
2πizk, . . .) = γJ (. . . , z

k, . . .) (Tk)
J
I , for all I. (2.7)

In terms of the period vector Π, under our convention, we have

Π(. . . , e2πizk, . . .) = T−1
k Π(. . . , zk, . . .) . (2.8)

The monodromy matrices are shown to be quasi-unipotent [31, 32], i.e. they satisfy an

equation of the form (Tm − Id)n+1 = 0 for some positive integers m,n. Furthermore, the

– 7 –
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monodromies arising from intersecting divisors ∆k,∆l commute [Tk, Tl] = 0. This fact

remains true for each pair of monodromy matrices if one considers higher intersections.

Collecting all Tk from all components of ∆ one obtains a group Γ known as the monodromy

group. It preserves the pairing η, such that by (2.5) we have

Γ ⊂ Sp(2h2,1 + 2,R) . (2.9)

More abstractly, the monodromy group can be defined by considering representations of

the fundamental group π1(Mcs) acting on the period vectors. In general, the elements of

Γ will not commute. However, in this work we will restrict ourselves to the commuting

monodromies arising at intersections of divisors ∆k.

In the next section we will have a closer look at the singularities occurring along the

∆k and their intersections. In order to do that it will be important to extract the unipotent

part T
(u)
k of each Tk. We define

Nk =
1

mk
log(Tmk

k ) ≡ log(T
(u)
k ) , (2.10)

where mk is the smallest integer that satisfies (Tmk

k − Id)nk+1 = 0. This implies that the

Nk are nilpotent, i.e. that there exist integers nk such that

Nnk+1
k = 0 . (2.11)

Since each Tk preserves the bilinear form S introduced in (2.4), i.e. S(Tk·, Tk·) = S(·, ·)

one finds

S(Nkv,w) = −S(v, Nkw) , (2.12)

and since T
(u)
k ∈ Sp(2h2,1 + 2,R) we have Nk ∈ sp(2h2,1 + 2,R), where sp(n,R) is the Lie

algebra of Sp(n,R). The nilpotent elements Nk will be the key players in much of the

following discussion. Therefore, it is convenient to make a base transformation and pick

right away coordinates for which the monodromies are unipotent. This can be achieved by

sending zk → (zk)mk . We should stress that this implies that we lose information about

certain types of singularities, such as orbifold singularities. We will see below that it is

the unipotent part of Tk that encodes whether or not a point on ∆ is at finite or infinite

distance. In fact, one checks that the above coordinate change does not alter the discussion

relevant to this work.

2.2 Approximating the periods: nilpotent orbits

In this section we discuss the first important tool which is used in establishing the math-

ematical structure that we will explore throughout this work. The general important

question one wants to address is: are there simpler functions that approximate the periods

Π introduced in (2.2) and capture some of their key features? In the following we will

introduce a set of such functions known as nilpotent orbits following [32]. These not only

approximate the periods, but also share their transformation behaviour (2.8) under local

monodromy transformations. We will also comment on the importance of nilpotent orbits

in the context of variations of Hodge structures.

– 8 –
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To begin with, let us note that the periods Π of Ω are in general very complicated

functions on the moduli space Mcs. This can be already expected from the figure 2. Hence,

at best one can hope to approximate the Π locally. The nilpotent orbits approximate Π in

a local patch denoted by E containing points of the discriminant locus ∆. The local patch

is chosen to be of the form

E = (D∗)nE × D
h2,1−nE , (2.13)

i.e. a product of punctured disks D∗={z∈C | 0< |z|<1} and unit disks D={ζ∈C | |ζ|<1}

so that the singular point “lies in the puncture”. In other words, we approximate the

periods near points at the intersection of nE discriminant divisors ∆i, i = 1, . . . , nE ,

but away from any further intersection. The introduced local coordinates zI = (zi, ζκ)

parametrize the nE intersecting discriminant divisors ∆i given by zi = 0. The coordinates

ζκ parametrize additional complex directions and do not play an important role in the

following discussion. We have introduced the nilpotent matrices Ni in (2.10). It was then

shown by Schmid [32] that locally around the point P with zi = 0 the periods take the form

Π(z, ζ) = exp





nE∑

j=1

−
1

2πi
(log zj)Nj



A(z, ζ) , (2.14)

≡ exp





nE∑

j=1

−tjNj



A
(
e2πit, ζ

)
,

with A being holomorphic in zi, ζκ near P . Here we have also expressed the result in the

coordinates

tj ≡ xj + i yj =
1

2πi
log zj . (2.15)

This implies that crucial information about the singular behaviour of the periods Π near

the point P is in the matrices Nj . Furthermore, the second essential information is the

leading term in the vector A(z, ζ). Since it is holomorphic it admits an expansion

A(z, ζ) = a0(ζ) + aj(ζ)z
j + ajl(ζ)z

jzl + ajlm(ζ)zjzlzm + . . . , (2.16)

with the a0(ζ), aj(ζ) , . . . being holomorphic functions of ζκ. The nilpotent orbit theorem

underlies the statement (2.14). Namely, it establishes the fact that the periods Π are

well-approximated by the nilpotent orbit

Πnil = exp





nE∑

j=1

−
1

2πi
(log zj)Nj



a0(ζ) ≡ exp





nE∑

j=1

−tjNj



a0(ζ) , (2.17)

where an estimate how well the orbit (2.17) approximates the actual period Π was given

in [32] and [24]. We stress that the nilpotent orbit drops the exponential corrections in the

coordinates t, i.e.

Π(t, ζ) = exp
[∑nE

j=1
− tjNj

](

a0(ζ)
︸ ︷︷ ︸

nilpotent orbit Πnil

+O(e2πit)
)

. (2.18)
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This result is crucial, for example, in evaluating the leading form of the Kähler

potential (2.1).

Having defined the nilpotent orbit, one immediately sees that it shares the transfor-

mation behaviour of the periods under the shifts ti → ti − δik, i.e.

Πnil(. . . , t
k − 1, . . .) = eNk Πnil(. . . , t

k, . . .) = T
(u)
k Πnil(. . . , t

k, . . .) . (2.19)

Here we stress again that Nk defined via (2.10) only captures the unipotent part of the

monodromy transformation, which is the only relevant part since we assume a coordinate

transformation tk → mkt
k as at the end of subsection 2.1 have been performed.

Let us close this section by recalling some basic facts about Hodge structures and

Hodge filtrations and their relation to nilpotent orbit. Recall, that the third cohomology

group splits for a given complex structure as

H3(Y3,C) = H3,0 ⊕H2,1 ⊕H1,2 ⊕H0,3 . (2.20)

This (p, q)-split for a smooth geometry Y3 defines a so-called pure Hodge structure of weight

3 (see appendix A, for some additional details). The changes of this split as one moves in

complex structure moduli space are captured by the study of variations of Hodge structures.

In order to make this more explicit, we first combine the Hp,q as

F 3 = H3,0 , F 2 = H3,0 ⊕H2,1 , F 1 = H3,0 ⊕H2,1 ⊕H1,2 , (2.21)

F 0 = H3,0 ⊕H2,1 ⊕H1,2 ⊕H0,3 .

These complex spaces vary holomorphically with the complex structure moduli zI . Intro-

ducing a flat connection ∇I ≡ ∇∂/∂zI , known as the Gauss-Manin connection, one has

∇IF
p ⊂ F p−1. For Calabi-Yau threefolds one furthermore finds that all elements of the

lower F p, p < 3 are obtained as derivatives of F 3 spanned by the holomorphic (3, 0)-form.

Roughly speaking this implies that all information about the filtration F ≡ (F 3, F 2, F 1, F 0)

is encoded by Ω.

Since the periods of Ω are approximated by the nilpotent orbit given in (2.17), we

can also obtain a filtration by taking derivatives of Πnil when Πnil is represented in a flat

frame. Concretely, we evaluate

Πnil
∂
ti−−−−−→ NiΠnil

∂
tj−−−−−→ NiNjΠnil → . . . , (2.22)

and note that the derivatives with respect to ζκ are encoded by ∇κa0,∇κ∇λa0, etc. Due

to the nilpotent orbit theorem the derivatives of Πnil approximate the elements in spaces

F 2, F 1, F 0 up to corrections proportional to zj = e2πit
j
. Clearly, when moving to the

points on ∆ by sending ti → i∞ the elements (2.22) are singular. However, this singularity

arises in Πnil and all its derivatives only via the exponential prefactor exp(
∑

i t
iNi). As we

discuss in the next subsection, we can characterize singularities after dropping the singular

prefactor, e.g. by replacing (2.22) with

a0 −−−→ Nia0 −−−→ NiNja0 → . . . , (2.23)

and considering in the ζκ-directions the derivatives∇κa0,∇λa0, etc. The limiting Hodge fil-

trations F p
∆ spanned by these vectors will be discussed in more detail in the next subsection.
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2.3 Characterizing singularities in Calabi-Yau threefolds

We now have a closer look at the arising singularities at the divisors ∆i and their intersec-

tions. In subsections 3.1 and 3.2 we summarize a recent classification of singularities and

allowed enhancements carried out in [25]. This work builds on many important and deep

mathematical results about so-called limiting mixed Hodge structures. This subsection

aims to give the reader a somewhat condensed summary of the underlying mathematical

tools with some additional details deferred to appendix A.

The basic object that one associates to the points on ∆ is a limiting mixed Hodge

structure. For our purposes, rather then introducing in detail the concept of a mixed

Hodge structure, it turns out to be useful to directly work with the so-called Deligne

splitting. We will introduce this splitting in the following. Roughly speaking it captures

a finer split Ip,q, p, q = 0, . . . , 3 of the third cohomology group H3(Y3,C) as one moves to

a singularity of Y3. In other words the (p, q)-split (2.20) for a smooth geometry Y3 splits

into this finer Deligne splitting schematically depicted as

(H3,0, H2,1, H1,2, H0,3)
move to ∆

−−−−−−−−→

I3,3

I3,2 I2,3

I3,1 I2,2 I1,3

I3,0 I2,1 I1,2 I0,3

I2,0 I1,1 I0,2

I1,0 I0,1

I0,0

. (2.24)

To introduce this splitting we follow the filtration F ≡ (F 3, F 2, F 1, F 0) given in (2.21) to a

point in ∆. As pointed out already in the previous subsection the form will become singular

in this limit. However, we can remove these singularities as we discuss in the following.

We begin our consideration with the simplest situation, namely consider points on a

divisor ∆1 that are not elements of any other ∆l, i.e. we are away from any intersection

locus ∆1l = ∆1 ∩∆l. We denote this set of points by ∆◦
1, generally setting

∆◦
k = ∆k −

⋃

l 6=k

∆kl . (2.25)

To reach the locus ∆1 we have to send z1 → 0, which by (2.15) is equivalent to t1 → i∞.

For points on ∆◦
1 one shows that

F p(∆◦
1) = lim

t1→i∞
exp

[
−t1N1

]
F p , (2.26)

is well-behaved. In this expression we let Nk act on the basis γI in which all elements of

F p can be expanded. Clearly, F p(∆◦
1) is defined on ∆◦

1 and still depends homomorphically

on the other h2,1 − 1 complex structure moduli.

Let us next move towards the intersection of ∆1 with another divisor, say ∆2 in ∆,

i.e. let us consider the surface ∆12 = ∆1 ∩ ∆2. This requires to send both z1, z2 → 0 or

t1, t2 → i∞ and one shows that the spaces F p(∆◦
1) are also not generally well-behaved in
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F p(∆◦
12)

F p(∆◦
1)

∆1

∆2

Figure 6. Association of a limiting F p to the points on the discriminant locus.

this limit. To remedy this problem, we consider the locus ∆◦
12, generally defining defined as

∆◦
kl = ∆kl −

⋃

m 6=k,l

∆klm . (2.27)

Hence, ∆◦
12 consists of points on ∆12 away from any further intersection. On this locus

one considers

F p(∆◦
12) = lim

t1,t2→i∞
exp

[
−t1N1 − t2N2

]
F p . (2.28)

The F p(∆◦
12) now depend on the remaining h2,1 − 2 coordinates and are non-singular. We

have depicted the assignment of the F p(∆◦
1) and F p(∆◦

12) to the points in ∆ in figure 6.

From this discussion it should be clear that one can proceed in a similar fashion for higher

intersections.

Let us now turn to the finer split arising at the points of the discriminate locus ∆.

This is known as the Deligne splitting and encoded by complex vector spaces Ir,s with

r + s ∈ {0, . . . , 6}. The data defining the splitting at each point of ∆ are a limiting F p,

such as F p(∆◦
1) and F p(∆◦

12) introduced in (2.26) and (2.28), and an associated nilpotent

matrix. The simplest case are again points that are on ∆◦
1 defined in (2.25). The associated

nilpotent element is simply N1. In other words, one associates

(F (∆◦
1), N1) 7→ {Ip,q(∆◦

1)}p,q=0,...,3 , (2.29)

where we denote F (∆◦
1) ≡ (F 3(∆◦

1), . . . , F
0(∆◦

1)) More involved are points that lie on the

intersection locus ∆◦
12 of two divisors, since here the immediate question for the associated

nilpotent matrix arises. It turns out [32] that one is actually free to choose any N12 in

the cone

σ(N1, N2) = {a1N1 + a2N2 | ai > 0} . (2.30)

It is crucial to note that each choice of a1, a2 in (2.30) yields the same Ip,q(∆◦
12) and we

can pick the most convenient combination, such as N1+N2. In summary, at the intersection

∆◦
12 and away from any further intersection, one associates

(F (∆◦
12), N1 +N2) 7→ {Ip,q(∆◦

12)}p,q=0,...,3 . (2.31)

It should be clear how to generalize this discussion to even higher intersection loci ∆k1...kl

introduced in (2.6). The associated nilpotent element are now elements of the cone

σ(Nk1 , . . . , Nkl) = {ak1Nk1 + . . .+ aklNkl | ai > 0} . (2.32)
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For example, let us consider the intersection of ∆i, i = 1, . . . , l, away from any further

intersection and denote this space by ∆◦
1...l. By an appropriate relabelling this is the general

situation. The limiting Hodge filtration for points on such intersections are given by

F p(∆◦
1...l) = lim

t1,...,tl→i∞
exp

[

−
∑l

i=1 t
iNi

]

F p . (2.33)

Then the map to the Deligne splitting is

(F (∆◦
1...l), N(l)) 7→ {Ip,q(∆◦

1...l)}p,q=0,...,3 . (2.34)

Here N(l) is an element of (2.32) and we have chosen a simple representative by picking

N(l) =

l∑

i=1

Ni . (2.35)

This also allows us to introduce a notation which will be used throughout the paper, namely

that an index (l) in brackets on a matrix indicates that we add the first l elements of an

ordered set, i.e. (N1, . . . , Nl, . . .). Indeed, we will often denote (2.34) this way

Ip,q(l) ≡ Ip,q(∆◦
1...l) . (2.36)

With this information at hand we are now in the position to introduce the Deligne

splitting Ip,q and discuss its properties. To keep the notation simple we will study the map

(F∆, N) 7→ {Ip,q}p,q=0,...,3 , (2.37)

with F∆ = (F 3
∆, . . . , F

0
∆). The F p

∆ is the limiting F p and the N stands for the nilpotent

element associated to the considered point on ∆. In other words (2.37) can correspond to

the cases (2.29) and (2.31) or any higher intersection. In order to define the Ip,q we first

note that there is a natural set of vector spaces associated to a nilpotent N known as the

monodromy filtration Wi, i = 0, . . . , 6. The most natural spaces associated to a given N

acting on H3(Y3,C) are constructed from the images ImNp and kernels KerN q. These

allow us to define
W6 = V,

∪

W5 = KerN3,

∪

W4 = KerN2 + ImN,

∪

W3 = KerN + ImN ∩KerN2,

∪

W2 = ImN ∩KerN + ImN2,

∪

W1 = ImN2 ∩KerN,

∪

W0 = ImN3.

(2.38)
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The properties of the so-defined Wi will be discussed in more detail in appendix A. It is

a crucial fact that this filtration Wi associated to higher intersections does not depend on

the precise element chosen among the
∑

i aiNi with ai > 0 [33]. For example, on ∆◦
12, the

associated spaces W do not depend on which element N12 in (2.30) one picks.

We now have all the required information to define the Deligne splitting

Ip,q = F p
∆ ∩Wp+q ∩

(

F̄ q
∆ ∩Wp+q +

∑

j≥1

F̄ q−j
∆ ∩Wp+q−j−1

)

. (2.39)

At first, this definition looks rather involved and somewhat arbitrary. However, it has

many remarkable features, such as being the unique definition satisfying

F p
∆ =

⊕

r≥p

⊕

s

Ir,s , Wl =
⊕

p+q≤l

Ip,q , Ip,q = Iq,p mod
⊕

r<q,s<p

Ir,s . (2.40)

While the details of this definition are important in our explicit constructions, within this

section it often suffices to view Ip,q as spaces obtained from F p
∆, N and use the features

that we will discuss next. Let us note that it is often convenient to use the shorthand

notation (F,W ) to summarize the relevant data for the map (2.39). Here F is a vector

containing the spaces F 3, . . . , F 0 relevant at the point in ∆, and W is the weight filtration

relevant at this point. This data (F,W ) also determines a limiting mixed Hodge structure

as described in appendix A. However, it will be more convenient in the following to work

with the Deligne splitting.

As a first important property of (2.39) one checks that the spaces indeed define a

splitting of the total vector space. In fact, at any point of ∆ one needs to replace the

split (2.20) by

H3(Y3,C) =

3⊕

p,q=0

Ip,q , (2.41)

where we remind the reader that the Ip,q crucially depend on the location of the point, as

indicated in (2.29) and (2.31). One of the most important features of the Deligne splitting

arises from the fact that N acts as NF p
∆ ⊂ F p−1

∆ and NWi ⊂ Wi−2. Applied to (2.39)

we find

NIp,q ⊂ Ip−1,q−1 . (2.42)

We note that this does not mean that the whole lower (p, q)-spaces are obtained by acting

with N . In fact, there is a natural way to split each Ip,q into a primitive part P p,q that

is not obtained by acting with N on a (p + i, q + i)-element and a non-primitive part.

Explicitly one defines the primitive parts to be

P p,q = Ip,q ∩KerNp+q−2 . (2.43)

Clearly, the primitive part P p,q of Ip,q contains the core information in the Deligne splitting,

since all other elements are obtained by the action of Nk. One shows that

Ip,q =
⊕

i≥0

N i(P p+i,q+i) . (2.44)
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The primitive elements satisfy another remarkable feature, namely, their norm is positive

and non-vanishing for non-vanishing elements. More explicitly, one has

S(P p,q, N lP r,s) = 0 for p+ q = r + s = l + 3 and (p, q) 6= (s, r) , (2.45)

ip−qS(v,Np+q−3v̄) > 0 for v ∈ P p,q , v 6= 0 , (2.46)

where we use the bilinear form introduced in (2.4). These properties give us a powerful

tool to analyse positivity and vanishing properties of forms at ∆. As we will discuss in the

next subsection they are actually key in systematically classifying the allowed singularities

and enhancement patterns.

In summary, we have now explained the following picture. As we change the com-

plex structure moduli from a smooth Calabi-Yau threefold to a singular threefold on the

discriminant locus on ∆, we need to replace the splitting of H3(Y3,C) as in (2.24) with

the Ip,q defined via (2.39) or (2.40). The occurring splits characterize the singularity at

P ∈ ∆. In subsection 3.1 we will focus in detail on such splits and explain how these can

be classified systematically for Calabi-Yau threefolds.

From the above construction it is clear that the precise form of Ip,q depends on the

considered point on ∆ and will generally differ for points, for example, on ∆◦
1 and points

on the intersection ∆◦
12. This implies that we could also move from a generic point on

∆◦
1 to the intersection locus ∆◦

12. In this case we expect that the Ip,q(∆◦
1) change to the

Ip,q(∆◦
12). We write this as

Ip,q(∆◦
1) −→ Ip,q(∆◦

12) , (2.47)

with an arrow indicating the enhancement direction. It is crucial in this step to ensure that

the polarization conditions (2.45), (2.46) are transmitted correctly, which in fact imposes

severe constraints on the form of the enhancement. As stressed in the introduction it is

crucial for us not only to classify all the allowed splittings Ip,q, but also all the allowed

enhancement. This formidable task was carried out in [25] and will be the subject of the

next two subsections.

2.4 Commuting sl(2)s and the Sl(2)-orbit

While the nilpotent orbits are useful, for example, in approximating the periods they are, in

general, not a simple representation encoding the information about the asymptotic limit

when approaching ∆. However, there is a foundational result of Cattani, Kaplan, and

Schmid [24], which shows that there is asymptotically a special representation of the data

contained in the nilpotent orbit (2.17). Roughly speaking, one is able to replace (Ni,a0)

with (N−
i , ã0) such that the N−

i are part of commuting sl(2,C) algebras and ã0 splits

into subvectors affected by the action of these sl(2,C). In this representation many of the

asymptotic properties of the setting are rather easy to show and can then be translated back

into the representation (Ni,a0). For example, the growth properties of the Hodge norm

discussed in subsection 2.5 are proved in this way. For us the existence of the commuting

sl(2,C) algebras will be of crucial importance when constructing the infinite charge orbit

relevant for the Swampland Distance Conjecture as we describe in detail in section 4.
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We begin our exposition by introducing the commuting sl(2,C) algebras in more detail

and introduce the steps required to explicitly construct them. In order to do that we con-

sider a local patch E of the complex structure moduli space that intersects nE discriminant

divisors ∆i, i = 1, . . . , nE , which non-trivially intersect each other. In other words, we

assume that the highest intersection in E is ∆1...nE
which is obtained by intersecting all nE

divisors. Clearly, all other intersections of a smaller number of ∆i can also be considered.

As usual we denote the monodromy logarithms associated to ∆i by Ni. Crucially, we will

choose an ordering of the Ni: (N1, . . . , NnE
), and all the results presented below will de-

pend on this ordering. Clearly, one still is free to pick any other ordering, but then has to

adjust the statements below accordingly. Furthermore, we will assume that the patch E is

chosen such that the nilpotent orbit

Πnil = exp





nE∑

j=1

−tjNj



a
(nE)
0 , (2.48)

approximates the periods in E . Starting from this data we want to construct associated

commuting sl(2,C) algebras. Each of these algebras sl(2,C)i is generated by three elements,

and we denote these triples by

commuting sl(2,C)i triple: (N−
i , N+

i , Yi) . (2.49)

These elements satisfy the standard sl(2)-commutation relations [Yi, N
±
i ] = ±2N±

i and

[N+
i , N−

i ] = Yi. Furthermore, the triples are pairwise commuting, i.e. all elements in the

ith triple commute with all elements of the jth triple for i 6= j. Together these triples

define a Lie algebra homomorphism

ρ∗ :
⊕

i

sl(2,C)i −→ sp(2h2,1 + 2,C) , (2.50)

where ρ gives the map of the corresponding Lie groups. The Sl(2)-orbit theorem of [24]

states the properties of the triples in relation to a given nilpotent orbit.

Given a nilpotent orbit (2.48) around the highest intersection ∆1...nE
one can read

off the filtrations (F∆,W ) with F p
∆ defined in (2.33) and Wi(N(nE )) discussed in (2.38).

Here we recall that the Wi are induced by N(nE) =
∑nE

i=1Ni or any other positive linear

combination of the Ni. The corresponding Deligne splitting Ip,q(∆1...nE
) is determined

via (2.39) or (2.40). A splitting Ip,q is called R-split, if it obeys

Ip,q = Iq,p, for all p, q . (2.51)

It is crucial that the limiting F p
∆ do not generally induce an R-split Deligne splitting. The

Sl(2)-orbit theorem of [24]4 remedies this problem by assigning two matrices δ, ζ and a

Hodge filtration F̂ = eζe−iδF to (F,W ) such that the new Deligne splitting Ĩp,q derived

from (F̂ ,W ) is R-split. This new structure (F̂ ,W ) is called the Sl(2)-splitting of (F,W ). We

will review its construction in appendix B. The Sl(2)-splitting is central to the construction

4More precisely Proposition 2.20 and Theorem 3.25 of [24].
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of commuting sl(2)-triples as we discuss in appendix C. In particular, both are linked via

the relation

Y(k) Ĩ
p,q(∆◦

1...k) = (p+ q − 3) Ĩp,q(∆◦
1...k) , (2.52)

where Y(k) = Y1 + . . .+ Yk and Ĩp,q(∆◦
1...k) is the Sl(2)-splitting associated to ∆◦

1...k.

Note that for Calabi-Yau threefolds we have discussed after (2.22) that all information

contained in F p
∆ can be inferred from a0 and its ζκ-derivatives and the nilpotent elements.

Hence, the existence of an Sl(2)-splitting can be reformulated to the statement that there

exists a special

ã0 = eζe−iδa0 . (2.53)

The ã0 for the highest point of intersection ∆1...nE
will serve as a starting point for the

construction of the sl(2)-triples (2.49). Let us denote this by

ã
(nE)
0 ≡ ã0(∆

◦
1...nE

) . (2.54)

One then constructs the ã0 relevant at the lower intersections stepwise as we summarize in

appendix C. The crucial point for our later discussion is the fact that the initial step for

constructing the commuting Sl(2)-triples always requires to start at the highest intersection.

The ã
(nP )
0 ≡ ã0(∆

◦
1...nP

) relevant for a point P ∈ ∆◦
1...nP

is given by [24]5

ã
(nP )
0 = exp

(
−iN−

nP+1

)
ã
(nP+1)
0 = . . . = exp

(

−i
∑nE

i=nP+1N
−
i

)

ã
(nE)
0 . (2.55)

This implies that considering such a point P on a lower intersection also the data of

the highest intersection ∆◦
1...nE

is relevant. This non-local information will be crucial in

section 4 when constructing an infinite charge orbit. An explicit construction of the triples

(N−
i , N+

i , Yi) for a two-parameter example is presented in appendix D.

Another important statement of the Sl(2)-orbit theorem is that the nilpotent orbit can

be written in terms of yet another orbit, namely the Sl(2)-orbit ΠSl(2). However, in contrast

to the above discussion of the nilpotent orbit approximating the periods, the Sl(2)-orbit

should be viewed as an alternative description capturing the main structure of the limiting

variation of Hodge structure. Explicitly the relation between the nilpotent orbits and the

Sl(2)-orbit are given by

Πnil ≡ exp





nE∑

j=1

−tjNj



a0(ζ) = exp





nE∑

j=1

−xjNj



 ·M(y) ·ΠSl(2) (2.56)

where the Sl(2)-orbit is given by

ΠSl(2) ≡ exp





nE∑

j=1

−i yjN−
j



 ã
(nE )
0 (ζ) , (2.57)

5Note that there is an additional minus sign in the exponent compared to (4.56) of [24]. This arises from

the fact that we let N−

i act on the coefficients in an integer basis, rather then the basis itself.
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and we recall the notation ti = xi + iyi. It is crucial here to introduce the yi-dependent

matrix M(y). The Sl(2)-orbit theorem states that M(y) can be written as

M(y) =

1∏

r=n

gr

(
y1

yr+1
, . . . ,

yr

yr+1

)

, (2.58)

where gr(y
1, . . . , yr) are Sp(2h2,1 +2,R)-valued functions. Furthermore, gr(y

1, . . . , yr) and

g−1
r (y1, . . . , yr) have power-series expansions in non-positive powers of y1/y2, y2/y3, . . . ,

yr with constant term 1 and convergent in a region

R̂1...r =

{
y1

y2
> λ ,

y2

y3
> λ , . . . , yr > λ

}

, (2.59)

for some λ > 0. In other words, writing Πnil in terms of an Sl(2)-orbit ΠSl(2) depends

on the considered region R̂1...r in moduli space. Of course, we can always reorder the yi

sending yi → yσ(i) to be in a region R̂σ(1)...σ(r) that satisfies the above conditions. This

implies that the Sl(2)-orbit will then be adapted to this ordering.

2.5 Growth of the Hodge norm

In this subsection we introduce an important result that follows from the correspondence

between nilpotent orbits and commuting Sl(2)s. Namely, we discuss the asymptotic be-

haviour of the Hodge norm of general three-forms near the discriminant locus ∆. The

Hodge norm on a smooth space Y3 is defined as

||v||2 ≡ ||v||2 =

∫

Y3

v ∧ ∗v̄ ≡ S(Cv, v̄) , (2.60)

where v is a complex 3-form, ∗ is the Hodge star operator, and v are the components of v in

the integral basis γI . In the pure Hodge decomposition (2.20) the Hodge operator acts as

∗v = ip−qv for v ∈ Hp,q(Y3). Let us note that the Hodge norm can also be written in terms

of the bilinear form S defined in (2.4) and the Weil operator C. The Weil operator acts as

ip−q on (p, q)-forms and is used in [24, 32]. The definition (2.60) implies, for example, that

the Hodge norm of the unique (3, 0)-form Ω on Y3 is given by

||Ω||2 ≡ ||Π||2 = i

∫

Y3

Ω ∧ Ω̄ = e−K , (2.61)

where we have expressed the result using the Kähler potential (2.1) on the complex struc-

ture moduli space.

Extracting the behaviour of ||v||2 when approaching a point on ∆ is, of course, a very

non-trivial task. In fact, at first, it seems impossible that this can be done at all, since

it appears to be a highly path-dependent question. To highlight this point further, let us

consider a two-dimensional moduli space, locally parameterized by two coordinates z1, z2.

We consider two divisors ∆1 and ∆2 intersecting in a point (see also subsection 2.3). Clearly

an intersection point P = ∆1∩∆2 can be approached on many different paths, as indicated

in figure 7. Recalling the discussion of subsection 3.3 the points on ∆◦
1 and ∆◦

2 can be at
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finite or infinite distance, and one expects that the growth of the norm ||v||2 can differ

greatly when approaching a finite or an infinite distance point. Considering, for example,

||Ω||2 the growth of the Hodge norm corresponds to the growth of the Kähler potential

which clearly is connected to the distance of the point. The issue becomes particularly

eminent when P is at this intersection of divisors with ∆◦
1 of type I and ∆◦

2 of type IV,

i.e. using (3.11) one at finite distance and one at infinite distance. The growth of the

Hodge norm along the paths in figure 7 then should differ significantly. Remarkably, the

growth theorem proven in [24] takes into account this path dependence and nevertheless

gives a universal result. We present this results for v being a flat section under the Gauss-

Manin connection ∇ briefly discussed at the end of subsection 2.2 and briefly comment on

generalizations in (2.74).

To begin with let us state the growth theorem for the case that we consider points at

a single divisor ∆◦
1 at t1 = i∞, i.e. a point on ∆1 away from any intersection. We consider

a three-form v that satisfies

v ∈ Wj(N1) , Wj(N1) =
⊕

p+q≤j

Ip,q(∆◦
1) , (2.62)

where we recalled that Wj , defined in (2.38), can be decomposed into the Deligne splitting

Ip,q associated to the locus ∆◦
1 (see (2.40)). Here j is corresponding to the smallest value

0, 1, . . . , 6 such that (2.62) holds. This is relevant due to the fact that we have Wj+1 ⊂ Wj .

Then the growth theorem [32] states, that for Im t1 > λ and Re t1 < δ, with λ, δ being

sufficiently large constants, one finds the dominant growth

||v||2 ∼ c (Im t1)j−3 , c > 0 . (2.63)

Here and below the ∼ indicates that there are generally terms that grow slower than this

leading term. In particular, one can have terms proportional to (Im t1)j−3−k for k > 0

or exponentially suppressed terms proportional to e−Im t1 . Clearly, in this one-parameter

case, path dependence is not an issue.

Let us next consider the two-parameter situation, i.e. we consider a point P on the

intersection of ∆1 and ∆2, located at t1 = i∞ and t2 = i∞, but away from any further

intersection within ∆. Then the growth theorem depends on the path taken towards the

point P at t1 = t2 = i∞. We can think of this as corresponding to the two ways we can

reach the singularity type at point P . Namely, we can first enhance to the singularity at

∆◦
1 and then move to ∆◦

12 or we can first enhance to the singularity at ∆◦
2 and then to ∆◦

12.

This corresponds to paths 1 and 3 in figure 7. The relevant nilpotent elements are then

(1) ∆◦
1 → ∆◦

12 : (N1, N1 +N2) , (2.64)

(2) ∆◦
2 → ∆◦

12 : (N2, N1 +N2) .

Let us start with the case (1) and consider a three-form v satisfying

v ∈ Wl1(N1) ∩Wl2(N1 +N2) , (2.65)

where Wl1(N1) can be split as in (2.62), while Wl2(N1 +N2) is associated to N1 +N2 and

hence splits into the Deligne splitting on ∆◦
12 as Wl2(N1 +N2) =

⊕

p+q≤l2
Ip,q(∆◦

12). Note
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Path 1

Path 2

Path 3

P

e-λ

e-λ

|z1|

|z2|

Figure 7. Real slice through two intersecting divisors located at z1=e2πit
1

=0 and z2=e2πit
2

=0.

The intersection point is the origin P = {|z1| = |z2| = 0}. The shaded areas show the two

overlapping regions (2.67), (2.69) a path to the singularity at the origin can pass through, in order

that the growth can be evaluated using (2.66), (2.69) for the constant λ set to λ = 0.1. Three paths

of different nature with respect to this are shown.

that here l1 and l2 are the lowest values for which (2.65) is satisfied. The growth theorem

of [24] now states that this v has the leading growth

||v||2 ∼ c

(
Im t1

Im t2

)l1−3

(Im t2)l2−3 , c > 0 , (2.66)

when approaching the intersection point t1 = t2 = i∞. In order for this to be true, however,

one has to restrict to paths in the region

R12 =

{
Im t1

Im t2
> λ , Im t2 > λ

}

, (2.67)

for any constant λ > 0 and demand that Re t1,Re t2 are bounded by some constant. We

will denote such a restriction as a growth sector, so that all paths in R12 are in the same

growth sector. We have depicted this condition in figure 7. Let us stress that the growth

in (2.66) is polynomial as long as l1 ≤ l2. This will always happen, for example, for the

growth of the Kähler potential e−K as we will see below.

Clearly, in order to discuss the case (2) we simply have to exchange N1 and N2 and t1

and t2 in all formulas. One thus finds that for

v ∈ Wl1(N2) ∩Wl2(N1 +N2) , (2.68)

one has the leading growth of the Hodge norm

||v||2 ∼ c

(
Im t2

Im t1

)l1−3

(Im t1)l2−3 in R21 =

{
Im t2

Im t1
> λ , Im t1 > λ

}

, (2.69)

for any constant λ > 0 and bounded Re t1,Re t2.
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While having only discussed the two-parameter case, the reader might anticipate the

form of the general growth theorem for any number of intersecting divisors. We summarize

this important result of Cattani, Kaplan, and Schmid [24] and Kashiwara [34] in the fol-

lowing. Let us consider the leading growth when approaching a point P on the intersection

of nP divisors ∆1, . . . ,∆nP
in ∆ located at t1 = . . . = tnP = i∞. To simplify the notation

we recall that we introduced in (2.15) that ti = xi + iyi. The sectors are specified for

fixed λ, δ > 0. The nP ! orderings give different overlapping sectors. We pick for the Ni

the ordering

chosen ordering: N1, N2, . . . , NnP
, (2.70)

with all other orderings obtained by exchanging Ni and ti in the following formulas. Next

we consider a v with

v ∈ Wl1

(
N(1)

)
∩Wl2

(
N(2)

)
∩ . . . ∩WlnP

(
N(nP )

)
(2.71)

where N(j) =
∑j

i=1Ni and li are the lowest values for which this is true. The leading

growth of the Hodge norm is then

||v||2 ∼ c

(
y1

y2

)l1−3

· · ·

(
ynP−1

ynP

)lnP−1−3

(ynP )lnP
−3 (2.72)

for some c > 0. Associated to the ordering (2.70) the growth sector for the allowed paths

takes the form

R1...nP
=

{

ti :
y1

y2
> λ , . . . ,

ynP−1

ynP
> λ , ynP > λ , xi < δ

}

. (2.73)

It might be interesting to stress that the proof in [24] of this theorem uses fundamentally

the Sl(2)-orbit theorem briefly discussed in subsection 2.4 and much of the technology

reviewed in this section. In particular, the relevant sector (2.73) for allowed paths arises

due to the convergence properties of the Sl(2)-orbit and agrees with (2.59) in its yi-part.

As an application of this growth theorem, let us evaluate the growth of ||Ω||2 and hence

via (2.61) of the Kähler potential e−K . The first step is to approximate the periods Π by

the nilpotent orbit Πnil. The nilpotent orbit Πnil then can be approximated by the Sl(2)-

orbit as in (2.56), when restricting to the appropriate sector (2.59). The latter is defined

using the ã
(nE )
0 introduced in subsection 2.4. While the relation between the nilpotent and

Sl(2)-orbit contains non-trivial yi-dependent terms, one can show that they are bounded

and do not alter the growth. In fact, one has that the growth of both Πnil and ã
(nE )
0 agree

such that [24]6

||Π||2 ∼ ||Πnil||
2 ∼

∣
∣
∣
∣ã

(nE)
0

∣
∣
∣
∣2 , (2.74)

where the symbol ∼ as above indicates that we are only considering the leading growth

near the point P on the discriminant locus. We can now infer the growth by using the

6In fact, it was shown generally in [24] that the growth result (2.72) also hold if one multiplies v by

either exp(
∑

i x
iNi), exp(

∑

i t
iNi), or even the matrix relating Π and a0.
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location of a0 in the filtrations Wl(N
−
(k)), where N−

(k) =
∑k

i=1N
−
i in analogy to (2.35). We

note that7

ã
(nE)
0 ∈ Wd1+3

(
N−

(1)

)
∩Wd2+3

(
N−

(2)

)
∩ . . . ∩WdnP

+3

(
N−

(nP )

)
. (2.75)

The integer di is defined by

(
N−

(i)

)di ã
(nE )
0 6= 0 ,

(
N−

(i)

)di+1
ã
(nE )
0 = 0 . (2.76)

In other words it labels in which Ĩp,q the ã
(nE)
0 resides at the various intersection loci. De-

noting the Sl(2)-split Deligne splitting on ∆◦
1...k by Ĩp,q(∆◦

1...k) one has ã
(nE )
0 ∈ Ĩ3,dk(∆◦

1...k)

for k = 1, . . . , nP . Later on in subsection 3.1 we will also see that di labels the type of the

singularity at the intersection, i.e. one has

singularity on ∆◦
1...k is Type I, II, III, IV ⇐⇒ dk = (0, 1, 2, 3) . (2.77)

This will become more clear with the classification of singularities that we will present in

the next section. We will also show that there are restrictions on the allowed enhancements

and in particular that di ≤ di+1. Using (2.75), together with the fact W (N−
(i)) = W (N(i))

in the Sl(2)-orbit theorem of [24], and the general growth result (2.72) we thus find

e−K ∼
∣
∣
∣
∣ã

(nE)
0

∣
∣
∣
∣2 ∼ c

(
y1
)d1 (y2

)d2−d1 · · · (ynP )dnP
−dnP−1 . (2.78)

This expression gives the general growth of the Kähler potential for any path approaching

P in the sector (2.73). Other sectors can be obtained by exchanging the Ni and yi.

3 Classifying singularities in Calabi-Yau moduli spaces

In this section we summarize some general classification results that highlight the power

of the mathematical tools introduced in section 2. More precisely, we will discuss a classi-

fication of Calabi-Yau threefold singularities in subsection 3.1, their allowed enhancement

patterns in subsection 3.2, and make some comments on the classification of infinite dis-

tance points in subsection 3.3. A special emphasis is given to the discussion of the large

complex structure and large volume configurations, where the presented tools and classi-

fications are of immediate use. We stress that the results of this section are relevant in

many different contexts that are not related to a discussion of the Swampland Distance

Conjecture. Therefore, this section can also be read independently of the main motivation

of this work.

7This can be inferred by using (2.55) extended to all a
(i)
0 . The a

(i)
0 are the vectors spanning the Sl(2)-

split F̂ 3 = Ĩ3,di on the intersection loci ∆◦

1...i. The fact, that the location of a
(i)
0 and a

(nE )
0 follows from

the commutativity of the sl(2)-triples, as we will discuss in a slightly different context when we study the

charge orbit below.
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3.1 A classification of Calabi-Yau threefold singularities

Having summarized the relevant mathematical background we are now in the position

to present a classification of Calabi-Yau threefold singularities and allowed enhancement

patterns. While we will mostly discuss the results of [25], we will add some additional new

insights that are particularly useful for explicit computations.

The basic idea to classify the arising singularities of Y3 is to classify the allowed Deligne

splittings Ip,q. As we described in subsection 2.3 these Deligne splittings non-trivially

depend on the objects F p
∆ and N associated to the considered point on ∆. The Ip,q

package this information in an intuitive and useful way. In particular, one can introduce to

each point of ∆ a limiting Hodge diamond containing the dimensions of the Ip,q given by

i3,3

i3,2 i2,3

i3,1 i2,2 i1,3

i3,0 i2,1 i1,2 i0,3

i2,0 i1,1 i0,2

i1,0 i0,1

i0,0

, ip,q = dimC Ip,q . (3.1)

Since the Ip,q represent a finer split of the cohomology near the singularity, we can decom-

pose original Hodge numbers for the smooth geometry at the considered point on ∆ into

the Hodge-Deligne numbers as

hp,3−p =
3∑

q=0

ip,q , p = 0, . . . , 3. (3.2)

Furthermore, one can deduce several properties of a limiting Hodge diamond8

ip,q = iq,p = i3−q,3−p , for all p, q , (3.3)

ip−1,q−1 ≤ ip,q, for p+ q ≤ 3 . (3.4)

Given these properties, a first step in classifying singularities is to classify all possible

Hodge-Deligne diamonds.

For Calabi-Yau threefolds the classification of limiting Hodge diamonds is greatly sim-

plified by the fact that one has h3,0 = 1. Using (3.2) that there are four possible cases

i3,d = 1, d = 0, 1, 2, 3, which we label by Latin numbers following [25], I, II, III, IV.

Furthermore, due to the symmetries (3.3) there are just two independent Hodge-Deligne

numbers, which we pick to be i2,1 and i2,2. In table 1 we will use a more pictorial way

to represent the limiting Hodge diamonds. For example, the limiting Hodge diamond for

8A detailed discussion of these properties can be found in section 5.2 of [25].
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d = 2 is depicted as

0

1 1

0 i2,2 0

0 i2,1 i2,1 0

0 i2,2 0

1 1

0

c′ c′

c

c

∼=
c = i2,2

c′ = i2,1

Furthermore, we will index the singularity type with i2,2 writing

Ii2,2 , IIi2,2 , IIIi2,2 , IVi2,2 . (3.5)

The allowed values for i2,2 are obtained form (3.2) and differ for the different singularity

types as summarized in the third column of table 1. In total we thus find 4h2,1 possible

limiting Hodge diamonds depicted in the second column of table 1.

In addition to enumerating the allowed limiting Hodge diamonds one can also charac-

terize the associated nilpotent elements N . In order to do that one has to classify conjugacy

classes of nilpotent elements that are invariant under basis transformations. Recall that N

is an element of the Lie algebra sp(2h2,1 + 2,R) as discussed after (2.12). The Lie group

Sp(2h2,1+2,R) acts on its Lie algebra sp(2h2,1+2,R) via the adjoint action, i.e. N 7→ gNg−1

for g ∈ Sp(2h2,1+2,R). Classifying the conjugacy classes of nilpotent elements obtained by

this equivalence is a well-known problem and it was shown in [35, 36] that it is equivalent to

classifying signed Young diagrams. While not very involved, we will refrain from presenting

the details of this classification here, but only list the relevant result in the fourth column

of table 1. The result is that to each singularity type Ia, IIb, IIIa, IVd there is a unique as-

sociated signed Young diagram which characterizes the form of N and η. This information

allows one, for example, to associate a simple normal form of N , η to the singularity type.

In order that the reader gets an intuition for such normal forms, we give a possible choice

in table 2. In order to obtain the complete N , η one needs to use the building blocks of

table 2 and combine them in the canonical way to a higher-dimensional matrix.

We should stress that in many of the applications and explicit computations the normal

forms of table 2 play no role. Rather, it is often useful to have a more basis independent

way to determine the singularity type for a given N , η. In the last column of table 1 we

have included such a distinguishing criterion. To begin with we note that the ranks of Nk,

k = 1, 2, 3, often differ for the various singularity types, as one deduces from (2.42), (2.44)

and the polarization condition (2.45), (2.46). However, there are (h2,1 − 1) pairs of Ia
and IIa−2 that cannot be distinguished by only comparing the ranks. In this case one

can use again the polarization condition to show that these cases differ by the sign of the

eigenvalues of ηN . Taking this feature into account indeed the singularity type for a given

N , η is uniquely fixed. Clearly, the same conclusion can be reached from using the normal

forms combining tables 1 and 2.
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name Hodge diamond labels Young diagram N, η

Ia
a′ a′

a

a
a+ a′ = m

0 ≤ a ≤ m
+ − ⊗a

⊗2a′ + 2

rank(N,N2, N3)

= (a, 0, 0)

ηN has a negative

eigenvalues

IIb
b′

b

b′
b

b+b′ = m−1

0 ≤ b ≤ m−1

+ − ⊗b
− + ⊗2

⊗2b′

rank(N,N2, N3)

= (2 + b, 0, 0)

ηN has b nega-

tive and 2 positive

eigenvalues

IIIc
c′ c′

c

c
c+c′ = m−1

0 ≤ c ≤ m−2

⊗2

+ − ⊗c

⊗2c′−2

rank(N,N2, N3)

= (4 + c, 2, 0)

IVd d

d′ d′
d

d+ d′ = m

1 ≤ d ≤ m

− + − + ⊗1

+ − ⊗d−1

⊗2d′

rank(N,N2, N3)

= (2 + d, 2, 1)

Table 1. The 4m possible limiting Hodge diamonds with Hodge numbers h2,1 = m. The label

next to a dot at a point (p, q) represents the value of ip,q. A dot at (p, q) without a label represents

ip,q = 1.

3.2 A classification of allowed singularity enhancements

Having classified the allowed singularity types, we next turn to the discussion of allowed

singularity enhancements. More precisely, let us assume that on the locus ∆◦
1 the singularity

type is specified by Typea(∆
◦
1). We then want to answer the question to which singularity

types Typeb(∆
◦
12′) this type can enhance further when moving to ∆◦

12, i.e. we consider

Typea(∆
◦
1) −→ Typeâ(∆

◦
12) , (3.6)

where in the following we will denote the allowed enhancements by an arrow. It was argued

in [25] that imposing consistency of the polarization conditions (2.45), (2.46) on ∆◦
1 and

∆◦
12 leads to non-trivial constraints on possible enhancements. The resulting rules are

shown in table 3, and their derivation is outlined later in this section and in appendix E.
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(signed) Young diagram N η
(
0 0

0 0

) (
0 −1

1 0

)

+ −
(
0 0

1 0

) (
0 −1

1 0

)

− +
(
0 0

1 0

) (
0 1

−1 0

)












0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0























0 0 0 0 0 −1

0 0 0 0 −1 0

0 0 0 −1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0












− + − +







0 0 0 0

1 0 0 0

0 1 0 0

0 0 −1 0













0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0







Table 2. List of all relevant signed Young diagrams and their associated N , η in some normal

form. The complete signed Young diagram and N , η that classify a singularity type are composed

out of these building blocks.

It should be stressed that the enhancement rules are actually general and apply to any

higher intersection and not only to the case of two divisors ∆1, ∆2 intersecting in ∆◦
12.

Using the enhancement rules of table 3 one obtains an instructive picture of the singu-

larity structure of a Calabi-Yau threefold Y3 for a given h2,1. In figure 4 we display the two

cases h2,1 = 2 and h2,1 = 3. It is interesting to note that, as of now, it is not known whether

all allowed enhancements of table 3 are actually realized in some Calabi-Yau threefold.

In order to deduce the allowed enhancements one has to use a substantial amount

of mathematics. We will limit ourselves to some essential facts and refer the reader to

appendix E, where further details on the underlying constructions are presented. The

main focus of this investigation lies on the primitive parts P p,q ⊂ Ip,q that were defined

in (2.43). We note that by using (2.43) one deduces that I3,j = P 3,j and Ij,3 = P j,3 for

j = 0, 1, 2, 3. Furthermore, we can apply (2.44) to infer that the Ip,q split into the P p,q as

P 3,3

P 3,2 P 2,3

P 3,1 P 2,2 ⊕NP 3,3 P 1,3

P 3,0 P 2,1 ⊕NP 3,2 P 1,2 ⊕NP 2,3 P 0,3

NP 3,1 NP 2,2 ⊕N2P 3,3 NP 1,3

N2P 3,2 N2P 2,3

N3P 3,3

. (3.7)
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starting singularity type enhance singularity type

Ia

Iâ for a ≤ â

IIb̂ for a ≤ b̂, a < h2,1

IIIĉ for a ≤ ĉ, a < h2,1

IVd̂ for a < d̂, a < h2,1

IIb

IIb̂ for b ≤ b̂

IIIĉ for 2 ≤ b ≤ ĉ+ 2

IVd̂ for 1 ≤ b ≤ d̂− 1

IIIc
IIIĉ for c ≤ ĉ

IVd̂ for c+ 2 ≤ d̂

IVd IVd̂ for d ≤ d̂

Table 3. List of all allowed enhancements obtained by imposing consistency of the polarization

conditions (2.45), (2.46). These have been shown in [25] and the details of their derivation are given

in appendix E.

The primitive subspaces are thus given by

P 6 = P 3,3 , P 5 = P 3,2 ⊕ P 2,3 , (3.8)

P 4 = P 3,1 ⊕ P 2,2 ⊕ P 1,3 , P 3 = P 3,0 ⊕ P 2,1 ⊕ P 1,2 ⊕ P 0,3 ,

where the single superscript on P r is the weight r = p + q of the contained P p,q. One of

the most fundamental results about this construction is that each P j with j = 3, . . . , 6 can

be shown to define a pure Hodge structure of weight j. Recall that also the decomposi-

tion (2.20) on a smooth Y3 provided a pure Hodge structure, which was the starting point

of the construction of the splittings relevant at the singularities. The main idea for looking

at enhancements moving from ∆◦
1 to an intersection ∆◦

12 is to view P j(∆◦
1) as defining the

starting pure Hodge structures that then splits into even finer mixed Hodge structures.

Representing the mixed Hodge structures by Deligne splittings, one thus has

P j(∆◦
1) −→ [Ip,q]j (∆◦

12) with 0 ≤ p+ q ≤ 2j . (3.9)

One can rearrange the spaces [Ip,q]j (∆◦
12) to form the Deligne splitting Ip,q(∆◦

12) of the

enhanced type. To identify the rules when this is possible makes it necessary to use the

full technology of the Sl(2)-orbit theorem [24] as done in [25] and outlined in appendix E.

As a rather simple application of the classification we can evaluate the growth of

the Kähler potential e−K for the 10 possible enhancements of table 3. Using the general

result (2.78) and the link (2.77) of di to the singularity type one reads of table 4.
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Type d1 d2 Leading behaviour of e−K

Ia → Ib 0 0 const. or e−Im t

IIa → IIb 1 1 Im t1

IIIa → IIIb 2 2
(
Im t1

)2

IVa → IVb 3 3
(
Im t1

)3

Ia → IIb 0 1 Im t2

Ia → IIIb 0 2
(
Im t2

)2

Ia → IVb 0 3
(
Im t2

)3

IIa → IIIb 1 2
(
Im t1

) (
Im t2

)

IIa → IVb 1 3
(
Im t1

) (
Im t2

)2

IIIa → IVb 2 3
(
Im t1

)2 (
Im t2

)

Table 4. Leading growth terms of e−K when approaching the singular locus t1 = t2 = i∞ obtained

by using (2.77) and (2.78).

3.3 On the classification of infinite distance points

Having introduced a classification of singularities and singularity enhancements arising in

general Calabi-Yau threefold geometries, we next turn to the discussion of infinite distance

points. To define such points let us pick a point P in the complex structure moduli space

Mcs including ∆. P is said to be an infinite distance point, if the length measured with the

Weil-Petersson metric gWP of every path to this point is infinite. Accordingly, we would

call P a finite distance point if there exists at least one path to this point that has finite

length in the metric gWP. In the following we will discuss the classification of finite and

infinite distance points using the classification of singularities presented in subsection 3.1.

To begin with, we note that any two points P, Q that are not on the discriminant locus

∆ are connected by a path of finite distance in the Weil-Petersson metric. This implies

that in order to have an infinite distance point, at least one of the points has to lie on ∆

and we chose this to be P . One then has to distinguish two situations: (1) P lies on a

divisor ∆k away from any intersection locus, (2) P lies on an intersection locus ∆kk′ of two

(or more) divisors ∆k and ∆k′ . In the following we will discuss the two cases in turn.

Considering a point P on a divisor ∆k that does not lie on any intersection with

other divisors corresponds to considering a one-parameter degeneration of the Calabi-Yau

manifold Y3. In this case one can prove a simple criterion when such a point is at infinite

distance. More precisely, it was shown in [37] that a point on ∆◦
k is at finite distance if

and only if NF 3(∆◦
k) = 0. Using the nilpotent orbit (2.17) this is nothing else then the

condition

P ∈ ∆◦
k at finite distance ⇐⇒ Na0 = 0 . (3.10)

It is not difficult to translate this condition to the statement that the singularity on ∆◦
k is
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Type I. Thus one concludes

P ∈ ∆◦
k is finite distance point ⇐⇒ Type I , (3.11)

P ∈ ∆◦
k is infinite distance point ⇐⇒ Type II , Type III , Type IV .

This shows that the classification of singularities is sufficiently fine to separate infinite and

finite distance points ∆◦
k. In fact, it clearly contains more information, since the index on

the type, as introduced in (3.5), is not relevant for this distinction.

Let us now turn to the more involved case that the considered point lies on an intersec-

tion locus ∆◦
kk′ . This implies that one is not considering a one-parameter degeneration and

path-dependence becomes a very important issue. It is currently not known an equivalent

condition to (3.11) is true. The directions that are not difficult to prove are

P ∈ ∆◦
kk′ is finite distance point ⇐= Type I , (3.12)

P ∈ ∆◦
kk′ is infinite distance point =⇒ Type II , Type III , Type IV .

To see this we note that in order to show that Type I implies that the point is finite distance,

it suffices to find a single path that is at finite distance. This path can be easily chosen such

that the question reduces to a one-parameter degeneration with nilpotent operator Nk+Nk′

and one can use (3.11). Clearly, the statement in the second line in (3.12) is just equivalent

to the statement in the first line. Note that (3.12), and its obvious higher-dimensional

generalizations, can also be stated as [38]

P is infinite distance point =⇒ ∃Nia0 6= 0 , (3.13)

where a0 is associated via (2.17) to the point on ∆i1...il . Attempting to prove a one-to-

one correspondence as in (3.11) requires to carefully deal with a path dependence.9 We

believe that this is a very important problem that, however, goes beyond the scope of the

current paper.

3.4 The large complex structure and large volume point

A prime example of an infinite distance point in complex structure moduli space is the

so-called large complex structure point. To begin with, we first have to more formally

define such points. General definitions have been discussed in [39]. However, with the

classification of singularities presented in subsection 3.1, we can give a very elegant general

definition. We call a point a large complex structure point if it is a type IVh2,1(Y3) point on

∆ that arises from the intersection of h2,1(Y3) divisors ∆I , I = 1, . . . , h2,1(Y3) each being

of type II, III, or IV. By this we mean that a generic point, i.e. a point on ∆◦
I , on these

∆I has these types. While we did not show the equivalence of this definition with the ones

in [39], we will see that it is in perfect match with the expectations from mirror symmetry.

The large complex structure points are of crucial importance in the first mirror symme-

try proposals [40]. More precisely, mirror symmetry states that the large complex structure

point is mapped to large volume point by identifying complex structure and complexified

9It was conjectured in [38] that a statement equivalent to (3.11) is true.
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t2 = i∞

t1 = i∞

t3 = i∞

large volume point

Figure 8. The large volume point arises on the discriminant locus of the Kähler moduli space at

the intersection of h1,1(Ỹ3) = 3 divisors tI = i∞.

Kähler structure deformations in Type IIA and Type IIB compactifications. One thus has

a mirror Calabi-Yau threefold geometry Ỹ3 associated to Y3. On this mirror one defines

the complexified Kähler coordinates tI , I = 1, . . . , h1,1(Ỹ3) by

B2 + iJ = tIωI , (3.14)

where B2 is the NS-NS two-form field and J is the Kähler form. The large volume point

is given by

tI → i∞ , I = 1, . . . , h1,1(Ỹ3) . (3.15)

In other words the large volume point arises from the intersection of h1,1(Ỹ3) divisors

in the Kähler moduli space that are individually given by tI = i∞. We depict this in

figure 8. Clearly, in order to consider the complete mirror moduli space to Mcs we have to

investigate the allowed values of tI . These are encoded by the Kähler cone, which we will

briefly introduce next.

In order to define the Kähler cone it is easiest to first introduce the dual Mori cone.

The Mori cone is spanned by equivalence classes of the irreducible, proper curves on Ỹ3,

i.e. one can form positive linear combinations
∑

i ai[C
i], ai > 0 of homology classes [Ci] of

such curves. The dual cone is obtained by

J ∈ H1,1(Y3) :

∫

C
J ≥ 0 , (3.16)

for all curves C in the (closure of the) Mori cone. Hence, when picking a Kähler form

inside the Kähler cone one ensures that all proper curves have positive volume. For the

following discussion it is important to point out that the Kähler cone is in general not

simplicial. Roughly speaking this implies that we cannot represent the cone by picking

h1,1(Y3) generating two-forms ωI and consider the linear combination aIωI , a
I ≥ 0. In

order to connect to the discussion of the previous subsections, we will now make a crucial

simplifying assumption. More precisely, we will consider only situations that admit a

simplicial Kähler cone. While many of our formulas are valid generally, this assumption

will help us to interpret our results more easily.

Our starting point will be the local form of the mirror periods at the large volume point.

These can be computed in various different ways, for example, by evaluating the central
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charges for a set of D0-, D2-, D3-, D4-branes by using the Γ-class (see, e.g. refs. [41–45]).

For these branes one can introduce an appropriate K-theory basis

(OỸ3
,ODI

, CJ ,Op), (3.17)

where DJ are h1,1(Ỹ3) divisors, p are points and the K-theory basis CJ := ι!OCJ

(
K

1/2

CJ

)
are

for h1,1(Ỹ3) curves C
I (see [42], section 2.3 for their precise definition).

We require that the curves and divisors are dual, i.e. that CJ ·DI = δJI , and that the

Poincaré dual two-forms ωI to DI span the Kähler cone. Furthermore, we define

KIJK =

∫

Ỹ3

ωI ∧ ωJ ∧ ωK , bI =
1

24

∫

Ỹ3

ωI ∧ c2(Ỹ3) , (3.18)

where KIJK are the triple intersection numbers and c2(Ỹ3) is the second Chern class of Ỹ3.

Using these abbreviations one finds the mirror period vector

ΠΩ(tI) =








1

tI

1
2KIJKtJ tK + 1

2KIJJ t
J − bI +O(e2πit)

1
6KIJKtItJ tK − (16KIII + bI)t

I + iζ(3)χ(Ỹ3)
8π3 +O(e2πit)








, (3.19)

where χ(Ỹ3) =
∫

Ỹ3
c3(Ỹ3) is the Euler number of Ỹ3.

Having determined the local form of the periods near the large volume point, we

use them to compute the monodromy matrix TA. Note that by (2.8) the action of TA

is induced by sending tA 7→ tA − 1, when taking zA = e2πit
A
. Explicitly we find the

(2h1,1 + 2)× (2h1,1 + 2)-matrix

TA =








1 0 0 0

−δAI δIJ 0 0

0 −KAIJ δIJ 0

0 1
2(KAAJ +KAJJ) −δAJ 1








, (3.20)

where the upper left corner corresponds to the element OỸ3
− OỸ3

in the basis (3.17). It

is interesting to point out that due to the basis choice (3.17) the TA only depends on the

intersection numbers with no bI appearing. Given these monodromies one checks that

they are unipotent and we can determine the log-monodromies NA by simply evaluating

NA = log TA following their definition (2.10). We thus find

NA =








0 0 0 0

−δAI 0 0 0

−1
2KAAI −KAIJ 0 0

1
6KAAA

1
2KAJJ −δAJ 0








. (3.21)

This rather simple expression determines all large complex volume log-monodromies about

single divisors in the discriminant locus of the Kähler moduli space specified by tA = i∞.

As discussed above in (2.30), log-monodromies around intersecting divisors are determined
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by positive linear combinations of these NA. For example, the log-monodromies relevant for

the discriminant locus given by tA = i∞, tA
′

= i∞ are given by aNA + bNA′ with a, b > 0.

In order to also classify the corresponding singularity types using table 1, we still need

to determine the polarisation η. This can be done by evaluating the negative of the Mukai

pairing [41, 43–45]. On the K-theory space the Mukai pairing of branes ξ and ξ′ is defined by

〈ξ, ξ′〉 =

∫

Ỹ3

ch(ξ∨)ch(ξ′)Td(Ỹ3) , (3.22)

where −∨ is the dual operation, ch(−) is the Chern character and Td(−) is the Todd class.

In the basis (3.17) one finds

η =








0 −1
6KJJJ − 2bJ 0 −1

1
6KIII + 2bI

1
2(KIIJ −KIJJ) δIJ 0

0 −δIJ 0 0

1 0 0 0








, (3.23)

and it always satisfies det η = 1. The inverse of η is also computed

η−1 =








0 0 0 1

0 0 −δIJ 0

0 δIJ
1
2(KIIJ −KIJJ) −1

6KIII − 2bI
1 0 1

6KJJJ + 2bJ 0








. (3.24)

These expressions now depends both on the intersection numbers, as well as the second

Chern class. As a side remark, let us note that the complete set of NA’s together with

η and the Hodge numbers h2,1(Ỹ3), h
1,1(Ỹ3) contain the relevant information for Wall’s

classification theorem of homotopy types of complex compact Calabi-Yau threefolds [46].

It is interesting to combine this fact with the following classification of singularities.

Given the explicit forms (3.21) and (3.23) of NA, η it is now straightforward to de-

termine the singularity type using the last column table 1. Due to the lower-triangular

form of NA its powers N2
A and N3

A are easily computed. We immediately see that N3
A is

only non-zero if KAAA is non-vanishing. This is thus precisely the condition for a type IVd

singularity. Similarly, if and only if KAAI is non-vanishing for one or more I we find that

N2
A is non-vanishing. Hence, the NA is of type IIIc if KAAA = 0 and KAAI non-vanishing

for some I 6= A. The precise type IIIc and IVd are now determined by evaluating the rank

of the matrix KAIJ with the result listed in table 5.

It remains to discuss the cases Ia and IIb that occur if all KAAI = 0. As we have

discussed in subsection 3.1 they can, in general, only be distinguished if we also consider η.

In fact, we can compute ηNA and determine its number of positive and negative eigenvalues.

Explicitly, we find that

ηNA =








2bA −1
2KAJJ δAJ 0

1
2(KIAA −KIIA) −KAIJ 0 0

δAI 0 0 0

0 0 0 0








, (3.25)
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name rank(KAAA) rank(KAAI) rank(KAIJ)

IIb 0 0 b

IIIc 0 1 c+ 2

IVd 1 1 d

Table 5. This table list the conditions on NA, η given in (3.21) and (3.23) that ensure a certain

singularity type on the discriminant divisor tA = i∞ for a single coordinate. Note that rank(KAAA)

and rank(KAAJ) are either 0, 1 depending on whether these quantities are trivially zero or non-zero.

where we need to impose KAAI = 0 for all I. It can be now easily seen that this matrix has

positive eigenvalues. In fact, evaluating V TηNAV = 2 for V = (1, 0, . . . , 0, (1− bA)δAI , 0)
T

we find a positive direction. Hence, the case Ia is actually never realized for the NA, η

given in (3.21), (3.23). We thus conclude that we can distinguish also the precise type IIb
by evaluating the rank of the matrix KAIJ as listed in table 5.

To conclude this section, let us note that the large volume point tA = i∞ for all

A = 1, . . . , h1,1(Ỹ3) has precisely the properties mirror dual to a large complex structure

point defined at the beginning of this subsection. To see this, let us first show that it is a

point of type IVh1,1 . In order to do that we have to analyse the sum of all NA with positive

coefficients. A convenient choice is to pick the Kähler coordinates vA = Im tA, which are

positive in a simplicial Kähler cone. Hence we consider

N =
∑

A

vANA =








0 0 0 0

−vI 0 0 0

−1
2v

AKAAI −vAKAIJ 0 0
1
6v

AKAAA
1
2KAJJ −vJ 0








. (3.26)

If we now compute N3, we simply find a matrix which only has a single entry proportional

to the volume 1
6 KIJKvIvJvK . Hence, the rank of N3 is 1 and we conclude from the last

column in table 5 that the singularity is type IVd. To determine d we need to evaluate

the rank of N itself. However, the contraction vAKAIJ is crucial in defining the metric on

Kähler moduli space and is full rank [47]. So indeed, we find that the singularity tA = i∞

is of type IVh1,1(Ỹ3)
. Furthermore, all the intersecting divisors have type II, III, or type IV

as discussed above.

4 Charge orbits and the Swampland Distance Conjecture

In this section we analyse the Swampland Distance Conjecture (SDC) using the powerful

geometric tools about the complex structure moduli space introduced so far. To begin with,

let us first recall the statement of the SDC adapted to our setting. It implies that when

approaching any infinite distance point P along any path γ one should encounter a universal

behaviour of infinitely many states of the theory sufficiently close to P . More precisely,

picking a point Q′ in a sufficiently small neighbourhood of the infinite distance point P ,

and then moving along the geodesic towards P onto a point P ′, the SDC asserts that

one should be able to identify an infinite tower of states with masses Mm, m = 1, . . . ,∞,
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behaving as

Mm

(
P ′
)
≈ Mm

(
Q′
)
e−γd(Q′,P ′) , (4.1)

where Mm (P ′) and Mm (Q′) are the masses of the states at P ′ and Q′, respectively. Here

d(Q′, P ′) is the distance along the geodesic in the Weil-Petersson metric determined from

the Kähler potential (2.1) and γ is some positive constant. In other words, the SDC not

only asserts that there is an infinite tower of states becoming massless at P , but also that

this has to happen exactly in an exponentially suppressed way (4.1).

The goal of this section is to identify such a candidate set of states. As in [12], we

propose that these states arise from BPS D3-branes wrapped on certain three-cycles in the

Calabi-Yau space Y3. In the case of one-modulus degenerations studied in [12] arguments

were presented, by using walls of marginal stability, that the proposed tower is actually

populated by BPS states. In this work, we will focus solely on identifying the tower of

states, and will not be able to show that they are indeed populated by BPS states. We

leave such an analysis for future work, and for now will assume that the identified tower of

states is indeed populated by BPS states.

Asserting that the constructed tower indeed consists of BPS states with charges Q, we

can use the central charge Z(Q) to compute their mass M = |Z(Q)|. The explicit form of

Z(Q) is given by10

Z(Q) = e
K
2

∫

Y3

H ∧ Ω = e
K
2 S(Π,Q) , (4.2)

whereH is the three-form with coefficients Q in the integral basis γI , the Ω is the (3,0)-form

introduced in (2.2) with periods Π, and K is the Kähler potential given in (2.1).

We construct the infinite set of states relevant for the SDC by introducing, what we call

a charge orbit. In the one-parameter case this is the same as the monodromy orbit of [12].

It will be obtained by acting on a seed charge vector q0 with the monodromy matrices

relevant in a local patch around the infinite distance point P . Due to the multi-parameter

nature of our analysis, we will change notation with respect to reference [12] and denote

the infinite charge orbit by

Q (q0|m1, . . . ,mn) , (4.3)

where m1, . . . ,mn is a set of integers labelling the considered states, as we discuss below.

The charge orbit will be infinite, if there are infinitely many allowed values for m1, . . . ,mn.

4.1 Single parameter charge orbits

To give a comprehensive introduction of the charge orbit, we will first discuss a single

parameter degeneration t1 → i∞, where we consider only the divisor ∆1 ⊂ ∆ disregarding

any further intersections. In other words we consider a local patch E intersecting ∆1,

but not containing any other component of the discriminant locus (see figure 9). Such

one-parameter degenerations have been discussed at length in [12]. We will introduce a

slightly modified description in the following which will then match more seamlessly unto

the multi-parameter analysis.

10Note that we have exchanged Π and Q in S in order to absorb the minus sign in (2.4).
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E
−→ charge orbit Q

∆1

P

Figure 9. Associating a charge orbit to a point P ∈ ∆1 in local patch E in moduli space. In this

single parameter degeneration no intersection locus of ∆1 within ∆ is in E .

In analogy to a one-parameter nilpotent orbit (2.17) and a one-parameter Sl(2)-orbit

(2.57), we define the charge orbit as

Q(q0|m1) ≡ exp [m1N1]q0 , (4.4)

where m1 is an integer. Note that since the monodromy matrix T1 = exp [N1] the Q are

simply the charges obtained by acting with the monodromy matrix Tm1
1 . Since we consider

an infinite distance point P the results of subsection 3.3 imply that N1 is non-trivial and

thus T1 is of infinite order, i.e. there exists no m such that Tm
1 = T1. In order that the

orbit is actually infinite, we further have to demand that

N1q0 6= 0 . (4.5)

Hence the definition of an infinite charge orbit agrees with the one in [12].

Let us next consider the second crucial part of the distance conjecture, namely that

the infinite tower of states becomes exponentially light towards the infinite distance point.

As mentioned above, we will assume that the considered states are BPS D3-branes, such

that their masses are measured by |Z|, with the central charge Z given in (4.2). Near the

point P we can use the one-variable nilpotent orbit Πnil = exp
[
t1N1

]
a0, to approximate

the behaviour of the central charge

Zasy(Q) = e
K
2 S(Πnil,Q) . (4.6)

Note that using the results of subsection 2.2 the asymptotic central charge Zasy(Q) differs

from Z(Q) by terms proportional to the exponential e2πit
1
, which are strongly suppressed

in the limit Im t1 → ∞. Inserting (4.4) into (4.6), we realize that |Z(Q)| ≈ |Zasy(Q)| → 0

is equivalent to demanding

|Zasy(q0)| → 0 . (4.7)

This can be deduced by moving the exponential em1N1 onto Πnil and absorbing it by a

shift Re t1 → Re t1− 1. Hence, in order to find an infinite massless charge orbit Q we have

to demand that the seed charge q0 satisfies (4.5) and (4.7).

Let us now construct the seed q0 for an infinite massless charge orbit Q. We first note

that there is a particular set of charges that is massless which in [12] were termed to be of

type II. They are obtained as elements of the space

MII(Πnil) =
{

qIγI ∈ H3(Y3,Z) : S(q, Nk
1 a0) = 0 , ∀ k

}

, (4.8)
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where we have considered vectors q over the integers Z. Note that this space depends on

the data (N1,a0) defining the nilpotent orbit. Stated differently, these are precisely the

states that are orthogonal to the nilpotent orbit Πnil. Their asymptotic central charge (4.6)

vanishes trivially, which implies that the full central charge Z vanishes by exponentially

suppressed terms e2πit
1
.

BPS states which become massless as Im t1 → ∞, but which are not of type II, are

called type I states. In [12] arguments were presented for why, given a one-parameter

degeneration, the populated BPS states are of type I, and therefore the tower of states of

the distance conjecture should be composed of an infinite number of type I states.

It was also shown in [12] that the mass of type I states decreases exponentially fast

for one-parameter variations approaching infinite distance. This can be easily seen since

the states become massless as a power law in Im t1, while the leading behaviour of the

Kähler potential (2.63) is logarithmic in Im t1. This matches the behaviour predicted by

the distance conjecture.

Let us now determine a the set of states that become massless at P . To begin with

we give a sufficient condition for a charge q to become massless at P . In order to do

that we note that the central charge Z(q) can also be written with the help of the Hodge

inner product S(Ca, b̄) =
∫

Y3
a ∧ ∗b̄, which is the inner product associated to the Hodge

norm (2.60). Using the fact that CΠ = −iΠ together with (2.61) we find that Z(q) can

be written as

|Z(q)| =
|S(CΠ,q)|

||Π||
≤ ||q|| , (4.9)

where we have used the Cauchy-Schwarz inequality |S(Cv, ū)| ≤ ||v|| ||u||. We thus con-

clude that if the norm ||q|| goes to zero at the singularity, the charge q yields a massless

state. Now we can use the growth theorem (2.62), (2.63) to infer that

||q|| → 0 ⇐⇒ q ∈ WQ
i for i ≤ 2 , (4.10)

which identifies vector spaces that contain massless states. It is important to stress that

the condition (4.10) is a sufficient, but not necessary condition that a charge q is massless.

Finally, we relate the result (4.10) to the classification of singularities discussed in

subsection 3.1. We use the fact that WC
j =

⊕

p+q≤j I
p,q and apply the classification of

Hodge diamonds for the singularity Types I, II, III, and IV given in table 1. Using (3.7)

and (3.8) we realize that

Type I : WC
2 ⊂ MII , WC

1 = 0 , WC
0 = 0 ,

Type II : WC
2 = N1P

4 , WC
1 = 0 , WC

0 = 0 , (4.11)

Type III : WC
2 = N1P

4 ⊕N2
1P

5 , WC
1 = N2

1P
5 , WC

0 = 0 ,

Type IV : WC
2 = N1P

4 ⊕N2
1P

6 ⊕N3
1P

6 , WC
1 = N3

1P
6 , WC

0 = N3
1P

6 .

We stress that only for the Type IV singularities all spaces WC
2 , W

C
1 and WC

0 are always

non-zero due to the existence of the non-trivial vectors N ja0, j ≤ 3. Finally, combining

this with the requirement that Nq0 6= 0 as well as the fact that N1Wi ⊂ Wi−2 we find that

only Type IV singularities straightforwardly admit an infinite massless charge orbit Q.
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Let us have a closer look at the q0 in the case of a Type IV singularity. From the

above discussion we require q0 ∈ WQ
2 . Furthermore, we note that WC

2 = I1,1 ⊕ I0,0 =

N1P
2,2 ⊕N2

1P
3,3 and stress that

S(N1P
2,2, Nk

1 a0) = 0 , (4.12)

for all k, since a0 spans P 3,3. The latter condition shows that N1P
2,2 is a type II state.

Since we require the orbit to be composed of type I states, we can therefore determine that

q0 must have a non-trivial component in N2
1P

3,3, so q0 /∈ N1P
2,2. In fact, we propose a

particular element of the R-split P 3,3, which can be written as

q0 ∼Z N2
1 ã

(1)
0 . (4.13)

Here we have introduced new notation ∼Z which is rather involved but has a precise

definition as follows.

Consider an element a in WC
l , where l is the smallest possible index. If it is possible

to add to a some other elements in WC
l ∩KerN such that one obtains an element in WQ

l ,

then ∼Z a is defined as the associated element of WQ
l . If it is not possible, then ∼Z a is

defined to vanish.

In utilising ∼Z in (4.13), we will assume that defined this way q0 is non-vanishing.

This is true in any example we have studied, but we have no proof that it is always the

case. Note that for the particular case of the one-parameter example (4.13), acting with

N1 on q0 will only receive a contribution from the piece N2
1 ã0, but the other components

may be necessary in general for quantisation purposes. Note also that we have utilised ã0,

rather than a0, as introduced in subsection 2.4. Finally, it is important to emphasise that

in general ã0 may depend on the coordinates along the singular locus ã0 (ξ), and so the

combination of elements involved in defining ∼Z can vary with ξ.

This conclusion seems to imply that the SDC cannot be shown using this construction

for the cases Type II and Type III. We know from the discussion of subsection 3.3 that

points on these loci are at infinite distance. In examples with h2,1 = 1 the classification

of table 1 shows that Type III can never be realized. However, Type II singularities do

occur in explicit examples and have been discussed in more detail in [12]. These constitute

interesting cases that require further investigation. For higher-dimensional moduli spaces,

we will now show that the above construction can be generalized yielding a remarkable

way to satisfy the SDC if intersection loci of divisor ∆i appear.

4.2 Defining the general charge orbit

Having discussed the one-parameter degenerations, we next propose a general form of the

charge orbit Q(q0|m1, . . . ,mn) labelling the states relevant for the SDC close to an infinite

distance point P . We stress that this requires that Q labels infinitely many states that

become massless at the point P . Hence we have to carefully define an appropriate orbit

that ensures these properties. We first give the general expression and then show that it

has the desired features.

To begin with, let us stress that the definition of Q is, at first, not global on Mcs.

Rather we have to adjust the orbit according to the location of P in the discriminant ∆.
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Nevertheless, the definition of Q also is not only depending on the location of P , but rather

takes into account two additional features:

(1) the intersecting patterns and singularity enhancements of the ∆i in some sufficiently

small neighbourhood E containing P ,

(2) the sector R of the path that is traversed when approaching the point P .

While the first condition will be used in showing when Q labels infinitely many states, the

second condition is crucial to ensure that they become massless. It will be an important

task to carefully spell out these two properties of Q in the following. The reason that these

features occur stems from our construction of Q using the Sl(2)-orbit theorem introduced

in subsection 2.4 and the growth theorem discussed in subsection 2.5.

To display our proposal for the charge orbit, it is convenient to recall some more

notation from subsections 2.2 and 2.4. We consider a patch E around the point P ∈ ∆

which might contain any type of higher intersections of divisors ∆i. This patch is defined

by requiring that the nilpotent orbit (2.17) provides a good approximation in E to the

full periods. In other words, we can drop the exponential corrections in E as discussed

in detail in subsection 2.2. Let us denote the divisors intersecting in the patch E by ∆i

with i = 1, . . . , nE . As usual we denote the monodromy logarithms associated to ∆i by Ni.

Furthermore, we will consider a point P on the intersection of the first nP divisors ∆k, i.e.

P ∈ ∆◦
1...nP

, (4.14)

where we recall that ◦ indicates that we consider points away from any further intersection

as introduced in subsection 2.3. In order to use the growth theorem for the norm of Q

when approaching P we introduce the sectors Rr1...rnP
as before. They are defined by

first setting

R1...nP
≡

{

ti :
Im t1

Im t2
> λ , . . . ,

Im tnP−1

Im tnP
> λ , Im tnP > λ , Re ti < δ

}

, (4.15)

for some fixed λ, δ > 0. The other orderings of the indices on R1...nP
are defined by simple

permutations of the indices in all of (4.15). In this work we will only consider paths that

traverse a single sector Rr1...rnP
. Completely arbitrary paths cannot be analysed so easily

and might require to patch together sectors of the form (4.15). It should, however, be

stressed that this is a very mild path dependence. We do not expect that our conclusions

change for more general paths. The setup is illustrated in figure 10.

Let us now turn to the proposal for the charge orbit Q. Given a path towards P that

traverses a single sector Rr1...rnP
we fix an ordering of nP matrices Ni as (Nr1 , . . . , NrnP

).

By a simple relabelling we can pick this ordering to be (N1, . . . , NnP
) without loss of

generality. The ordering of the remaining Ni, i = nP , . . . , nE does not need to be fixed

as of now. For convenience we will pick the simplest ordering such that we have in total

(N1, . . . , NnE
). In analogy the Sl(2)-orbit (2.57) we now define the charge orbit as

Q(q0|m1, . . . ,mE) ≡ exp
( nE∑

i=1

miN
−
i

)

q0 , (4.16)
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P ∈ ∆◦
1...nP

∆◦
1...nE

∆◦
1...nP−1

Figure 10. Illustration of the general setup showing a patch E around a point P which lies on the

intersection of nP singular divisors, but away from any further intersections P ∈ ∆◦

1...nP
. Within

the patch, there is also a further enhancement due to an intersection of additional divisors at ∆◦

1...nE
.

with integers mi. The first non-trivial part of the construction is the use of the matrices

N−
i in (4.16). These are part of the commuting sl(2)s discussed in subsection 2.4 and are

non-trivially constructed from the Ni given in a particular ordering. Clearly, we pick the

ordering introduced before, which was partly dictated by the considered path towards P .

Note that the construction of N−
i depends on all other Nj with j ≥ i. If one considers

situations with nP < nE this implies that they contain information about the other divisors

intersection in E even though P can be away from them. Also note that for a one-parameter

case one trivially has N1 = N−
1 , such that (4.16) is a natural generalization of (4.4).

In order to fully specify the charge orbit (4.16) it is crucial to determine the prop-

erties of the intersections in E such that a seed charge q0 exists that ensures that

Q(q0|m1, . . . ,mE) yields an infinite set of charges that become massless when approaching

P . Let us thus consider a general enhancement chain within E of the form

Type A1 → . . . → Type AnP

︸ ︷︷ ︸

location of P

→ . . . → Type AnE
, (4.17)

where we list the singularity types on the intersection loci ∆◦
1, ∆

◦
12, . . . ,∆

◦
1...nP

, . . . , ∆◦
1...nE

and indicated by a box singularity of the locus ∆◦
1...nP

containing P . Note that we have

fixed an ordering of the first nP elements Ni according to the considered path.

Let us now summarize the results that we will show in this section.

Existence and construction of a charge orbit. We find an infinite charge orbit Q

that becomes massless at the location of a point P ∈ ∆◦
1...nP

if one of the two conditions

are satisfied:

(R1) P is on a locus ∆◦
1...nP

carrying a Type IV singularity. In other words, if Type AnP
=IV

in the enhancement chain (4.17).

(R2) P is on a locus ∆◦
1...nP

carrying a Type II or Type III singularity and there exists a

higher intersection, ∆◦
1...nP+1, . . . ,∆

◦
1...nE

, on which the singularity type increases. In
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other words, we have Type AnP
= II or III and the enhancement chain (4.17) contains

either one of the enhancements II → III, II → IV or III → IV after the singularity

type at P .

Importantly, as indicated at the beginning of this section, these results are true for any

path approaching P that stays within the growth sector (4.15). We will generally show

these statements employing the full power of the mathematical machinery introduced in

section 2 and section 3. Furthermore, we will explicitly construct the seed charge q0 for all

of the enhancement chains allowed by (R1) and (R2). Given a chain (4.17) satisfying (R1)

and (R2), we show the existence of a seed charge q0 with the following simple features:

Type AnP
6= IV :

{

N−
(i)q0 = 0 for all i with 1 ≤ i ≤ nP ,

N−
(j)q0 6= 0 for some j with nP < j ≤ nE ,

(4.18)

Type AnP
= IV :

{

N−
(i)q0 = 0 for all i with 1 ≤ i < nP ,

N−
(nP )q0 6= 0,

(
N−

(nP )

)2
q0 = 0.

We will show that together with the fact that P is on an infinite distance locus, this ensures

that q0 is massless along any path within the growth sector (4.15).

To systematically establish these claims we first discuss in subsection 4.3 some general

facts about the mass of the states associated to Q and q0 when approaching P . We then

turn to our main tool and discuss in detail in subsection 4.4 configurations which consists

of two intersecting divisors in E , i.e. we will study the general nE = 2 configuration. We

will not only see that (R1) and (R2) are true in this case, but also describe how a given

q0 can be tracked through an enhancement. Concretely we will consider two types of

enhancement chains

nP = 1 : Type A → Type B , (4.19)

nP = 2 : Type A → Type B , (4.20)

where, as above, the box indicates the location of the point P . In this simpler situation we

will easier to construct the relevant seed charges q0 and explain how in the cases stated

above induce an infinite, massless orbit when approaching P . The general case of having

an arbitrary enhancement chain (4.17) will be subsequently studied in subsection 4.5.

Note that while this covers many possible singularities and singularity enhancements

in the Calabi-Yau moduli space, there are a number of enhancements that do not lead to a

simple charge orbit that is both infinite and massless for any path in a sector. For example,

we will see that if the chain (4.17) ends on an enhancement II → III with P being at the

Type III locus, a natural candidate orbit with the desired features exists only if one excludes

certain paths in the sector. More generally, we find that all chains (4.17) of the form

Type A1 → . . . → Type AnE−1 → Type II or Type III , (4.21)

do not lead to a natural infinite and massless orbit that is path-independent within a sector

by using the methods presented in this work. We will discuss possible extensions to tackle

these cases in more detail in subsection 4.7.
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4.3 Masslessness of the charge orbit

Let us first discuss the conditions on the charge orbit Q defined in (4.16) such that it

consists of states that become light at P and can serve as the states of SDC. To do that we

have to determine the behaviour of the central charge |Z(Q)| when approaching the point

P . In other words we have to ensure that

M(Q) = |Z(Q)| −→ 0 . (4.22)

To identify sufficient conditions for (4.22) we use the general growth theorem (2.72) for

the Hodge norm ||Q||. In order to do that we note that the central charge Z(Q) can also

be written with the help of the Hodge inner product S(Ca, b̄) associated to the Hodge

norm (2.60). Using the fact that CΠ = −iΠ together with (2.61) we find that |Z(Q)| can

be written as

|Z(Q)| =
|S(CΠ,Q)|

||Π||
≤ ||Q|| , (4.23)

where we have used the Cauchy-Schwarz inequality |S(Cv, ū)| ≤ ||v|| ||u||. We thus con-

clude that if the norm ||Q|| goes to zero at the singularity, the charge orbit Q yields

massless states.

The general discussion of subsection 2.5 provides us with a powerful tool to deter-

mine the behaviour of ||Q|| near the point P . More precisely, we introduced the multi-

variable growth theorem, which allows us to evaluate the asymptotic behaviour of Q from

its location in

Wl1

(
N(1)

)
∩Wl2

(
N(2)

)
∩ . . . ∩WlnP

(
N(nP )

)
, (4.24)

with the N(i) introduced in (2.35). Given our definition of Q, the restriction to a growth

sector and ordering as discussed in subsection 4.2, we would rather like to work with the

N−
(i) constructed from the commuting sl(2)s containing N−

i . Here another fact from the

Sl(2)-orbit theorem of [24] can be applied, which states that

Wl

(
N(i)

)
= Wl

(
N−

(i)

)
. (4.25)

Hence, we can apply the results of subsection 2.5 by simply replacing N(i) → N−
(i) when

staying in the ordering of the Ni used to determine N−
i .

The next step is to establish that the growth of ||Q|| is identical to this of ||q0||. In

order to do that we have to show that the location of Q and q0 in the spaces

Wl1

(
N−

(1)

)
∩Wl2

(
N−

(2)

)
∩ . . . ∩WlnP

(
N−

(nP )

)
, (4.26)

agree, where we recall the notation N−
(n) =

∑n
i=1N

−
i . Now the existence of nE commuting

sl(2)-triples (2.49) containing the N−
i becomes relevant. In fact, each of these triples

contain the operators Yi that gives the location of a vector v in Wl

(
N−

(j)

)
. Using (2.52)

and (2.40) one has

Y(j)v = ljv ⇒ v ∈ Wlj+3(N
−
(j)) , (4.27)
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where Y(j) = Y1+ . . .+Yj as in (2.52). Crucially, the location of q0 and N−
j q0 agree, which

implies that if q0 is massless also exp(mnP+1N
−
nP+1 + . . . +mnE

N−
nE
)q0 is massless. Con-

cerning the growth and the masslessness thus only the terms exp(m1N
−
1 + . . .+mnP

N−
nP

)

are relevant. However, due to the exponential the location of the highest li-components

of Q and q0 agree. In fact, it was already shown in [24] that the growth does not change

upon multiplying by this exponential term. We hence conclude that with respect to the

leading growth one has

||Q|| ∼ ||q0|| , (4.28)

and hence Q is massless for all values of m1, . . . ,mE as long as q0 is massless.

Let us finally give a sufficient condition for having ||q0|| → 0 along any path in the

considered growth sector. Using the general growth theorem (2.72) with (2.71), it is not

hard show that ||q0|| → 0 is true if one has

q0 ∈ Wl1

(
N−

(1)

)
∩Wl2

(
N−

(2)

)
∩ . . . ∩WlnP

(
N−

(nP )

)
, (4.29)

with lnP
< 3, l1, . . . , lnP−1 ≤ 3 .

This condition uses that if li ≤ 3, i = 1, . . . , nP−1 then we can estimate Im ti+1/Im ti < λ−1

in (4.15) and hence find that ||q0|| vanishes for any path. Let us stress that this statement

of masslessness can only be obtained on the sector R1...nP
defined in (4.15), due to the

path dependence in the growth theorem.

While we have discussed in detail the masslessness of the orbit at infinite distance,

the distance conjecture further states that the states in the orbit should become massless

exponentially fast in the geodesic proper distance. This is much more difficult to prove

generally for multi-parameter settings since one must calculate geodesics. We leave a

detailed analysis of this for future work, but will give some evidence that it is natural to

expect that the exponential behaviour is universal. First we note that the masses of the

BPS states are still power-law in the Im ti, as was the case for the one-parameter case.

Therefore, if the geodesic proper distance grows only logarithmically in the Im ti the states

will becomes massless exponentially fast.

To see evidence for the logarithmic behaviour in the multi-parameter cases we can

approximate the behaviour of the field space metric through the leading behaviour of the

Kähler potential. The growth theorem applied to the Kähler potential implies as shown

in (2.78) that the asymptotic leading behaviour within a given growth sector takes the form

Kasy = −
∑

i

ri log
(
Im ti

)
, (4.30)

where the ri = di − di−1, with d0 = 0, are positive integers no larger than 3. The Kähler

metric derived from this asymptotic Kähler potential, which we emphasise may not neces-

sarily be the leading behaviour of the metric, takes the form

gī ∼ diag

(

ri

(Im ti)2

)

. (4.31)
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P1

P2

P3E −→ charge orbit Q

∆1

∆2

Figure 11. The canonical case of two singular divisors intersecting on a local patch E in moduli

space. The considered infinite distance points P can be located either on ∆◦

1, ∆◦

2 or ∆◦

12 as

exemplified by P1, P2, and P3.

The proper distance dγ(P,Q) along a path γ in field space with affine parameter s then

take the form

dγ(P,Q) =

∫

γ

√

gī
dti

ds

dt̄̄

ds
ds . (4.32)

If we restrict to a path with fixed Re ti we can write this as

dγ(P,Q) =

∫

γ

[
∑

i

ri

(
d log Im ti

ds

)2
] 1

2

ds . (4.33)

For sufficiently simple paths this manifestly grows logarithmically. The distance d(P,Q)

along a geodesic path is relevant for the exponential behaviour (4.1) of the SDC and we

expect that it shares the logarithmic behaviour in the asymptotic regime.

4.4 The two-divisor analysis

Most of our general arguments about enhancement chains and charge orbits will be built on

the case of just two singularity loci intersecting. To study this canonical situation, we will

consider a patch E in which two discriminant divisors ∆1, ∆2 with associated monodromy

logarithms N1, N2 intersect. This is depicted in figure 11. The point P under consideration

now can be at different locations in this configuration. We can have either P ∈ ∆◦
1, P ∈ ∆◦

2,

or P ∈ ∆◦
12 = (∆1 ∩∆2)

◦.

The restriction of (4.16) to the two-dimensional case nE = 2 is given by

Q(q0|m1,m2) ≡ exp
(

m1N
−
1 +m2N

−
2

)

q0 . (4.34)

Recall that the definition of N−
1 , N−

2 requires to fix an ordering. We thus distinguish three

cases

(1) P ∈ ∆◦
1 : ordering (N1, N2) → (N−

1 = N1, N
−
2 ) , (4.35)

(2) P ∈ ∆◦
2 : ordering (N2, N1) → (N−

1 = N2, N
−
2 ) ,

and the sector-dependent case

(3) P ∈ ∆◦
12 :







(N1, N2) → (N−
1 = N1, N

−
2 ) path

{
Im t1

Im t2
, Im t2 > λ

}

,

(N2, N1) → (N−
1 = N2, N

−
2 ) path

{
Im t2

Im t1
, Im t1 > λ

}

.
(4.36)
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Note that the construction of N−
2 is a rather non-trivial task, as outlined in the appendices.

Our aim is to identify the possible enhancements for which a q0 exists such that the charge

orbit is massless and infinite.

We can choose, with generality, to focus on the ordering (1) above and correspondingly

focus only on the upper growth sector in (4.36). We go through each enhancement chain

Type A → Type B and track candidate charges q0 through the enhancement. In particular,

we will check the conditions (R1) and (R2) and identify the q0 that induces an infinite

massless orbit. Moreover, we will show how our construction does not necessarily yield an

infinite orbit that is massless on any path within a sector if (R1) and (R2) are violated.

We show that the enhancement of type Ia → Type B do not admit infinite orbits by

examining the example Ia → IVd. The path dependence will be discussed for the example

IIb → IIIc . Finally, we will also examine chains with no type enhancement by discussing

the example IIb → IIc.

For every enhancement Type A → Type B, we denote the Sl(2)-splitting of the limiting

mixed Hodge structure of Type A and Type B by (F(1),W
(1)) and (F(2),W

(2)), respectively.

Then we have a pair of commuting sl(2)-operators (N−
1 , N+

1 , Y1) and (N−
2 , N+

2 , Y2). The

Deligne splitting of (F(i),W
(i)) is denoted by

H3 (Y3,C) =
⊕

p,q

Ip,q(i) , Ip,q(i) =
⊕

k≥0

(
N−

(i)

)k
P p+k,q+k(N−

(i)) , (4.37)

where we have also displayed the decomposition (2.44) into primitive parts. The bracket no-

tation matches that introduced in (2.35) and (2.36), so for example W
(2)
l ≡ Wl

(
N−

1 +N−
2

)
.

4.4.1 The enhancement Ia → IVd

Let us first discuss the enhancement chains Ia → IVd and Ia → IVd , i.e. where we

consider P at either on a Ia locus or a IVd locus. This will also allow us to introduce the

strategy on how we relate the Hodge-Deligne diamonds along enhancements.

Focusing first on Ia → IVd, we recall that the conditions (3.12) imply that a divisor

of type Ia is at finite distance. Hence we do not necessarily expect any infinite tower of

massless states as we approach the type Ia divisor in our formalism. We will check that we

can indeed not identify an infinite charge orbit associated to this locus.

We first spell out the decomposition into primitive parts (3.7) associated with the

mixed Hodge structure
(
F(1),W

(1)
)
of type Ia

H3 (Y3,C) = P 3(N−
1 )⊕

[
P 4(N−

1 )⊕N−
1 P 4(N−

1 )
]
, (4.38)

where the P i(N−
1 ) are the primitive spaces defined in (3.8). Note the we have used different

colours for later expositional convenience. We depict the decomposition into primitive parts

also in the Hodge-Deligne diamond in figure 12.

As discussed in section 3.2, the P k(N−
1 ) carry a pure Hodge structure of weight k

on ∆◦
1, while at ∆◦

12 these degenerate into mixed Hodge structures. Specifically, we have

a pure Hodge structure of weight 3 with Hodge number (0, a′, a′, 0) on P 3(N−
1 ), and a

pure Hodge structure of weight 4 with Hodge number (0, 0, a, 0, 0) on P 4(N−
1 ). Then the
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a′

a

a

a′

Figure 12. The Hodge-Deligne diamond of type Ia with its decomposition into primitive

parts (4.38). The action of N−

1 are labelled by arrows, and we use colours to highlight the primitive

subspaces P 3(N−

1 ), P 4(N−

1 ) and their images under the action of N−

1 . Since the two sl(2)-triples

are commuting, the primitive subspace P 3(N−

1 ), P 4(N−

1 ) and their images under N−

1 are preserved

by N−

2 .

ã
(2)
0

r

a′ − ra′ − r

rq0

a

a

P 3(N−
1 ) P 4(N−

1 ) N−
1 P 4(N−

1 )

Figure 13. The left picture shows a mixed Hodge structure, determined by some integer r ≥ 1,

on P 3(N−

1 ). The middle picture shows a mixed Hodge structure on P 4(N−

1 ). The right picture

shows the image of the middle picture under the action of N−

1 . In these diamonds, the coloured

arrows label the action of N−

2 . The colourings are in agreement with equation (4.38) and figure 12.

The sum of these three Hodge-Deligne diamonds is the diamond of
(
F(2),W

(2)
)
, associated to the

mixed Hodge structure Ip,q(2) , of type IVd. The circles around the dots in the first diamond indicate

the location of q0 and ã
(2)
0 .

second sl(2)-triple (N−
2 , N+

2 , Y2) induces polarised mixed Hodge structures polarised by

N−
2 coming from variation of Hodge structures on P 3(N−

1 ) and P 4(N−
1 ). We show the

Deligne splitting of these two mixed Hodge structures and their images under the action of

N−
1 in the figure 13.11 The sum (4.38) of the mixed Hodge structures then gives a mixed

Hodge structure, Ip,q(2) , of type IVd with d = r + a where r ≥ 1 is an integer.

11Note that we do not depict the full grid for the higher weight Hodge structures, see for example

appendix E for this.
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We can now identify an element q0 in Ip,q(2) that looks similar to the one occurring in the

one-parameter case (4.13). The relevant q0 is shown in figure 13, and it can be written as

q0 ∼Z

(
N−

(2)

)2
ã
(2)
0 . (4.39)

We can see also from figure 13 that q0 is not in the kernel of N−
2 , and so the charge

orbit (4.34) is indeed infinite and given by

Q(q0|m1,m2) = q0 +m2N
−
2 q0, for m1,m2 ∈ Z. (4.40)

Next we would like to check if this infinite orbit is indeed massless on ∆◦
1. This can

of course be checked by using condition (4.29), but in this section of two-divisor analysis

we will also spell out the growths of Hodge norm explicitly to familiarise the reader with

the formalism. To do this we follow a similar procedure to the one-parameter case in

section 4.1. We first determine the location of q0, i.e. q0 ∈ Wl1

(
N−

1

)
∩ Wl2

(
N−

(2)

)
. The

grades l1 and l2 can be read off from figures 12 and 13 as the height of the position of q0.

This then readily gives

q0 ∈ W3

(
N−

1

)
∩W2

(
N−

(2)

)
. (4.41)

Since approaching a point P ∈ ∆◦
1 requires to send Im t1 → ∞ while keeping Im t2 finite

we use the growth theorem (2.63) to read off that

||q0|| ∼ c (Im t1)0 , (4.42)

which implies that ||q0|| does not tend to 0 at P . Hence the charge orbit Q(q0|m1,m2) is

not necessarily massless. In terms of the condition (4.29), we see that the grade relevant

to the type Ia divisor is l1 = 3 and it obviously does not satisfy (4.29).

Let us now turn to the enhancement Ia → IVd , i.e. to the case that P is located at

∆◦
12. We now have to utilize the multi-parameter growth theorem as outlined in section 2.5.

Using the location (4.41) in the two-parameter growth (2.66) we find

||q0|| ∼ c
1

Im t2
. (4.43)

From this growth we can easily see that the q0 defined in (4.39) indeed generates a massless

charge orbit, which is infinite due to (4.40). In order to discuss the path dependence of

this result, we first recall that we have fixed the upper sector in (4.36). It is now obvious

form (4.43) that q0 is massless along any path in this sector approaching P at t1 = t2 = i∞.

This confirms that (R1) applies in this case.

4.4.2 The enhancement IIb → IVd

The other enhancement cases where the type increases can be analysed in the same way.

The case we discuss next is the enhancement IIb → IVd, again considering the two possible

locations for P .

We first consider placing the P on the type IIb divisor, i.e. IIb → IVd. The decompo-

sition into primitive parts of the type IIb mixed Hodge structure
(
F(1),W

(1)
)
is

H3 (Y3,C) = P 3(N−
1 )⊕

[
P 4(N−

1 )⊕N−
1 P 4(N−

1 )
]
. (4.44)
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b

b′b′

b

Figure 14. The Hodge-Deligne diamond of type IIb with its decomposition into primitive

parts (4.44). The action of N−

1 are labelled by arrows, and we use colours to highlight the primitive

subspaces P 3(N−

1 ), P 4(N−

1 ) and their images under the action of N−

1 . Since the two sl(2)-triples

are commuting, the primitive subspaces P 3(N−

1 ), P 4(N−

1 ) and their images under N−

1 are preserved

by N−

2 .

b′ − r

r

r

b′ − r

ã
(2)
0

b q0

b

P 3(N−
1 ) P 4(N−

1 ) N−
1 P 4(N−

1 )

Figure 15. The left picture shows a mixed Hodge structure on P 3(N−

1 ), the middle picture a

mixed Hodge structure on P 4(N−

1 ), and the right picture shows the image of the middle picture

under the action of N−

1 . In these diamonds, the arrows label the action of N−

2 . The colourings are

in agreement with equation (4.44) and figure 14. The sum of these three Hodge-Deligne diamonds

is the diamond of
(
F(2),W

(2)
)
of type IVd. Again, q0 and ã

(2)
0 are denoted explicitly.

We depict this decomposition in the Hodge-Deligne diamond of IIb in figure 14. The

enhancement IIb → IVd is equivalent to a decomposition of the Hodge diamond of IVd as

shown in figure 15.

We can now identify the element in Ip,q(2) which gives q0 as

q0 ∼Z N−
(1)ã

(2)
0 . (4.45)

Again from figure 15 we see that q0 is not in the kernel ofN−
2 and so we have an infinite orbit

Q(q0|m1,m2) = q0 +m2N
−
2 q0 +

1

2
m2

2

(
N−

2

)2
q0, for m1,m2 ∈ Z . (4.46)

The location of q0 is determined as well from figure 15 to be

q0 ∈ W2

(
N−

1

)
∩W4

(
N−

(2)

)
. (4.47)
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Considering a path towards P in the Type II locus ∆◦
1 amounts to keeping t2 finite and

sending t1 = i∞. The growth theorem (2.63) thus implies ‖q0‖ ∼ c 1
Im t1

. In accord with

the condition (4.29) we thus find that q0 is massless at P . We therefore deduce that the

full infinite charge orbit is massless on ∆◦
1. This case belongs to the condition (R2) in

section 4.2 and exemplifies one of the key results of our work.

Having identified the orbit we can return to the point discussed in section 4.1, that

the orbit should not only contain an infinite number of type II states. This can be easily

checked to be the case. In particular, the orbit contains an infinite number of elements

with non-vanishing components in P 0,2 (∆◦
1), which have non-trivial contraction with ã

(1)
0 .

The fact that the orbit is still infinite, even after a quotient by type II charges as proposed

in [12], will hold for all the cases where we identify such an orbit.

We can also change the position of P , considering IIb → IVd instead. Following a

similar analysis as above, we find that the choice of seed charge

q0 ∼Z N−
(1)N

−
(2)ã

(2)
0 , (4.48)

yields an infinite massless charge orbit Q(q0|m1,m2) at ∆◦
12. It is useful to notice that

we have used the N−
(2) which is at the type IVd divisor, and the N−

(1) which is at the type

IIb divisor just before the enhancement. This fact is crucial in defining the corresponding

general version of the charge orbit in table 6. We also remark that such a q0 always exists,

because the enhancement condition 3 for IIb → IVd requires that b ≥ 1. This case belongs

to the condition (R1) in section 4.2.

4.4.3 The enhancement IIIc → IVd

Turning to the case IIIc → IVd we follow the same procedure as the previous two cases,

first considering IIIc → IVd. The decomposition into primitive parts of the type IIIc

mixed Hodge structure
(
F(1),W

(1)
)
is

H3 (Y3,C)=P 3(N−
1 )⊕

[
P 4(N−

1 )⊕N−
1 P 4(N−

1 )
]
⊕
[

P 5(N−
1 )⊕N−

1 P 5(N−
1 )⊕

(
N−

1

)2
P 5(N−

1 )
]

.

(4.49)

We depict this decomposition in the Hodge-Deligne diamond of IIIc in figure 16. The

enhancement IIIc → IVd is equivalent to a decomposition of the Hodge diamond of IVd as

shown in figure 17.

In this case we have that q0 is given by

q0 ∼Z

(
N−

(1)

)2
ã
(2)
0 , (4.50)

and we see that there is an infinite orbit

Q(q0|m1,m2) = q0 +m2N
−
2 q0, for m1,m2 ∈ Z . (4.51)

The location q0 ∈ W1(N
−
1 ) ∩ W2(N

−
(2)) implies by using (2.63) the asymptotics ‖q0‖ ∼

c
(
Im t1

)−2
in the limit t1 → i∞. Therefore, again for P ∈ ∆◦

1 we have an infinite massless

charge orbit. This case belongs to the condition (R2) in section 4.2.
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c′ − 1c′ − 1

c

c

Figure 16. The Hodge-Deligne diamond of type IIIc with its decomposition into primitive

parts (4.49). The action of N−

1 are labelled by arrows, and we use colours to highlight the primitive

subspaces P 3(N−

1 ), P 4(N−

1 ), P 5(N−

1 ) and their images under the action of N−

1 . Since the two

sl(2)-triples are commuting, the primitive subspaces P 3(N−

1 ), P 4(N−

1 ), P 5(N−

1 ) and their images

under N−

1 are preserved by N−

2 .

c′ − r − 1

r

r

c′ − r − 1

c

c

ã
(2)
0

q0

P 3(N−

1 ) P 4(N−

1 )⊕N−

1 P 4(N−

1 ) P 5(N−

1 )⊕N−

1 P 5(N−

1 )⊕
(

N−

1

)2
P 5(N−

1 )

Figure 17. Pictures showing the mixed Hodge structures induced on P 3(N−

1 ), P 4(N−

1 ) and

P 5(N−

1 ), together with their images under the action of N−

1 and (N−

1 )2. In these diamonds, the

coloured arrows label the action of N−

2 . The colourings are in agreement with (4.49) and figure 16.

The sum of these three Hodge-Deligne diamonds is the diamond of (F(2),W
(2)) of type IVd. As

before, q0 and ã
(2)
0 are denoted explicitly.

We can also explore the candidate q0 for the enhancement IIIc → IVd and we find the

same seed q0 as in (4.50). The orbit stays massless approaching ∆12 along any path in the

considered growth sector. It is useful to notice that in defining the seed charge q0 around

IVd, we are using the N−
(1) which is at the type IIIc divisor just before the enhancement.

This fact is crucial in defining the corresponding general charge orbit in table 6. This case

belongs to condition (R1) in section 4.2.

4.4.4 The enhancement IIb → IIIc

Let us next consider IIb → IIIc and first focus on IIb → IIIc. Following the same procedure

as the previous cases, we refer to equation (4.44) and figure 14 for the decomposition into

primitive parts of the type IIb mixed Hodge structure
(
F(1),W

(1)
)
. Then the enhancement

IIb → IIIc is equivalent to a decomposition of the Hodge diamond of IIIc as shown in

figure 18.
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b′ − r

r

r

b′ − r

ã
(2)
0

b− 2

q0

b− 2

P 3(N−
1 ) P 4(N−

1 ) N−
1 P 4(N−

1 )

Figure 18. The left picture shows a mixed Hodge structure, determined by some non-negative

integer r, on P 3(N−

1 ). The middle picture shows a mixed Hodge structure on P 4(N−

1 ). The right

picture shows the image of the middle picture under the action of N−

1 . In these diamonds, the

coloured arrows label the action of N−

2 . The colourings are in agreement with equation (4.44)

and figure 14. The sum of these three Hodge-Deligne diamonds is the diamond of
(
F(2),W

(2)
)
,

associated to the mixed Hodge structure Ip,q(2) , of type IIIc. The circle around the dot in the last

diamond indicates the location of q0, and the circle around the dot in the middle diamond indicates

the location of ã
(2)
0 .

In this case, the q0 is chosen to be

q0 ∼Z N−
(1)ã

(2)
0 , (4.52)

and we see that the orbit

Q(q0|m1,m2) = q0 +m2N
−
2 q0, for m1,m2 ∈ Z (4.53)

is indeed infinite.

The location of q0 is determined to be

q0 ∈ W2

(
N−

1

)
∩W3

(
N−

(2)

)
. (4.54)

This implies that for P on ∆◦
1, i.e. when taking the limit t1 → i∞, we find by using (2.63)

that ||q0|| ∼ c (Im t1)−1. Together with (4.53) we have an infinite massless charge orbit.

This case belongs to the condition (R2) in section 4.2.

We now turn to the situation IIb → IIIc . As we will show, in this case, the mass-

lessness of the charge orbit around the type IIIc divisor will depend on the path along

which we approach it. For concreteness our choice of q0 is still (4.52), but it is important

to note that one cannot find any other q0 that generates an infinite orbit and is path-

independently massless. The fate of the orbit as we approach the point P on the type IIIc
divisor is different from the previous cases. In fact, using the growth theorem (2.66) for

the q0-locations (4.54) one finds

||q0|| ∼ c
Im t2

Im t1
(4.55)
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b′ − r

r

r

b′ − r

ã
(2)
0b

b

P 3(N−
1 ) P 4(N−

1 ) N−
1 P 4(N−

1 )

Figure 19. The left picture shows a mixed Hodge structure on P 3(N−

1 ) of weight 3 with Hodge

numbers (0, b′, b′, 0). The middle picture shows a mixed Hodge structure on P 4(N−

1 ) of weight 4

with Hodge numbers (0, 1, b, 1, 0). The right picture shows the image of the middle picture under the

action of N−

1 . In these diamonds, the coloured arrows label the action of N−

2 . The colourings are in

agreement with equation (4.44) and figure 14. The sum of these three Hodge-Deligne diamonds is

the diamond of (F(2),W
(2)) of type IIc. The circle around the dot in the middle diamond indicates

the location of ã
(2)
0 .

in the upper growth region in (4.36). We thus conclude that the charge orbit remains

massless at P if we approach it with a path satisfying

Massless Path : Im t2 → ∞, Im t1 → ∞ , such that
Im t2

Im t1
→ 0 . (4.56)

The only other possible path, compatible with the considered growth sector, is

Massive Path : Im t2 → ∞, Im t1 → ∞ , such that
Im t2

Im t1
→ λ > 0 . (4.57)

In other words, we cannot claim that the considered q0 is actually massless independent of

the path. Therefore, this case was excluded from the conditions (R1), (R2) specifying our

general construction. Clearly, in this case also the location (4.54) of q0 does not satisfy the

condition (4.29). This case belongs to the situation described at the end of section 4.2.

4.4.5 A case without type enhancement IIb → IIc

To end our two-divisor analysis let us explore a case where no type enhancement is present.

As usual, the decomposition into primitive parts of the type IIb mixed Hodge structure
(
F(1),W

(1)
)
is given by equation (4.44), and it is depicted in figure 14. Then IIb → IIc is

equivalent to a decomposition of the Hodge-Deligne diamond of type IIc shown in figure 19.

If we try to find a q0 such that the generated orbit is infinite and massless at either

IIb or IIc following the methods in previous cases, then we realise that such a q0 does not

exist. In particular if b = c, meaning that there is no enhancement at all, then the second

sl(2)-triple is trivial

(N−
2 , N+

2 , Y2) = (0, 0, 0). (4.58)

Nevertheless, this case is relevant in the discussion of multi-divisor enhancements in

the following section. To exemplify this we consider the following simple case of a 3-term
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enhancement chain

IIa → IIb → IIIc . (4.59)

In this chain we have already considered in (4.52) a q0 from the last step of type enhance-

ment. The next step is to estimate the Hodge norm of q0 and this requires the location

of q0 in every monodromy weight filtration of the mixed Hodge structures of type IIa, IIb
and IIIc. According to the analysis in subsection 4.4.4, we have q0 staying in W2(N

−
(2))

and W3(N
−
(3)). Then the analysis in this section tells us that generally q0 ∈ W3(N

−
(1)). It

could still be possible that we have q0 ∈ W2(N
−
(1)). However, either of these two possible

locations satisfies the massless condition (4.29) and hence implies that the charge orbit

generated by q0 is massless at P located at the type IIb singular locus. Analogously we

can also analyse the other cases without type enhancements Ia → Ib, IIIa → IIIb and

IVa → IVb. The results of this analysis are similar to the IIa → IIb case and will be

used to justify the analysis in the next section. In particular, it will allow us to introduce

the notation (4.67), which indicates that all enhancements of non-changing type will not

influence our constructions.

This completes our two-divisor analysis. We will now use these results to perform the

general multi-divisor analysis.

4.5 The general multi-divisor analysis

In the previous subsection we have shown when in the case of two intersecting divisors it is

possible to identify an infinite massless charge orbit depending on the type of singularity

of the divisors and at the intersection as well as the location of P . In this subsection we

will generalise the analysis to multiple intersecting divisors. We will first give all possible

enhancement chains and then stepwise apply the two-divisor result by treating the two

intersecting divisors which themselves are loci of intersection of an arbitrary number of

divisors. This is the general setup described in subsection 4.2. By explicitly constructing

q0 we will thus be able to show the conditions (R1), (R2) for it to generate an infinite

massless charge orbit when approaching P .

4.5.1 Masslessness of the general charge orbit

In this subsection we show that one can construct for each enhancement chain (4.17) an

appropriate seed charge q0 that defines a massless state when approaching P along any

path in a fixed growth sector (4.15). Crucially, as stated already in subsection 4.2, such a

q0 only exists if the singularity type at the location of P is either II, III, IV. These are

also the singularities that occur if we demand P to be at infinite distance.

We thus have to consider the three following general enhancement chains

Ia1 → ...→ Iak → IIb1 → ...→ IIbm → ... (4.60)

Ia1 → ...→ Iak → IIb1 → ...→ IIbm → IIIc1 → ...→ IIIcn → ... (4.61)

Ia1 → ...→ Iak → IIb1 → ...→ IIbm → IIIc1 → ...→ IIIcn → IVd1 → ...→ IVdr → ... , (4.62)
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where the box indicates the singularity at the location of P . Note that k, m, n, and r are

integers and we allow for chains that do not admit all types. For example, in (4.60), (4.61),

and (4.62) we can have k = 0, i.e. start the enhancement at type II. Furthermore, let us

stress that we have only displayed the enhancement chains until the singularity at P . This

part will be relevant in studying the masslessness of the associated q0 as we will see below.

In order to show that the full orbit Q is infinite, the enhancements after the singularity at

P become relevant. We will discuss these parts in subsection 4.5.2.

It will turn out to be sufficient to only focus on the type I, II, III, IV without having

information about the index required in the complete classification of subsection 3.1. Since

we also want to simplify the expressions, we thus introduce the shorthand notation

I ≡ Ia1 → . . . → Iak ,

II ≡ IIb1 → . . . → IIbm , (4.63)

III ≡ IIIc1 → . . . → IIIcn ,

IV ≡ IVd1 → . . . → IVdp .

Now it is straightforward to display all appearing enhancement chains that can occur before

the singularity at P . We list them in the first column of table 6.

The second column of table 6 lists the seed charge q0 that we propose for the corre-

sponding chain. This charge has been constructed such that it has a universal location

in the spaces W (N−
(k)) relevant in the growth theorem of subsection 2.5. In fact, tracking

q0 through the various enhancements as in subsection 4.4 we find for the three general

chains (4.60)–(4.62) the locations

P ∈ Type II locus : q0 ∈ W3

(
N−

(I)

)
∩W2

(
N−

(II)

)
(4.64)

P ∈ Type III locus : q0 ∈ W3

(
N−

(I)

)
∩W2

(
N−

(II)

)
∩W1

(
N−

(III)

)
(4.65)

P ∈ Type IV locus : q0 ∈ W3

(
N−

(I)

)
∩W2

(
N−

(II)

)
∩W1

(
N−

(III)

)
∩W2

(
N−

(IV)

)
, (4.66)

where we have introduced the shorthand notation12

W3

(
N−

(I)

)
≡ W3

(
N−

(1)

)
∩ ... ∩W3

(
N−

(k)

)
,

W2

(
N−

(II)

)
≡ W3

(
N−

(k+1)

)
∩ ... ∩W3

(
N−

(k′)

)
∩W2

(
N−

(k′+1)

)
∩ ... ∩W2

(
N−

(k+m)

)
, (4.67)

W1

(
N−

(III)

)
≡ W1

(
N−

(k+m+1)

)
∩ ... ∩W1

(
N−

(k+m+n)

)
,

W2

(
N−

(IV)

)
≡ W2

(
N−

(k+m+n+1)

)
∩ ... ∩W2

(
N−

(k+m+n+r)

)
.

Note that the Wl(N
−
(i)) in each line (4.64)–(4.66) is always Wl

(
N−

(nP )

)
corresponding to the

location of P . The shorthand notation (4.67) is also used in the last column of table 6

giving the location of the listed q0.

12Note the unusual pattern in W2

(

N−

(II)

)

, which contains an additional parameter k′ with k + 1 ≤ k′ ≤

k+m. The crucial information here is that if Type AnP
= II, then we must have q0 ∈ W2

(

N−

(nP )

)

to ensure

masslessness. Before the end of the type II chain, the location of an q0 could be pushed up by 1 to W3

but this will not affect the masslessness. In W
(

N−

(I)

)

,W
(

N−

(III)

)

and W
(

N−

(IV)

)

, such a phenomenon is not

present. This justifies the shorthand notation (4.67).
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Chain q0 location of q0

II → · · · N−
(nP )ã

(nE)
0 W2

(
N−

(II)

)

I → II → · · · N−
(nP )ã

(nE)
0 W3

(
N−

(I)

)
∩W2

(
N−

(II)

)

III → · · ·
(
N−

(nP )

)2
ã
(nE)
0 W1

(
N−

(III)

)

I → III → · · ·
(
N−

(nP )

)2
ã
(nE)
0 W3

(
N−

(I)

)
∩W1

(
N−

(III)

)

II → III → · · ·
(
N−

(nP )

)2
ã
(nE)
0 W2

(
N−

(II)

)
∩W1

(
N−

(III)

)

I → II → III → · · ·
(
N−

(nP )

)2
ã
(nE)
0 W3

(
N−

(I)

)
∩W2

(
N−

(II)

)
∩W1

(
N−

(III)

)

IV → · · ·
(
N−

(nP )

)2
ã
(nE)
0 W2

(
N−

(IV)

)

I → IV → · · ·
(
N−

(nP )

)2
ã
(nE)
0 W3

(
N−

(I)

)
∩W2

(
N−

(IV)

)

II → IV → · · · N−
(nP−r)N

−
(nP )ã

(nE)
0 W2

(
N−

(II)

)
∩W2

(
N−

(IV)

)

III → IV → · · ·
(
N−

(nP−r)

)2
ã
(nE)
0 W1

(
N−

(III)

)
∩W2

(
N−

(IV)

)

I → II → IV → · · · N−
(nP−r)N

−
(nP )ã

(nE)
0 W3

(
N−

(I)

)
∩W2

(
N−

(II)

)
∩W2

(
N−

(IV)

)

I → III → IV → · · ·
(
N−

(nP )

)2
ã
(nE)
0 W3

(
N−

(I)

)
∩W1

(
N−

(III)

)
∩W2

(
N−

(IV)

)

II → III → IV → · · ·
(
N−

(nP−r)

)2
ã
(nE)
0

(
N−

(II)

)
∩W1

(
N−

(III)

)
∩W2

(
N−

(IV)

)

I → II → III → IV → · · ·
(
N−

(nP−r)

)2
ã
(nE)
0 W3

(
N−

(I)

)
∩W2

(
N−

(II)

)
∩W1

(
N−

(III)

)
∩W2

(
N−

(IV)

)

Table 6. The table contains all possible enhancement chains that can arise before the singularity

at P . We use the notation (4.63) in the first column. The q0 associated to each chain is listed in the

second column. Note that N−

(nP−r) is the element associated to the last type III singularity in the

locus, with r as in (4.62). The third column lists the location of q0 using the notation introduced

in (4.67).

We now collected all the information to show that q0 becomes massless along any

path approaching P within a growth sector. This is straightforward since we have already

established the general result (4.29), which gives a sufficient condition for this behaviour.

It is easy to check using the last column of table 6 that (4.29) is satisfied.

4.5.2 Infiniteness of the general charge orbit

Having shown the masslessness of the charge orbit Q(q0|m1, . . . ,mnE
), we will in this

subsection check its infiniteness. The procedure is similar to the one used in subsection 4.4.

Let us first repeat the definition of the charge orbit (4.16) and expand the exponential

Q(q0|m1, . . . ,mnE
) = exp

(
nE∑

i=1

miN
−
i

)

q0

= q0 +

nE∑

i=1

miN
−
i q0 + . . . , (4.68)

where each mi is an integer, and the . . . indicate terms that are at least quadratic in mi.
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Furthermore, we notice that if there exists an N−
(k) with k taking any value k = 1, . . . , nE

which does not annihilate q0 then the orbit is infinite. To see this, we set m1 = · · · =

mk−1 = mk = m and mk+1 = · · · = mnE
= 0. The orbit reduces to

Q(q0|m, . . . ,m, 0, . . . , 0) = q0 +mN−
(k)q0 +

1

2
m2
(
N−

(k)

)2
q0 +

1

6
m3
(
N−

(k)

)3
q0, (4.69)

where we have used
(
N−

(k)

)4
q0 = 0. If the orbit Q(q0|m, . . . ,m, 0, . . . , 0) is not infinite,

then there is an m′ 6= m such that Q(q0|m
′, . . . ,m′, 0, . . . , 0) = Q(q0|m, . . . ,m, 0, . . . , 0),

hence N−
(k)q0 = 0. This contradiction implies that the orbit Q(q0|m1, . . . ,mnE

) is infinite,

provided the existence of an N−
(k) that does not annihilate q0.

Let us now show that such an N−
(k) exists for the enhancement chains (4.17) satisfying

the conditions (R1) or (R2) of subsection 4.2. The simpler condition to show is (R1),

which considers enhancement chains for in which P is at a Type IV locus. In this case the

N−
(k) not annihilating the seed charge q0 is simply N−

(k) = N−
(nP ). This immediately follows

from the fact that in the Type IV case one has
(
N−

(nP )

)3
ã
(nE)
0 6= 0, which implies that the

relevant q0s given in table 6 satisfy N−
(nP )q0 6= 0.

Turning to condition (R2), we recall that it states that for every enhancement chain

with P at a Type II or Type III locus at least one further enhancement has to occur after

the location of P . Considering this enhancement to occur from the (nP + j − 1)-term to

(nP + j)-term the general expressions of the relevant chains are

· · · → IIb1 → · · · → IIb
at nP

→ · · · → IIbm → IIIc1
at (nP+j)

→ · · · ,

· · · → IIb1 → · · · → IIb
at nP

→ · · · → IIbm → IVd1
at (nP+j)

→ · · · , (4.70)

· · · → IIIc1 → · · · → IIIc
at nP

→ · · · → IIIcn → IVd1
at (nP+j)

→ · · · .

We claim that in these cases the N−
(k) not annihilating q0 is given by N−

(k) = N−
(nP+j).

Indeed, since the type of the singularity increases, also the highest power of N−
(i) not

annihilating ã
(nE )
0 increases. Using the relevant definitions of q0 of table 6 this implies that

N−
(nP+j) does not annihilate q0. In conclusion we have found for chains satisfying (R1)

and (R2) relevant N−
(k) that do not annihilate the seed charge q0 and thus have shown the

infiniteness of the charge orbit Q(q0|m1, . . . ,mnE
).

4.6 A two parameter example: mirror of P(1,1,1,6,9)[18]

The discussions so far have been general, but rather abstract. In this section we show

how to explicitly realise our approach to identifying the orbit. We consider the degree-18

Calabi-Yau hypersurface inside the weighted projective space P(1,1,1,6,9). This hypersurface

is denoted by Ỹ3 = P(1,1,1,6,9)[18] and has h1,1(Ỹ3) = 2. The Calabi-Yau hypersurface of

which we will consider the complex structure moduli space is the mirror Y3 of Ỹ3. Note

that the geometry and the periods of the pair (Ỹ3, Y3) have been studied in detail in [23]

as one of the early applications of mirror symmetry.
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We will consider a patch E containing the large complex structure point of Y3, which

by mirror symmetry corresponds to the large volume point of Ỹ3. Hence we can use the

formulas of subsection 3.4 to derive the monodromy logarithms N1, N2 and determine the

corresponding singularity type. The Calabi-Yau threefold Ỹ3 sits inside the toric ambient

space with toric data

l(1) l(2)

K 1 0 0 0 0 −6 0

D0 1 0 0 −1 −1 1 −3

D1 1 1 0 −1 −1 0 1

D2 1 0 1 −1 −1 0 1

D3 1 −1 −1 −1 −1 0 1

D′ 1 0 0 2 −1 2 0

D′′ 1 0 0 −1 1 3 0

(4.71)

where the first column labels the toric divisors. Restricting all divisors to the hypersurface

Ỹ3 in this ambient space, the generators of the Kähler cone are chosen to be

J1 = D0 + 3D1 , J2 = D1 . (4.72)

The intersection numbers Kijk = Ji · Jj · Jk in this bases are determined to be13

K111 = 9 , K112 = 3 , K122 = 1 , K222 = 0 . (4.73)

Inserting (4.73) into the general expression (3.21) we derive

N1 =












0 0 0 0 0 0

−1 0 0 0 0 0

0 0 0 0 0 0

−9
2 −9 −3 0 0 0

−3
2 −3 −1 0 0 0

3
2

9
2

1
2 −1 0 0












, N2 =












0 0 0 0 0 0

0 0 0 0 0 0

−1 0 0 0 0 0

−1
2 −3 −1 0 0 0

0 −1 0 0 0 0

0 3
2 0 0 −1 0












. (4.74)

Furthermore, using table 5 we immediately determine the singularity types

∆1 =
{
t1 = i∞

}
: N1 Type IV1 ,

∆2 =
{
t2 = i∞

}
: N2 Type III0 , (4.75)

∆12 =
{
t1 = i∞, t2 = i∞

}
: N1 +N2 Type IV2 ,

where we note that ∆12 is nothing else then the large complex structure or large volume

point and hence has the maximal enhancement IVh2,1 .

In order to construct the charge orbits, we next have to explicitly construct the vector

ã
(2)
0 , i.e. the limiting vector at ∆12, and the two nilnegative elements N−

1 , N−
2 in the

commuting sl(2)-pair associated to the enhancements III0 → IV2 and IV1 → IV2. The

13While not relevant later on, we note that the second Chern class for this example yields b1=
1
24
c2·J1=

17
4
,

b2 = 1
24
c2 · J2 = 3

2
.
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corresponding derivation is lengthy, but follows the steps outlined in subsection 2.4. The

details of this computation are presented in the appendices B, C and D. Firstly, one uses

the large complex structure periods rotated to an R-split representation to derive

ã
(2)
0 =

(

1, 0, 0,−
17

4
,−

3

2
, 0

)T

. (4.76)

The commuting sl(2)-pair for the enhancement IV1 → IV2 are then shown to be

N−
1 =












0 0 0 0 0 0

−1 0 0 0 0 0

0 0 0 0 0 0

−9
2 −9 −3 0 0 0

−3
2 −3 −1 0 0 0

3
2

9
2

1
2 −1 0 0












, N−
2 =












0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1
3 0 0 0

0 0 0 0 0 0












. (4.77)

In contrast, for the enhancement III0 → IV2 we find the sl(2)-pair

N−
1 =












0 0 0 0 0 0

0 0 0 0 0 0

−1 0 0 0 0 0

−1
2 −3 −1 0 0 0

0 −1 0 0 0 0

0 3
2 0 0 −1 0












, N−
2 =












0 0 0 0 0 0

−1 0 0 0 0 0
3
2 0 0 0 0 0

−15
4 −9

4 −3
2 0 0 0

−3
2 −3

2 −1 0 0 0
3
2

9
4

1
2 −1 3

2 0












. (4.78)

With these results we immediately compute the infinite charge orbits for this patch in

moduli space. Using (4.34) for the cases (4.35), (4.36) and inserting q0 proposed in table 6

we find

(1) P ∈ ∆◦
1 : Q = (0, 0, 0, 9, 3,−9m1)

T ,

(2) P ∈ ∆◦
2 : Q = (0, 0, 0, 1, 0,−m2)

T , (4.79)

(3) P ∈ ∆◦
12 :







Q = (0, 0, 0, 9, 3,−9m1)
T for

{
Im t1

Im t2
, Im t2 > λ

}

,

Q = (0, 0, 0, 1, 0,−m2)
T for

{
Im t2

Im t1
, Im t1 > λ

}

.

Let us stress that by our general arguments all three orbits are infinite and massless at the

location of the P under consideration. The infiniteness is immediate due to the dependence

on m1,m2, while the masslessness can alternatively be explicitly checked by a tedious but

straightforward computation using the results of appendix D. It is also nice to see that the

charges are actually quantized. This is non-trivial, since ã
(2)
0 as well as N−

1 , N−
2 contain

rational entries.

We close this section by discussing how the general properties and ideas we have

outlines are realised in the charge orbits (4.79). Firstly, we recall that ∆◦
2 is a Type III

locus and hence the one parameter arguments of subsection 4.1 and reference [12] would

suggest that there is no infinite orbit. Indeed the orbit Q is independent of m1 and hence
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not generated by the N−
1 = N2 associated to ∆◦

2. However, we see in (4.79) that this orbit

is ‘inherited’ from the enhancement locus, i.e. induced by the second monodromy logarithm

N−
2 not directly associated to ∆◦

2. Secondly, we stress that the expression for Q in case

(3) is indeed path dependent. If one approaches ∆◦
12 via a path almost touching ∆◦

1, we

find that the orbit agrees with the one of case (1). This is not surprising, since this is the

infinite orbit of the Type IV1 singularity along ∆◦
1 which is transferred to ∆◦

12. Moving

towards ∆◦
12 along a path almost touching ∆◦

2 we find a completely different charge orbit

depending on m2.

4.7 Discussion on properties of the charge orbit

To summarise, in this section we have shown how to identify infinite massless charge orbits

using data which is not completely local but rather associated to a patch where singular

divisors can intersect. In particular, this significantly extends the infinite charge orbits

that were identified in [12]. It also forms a starting point towards a global understanding

of the infinite towers of states associated to the monodromies in the full moduli space.

A first point to stress is that our current definition of Q and q0 vitally uses the

commuting sl(2) algebras (2.49). In particular, this fact has been exploited in subsection 4.3

to show that Q and q0 have the same Hodge norm growth. However, the usage of the

commuting sl(2) basis containing N−
i could be just an intermediate step to show the desired

results. In fact, it is an important strategy of [24, 25] to translate the final statement back

to the formulation with the Ni. It may be that a similar result can be shown for our

constructions. Therefore, a natural candidate charge orbit is then

Q̃(q̃0|m1, . . . ,mnE
) ≡ exp

(
nE∑

i=1

miNi

)

q̃0 , (4.80)

which is the natural analogue to (4.16). In order to identify the seed charge q̃0, we would

then require that it satisfies the massless condition (4.29) within the monodromy weight

filtration W
(
N(i)

)
in order to generate an orbit that becomes massless when approaching

P within a growth sector. This requirement is natural due to the fact that W
(
N−

(i)

)
=

W
(
N(i)

)
as already stated in (4.25). More concretely, unpacking the filtration W

(
N(i)

)

with definition (2.38) and using the concrete Hodge-Deligne diamonds of singularity types

shown in table 1, we see that the seed charge has to obey, for every i = 1, . . . , nP − 1:

• If Type Ai = I or II, then N(i)q̃0 = 0;

• If Type Ai = III, then there exists charge vectors bi and ui with N(i)ui = 0 such that

q̃0 = N(i)bi + ui;

• If Type Ai = IV, then there exists charge vectors wi and xi with N(i)wi = 0 and
(
N(i)

)3
xi = 0 such that q̃0 = wi +N(i)xi.

Furthermore, the following conditions are imposed at position nP :

• If Type AnP
= II, then there is a charge vector a such that q̃0 = N(nP )a;
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• If Type AnP
= III, then there is a charge vector unP

with
(
N(nP )

)2
unP

= 0 such that

q̃0 = N(nP )unP
;

• If Type AnP
= IV, then there are charge vectors c and wnP

with
(
N(nP )

)2
wnP

= 0,

such that q̃0 =
(
N(nP )

)2
c+N(nP )wnP

.

Finally to ensure infiniteness, we require the existence of an N(j) with nP ≤ j ≤ nE such

that N(j)q̃0 6= 0. Applying the growth theorem as before we see that the seed charge q̃0

satisfying the above properties becomes massless when approaching P within a growth

sector if either of the two conditions (R1), (R2) of subsection 4.2 are satisfied. Moreover

the resulting Q̃ is infinite by the same reasoning in subsection 4.5.2. We would then claim

that this Q̃ becomes massless when approaching P within the same growth sector as q̃0.

Let us stress, however, that establishing full equivalent to the results of subsections 4.3

and 4.5, including the explicit constructions of table 6, without using the commuting basis

would require more work and will be left for the future.

We have discussed how the intersection points can be utilised to build the infinite

distance networks in moduli space, which follow the rules of enhancement in table 3. If

we consider such a network we can identify orbits in patches which contain type IV loci

or intersections which enhance the singularity type.14 Once such an orbit is identified, it

will retain its identity along any finite distance along the singularity curve moving away

from this local patch. This is because the limiting Hodge structure is defined over the full

singular locus. If we move an infinite distance away, so towards a different intersection with

some other infinite distance locus, then it is more difficult to track this orbit. We actually

expect that the charge orbit can be ‘transferred’ between singular divisors which intersect

even when there is no enhancement of the singularity type. By this we mean that a set of

charges identified by a charge orbit on one divisor has a corresponding set on the divisor

which intersects it. This is supported by tracking the Hodge-Deligne diamonds from one

divisor to the other through the intersection. Should we be able to track the orbit this

way, we would be able to identify an infinite charge orbit over a full intersecting infinite

distance network. However, we leave a detailed study of this possibility for future work.

In [12] it was shown that the monodromy charge orbit is fully populated by BPS states

as long as one of the charges corresponds to a BPS state. This was shown for the only case

where such an orbit could be identified, which is for type IV singularities. In this work, we

are not able to show such a connection between the charge orbit and BPS states. This is

not unexpected, the argument of [12] was based on walls of marginal stability. While being

away from a wall of marginal stability ensures that a BPS state remains in the spectrum,

this is not a necessary condition, i.e. there are many examples of BPS states which by,

charge and energy conservation alone, could decay to other BPS states. So one expects

that the spectrum of BPS states has some finer underlying structure. The utilisation of

the charge orbits in this work amounts to a proposal that this finer structure includes the

population of charge orbits by BPS states, at least asymptotically towards infinite distance.

14Note that this implies the identification always holds in the large volume regime of the mirror.
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5 Conclusions

In this paper we studied aspects of the Swampland Distance Conjecture in the complex

structure moduli space of Calabi-Yau manifolds. In this context, the set of infinite distance

loci in field space can be understood both generally and precisely. We utilised the powerful

mathematical tools of the orbit theorems and mixed Hodge structures to analyse infinite

distance points in complete generality, so any infinite distance point in any Calabi-Yau

threefold. We showed that any infinite distance point is part of a locus in moduli space

to which we can associate a set of discrete topological data, its Hodge-Deligne diamond,

that defines its key characteristics. We also showed how to extract this data from the mon-

odromy, associated to axion-type shifts, about the infinite distance locus. The data can be

used to completely classify infinite distance loci in the moduli space, and this classification

includes an understanding of how different infinite distance loci can intersect and change

their type. In this way, the different types of infinite distance loci form a rich intersect-

ing infinite distance network. We showed that there are rules for how such intersections

can occur and so for which kinds of infinite distance networks can be built. These rules

and networks therefore are uncovering a new perspective on the distance conjecture where

global structures in the field space are emerging.

The intersections between different types of infinite distance loci are clearly central to

this global perspective, and so naturally most of the investigation was focused on them.

Within a local patch in field space containing such an intersection, we were able to reach

a significant number of results regarding the nature of the infinite tower of states of the

distance conjecture. More precisely, to each infinite distance locus one can associate a

nilpotent matrix N , and when the loci intersect the different matrices commute. However, a

remarkable result of [24], known as the general Sl(2)-orbit theorem, shows that the nilpotent

matrices can further be completed into fully commuting sl(2) algebras. This can be thought

of as a type of factorisation of the infinite distance loci, and greatly simplifies the analysis

of the intersections. In particular, it allows for a rather precise identification of an infinite

tower of states in terms of a charge orbit. This orbit generalises the monodromy orbits

presented in [12] by utilising the commuting structure of the sl(2) algebras. Importantly, it

can be generalised recursively to any number of intersecting infinite distance loci. We then

established general conditions when such a charge orbit can define an infinite tower of states

that become massless when approaching the infinite distance point. More specifically, we

have explicitly constructed a candidate charge orbit for any infinite distance point that has

another infinite distance locus of higher type in its vicinity. This non-local construction

allowed us to identify the tower of states of the distance conjecture for a more general set

of infinite distance loci than was done in [12], thereby making progress towards a complete

identification of the tower of states globally on the moduli space. However, it is important

to state that in [12], by utilising walls of marginal stability, the monodromy orbits were

shown to be populated by actual BPS states in the spectrum. We are not able to reach

such a result for the more general charge orbits introduced in this paper. We therefore

leave a study of the precise relation between charge orbits and BPS states for future work.
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One particularly interesting new aspect of the distance conjecture in the context of

intersecting infinite distance loci is that the mass spectrum of BPS states picks up a de-

pendence on the path of approach to the intersection. The results of [24] allowed us to

quantify this path dependence rather precisely, showing how to classify paths into different

growth sectors, and to determine how the masses of the tower of states behave within

each growth sector. We find the encouraging result that the particular form of the infinite

charge orbit of states is such that the states become massless independently of the path

of approach, within a given growth sector. This lends further evidence to the proposal

in [12] that the tower of states associated to the monodromy action induces the infinite

distance divergence, since there are no infinite distance paths of approach whereby the

tower remains massive.

Our results show that there is a rich structure at infinite distances in field spaces of

theories of quantum gravity. While we made significant progress at uncovering some of this

structure, we believe that there is much more to discover. The close ties to the existing

rich and deep mathematical framework of nilpotent orbits suggest that much of this struc-

ture is general. For example, the studies in [25] of the polarized relations, which lead to

enhancement patters in figure 4, are derived in terms of polarized Hodge structures defined

completely independently of any underlying geometric manifold. On the other hand, the

restriction to type I-IV loci is likely to be a property of the compactification manifold.

Nonetheless, this is semi-topological, essentially amounting to 2, 4, or 6-cycles blowing up

in size in a local mirror symmetry sense. Similarly, the polarization condition is semi-

topological, and indeed combined these two properties seem linked to the manifold sup-

porting a nowhere vanishing two and three-form, suggesting the results should hold for any

SU(3)-structure manifold, and relating them only to the presence of some supersymmetry.

In fact, many of the results can be formulated just by an association of a nilpotent

matrix to an infinite distance point in an arbitrary field space. Such an association is

rather natural from the perspective of quantum gravity as discussed in [12]. There are two

ways to motivate this. The first is that the nilpotent matrix is associated to a discrete

gauge symmetry, an axion shift, which is promoted to a continuous global symmetry at

infinite distance. The infinite distance and infinite tower of states can then be understood

as a quantum gravity obstruction to the global symmetry limit. The second way is in

the context of emergence of infinite distances, so the idea that the infinite distance is itself

induced by integrating out the tower of states. Then the nilpotent matrix associated to it is

a remnant of the structure of this tower. The appearance of nilpotent matrices, associated

to axion transformations, was also found in [48]. This ties in nicely also to the ideas of [19]

where potentials on field spaces are also controlled by the towers of states. Motivated

by these results, we believe that it is a natural expectation that nilpotent elements, and

the rich structure associated to them which we have been exploring in this paper, may

underlie much of the universal behaviour of quantum gravity theories at large distances in

field space.

While our work was motivated by the distance conjecture, the results are significant

also purely as a study of Calabi-Yau moduli spaces. We have adapted the recent results on

relations between polarised mixed Hodge structures [25] to the moduli space, expanded on
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them and developed their connection to distances in the space. We have also presented the

first, to our knowledge, computation of the commuting sl(2)-triples of matrices at intersec-

tions of infinite distance loci, or from the Hodge-theoretic perspective, at degenerations of

polarized mixed Hodge structures.

Our analysis was focused on the complex structure moduli space, but we have also

discussed the mirror dual configuration in some detail. More precisely, we have explicitly

determined the monodromy matrices relevant in the complexified Kähler cone when encir-

cling the large volume point in a higher-dimensional moduli space. We showed that by only

using the triple intersection numbers and the second Chern class of the mirror threefold one

is able to classify the monodromies and the arising infinite distance singularity types in this

large volume regime. In this large volume regime we can then directly apply our findings

on the charge orbit. They immediately imply that we have shown that to every infinite dis-

tance point in the large volume regime we can identify an infinite charge orbit that becomes

massless at this point. Crucially the considered point does not have to be the large volume

point itself, but rather any partial limit will also share this feature. Let us stress that we

expect that our construction of the charge orbit is also valid relevant in string compacti-

fications that are not directly the mirror to the considered Type IIB configurations [49].

Moreover, it is interesting to point out that this perspective gives a new way to system-

atically classify allowed triple intersection numbers and hence allowed Kähler potentials.

In fact, the associated polarized mixed Hodge structure incorporates more canonically the

positivity conditions on various couplings, while the growth theorem ensures that possible

cancellations are ruled out. It would be very interesting to systematically explore the power

of this new perspective for questions beyond the distance conjecture.
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A Monodromy filtrations and mixed Hodge structures

In this appendix we give a short review of some further mathematical concepts relevant for

this work. We first introduce a pure Hodge structure and its associated Hodge filtration. A

pure Hodge structure of weight w provides a splitting of the complexification VC = V ⊗ C

of a rational vector space V by the Hodge decomposition

VC = Hw,0 ⊕Hw−1,1 ⊕ . . .⊕H1,w−1 ⊕H0,w , (A.1)

with the subspaces satisfying Hp,q = Hq,p with w = p+ q, where the complex conjugation

on VC is defined with respect to the rational vector space V . Using the Hp,q one can also

define a Hodge filtration as F p = ⊕i≥pH
i,w−i satisfying

VC = F 0 ⊃ F 1 ⊃ . . . ⊃ Fw−1 ⊃ Fw = Hw,0 , (A.2)

such that Hp,q = F p ∩ F̄ q. A polarized pure Hodge structure requires additionally the

existence of a bilinear form S(·, ·) on VC, such that the conditions S(Hp,q,Hr,s) = 0 for

p 6= s, q 6= r and ip−qS(v, v̄) > 0 for any non-zero v ∈ Hp,q are satisfied.

– 62 –



J
H
E
P
0
3
(
2
0
1
9
)
0
1
6

The crucial extra ingredient relevant to define a (limiting) mixed Hodge structure, is

the so-called monodromy weight filtration Wi. It was defined in (2.38) using the kernels

and images of the nilpotent matrix N . The rational vector subspaces Wj(N) ⊂ V can

alternatively be defined by requiring that they form a filtration

W−1 ≡ 0 ⊂ W0 ⊂ W1 ⊂ . . . ⊂ W2w−1 ⊂ W2w = V , (A.3)

with the properties

1.) NWi ⊂ Wi−2 (A.4)

2.) N j : Grw+j → Grw−j is an isomorphism, Grj ≡ Wj/Wj−1 . (A.5)

The quotients Gri contain equivalence classes of elements of Wi that differ by elements

of Wi−1. When VC also admits a Hodge filtration F p as in (A.2), we require that N is

compatible with this structure and acts on it horizontally, i.e. NF p ⊂ F p−1.

We are now in the position to define a mixed Hodge structure (V,W,F ), induced by

the filtrations Wi and F q on the vector space V . The defining feature of this structure is

that each Grj defined in (A.5) admits an induced Hodge filtration

F pGrC
j ≡ (F p ∩WC

j )/(F
p ∩WC

j−1) , (A.6)

where GrC
j = Grj ⊗ C and WC

i = Wi ⊗ C are the complexification. In other words, in the

notation of (A.1) we spilt each Grj into a pure Hodge structure Hp,q as

Grj =
⊕

p+q=j

Hp,q , Hp,q = F pGrj ∩ F qGrj , (A.7)

where we recall that w = p + q is the weight of the corresponding pure Hodge structure.

The operator N is a morphism among these pure Hodge structures. Using the action of N

on Wi and F p, we find NGrj ⊂ Grj−2 and NHp,q ⊂ Hp−1,q−1. Note that this induces a

jump in the weight of the pure Hodge structure by −2, while the mixed Hodge structure

is preserved by N .

B Construction of the Sl(2)-splitting

In this appendix we review the construction of the matrices δ and ζ that are used to con-

struct a special R-split mixed Hodge structure (V, F̂,W ), first discussed in subsection 2.4, via

F̂ = eζe−iδF . (B.1)

The mixed Hodge structure (V, F̂ ,W ) is called the Sl(2)-splitting of the limiting mixed

Hodge structure (V, F,W ). Here we denote by (V, F,W ) a vector space V with filtrations

F p and Wi, see appendix A. As in subsection 2.3 the latter is induced by some nilpotent N .

Using (2.39) and (2.40) we can determine a Deligne splitting VC =
⊕

Ip,q from the data

(F,W ). On this splitting there is a semisimple operator T , called the grading operator, that
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acts on the subspace
⊕

p+q=l I
p,q as multiplication by l. Let T be the complex conjugate

of the grading operator T defined by

T (v) := T (v), (B.2)

for all v ∈ VC. Then T and T are related by a conjugation by e−2iδ

T = e−2iδTe2iδ, (B.3)

where the real operator δ sends every Ip,q to its “lower parts”:

δ(Ip,q) ⊂
⊕

r<p
s<q

Ir,s, for all p, q. (B.4)

Thus we can solve equation (B.3) with an Ansatz satisfying (B.4) for the operator δ.

Furthermore δ commutes with N and preserves the polarisation δTη + ηδ = 0. Such an

operator δ is unique. Let

F̃ := e−iδF, (B.5)

and the mixed Hodge structure (V, F̃ ,W ) is R-split. For a mathematically precise discussion

we refer to Proposition 2.20 of [24].

The second operator ζ further builds another R-split mixed Hodge structure out of

(V, F̃ ,W ). Its construction is indirect and we refer to section 3 and Lemma 6.60 of [24] for

the full original discussion. Also section 1 of [50] contains a good review of the ζ operator

and in its appendix the authors worked out some explicit expressions that will be used in

our computation.

To find ζ, we first compute a ‘Deligne splitting’ of the operator δ: let VC =
⊕

Ĩp,q

be the Deligne splitting of the R-split mixed Hodge structure (V, F̃ ,W ), then this Deligne

splitting induces a decomposition of δ

δ =
∑

p,q>0

δ−p,−q, (B.6)

where each component δ−p,−q precisely does the following:

δ−p,−q(Ĩ
r,s) ⊂ Ĩr−p,s−q, for all r, s. (B.7)

The operator ζ admits the same kind of decomposition

ζ =
∑

p,q>0

ζ−p,−q, (B.8)

and its relation with δ is given by the equation in Lemma 6.60 of [24]

eiδ = eζ




∑

k≥0

(−i)k

k!
adkN (g̃k)



 , (B.9)

where every g̃k is an real operator preserving the polarisation η of the real vector space

V and adN (−) = [N,−] is the adjoint action. The main outcome of this formula useful
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for us is that, upon decomposing δ and ζ into their (−p,−q) components and solving

for ζ−p,−q, we get a polynomial in δ−p,−q and the iterated commutators among various

components δ−p,−q.

Specialising to weight-3 degenerating variation of Hodge structures, the possible non-

vanishing components of ζ−p,−q are restricted to 1 ≤ p, q ≤ 3. Then according to the

appendix of [50], we have the following explicit expressions

ζ−1,−1 = 0, ζ−1,−2 = −
i

2
δ−1,−2, ζ−1,−3 = −

3i

4
δ−1,−3, ζ−2,−2 = 0, (B.10)

ζ−2,−3 = −
3i

8
δ−2,−3 −

1

8
[δ−1,−1, δ−1,−2], ζ−3,−3 = −

1

8
[δ−1,−1, δ−2,−2],

while the remaining ζ−q,−p are obtained from ζ−p,−q by replacing all i by −i and δ−r,−s by

δ−s,−r. Summing all ζ−p,−q, we get a formula for ζ that is valid in weight-3 degenerating

variation of Hodge structures given by

ζ =
i

2
(δ−2,−1 − δ−1,−2) +

3i

4
(δ−3,−1 − δ−1,−3) +

3i

8
(δ−3,−2 − δ−2,−3)

−
1

8
[δ−1,−1, δ−1,−2 + δ−2,−1 + δ−2,−2]. (B.11)

C General procedure to construct the commuting sl(2)s

The construction of commuting sl(2)s is part of the multi-variable Sl(2)-orbit theorem

in [24]. We summarise its construction in this section for completeness.

Finding the commuting sl(2)-triples associated to the intersection ∆1,...,nE
amount to

nE -times iteration. One starts with the limiting mixed Hodge structure (F∞,WnE ), where

F∞ is the limiting Hodge filtration extracted by nilpotent orbit theorem, and WnE is the

monodromy weight filtration associated to the nilpotent cone σ(N1, . . . , NnE
) generated by

the monodromies N1, . . . , NnE
, i.e.,

WnE = W (N1 + · · ·+NnE
). (C.1)

The limiting mixed Hodge structure (F∞,WnE ) will be used as the input of the first

iteration of the construction. Let the index k = nE , which will be counted downwards after

each iteration.

For each iteration with index k, we denote the input mixed Hodge structure by

(F ′,W k). Then one computes the Sl(2)-splitting (Fk,W
k) of (F ′,W k). Furthermore, one

finds the Deligne splitting of the mixed Hodge structure (Fk,W
k)

VC =
⊕

p,q

Ip,q
(Fk,Wk)

. (C.2)

Record the semisimple grading operator Y(k) which acts on each subspace by multiplication

Y(k)v = (p+ q − 3)v, for every v ∈ Ip,q
(Fk,Wk)

. (C.3)

And set the mixed Hodge structure (eiNkFk,W
k−1) as the input of the next iteration, which

carries index k − 1.
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The loop stops once k = 0. In the end, we get a bunch of grading operators

Y(nE), . . . , Y(1) associated with R-split mixed Hodge structures (FnE
,WnE ), . . . , (F1,W

1).

For convenience, set Y(0) = 0.

The next step is to find the nilpotent elements N−
i in each sl(2)-triple (N−

i , N+
i , Yi).

Every N−
i is determined by diagonalising the adjoint action of Y(i−1): decompose Ni into

eigenvectors of the adjoint action of Y(i−1)

Ni =
∑

α

Nα
i , (C.4)

where Nα
i satisfies [Y(i−1), N

α
i ] = αNα

i . Then the nilnegative element is extracted

N−
i := N0

i . Note that one always has N−
1 = N1 since Y(0) = 0.

The neutral elements are set to be

Yi = Y(i) − Y(i−1). (C.5)

Since Y(0) = 0, we have Y0 = Y(0).

Finally, we complete the triples by solving the equations defining an sl(2)-triple

[Yi, N
+
i ] = 2N+

i , [N+
i , N−

i ] = Yi, (C.6)

for the nilpositive element N+
i , which is required to also preserve the polarisation

(N+
i )Tη + ηN+

i = 0. (C.7)

We have thus found the commuting sl(2)-triples (N−
i , N+

i , Yi) for i = 1, . . . , nE accord-

ing to theorem (4.20) of [24].

D An example: commuting sl(2)s in the mirror of P
(1,1,1,6,9)[18]

This section aims to exemplify the structures of section 2 and 4, by analysing the periods

and Hodge structure of an explicit Calabi-Yau threefold geometry. More precisely, we will

denote by Ỹ3 the degree-18 Calabi-Yau hypersurface inside the weighted projective space

P(1,1,1,6,9) and denote by Y3 its mirror. We show in detail how the associated commuting

sl(2)-pair for the variation of Hodge structure on Y3 arises from the study of its complex

structure moduli space. We also illustrate several abstract constructions introduced in

the previous sections, including the Deligne splitting (2.39) and the associated canonical

Sl(2)-splitting MHS in Sl(2)-orbit theorem of appendix B. Note that the geometry and the

periods of the pair (Ỹ3, Y3) have been studied in detail in [23] as one of the first applications

of mirror symmetry.

D.1 Introduction to the example

We focus on 2-moduli degeneration in this section. The geometric setup is that we sit near

the large complex structure point, where locally the moduli space contains two copies of

punctured disk as shown in figure 20. From the period vector around the large complex

structure point, we extract the limiting Hodge filtration F (∆◦
12), whose top component

F 3(∆◦
12) is generated by a

(2)
0 . Then (F (∆◦

12),W (N1 + N2)) is a limiting mixed Hodge

structure. In accordance with appendix C, we denote F∞ := F (∆◦
12) and W 2 := W (N1 +

N2) in the following discussion.
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∆12 (IV2)

∆1 (IV1)

∆2 (III0)

Figure 20. Two singular divisors ∆1 and ∆2 intersect at the large complex structure point ∆12,

where the corresponding types of degenerations are also labelled. The coloured divisor shows one of

the possible ways of approaching the large complex structure point, namely moving along the type-

III0 divisor towards the type-IV2 intersection. This choice is equivalent to a choice of the ordering

of the monodromies as (N2, N1), so that we have the singularity enhancement from ∆◦

2 to ∆◦

12.

D.1.1 The periods of Y3 around the large complex structure point

In this section we give the periods of Y3 around the large complex structure point following

the method described in section 3.4. The toric and relevant topological data of Ỹ3 is given

in section 4.6 and we remark that the Euler characteristic of Ỹ3 is χ(Ỹ3) = −540.

Furthermore, the generators of the Mori cone C1, C2 dual to J1, J2 are chosen to be

C1 = J2 ∩ J2, C2 = D0 ∩ J2, (D.1)

so that the following K-theory basis for branes

(OX◦ ,OJ1 ,OJ2 , C1, C2,Op) (D.2)

yields the asymptotic period vector around the large complex structure point and the

polarisation matrix:

ΠΩ(t1, t2) =













1

t1

t2

9
2(t

1)2 + 3t1t2 + 1
2(t

2)2 + 9
2 t

1 + 1
2 t

2 − 17
4 + · · ·

3
2(t

1)2 + t1t2 + 3
2 t

1 − 3
2 + · · ·

3
2(t

1)3 + 3
2(t

1)2t2 + 1
2 t

1(t2)2 − 23
4 t

1 − 3
2 t

2 − 135iζ(3)
2π3 + · · ·













, (D.3)

η =












0 −10 −3 0 0 −1

10 0 1 1 0 0

3 −1 0 0 1 0

0 −1 0 0 0 0

0 0 −1 0 0 0

1 0 0 0 0 0












, (D.4)

where ti is the coordinate on the Kähler moduli space of Ỹ3, under the mirror map

it corresponds to the coordinates zi on the complex structure moduli space of Y3 via

ti = 1
2πi log z

i + · · · . The full period can be acquired by solving the Picard-Fuchs equation

on the space Y3 and matching the leading logarithmic behaviour of the solution with the
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above asymptotic period. We do not give the full instanton-corrected period vector since

it is not relevant to our discussion.

The monodromy operator Ti is then induced by sending ti 7→ ti − 1:

T1 =












1 0 0 0 0 0

−1 1 0 0 0 0

0 0 1 0 0 0

0 −9 −3 1 0 0

0 −3 −1 0 1 0

0 9 2 −1 0 1












, T2 =












1 0 0 0 0 0

0 1 0 0 0 0

−1 0 1 0 0 0

0 −3 −1 1 0 0

0 −1 0 0 1 0

0 2 0 0 −1 1












, (D.5)

and they are already unipotent. Their corresponding logarithms Ni := log Ti are given by

N1 =












0 0 0 0 0 0

−1 0 0 0 0 0

0 0 0 0 0 0

−9
2 −9 −3 0 0 0

−3
2 −3 −1 0 0 0

3
2

9
2

1
2 −1 0 0












, N2 =












0 0 0 0 0 0

0 0 0 0 0 0

−1 0 0 0 0 0

−1
2 −3 −1 0 0 0

0 −1 0 0 0 0

0 3
2 0 0 −1 0












. (D.6)

According to the classification in table 1, we especially find that the degeneration types

shown in figure 20.

To find the commuting sl(2)-triples, we need the full characterisation of the Hodge

filtration 0 ⊂ F 3 ⊂ F 2 ⊂ F 1 ⊂ F 0 = VC. According to special geometry, the period

generating Hodge flags lower than F 3 can be obtained by taking various derivatives with

respect to ti. We make the following choice

Π(t1, t2) =

(

ΠΩ, ∂t1Π
Ω, ∂t2Π

Ω,
1

9
∂2
t1Π

Ω, ∂2
t2Π

Ω,
1

9
∂3
t1Π

Ω

)

, (D.7)

where the coefficient 1
9 is chosen for convenience. Each entry in Π(t1, t2) is understood

to be a column vector, representing the Hodge basis in terms of the multi-valued integral

basis {γi}. Further explanation of the period matrix representation can be found in the

next subsection.

D.2 The commuting sl(2)-pair associated to the degeneration III0 → IV2

In this subsection, we compute the commuting sl(2)-pair arising from a degeneration from

type III0 to IV2, which amounts to an ordering (N2, N1). We also denote N(2) = N2 +N1.

D.2.1 Initial data: the mixed Hodge structure around the large volume point

Let (γ5, γ4, γ3, γ2, γ1, γ0) be the multi-valued integral basis in terms of which the Hodge

basis are represented as the period matrix. Upon looping zi 7→ e2πizi counterclockwise, they

experience the monodromy transformation (γ5, . . . , γ0) 7→ (γ5, . . . , γ0)Ti which is equivalent

to sending ti 7→ ti−1 in the period matrix. We first define a set of untwisted basis elements

by setting

(e5, e4, . . . , e0)t1,t2 := (γ5, γ4, . . . , γ0)t1,t2e
−t1N1−t2N2 (D.8)
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where the subscript t1, t2 reminds us that all the base vectors are (t1, t2)-dependent. The

basis {ei(t
1, t2)} are invariant under the monodromy transformation. Then the limiting

Hodge filtration is extracted by sending t1, t2 → i∞:

Π∞ = lim
t1→i∞
t2→i∞

et
1N1+t2N2Π(t1, t2)

=















w3 w21 w22 w11 w12 w0

e5 1 0 0 0 0 0

e4 0 1 0 0 0 0

e3 0 0 1 0 0 0

e2 −17
4

9
2

1
2 1 1 0

e1 −3
2

3
2 0 1

3 0 0

e0 −135iζ(3)
2π3 −23

4 −3
2 0 0 1















, (D.9)

where the constant {ei} basis are now understood as the limit of the untwisted basis

{ei(t
1, t2)} as t1, t2 → i∞.

For clarity, we explain the meaning of the period matrix: a Hodge filtration 0 ⊂ F 3 ⊂

F 2 ⊂ F 1 ⊂ F 0 = VC is characterised by a Hodge basis (w3, . . . , w0) generating the Hodge

flags. In our 2-moduli example whose Hodge numbers of the middle cohomology H3(Y3,C)

are always (1, 2, 2, 1), we have

F 3 = spanC{w3}, F 2 = spanC{w3, w21, w22}, (D.10)

F 1 = spanC{w3, w21, w22, w11, w12}, F 0 = spanC{w3, w21, w22, w11, w12, w0}.

Then the period matrix representing a Hodge flag consists of column vectors expressing

the Hodge basis {wi} in terms of the single-valued integral basis {ei}. For example, in the

above period matrix Π∞, the basis w22 = e3 +
1
2e2 −

3
2e0. In the following, every operator

acting on F will be regarded as transforming the {wi} vectors, whose action is computed

as right multiplication on the period matrix. While the above usage of nilpotent orbit

theorem is regraded as a change of the integral basis so we have the (inverse) action of

e−t1N1−t2N2 on the left. For clarity, we have labelled the column and rows in every period

matrix representing the Hodge filtration in a limiting mixed Hodge structure.

We also need the monodromy weight filtration W 2 := W
(
N(2)

)
associated to the cone

σ(N1, N2). It is simply given by

W 2
6 = spanR{e5, e4, e3, e2, e1, e0}

∪

W 2
5 = W 2

4 = spanR{e4, e3, e2, e1, e0}

∪

W 2
3 = W 2

2 = spanR{e2, e1, e0}

∪

W 2
1 = W 2

0 = spanR{e0}

(D.11)
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w0

w12w11

w21 w22

w3

Figure 21. The Hodge diamond of the mixed Hodge structure (V, F∞,W 2), in which each dot

near the (p, q)-site represents a base vector of the corresponding subspace Ip,q
∞

. The arrows show

the action of N(2).

One can check that this filtration indeed satisfies the following conditions:

N12 : W 2
i → W 2

i−2 for every i,

Nk
12 : GrW

2

3+k → GrW
2

3−k is an isomorphism for every k.

From now on, it is helpful to forget the geometric origin of this limiting mixed Hodge

structure and only regard it as a construction in linear algebra. To clarify: we fix a

6-dimensional real vector space V with a distinguished real basis (e5, . . . , e0) and two

nilpotent matrices N1, N2 expressed in the {ei}-basis. The mixed Hodge structure to work

with is then (V, F∞,W 2).

D.2.2 First round: finding the Sl(2)-splitting of (V, F∞,W 2)

Firstly we need to find the Deligne splitting of (V, F∞,W 2). Denote the Deligne splitting

by VC =
⊕

Ip,q∞ and it can be computed by directly applying the definition (2.39). The

result is given in the Hodge diamond in figure 21 and we note that the shape of the Hodge

diagram clearly shows that at the large complex structure point ∆12 the degeneration

type is IV2.

We can further check that the splitting satisfies the conjugation property that

Ip,q∞ = Iq,p∞ for all p, q except

I3,3∞ = I3,3∞ mod I0,0∞ ,

hence the mixed Hodge structure (F∞,W 2) is not R-split.

The grading operator T and its complex conjugate T defined in appendix B expressed

in the Hodge basis (w3, . . . , w0) can be directly read out from figure 21

T =












6 0 0 0 0 0

0 4 0 0 0 0

0 0 4 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 0












, T =













6 0 0 0 0 0

0 4 0 0 0 0

0 0 4 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0
810iζ(3)

π3 0 0 0 0 0













. (D.12)
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Then the δ operator written in the {wi} basis is solved to be

δ =













0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−135ζ(3)
2π3 0 0 0 0 0













. (D.13)

It is easily seen that the δ operator only has the δ−3,−3 component, hence the ζ operator

is simply ζ = 0.

Computing F2 = e−iδF∞ we have found the Sl(2)-splitting (F2,W
2) of (F∞,W 2). The

filtration F2 is represented by its period matrix

Π2 =















w
(2)
3 w

(2)
21 w

(2)
22 w

(2)
11 w

(2)
12 w

(2)
0

e5 1 0 0 0 0 0

e4 0 1 0 0 0 0

e3 0 0 1 0 0 0

e2 −17
4

9
2

1
2 1 1 0

e1 −3
2

3
2 0 1

3 0 0

e0 0 −23
4 −3

2 0 0 1















. (D.14)

And it is clear that this mixed Hodge structure (F2,W
2) is R-split.

D.2.3 The second round: finding the Sl(2)-splitting of (F ′,W 1)

We now proceed to the second round of the computation. The starting point of this round

is the mixed Hodge structure (F ′,W 1), where W 1 = W (N2) is the monodromy weight

filtration associated to N2, and F ′ = eiN1F2. One can check that the weight filtration is

now given by
W 1

6 = W 1
5 = spanR{e5, e4, e3, e2, e1, e0}

∪

W 1
4 = W 1

3 = spanR{e3, e2, e1, e0}

∪

W 1
2 = W 1

1 = spanR{e2, e0}

∪

W 1
0 = 0

(D.15)

and the period matrix Π′ representing F ′ is

Π′ =















w′
3 w′

21 w′
22 w′

11 w′
12 w′

0

e5 1 0 0 0 0 0

e4 i 1 0 0 0 0

e3 0 0 1 0 0 0

e2 −35
4 + 9i

2
9
2 + 9i 1

2 + 3i 1 1 0

e1 −3 + 3i
2

3
2 + 3i i 1

3 0 0

e0 −29i
4 −41

4 −3 i i 1















. (D.16)
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w′
12 − 2iw′

0 w′
12

w′
22 − 6iw′

11 + 3iw′
12 w′

22

w′
3 − 2iw′

21 + 3iw′
22 w′

3

Figure 22. The Hodge diamond of the mixed Hodge structure (V, F ′,W 1), in which each dot near

the (p, q)-site represents a base vector of the corresponding subspace I ′p,q. The arrows show the

action of N2. The diamond is clearly of type III0.

Denote the Deligne splitting of (F ′,W 1) by VC =
⊕

I ′p,q. Using the formula (2.39) we

find the Deligne splitting of (V, F ′,W 1) shown in figure 22.

We further remark that this splitting satisfies I ′p,q = I ′q,p for all p, q except

I ′3,2 = I ′2,3 mod I ′2,1 ⊕ I ′1,0 ⊕ I ′0,1,

I ′2,1 = I ′1,2 mod I ′1,0.

The Deligne splitting in figure 22 yields the following grading operator T ′ and its

complex conjugate T
′
expressed in the Hodge basis (w′

3, . . . , w
′
0)

T ′ =












5 0 0 0 0 0

0 5 0 0 0 0

0 −3 3 0 0 0

0 0 0 3 0 0

0 0 0 −1 1 0

0 0 0 0 0 1












, T
′
=












5 0 0 0 0 0

0 5 0 0 0 0

−6i −3 3 0 0 0

0 −18i 0 3 0 0

18 −18i −6i −1 1 0

−24i −18 0 −2i 0 1












. (D.17)

The operator δ′ written in the Hodge basis (w′
3, . . . , w

′
0) is solved to be

δ′ =












0 0 0 0 0 0

0 0 0 0 0 0
3
2 0 0 0 0 0

0 9
2 0 0 0 0

9i
4

9
4

3
2 0 0 0

3 −9i
4 0 1

2 0 0












. (D.18)

This matrix does not seem to be real because we are working in the complex basis {w′
i}. If

we transform it into the (e5, . . . , e0) basis using the period matrix Π′ then all of its entries

are real numbers. Hence δ′ is indeed a real operator.

Let F̃ ′ = e−iδ′F ′, and we have found the first R-split mixed Hodge structure associated

with (F ′,W 1). Let (w̃′
3, . . . , w̃

′
0) = (w3, . . . , w0)e

−iδ′ and we have a new set of Hodge basis
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{w̃′
i}. The Deligne splitting of (F ′,W 1) is the same as in figure 22 with all w′

i replaced by

w̃′
i. Then the decomposition of the operator δ′ is found to be

δ′ = δ′−1,−1 + δ′−2,−2 + δ′−3,−1 + δ′−1,−3, (D.19)

where δ′−p,−q maps Ĩ ′r,s to Ĩ ′r−p,s−q. The components are given by, in the w̃′
i basis,

δ′−1,−1 =












0 0 0 0 0 0

0 0 0 0 0 0
3
2 0 0 0 0 0

0 9
2 0 0 0 0

0 0 3
2 0 0 0

0 0 0 1
2 0 0












, δ′−2,−2 =












0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
3i
4

3
4 0 0 0 0

0 −3i
4 0 0 0 0












, (D.20)

δ′−3,−1 =












0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
3i
2

3
4 0 0 0 0

3 −3i
2 0 0 0 0












, δ′−1,−3 =












0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 3
4 0 0 0 0

0 0 0 0 0 0












. (D.21)

Furthermore, all components are commuting with each other [δ′−p,−q, δ
′
−r,−s] = 0.

The operator ζ ′ given in terms of its decomposition ζ ′ =
∑

ζ ′−p,−q only has two non-

vanishing components ζ ′−1,−3 and ζ ′−3,−1, hence, written in the (w̃′
3, . . . , w̃

′
0) basis

ζ ′ =
3i

4
(δ′−3,−1 − δ′−1,−3) =












0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−9
8 0 0 0 0 0

9i
4

9
8 0 0 0 0












. (D.22)

Finally, applying the operator eζ
′

to F̃ ′, we arrive at the Sl(2)-splitting (F1,W
1) associated

to (F ′,W 1). The period matrix Π1 representing the Hodge filtration F1 = eζ
′

e−iδ′F ′ is

Π1 =















w
(1)
3 w

(1)
21 w

(1)
22 w

(1)
11 w

(1)
12 w

(1)
0

e5 1 0 0 0 0 0

e4 i 1 0 0 0 0

e3 −3i
2 0 1 0 0 0

e2 −17
4 + 15i

4
9
2 + 9i

4
1
2 + 3i

2 1 1 0

e1 −3
2 + 3i

2
3
2 + 3i

2 i 1
3 0 0

e0 −7i
2 −23

4 −3
2

i
2 i 1















(D.23)
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D.2.4 Final output: the commuting sl(2)-pair

With the two Sl(2)-splittings (Fi,W
i) we can now compute the commuting sl(2)-pair. First

we read out the semisimple grading Y(i) which acts on Ip,q
(Fi,W i)

as multiplication by p+q−3.

Writing now everything in the real basis (e5, . . . , e0) for convenience, we have

Y(1) =












2 0 0 0 0 0

0 2 0 0 0 0

0 −3 0 0 0 0

−25
2 12 1 −2 3 0

−3 3 0 0 0 0

0 −37
2 −3 0 0 −2












, Y(2) =












3 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

−17 9 1 −1 0 0

−6 3 0 0 −1 0

6 −23 −6 0 0 −3












, (D.24)

so the neutral elements in the sl(2)-pair are

Y1 = Y(1), Y2 = Y(2) − Y(1) =












1 0 0 0 0 0

0 −1 0 0 0 0

0 3 1 0 0 0

−9
2 −3 0 1 −3 0

−3 0 0 0 −1 0

0 −9
2 −3 0 0 −1












. (D.25)

In addition, N−
1 = N2 is already one of the nilnegative elements. We kindly remind the

reader that the particular ordering (N2, N1) of the monodromies is adopted so as to study

the degeneration III0 → IV2.

To find the other nilnegative element N−
2 , we compute the decomposition of N1 into the

eigenvectors of the adjoint representation [Y(1),−]. Denote the decomposition N1 =
∑

Nα
1 ,

where [Y(1), N
α
1 ] = αNα

1 is the component corresponding to the eigenvalue α. Bearing in

mind that any component Nα
1 must also preserve the polarisation (Nα

1 )
Tη + ηNα

1 = 0, we

find that

N1 = N−4
1 +N−2

1 +N0
1 , (D.26)

where

N−4
1 =












0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 −9
4 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0












, N−2
1 =












0 0 0 0 0 0

0 0 0 0 0 0

−3
2 0 0 0 0 0

−3
4 −9

2 −3
2 0 0 0

0 −3
2 0 0 0 0

0 9
4 0 0 −3

2 0












, (D.27)

and the N0
1 is what we need for the nilnegatives

N−
1 = N2, N−

2 = N0
1 =












0 0 0 0 0 0

−1 0 0 0 0 0
3
2 0 0 0 0 0

−15
4 −9

4 −3
2 0 0 0

−3
2 −3

2 −1 0 0 0
3
2

9
4

1
2 −1 3

2 0












. (D.28)
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The last step is to find the nilpositive element N+
i . Solving the equations

[Yi, N
+
i ] = 2N+

i , [N+
i , N−

i ] = Yi, (N+
i )Tη + ηN+

i = 0,

simply yields the following unique pair of matrices

N+
1 =












0 −3 −2 0 0 0

−3 3 0 0 −2 0
1
2 0 1 −2 6 0

−53
4 9 9

2 −1 −6 −3

−9
2 −5

2 0 0 −3 −2
33
2 −69

4 −3
2 3 5

2 0












, N+
2 =












0 −1 0 0 0 0

0 0 0 0 0 0

−3
2

3
2 0 0 −1 0

−3
4 −3

4 −3
2 0 −1

2 −1

0 3
2 0 0 0 0

9
4 −9

4 0 0 3
2 0












. (D.29)

One can finally check that the (N−
i , N+

i , Yi) with matrices in the (e5, . . . , e0) basis

given by (D.28), (D.29), (D.25) are indeed two sets of sl(2)-Lie algebra elements and the

two sets of operators commute with each other. This completes our computation of the

commuting sl(2)-pair arising from the III0 → IV2 degeneration in the complex structure

moduli space of the Calabi-Yau threefold Y3.

D.3 The commuting sl(2)-pair associated to the degeneration IV1 → IV2

The other singularity locus ∆1 in the moduli space of Y3 has the type IV1. In this subsection

we also work out the commuting sl(2)-pair as we move along ∆1 towards the large complex

structure point of type IV2. This amounts to switch the ordering of the monodromy cone

to (N1, N2). The computation is essentially the same as the III0 → IV2 degeneration, so

we only list the results here without explanation.

D.3.1 The two Sl(2)-splittings

The starting point (F∞,W 2) is the same as the starting point of III0 → IV2, hence also

its Sl(2)-splitting is the same (F2,W
2) with the period matrix (D.14). Now, we consider

the limiting mixed Hodge structure (F ′,W 1) where F ′ = eiN2F2 and W 1 = W (N1). The

period matrix of F ′ is now given by

Π′ =















w′
3 w′

21 w′
22 w′

11 w′
12 w′

0

e5 1 0 0 0 0 0

e4 0 1 0 0 0 0

e3 i 0 1 0 0 0

e2 −19
4 + i

2
9
2 + 3i 1

2 + i 1 1 0

e1 −3
2

3
2 + i 0 1

3 0 0

e0 −3i
2 −25

4 −3
2

i
3 0 1















, (D.30)
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w′
0

w′
11

−w′
21 + 3w′

22 + 6iw′
11 − 6iw′

12 −w′
21 + 3w′

22

w′
21

w′
3

Figure 23. The Hodge diamond of the mixed Hodge structure (V, F ′,W 1), in which each dot near

the (p, q)-site represents a base vector of the corresponding subspace I ′p,q. The arrows show the

action of N1. The diamond is clearly of type IV1.

and the monodromy weight filtration W 1 has now the form

W 1
6 = spanR{e5, e4, e3, e2, e1, e0}

∪

W 1
5 = W 1

4 = spanR{e4, e3, e2, e1, e0}

∪

W 1
3 = spanR{−e4 + 3e3, e2, e1, e0}

∪

W 1
2 = spanR{3e2 + e1, e0}

∪

W 1
1 = W 1

0 = spanR{e0}

(D.31)

So the Deligne splitting VC =
⊕

I ′p,q is found to be in the figure 23.

This structure is again far from R-split, and we can check that Ip,q = Iq,p for all p, q

except

I ′3,3 = I ′3,3 mod I ′2,2 ⊕ I ′1,2 ⊕ I ′2,1 ⊕ I ′1,1, (D.32)

I ′2,2 = I ′2,2 mod I ′1,1 ⊕ I ′0,0,

I ′2,1 = I ′1,2 mod I ′0,0,

I ′1,1 = I ′1,1 mod I ′0,0.

Reading out the grading and solving for δ′, we find, in the (w′
3, . . . , w

′
0) basis

δ′ =












0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

i 3 1 0 0 0

−i 0 0 0 0 0
2
9 0 − i

3
1
3 0 0












, (D.33)

which consists of real elements once we transform back to the {ei} basis.
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The operator δ′ now admits the following Deligne splitting

δ′ = δ′−3,−3 + δ′−2,−1 + δ′−1,−1 + δ′−1,−2, (D.34)

where various components are given by

δ′−3,−3 =












0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
2
9 0 0 0 0 0












, δ′−2,−1 =












0 0 0 0 0 0

−1
6 0 0 0 0 0

1
2 0 0 0 0 0

i 0 0 0 0 0

−i 0 0 0 0 0

0 0 − i
3 0 −1

6 0












,

δ′−1,−1 =












0 0 0 0 0 0
1
3 0 0 0 0 0

0 0 0 0 0 0

0 3 1 0 0 0

0 0 0 0 0 0

0 0 0 1
3

1
3 0












, δ′−1,−2 =












0 0 0 0 0 0

−1
6 0 0 0 0 0

1
2 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 −1
6 0












, (D.35)

with the only non-vanishing commutator

[δ′−2,−1, δ
′
−1,−2] = −

3i

2
δ′−3,−3. (D.36)

Then the only non-vanishing components of ζ ′ are ζ ′−1,−2 and ζ ′−2,−1, hence they sum

to the ζ ′ operator

ζ ′ =
i

2
(δ′−2,−1 − δ′−1,−2) =












0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−1
2 0 0 0 0 0

1
2 0 0 0 0 0

0 0 1
6 0 0 0












, (D.37)

where the matrix is written in the {w′} basis.

The Hodge filtration F1 = eζ
′

e−iδ′F2 is given by its period matrix Π1

Π1 =















w
(1)
3 w

(1)
21 w

(1)
22 w

(1)
11 w

(1)
12 w

(1)
0

e′5 1 0 0 0 0 0

e′4 0 1 0 0 0 0

e′3 0 0 1 0 0 0

e′2 −17
4

9
2

1
2 1 1 0

e′1 −3
2

3
2 − i

3
1
3 0 0

e′0 0 −23
4 −3

2 0 0 1















, (D.38)

thus we have arrived at the Sl(2)-splitting (F1,W
1) of (F ′,W 1).
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D.3.2 The commuting sl(2)-pair

For convenience we express everything in the (e5, . . . , e0) basis in this subsection. We read

out the grading elements

Y(1) =












3 0 0 0 0 0

0 1 1
3 0 0 0

0 0 0 0 0 0

−17 9 2 −1 0 0

−71
12 3 2

3 −1
3 0 0

0 −23 −77
12 0 0 −3












, Y(2) =












3 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

−17 9 1 −1 0 0

−6 3 0 0 −1 0

0 −23 −6 0 0 −3












, (D.39)

so that the neutral elements are given by

Y1 = Y(1), Y2 = Y(2) − Y(1) =












0 0 0 0 0 0

0 0 −1
3 0 0 0

0 0 1 0 0 0

0 0 −1 0 0 0

− 1
12 0 −2

3
1
3 −1 0

0 0 5
12 0 0 0












. (D.40)

Decompose N2 =
∑

Nα
2 into the eigen-components of the action [Y(1),−] and we have

N2 = N−3
2 +N−2

2 +N0
2 , (D.41)

where

N−3
2 =












0 0 0 0 0 0
1
3 0 0 0 0 0

−1 0 0 0 0 0

1 0 0 0 0 0
1
2 0 0 0 0 0

−1
2 0 −1

6
1
3 −1 0












, N−2
2 =












0 0 0 0 0 0

−1
3 0 0 0 0 0

0 0 0 0 0 0

−3
2 −3 −1 0 0 0

−1
2 −1 −1

3 0 0 0
1
2

3
2

1
6 −1

3 0 0












, (D.42)

and the remaining N0
2 together with N1 constitute the nilnegative elements

N−
1 = N1, N−

2 = N0
2 =












0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1
3 0 0 0

0 0 0 0 0 0












. (D.43)
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Finally we can complete the (N−
i , Yi) into the complete sl(2)-triples (N−

i , N+
i , Yi) with

nilpositive elements

N+
1 =












0 −3 −1 0 0 0

−17
9 2 2

9 −4
9 0 0

0 0 0 0 0 0

−17
2

9
2

3
4 −2 0 −3

−17
6

7
4

1
3 −2

3 0 −1
391
36 −23

2 −23
18

23
9 0 0












, N+
2 =












0 0 0 0 0 0

− 1
12 0 −1

6
1
3 −1 0

1
4 0 1

2 −1 3 0

−1
4 0 −1

2 1 −3 0

−1
8 0 −1

4
1
2 −3

2 0
5
48 0 5

24 − 5
12

5
4 0












. (D.44)

This completes our computation of the commuting sl(2)-pair for the degeneration from

IV1 to IV2.

E Deriving the polarised relations

In this section we summarise the definition of polarised relation proposed in [25] and

exemplify the derivation of the relation IIIc → IVd̂ in table 3.

For the ease of notation, we follow [25] to consider an entire Hodge-Deligne diamond at

once. Given a Hodge-Deligne diamond consisting of Hodge-Deligne numbers {ip,q}, we can

define an integer-valued function ♦(p, q) := ip,q on the lattice Z × Z. On the other hand,

we define a Hodge-Deligne diamond of a variation of weight-w Hodge structure polarised

by N with Hodge numbers (hw,0, hw−1,1, . . . , h0,w) to be any integer-valued function ♦(p, q)

on the lattice Z × Z such that

w∑

q=0

♦(p, q) = hp,w−p, for all p, (E.1)

and satisfying the usual symmetry properties

♦(p, q) = ♦(q, p) = ♦(w − q, w − p), for all p, q, (E.2)

♦(p− 1, q − 1) ≤ ♦(p, q), for p+ q ≤ w. (E.3)

In this fashion the sum ♦ = ♦1 + ♦2 of two Hodge-Deligne diamonds ♦1 and ♦2 is

naturally defined pointwise

♦(p, q) := ♦1(p, q) + ♦2(p, q). (E.4)

And also the shifted Hodge-Deligne diamond ♦[a] of ♦ is defined to be

♦[a](p, q) = ♦(p+ a, q + q). (E.5)

Now it comes to the enhancement relation [25]. Let (F1, N1) and (F2, N2) be two nilpo-

tent orbits with limiting mixed Hodge structures (F1,W (N1)) and (F2,W (N2)). Denote

♦(F1, N1) and ♦(F2, N2) respectively their Hodge-Deligne diamonds. Considering a possi-

ble degeneration relation (F1, N1) → (F2, N2) there is the following equivalent condition.

Every primitive subspace P k(N1) (3≤k≤6) of (F1,W (N1)) carries a weight-k Hodge

structure P k(N1)=
⊕

p+q=k P
p,q(N1). Denote its Hodge numbers by jp,q1 :=dimC P p,q(N1).
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Let ♦(F ′
k, N

′
k) be a Hodge-Deligne diamond of the variation of weight-k Hodge structure

polarised by S(·, Nk
1 ·) on P k(N1) with Hodge numbers (jk,0, jk−1,1, . . . , j0,k) where S is the

polarisation bilinear form (2.4). If one can decompose ♦(F2, N2) as

♦(F2, N2) =
∑

3≤k≤6
0≤a≤k−3

♦(F ′
k, N

′
k)[a], (E.6)

where ♦(F ′
k, N

′
k)[a] is the shifted Hodge-Deligne diamond defined above, then the degener-

ation relation

(F1, N1) → (F2, N2) (E.7)

holds. The converse is also true.

We refer the reader to [25] for details.

We exemplify the above condition on the relation IIIc → IVd̂. Firstly we list the prim-

itive Hodge-Deligne sub-diamond of IIIc containing only primitive Hodge-Deligne numbers

jp,q1 and the Hodge-Deligne diamond of IVd̂:

c′ − 1

c

c′ − 1
k = 3

k = 4

k = 5

d̂′

d̂

d̂

d̂′

IIIprimc IVd̂

For the relation IIIc → IVd̂ to hold, we need to find three Hodge-Deligne diamonds

with Hodge numbers (0, c′ − 1, c′ − 1, 0), (0, 0, c, 0, 0) and (0, 0, 1, 1, 0, 0) that sums (with

proper shifts) to IVd̂. The following are three such Hodge-Deligne diamonds

c′ − r − 1

r

r

c′ − r − 1

c

♦(F ′
3, N

′
3) with r ≥ 0 ♦(F ′

4, N
′
4) ♦(F ′

5, N
′
5)

for (0, c′ − 1, c′ − 1, 0). for (0, 0, c, 0, 0). for (0, 0, 1, 1, 0, 0).
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Then we consider the sum

♦(F ′
3, N

′
3) + ♦(F ′

4, N
′
4) + ♦(F ′

4, N
′
4)[1] + ♦(F ′

5, N
′
5) + ♦(F ′

5, N
′
5)[1] + ♦(F ′

5, N
′
5)[2] (E.8)

which can be depicted as

c′ − r − 1

c+ r + 2

c+ r + 2

c′ − r − 1

and we expect that this diamond agrees with the Hodge-Deligne diamond of IVd̂. This is

possible if the condition

d̂ = c+ r + 2, (E.9)

together with the usual r ≥ 0, 0 ≤ c ≤ h2,1 − 2 and 1 ≤ d̂ ≤ h2,1 are satisfied. Hence we

have derived the condition c+ 2 ≤ d̂ for the relation IIIc → IVd̂ in table 3.
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