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We introduce a new class of distributions by generalizing the subexponential class to investigate the

asymptotic relation between the tails of an infinitely divisible distribution and its Lévy measure. We

call a one-sided distribution � O-subexponential if it has positive tail satisfying

lim supx!1� � �(x, 1)=�(x, 1) , 1. Necessary and sufficient conditions for an infinitely divisible

distribution to be O-subexponential are given in a similar way to the subexponential case in work by

Embrechts et al. It is of critical importance that the O-subexponential is not closed under convolution

roots. This property leads to the difference between our result and that corresponding to the

subexponential class. Moreover, under the assumption that an infinitely divisible distribution has

exponential tail, it is shown that an infinitely divisible distribution is convolution equivalent if and

only if the ratio of its tail and its Lévy measure goes to a positive constant as x goes to infinity.

Additionally, the upper and lower limits of the ratio of the tails of a semi-stable distribution and its

Lévy measure are given.
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subexponential distribution

1. Introduction and main results

In the study of infinitely divisible distributions, one of the most important problems to

investigate is the relation between an infinitely divisible distribution and its Lévy measure.

In this paper, we consider the asymptotic relation between the tails of an infinitely divisible

distribution on [0, 1) and its Lévy measure by generalizing the subexponential class. In

this section, we mention some known results and give our results without proofs.

Hereafter, N and R denote the set of positive integers and the set of real numbers,

respectively. The function �(x) denotes the tail of a measure �, that is, �(x) ¼ �(x, 1), and

Pþ denotes the class of all distributions � on [0, 1) satisfying �(x) . 0 for every x . 0.

The class IDþ denotes the class of all infinitely divisible distributions � on [0, 1) with

Laplace transform

�̂�(s) ¼ exp

ð1
0

(e�st � 1)�(dt)

� �
,
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where the Lévy measure � satisfies
Ð1
0
(1 ^ t)�(dt) , 1 and �(t) . 0 for every t . 0. Define

the normalized Lévy measure �1 as �1 ¼ 1fx.1g�=�(1, 1).

Our concern is with the asymptotics of the ratio �(x)=�(x). We define two relations for

positive functions f (x) and g(x) on [A, 1) for some A > 0. The relation f (x) � g(x) is

defined by limx!1 f (x)=g(x) ¼ 1 and the relation f (x) � g(x) by lim inf x!1 f (x)=g(x) . 0

and lim supx!1 f (x)=g(x) , 1. Denote by � � r the convolution of distributions � and r
on [0, 1) and by �n� the nth convolution power of �. The relation ‘�’ is closed under

convolution (Proposition 2.7), but the relation ‘�’ is not (Remark 2.2). Several distribution

classes play important roles. The first one is the subexponential class S introduced by

Chistyakov (1964).

A distribution � on [0, 1) is said to be subexponential (� 2 S) if

lim
x!1

� � �(x)=�(x) ¼ 2:

If a distribution on [0, 1) has regularly varying tail, then it belongs to S. But there are

distributions in S which do not have regularly varying tail. One-sided stable distributions and

the Pareto distribution are examples of the former case, and the Weilbull distributions with

parameter less than 1 and the lognormal distribution are examples of the latter case.

Furhermore, these are in IDþ. See Embrechts (1984), Embrechts et al. (1997) and Goldie

and Klüppelberg (1998).

The following result shows that the subexponentiality is very important in the study of

the tail behaviours of an infinitely divisible distribution and its Lévy measure.

Theorem A (Embrechts et al. 1979). Let � be a distribution in IDþ with Lévy measure �.

The following are equivalent:

(i) � 2 S;
(ii) �1 2 S;
(iii) �(x) � �(x).

Motivated by the above theorem, we introduce some distribution classes. Define the class

IS as IS ¼ S \ IDþ. Let WS be the class of distributions � in Pþ such that

lim
x!1

� � �(x)=�(x) ¼ c for some c . 0:

Let WIS be the class of distributions � in IDþ such that

lim
x!1

�(x)=�(x) ¼ c for some c . 0:

We are interested in the relationships among these distribution classes. For instance, as a

generalization of Theorem A, it is an interesting problem whether WIS ¼ WS \ IDþ.
Indeed, Chover et al. (1973a; 1973b) define the convolution equivalent class and Sgibnev

(1990) gives a theorem corresponding to this class, which is an extension of Theorem A.

Define the class L(ª) with ª > 0 as the class of � such that

limx!1�(x þ k)=�(x) ¼ e�ªk for every k 2 R. A distribution � on [0, 1) is said to be

in the convolution equivalent class S(ª) with ª > 0 if � satisfies
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(i) � 2 L(ª),
(ii) limx!1� � �(x)=�(x) ¼ 2�̂�(�ª), where �̂�(�ª) ¼

Ð1
0

eª t�(dt) , 1.

It is obvious that S(0) ¼ S. A distribution � in L(ª) is said to have exponential tail with

rate ª. Let L ¼ L(0). Some generalized inverse Gaussian distributions belong to S(ª) for

some ª > 0 (Embrechts 1983).

Theorem B (Sgibnev 1990). Let ª . 0 and � be a distribution in IDþ. The following are

equivalent:

(i) � 2 S(ª);
(ii) �1 2 S(ª);
(iii) � 2 L(ª), (�̂�� ª) , 1 and �(x) � �̂�(�ª)�(x).

We deal with the more general asymptotic relation

�(x) � �(x):

To begin with, we refer to the first result on this generalization. A distribution � 2 Pþ is said

to have a dominatedly varying tail if lim supx!1�(x)=�(2x) , 1. Let D be the class of all

distributions � 2 Pþ with dominatedly varying tail. A one-sided semi-stable distribution

belongs to D (Theorem 1.3). The Peter and Paul distribution defined by �(f2kg) ¼ 2�k for

k 2 N is in D. However, it is not in S (Goldie 1978).

Theorem C (Watanabe 1996). Let � be a distribution in IDþ.

(i) The following are equivalent:

(a) � 2 D;

(b) �1 2 D.

(ii) If �1 2 D, then �(x) � �(x).

Remark 1.1. The opposite direction in (ii) does not hold. For example, the lognormal

distribution is in S but not in D.

We now define a new class of interest. We say that a distribution � on [0, 1) is O-

subexponential if

lim sup
x!1

� � �(x)=�(x) , 1:

The class of all O-subexponential distributions is denoted by OS. The class OS includes all

of the classes S, S(ª), D and WS.

Remark 1.2. Klüppelberg (1990) calls an O-subexponential distribution weak idempotent.

In relation to the class OS, we show the same type of theorem as Theorems A, B and C.

The situation is different here, because the class OS is not closed under convolution roots.

The following proposition clarifies the difference of the property on convolution between

Infinite divisibility and generalized subexponentiality 447



the class OS and the other classes. We say that a class C is closed under convolution roots

if �n� 2 C for some n 2 N implies � 2 C. Moreover, for a class C1, we say that C is closed

under convolution roots in the class C1 if �n� 2 C for some n 2 N and � 2 C1 imply � 2 C.

Proposition 1.1.

(i) S is closed under convolution roots (Embrechts et al. 1979.)

(ii) S(ª) is closed under convolution roots in the class L(ª) (Embrechts and Goldie

1982.)

(iii) D is closed under convolution roots.

(iv) OS is not closed under convolution roots. Let r be the distribution defined as

r(dx) ¼ c
X
k2T

e�k

(k þ 1)2
�k(dx),

where T ¼ fk 2 N : k ¼
P1

i¼1 ji3
i�1, ji ¼ 0 or 1g, �k is the probability measure

concentrated at k and c is the normalizing constant. Then r does not belong to OS,
but the nth convolution power rn� belongs to OS for all n > 2.

Theorem 1.1. Let � be a distribution in IDþ.

(i) The following are equivalent:

(a) �1 2 OS;
(b) �(x) � �(x).

(ii) The following are equivalent:

(a) � 2 OS;
(b) �n�

1 2 OS for some n > 1;

(c) �(x) � �n�
1 (x) for some n > 1.

If (b) holds, then the set of n 2 N such that �n�
1 2 OS is identical with the set of

n 2 N such that �( x) � �n�
1

(x) and is equal to fm 2 N : m > n0g with some

n0 2 N.

(iii) If �1 is in OS, then � is in OS. However, the converse does not hold.

Remark 1.3. There exists � 2 IDþ \ OS with �1 =2 OS. In other words, in (ii)(c) n0 is not

always equal to 1. An example is given by taking r from Proposition 1.1 as the Lévy measure

�. Then we see that �1 =2 OS but �2�1 2 OS. An early result of Grübel (1983) has some faults

in this respect.

Remark 1.4. Theorem C is obtained by using Theorem 1.1 and Proposition 1.1(iii). The

original proof in Watanabe (1996) is more complicated by virtue of employing a Tauberian

theorem.

We give two corollaries of Theorem 1.1.

Corollary 1.1. Let � be a distribution in IDþ with �1 2 OS.
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(i) For a non-negative locally integrable function f (t) on [0, 1),ðx

1

f (t)�(t)dt �
ðx

1

f (t)�(t)dt:

(ii) For a non-negative non-decreasing function g(t) on [1, 1), the integral
Ð1
1

g(t)�(dt)

is finite if and only if the integral
Ð1
1

g(t)�(dt) is finite.

Corollary 1.2. If �n� 2 OS \ IDþ for some integer n > 1, then � 2 OS \ IDþ. Thus OS is

closed under convolution roots in the class IDþ.

We consider WS and WIS again. While it is obvious that [ª>0S(ª) � WS, we do not

know whether [ª>0S(ª) ¼ WS. However, it is known that they are identical in the class

L(ª).

Theorem D (Chover et al. 1973a; 1973b; Cline 1987; Rogozin 2000). For ª > 0,

WS \ L(ª) ¼ S(ª):

On the other hand, Theorem B implies that [ª>0S(ª) \ IDþ � WIS. We conjecture the

following three identities:

(i) WS ¼ [ª>0S(ª);
(ii) WIS ¼ [ª>0S(ª) \ IDþ;

and thus,

(iii) WIS ¼ WS \ IDþ.

Combined with Theorem D, the following theorem shows that the above conjecture is

true in the class L(ª).

Theorem 1.2. For ª > 0,

WIS \ L(ª) ¼ S(ª) \ IDþ:

Corollary 1.3. Let � be a distribution in IDþ. If, for every a 2 R,

c(a) ¼ lim
x!1

�(x þ a)

�(x)

exists and is positive and finite, then there exists ª > 0 such that

� 2 S(ª) \ IDþ and c(a) ¼ e�ªa �̂�(�ª):

Remark 1.5. The condition can be weakened to the existence of c(a) for every a in a set with

positive Lebesgue measure including 0. See Theorem 1.4.1 in Bingham et al. (1987).

Although it is not easy to give the upper or lower limit of �(x)=�(x) for a distribution �

Infinite divisibility and generalized subexponentiality 449



in OS \ IDþ, we can show them for semi-stable distributions on [0, 1). An infinitely

divisible distribution � 2 Pþ is called semi-stable if, for some a . 1, there exist b . 1 and

c > 0 satisfying

�̂�(s)a ¼ �̂�(bs)e�cs for s > 0:

For a semi-stable distribution the span b and the index Æ ¼ log a=log b (0 , Æ , 1) are

important. A span is not unique, but the index is independent of the choice of span. See Sato

(1999) for semi-stable distributions on Rd .

Theorem 1.3. Let � 2 IDþ be a semi-stable distribution on [0, 1) with Lévy measure �,

index Æ and span b.

(i) The distribution � is in D.

(ii) We have

lim inf
x!1

�(x)

�(x)
¼ 1 and lim sup

x!1

�(x)

�(x)
¼ sup

1<x,b

�(x�)

�(x)
:

Thus the distribution � is in S if and only if �(x) is continuous on (0, 1).

(iii) The upper limit in (ii) is bounded by bÆ. This bound is attained if and only if

�(dx) ¼ c
P

k2Zb�kÆ�bk x0 (dx) with some c, x0 . 0.

We show some fundamental properties of distributions in OS in Section 2. Proofs of all

the statements in this section are given in Section 3.

2. Properties of the class OS
In this section, we state the properties of OS, comparing them with those of S.

We start with definitions and notation. Let OL be the class of all distributions such that

lim supx!1�(x þ k)=�(x) , 1 for every k 2 R. Let
Ð b

a
f (t)�(dt) ¼

Ð
(a,b]

f (t)�(dt) for

0 < a < b , 1. Let l�(�) ¼ lim supx!1� � �(x)=�(x) for � 2 Pþ.

Proposition 2.1.

(i) S � L (Chistyakov 1964.)

(ii) OS � OL.

Proposition 2.2.

(i) If � 2 L, then limx!1eEx�(x) ¼ 1 for every E . 0.

(ii) If � 2 OL, then limx!1eEx�(x) ¼ 1 for some E . 0.

Proof of Propositions 2.1 and 2.2. We only prove (ii) of each proposition. Assume that

� 2 OS and 0 , k < x. Then we have
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�2�(x) ¼
ð1
0�
�(x � t)�(dt)

¼ �(x)þ
ð k

0�
�(x � t)�(dt)þ

ðx

k

�(x � t)�(dt)

> �(x)þ �(x)�[0, k]þ �(x � k)�(k, x]:

Therefore,

�(x � k)

�(x)
<

� � �(x)=�(x)� 1� �[0, k]

�(k, x]
:

Letting x ! 1, we obtain

lim sup
x!1

�(x � k)

�(x)
< �(k)�1(l�(�)� 1� �[0, k]):

It follows from the assumption that the right-hand side is finite. The proof of Proposition

2.1(ii) is complete.

Note that � 2 OL if and only if �(log x) is O-regularly varying. It follows from Theorem

2.2.7 in Bingham et al. (1987, p. 74) that limx!1xE�(log x) ¼ 1 for some E . 0. h

Both S and OS are characterized by their tail behaviours as follows.

Proposition 2.3.

(i) Let �1 2 S and �2 2 Pþ. If �1(x) � c�2(x) for some c . 0, then �2 2 S (Teugels

1975.)

(ii) Let �1 2 OS and �2 2 Pþ. If �1(x) � �2(x), then �2 2 OS (Klüppelberg 1990.)

The following is a generalization of Lemma 7 in Athreya and Ney (1972, p. 149).

Proposition 2.4. If � 2 OS, then, for arbitrary E . 0, there exists c1 . 0 such that, for n > 1

and x > 0,

�n�(x)
�(x)

< c1(l
�(�)þ E� 1)n:

Proof. Let an ¼ supx>0�n�(x)=�(x) for n > 2. For any given E . 0, take y such that

supx> y� � �(x)=�(x) < l�(�)þ E. Since

�(nþ1)�(x) ¼ �(x)þ
ðx

0�
�n�(x � t)�(dt),

we have
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anþ1 < 1þ sup
0<x, y

ðx

0�

�n�(x � t)

�(x)
�(dt)þ sup

x> y

ðx

0�

�n�(x � t)

�(x)
�(dt)

< 1þ 1

�(y)
þ ansup

x> y

� � �(x)� �(x)

�(x)

< c0 þ an r,

where c0 ¼ 1þ 1=�(y) and r ¼ l�(�)þ E� 1. Note that l�(�) > 2 by the argument in the

proof of Proposition 2.1. It follows by induction that

an < c0
Xn�1

k¼0

r k þ r n < c1 r n,

where c1 ¼ 1þ c0(r � 1)�1. h

Remark 2.1 (Chistyakov 1964). For � 2 Pþ, lim inf x!1�n�(x)=�(x) > n.

Lastly, we give two propositions on the convolution properties, a part of which

corresponds to the converse of Proposition 1.1.

Proposition 2.5.

(i) S is closed under convolution power, but is not closed under convolution (Leslie

1989.)

(ii) S(ª) is closed under convolution power, but is not closed under convolution

(Klüppelberg and Villasenor 1991.)

(iii) D is closed under convolution.

(iv) OS is closed under convolution (Klüppelberg 1990.)

Proof. For (iii), observe that �1(x) _ �2(x) < �1 � �2(x) < �1(x=2)þ �2(x=2). {h}

Proposition 2.6. If �n� 2 OS for some n > 1, then �k� 2 OS for every k > n.

Proof. It is easily shown by induction, on account of Proposition 2.5(iv) and the observation,

that

�2(nþ1)�(x)
�(nþ1)�(x)

<
�4n�(x)
�n�(x)

¼ �4n�(x)
�2n�(x)

�2n�(x)
�n�(x)

:

h
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The following shows that the relation ‘�’ is closed under convolution.

Proposition 2.7. Let �i (i ¼ 1, 2, 3, 4) be in Pþ. If �1(x) � �2(x) and �3(x) � �4(x), then

�1 � �3(x) � �2 � �4(x). Therefore, if �1(x) � �2(x), then �n�
1 (x) � �n�

2 (x) for n > 1.

Proof.

�1��3(x) ¼
ð1
0

�1(x � t)�3(dt) �
ð1
0

�2(x � t)�3(dt)

¼
ð1
0

�3(x � t)�2(dt) �
ð1
0

�4(x � t)�2(dt) ¼ �2 � �4(x):

h

Remark 2.2. The relation ‘�’ is not closed under convolution. For example, let �1 ¼
1
2
(�0(dx)þ �), �2 ¼ 1

2
(�1(dx)þ �), where � is the Peter and Paul distribution. Then the

relation �2�1 (x) � �2�2 (x) does not hold, although �1(x) � �2(x).

3. Proofs of the results

In this section, we prove the results presented in Section 1. The proof of Proposition 1.1 is

given last because of its difficulty. We will use Proposition 1.1 in the proof of Theorem

1.1(iii), but Proposition 1.1 will be shown independently of other results.

3.1. Proof of Theorem 1.1

We will prove Theorem 1.1 step by step, beginning with the following proposition.

Proposition 3.1. Let ºk > 0 with k 2 N be a sequence satisfying
P1

k¼0ºk ¼ 1, º0 þ º1 , 1

and supfx > 1 :
P1

k¼0ºk x k , 1g ¼ 1. Put � ¼
P1

k¼0ºkrk� for r 2 Pþ.

(i) The following are equivalent:

(a) r 2 OS;

(b) �(x) � r(x).
(ii) If supfk : ºk . 0g ¼ 1, then the following are equivalent.

(a) � 2 OS;

(b) rn� 2 OS for some n > 1;

(c) �(x) � rn�(x) for some n > 1.

If � 2 OS, then the set fn 2 N : rn� 2 OSg is identical with the set fn 2 N :

�(x) � rn�(x)g and equal to fn 2 N : n > n0g for some n0.

Proof. Let us set x . 0. We omit the proof of (i) since this is proved in the same way as (ii)
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by using º0 þ º1 , 1 instead of supfk : ºk . 0g ¼ 1. To prove (ii), we first prove the

equivalence of (b) and (c).

(b) ) (c). If rn� 2 OS, then, by Proposition 2.4, for arbitrary E . 0, there exists c1 . 0

such that rkn�(x) < c1(l
�(rn�)þ E� 1)krn�(x) for every k > 1 and x . 0. Therefore, we

see that

�(x) ¼
X1
k¼1

ºkrk�(x) <
X1
k¼1

ºkrkn�(x) < c1
X1
k¼1

ºk(l
�(rn�)þ E� 1)krn�(x):

On the other hand, for ºm . 0 (m > n > 1),

�(x) > ºmrm�(x) > ºmrn�(x):

(c) ) (b). If we take m > 2n such that ºm . 0, then, it follows from (c) that

r2n�(x) < rm�(x) < (ºm)
�1�(x) � rn�(x),

which implies (b). Thus we see that (b) and (c) are equivalent.

(b) and (c) ) (a). Since we can take the same n in (b) and (c), it is easily obtained by

Proposition 2.3.

(a) ) (c). Let � 2 OS. Using r(x) < rk�(x) for k > 1, we have

X1
k¼1

ºkr(x) <
X1
k¼1

ºkrk�(x) ¼ �(x):

That is to say,

r(x) < (1� º0)
�1�(x):

Moreover, it follows by induction that

rk�(x) < (1� º0)
�k�k�(x): (3:1)

By Proposition 2.4,

�k�(x) < c1(l
�(�)þ E� 1)k�(x): (3:2)

We obtain from (3.1) and (3.2) that

rk�(x) < c1(l
�(�)þ E� 1)k(1� º0)

�k�(x):

Therefore, we see that

1 ¼
X1
k¼1

ºk

rk�(x)
�(x)

<
Xn

k¼1

ºk

rk�(x)
�(x)

þ c1
X1

k¼nþ1

ºk(l
�(�)þ E� 1)k(1� º0)

�k : (3:3)

The assumption allows us to choose n > 2 such that ºn . 0 and the second term of the right-

hand side is less than 1. Let us prove that

inf
x>0

rn�(x)
�(x)

. 0:
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Assume that fxj : j 2 Ng is an increasing sequence satisfying lim j!1xj ¼ 1 and

lim j!1rn�(xj)=�(xj) ¼ 0. Since

lim sup
j!1

rk�(xj)

�(xj)
< lim

j!1

rn�(xj)

�(xj)
¼ 0 for 1 < k < n,

the first term of the right-hand side of (3.3) goes to 0 as j ! 1. Then the second term

should be not less than 1. This is a contradiction.

Conversely, noticing ºn . 0, we obtain rn�(x) < (ºn)
�1�(x). Thus we obtain (c).

Since we can take the same n in (b) and (c), one half of the last assertion is true. The

other half follows from Proposition 2.6. h

Applying this proposition to the compound Poisson distribution gives the following,

which corresponds to the special case of Theorem 1.1 with finite Lévy measure.

Proposition 3.2. Let � 2 IDþ with finite Lévy measure � and put

�0 ¼
�

�(0, 1)
:

(i) The following are equivalent:

(a) �0 2 OS, equivalently, �1 2 OS;

(b) �(x) � �(x).
(ii) The following are equivalent:

(a) � 2 OS;
(b) �n�

0 2 OS for some n > 1;

(c) �(x) � �n�
0 (x) for some n > 1.

If � 2 OS, then the set fn 2 N : �n�
0 2 OSg is identical to the set fn 2 N :

�(x) � �n�
0 (x)g and equal to fn 2 N : n > n0g for some n0.

We can now prove Theorem 1.1.

Proof of Theorem 1.1. Let x . 0. First we decompose � into the convolution of two

distributions as follows. Let c ¼ �(1, 1) and define the distribution �1 in IDþ with Lévy

measure c�1 and the distribution �2 in IDþ as � ¼ �1 � �2. Comparing the tails of these

distributions with e�Ex logx (0 , E , 1) by Theorem 26.1 of Sato (1999), we see �2(x) ¼
o(�1(x)). Let c1 . 0 such that �2(x) < c1�1(x). Since

�(x) ¼
ð1
0�
�2(x � t)�1(dt) < c1

ð1
0�
�1(x � t)�1(dt) ¼ c1�2�1 (x),

we obtain

�1(x) < �(x) < c1�2�1 (x) < c1�2�(x): (3:4)

It follows from (3.4) that �1 2 OS implies � 2 OS and � 2 OS implies �2�1 2 OS. Since
�1 is a compound Poisson distribution and �1 and �2�1 have the same normalized Lévy
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measure, we see that �1 2 OS and �2�1 2 OS are equivalent by Proposition 3.2(ii). Thus,

�1 2 OS and � 2 OS are equivalent. Moreover, in this case, �(x) � �1(x).
(i) (a) ) (b). If �1 is in OS, by Proposition 3.2, �1 2 OS and �1(x) � �1(x). Moreover,

since �1(x) < �(x) < c1�2�1 (x) � �1(x), we have �(x) � �1(x). Thus, we conclude that

�(x) � �1(x) � �1(x) � �(x).
(b) ) (a). Conversely, suppose that �(x) � �(x). Then we see that

e�cc�1(x) < �1(x) < �(x) � �(x) � �1(x):

Thus we obtain �1(x) � �1(x), and Proposition 3.2 thereby implies that �1 2 OS.
(ii) Applying Proposition 3.2 to �1 and by using the fact mentioned after (3.4), we can

easily see that (a) and (b) are equivalent. Additionally, (c) is obtained from (a) and (b) by

Proposition 2.3. Hence, it is enough to show (b) from (c).

(c) ) (b). From the assumption, we have

�n�
1 (x) � �(x) > �1(x) > e�c cn

n!
�n�
1 (x):

Hence �1(x) � �n�
1 (x), which implies �n�

1 2 OS by Proposition 3.2. The last assertion in (ii)

follows from that of Proposition 3.2.

(iii) This is obvious from (i), (ii) and Remark 1.3. h

Proof of Corollary 1.1. Assertion (i) is easily shown from Theorem 1.1(i).

Noticing that OS � OL, assertion (ii) follows from the equivalence of the following:Ð1
1

g(t)�(dt) , 1,
P1

k¼1(g(k þ 1)� g(k))�(k) , 1 and
P1

k¼1(g(k þ 1)� g(k))�(k � 1)

, 1. h

Proof of Corollary 1.2. Observe that �n� and � have the same normalized Lévy measure.

h

3.2. Proof of Theorem 1.2

Before proving Theorem 1.2 we give a number of useful lemmas and propositions. We start

with an interesting equality which is a generalized version of that in Lemma 3 of Rogozin

(2000). The proof is similar and omitted.

Lemma 3.1. Let r be a distribution on [0, 1). If
Ð1
0� tr(dt) , 1, then, for n > 2 and x . 0,ð1

x

rn�(t)dt ¼
Xn�1

k¼1

ðx

0

rk�(x � t)r(t)dt þ n

ð1
x

r(t)dt:

The following lemmas, due to Rudin (1973), will be used in the proof of Proposition 3.3.

Lemma 3.2. Let � ¼
P1

k¼0ºkrk� for r 2 Pþ with ºk > 0 and
P1

k¼0ºk ¼ 1. If there exists

n 2 N such that
Ð1
0

t nr(dt) ¼ 1 and
P1

k¼0k nºk , 1, then
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lim inf
x!1

�(x)=r(x) ¼
X1
k¼0

kºk :

Lemma 3.3. Let f (x) ¼
P1

k¼0 f k x k with f k . 0, F(x) ¼
P1

k¼0ºk x k with ºk > 0. Suppose

that f (1) , 1, f (x) ¼ 1 for every x . 1, F( f (1)) , 1 and there exists x . f (1) such that

F(x) , 1. Then

lim inf
n!1

[F( f (x))]n

f n

<
X1
k¼1

kºk f (1)k�1,

where [:]n denotes the Taylor expansion coefficient of x n.

Proposition 3.3. Suppose that ºk > 0 for k > 0,
P1

k¼0ºk ¼ 1 and supfx > 1 :P1
k¼0ºk x k , 1g ¼ 1. Put � ¼

P1
k¼0ºkrk� for r 2 Pþ. If r 2 OS \ L, then

lim inf
x!1

�(x)

r(x)
¼

X1
k¼1

kºk : (3:5)

Proof. Put c ¼
P1

k¼1kºk . If
Ð1
0� tr(dt) ¼ 1, we obtain (3.5) from Lemma 3.2 directly. IfÐ1

0� tr(dt) , 1, we consider the quantity

lim inf
x!1

1

r(x)

ð1
x

(�(t)� cr(t))dt:

It follows from Proposition 2.4 that
P1

k¼0ºk

Ð1
x

rk�(t)dt , 1. Thus, in the following

estimation, exchanging the order of sum and integral is permitted. Using Lemma 3.1 and

Proposition 2.4, we obtain

lim inf
x!1

1

r(x)

ð1
x

(�(t)� cr(t))dt ¼ lim inf
x!1

1

r(x)

X1
k¼2

ð1
x

ºk(rk�(t)� kr(t))dt

¼ lim inf
x!1

1

r(x)

X1
k¼2

ºk

Xk�1

j¼1

ðx

0

r j�(x � t)r(t)dt

< c2 lim inf
x!1

1

r(x)

ðx

0

r(x � t)r(t)dt, (3:6)

where the constant c2 defined by c2 ¼ c1
P1

k¼2ºk(l
�(r)þ E� 1)k�1(k � 1) is finite.

Moreover, we have
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lim inf
x!1

1

r(x)

ðx

0

r(x � t)r(t)dt < lim inf
n!1

1

r(n)

Xn�1

k¼0

r(n � k � 1)r(k)

< sup
k>0

r(k)
r(k þ 1)

lim inf
n!1

1

r(n)

Xn

k¼0

r(n � k)r(k): (3:7)

Note that supk>0r(k)=r(k þ 1) , 1 because r 2 OS � OL. Let f k ¼ r(k) and F(x) ¼
x2 in Lemma 3.3. Then, f (1) ¼

P1
k¼0r(k) <

Ð1
0
(t þ 1)r(dt) , 1. We see from r 2 L that

f (x) ¼
P1

k¼0r(k)x
k > x�1

Ð1
0

eE tr(t)dt ¼ 1 for x ¼ eE with every E . 0. Hence, using

Lemma 3.3,

lim inf
n!1

1

r(n)

Xn

k¼0

r(n � k)r(k) <
X1
k¼1

kºk f (1)k�1 ¼ 2
X1
k¼0

r(k) , 1: (3:8)

We obtain from (3.6), (3.7) and (3.8) that

lim inf
x!1

1

r(x)

ð1
x

(�(t)� cr(t))dt , 1: (3:9)

On the other hand, assume that lim inf x!1�(x)=r(x) . c. Then there exists E . 0 such that

�(x)=r(x) . c þ E for all x large enough. Thus

lim inf
x!1

1

r(x)

ð1
x

(�(t)� cr(t))dt > lim inf
x!1

E
r(x)

ð1
x

r(t)dt:

However, since r 2 L, the right-hand side goes to infinity by Feller (1971, Theorem 1,

p. 281). Since this contradicts (3.9), we must have lim inf x!1�(x)=r(x) < c. It follows from

Fatou’s lemma and Remark 2.1 that lim inf x!1�(x)=r(x) > c. Therefore, we conclude that

lim inf x!1�(x)=r(x) ¼ c. h

The following proposition is the key to proving Theorems 1.2 and 1.3. Part (i) is due to

Embrechts and Goldie (1981, Proposition 2).

Proposition 3.4. (i) For � 2 IDþ,

lim inf
x!1

�(x)

�(x)
> 1:

(ii) If � 2 IDþ and �1 2 OS \ L, then lim inf x!1�(x)=�(x) ¼ 1.

Proof. (ii) Let x . 0. Let �1 and �2 be the same as in the proof of Theorem 1.1. Write �1(x)
as the sum of two terms as follows:

�1(x) ¼
X1
k¼1

e�cck

k!
�k�
1 (x) ¼

Xn

k¼1

þ
X1

k¼nþ1

¼ J1,n(x)þ J2,n(x):

From Proposition 2.4, limn!1lim supx!1J2,n(x)=J1,n(x) ¼ 0. Since L is closed under

convolution (Embrechts and Goldie 1980), limx!1J1,n(x þ k)=J1,n(x) ¼ 1 for every k 2 R.
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Hence we have limx!1�1(x þ k)=�1(x) ¼ 1 for every k 2 R, which means that �1 2 L.
Combining with Theorem 1.1, we obtain �1 2 OS \ L. We have, for x . y . 0,

�(x) ¼ �1 � �2(x) ¼
ð y

0�
�1(x � t)�2(dt)þ

ðx� y

0�
�2(x � t)�1(dt)þ �1(x � y)�2(y)

¼ I1(x)þ I2(x)þ I3(x):

Since �1 2 L, we easily see that lim y!1limx!1 I1(x)=�1(x) ¼ 1 and lim y!1
limx!1 I3(x)=�1(x) ¼ 0. Furthermore, since �2(x) ¼ o(�1(x)), for arbitrary E . 0, we can

take y so large that, for x . y,

I2(x)

�1(x)
¼

ðx� y

0�

�2(x � t)

�1(x � t)

�1(x � t)

�1(x)
�1(dt)

, E
ðx� y

0�

�1(x � t)

�1(x)
�1(dt) < E sup

x.0

�1 � �1(x)

�1(x)
:

Thus we obtain by �1 2 OS that lim y!1lim supx!1 I2(x)=�1(x) ¼ 0. Therefore, we have

�(x) � �1(x). It follows from Proposition 3.3 that

lim inf
x!1

�(x)=�(x) ¼ lim inf
x!1

�1(x)=c�1(x) ¼
X1
k¼1

kºk=c ¼ 1:

h

Proof of Theorem 1.2. First we prove the case of ª ¼ 0. By Theorem A, we easily see that

S \ IDþ � WIS \ L. Conversely, suppose that � 2 WIS \ L. We can take c . 0 such that

�(x) � c�(x). By using this and Theorem 1.1(i) we see that �1 2 OS \ L. Thus we see from

Proposition 3.4 that

c ¼ lim
x!1

�(x)

�(x)
¼ lim inf

x!1

�(x)

�(x)
¼ 1:

This implies � 2 S \ IDþ by Theorem A.

Secondly, we deal with the case of ª . 0. By Theorem B, S(ª) \ IDþ � WIS \ L(ª).
Conversely, assume that � 2 WIS \ L(ª). Then there exists c . 0 satisfying �(x) � c�(x).
Using this and Theorem 1.1(i), we have �1 2 OS \ L(ª). This implies that �1(�ª) ¼Ð1
0

eª t�1(dt) , 1. In fact, thanks to Fatou’s lemma, we find thatð1
0

eª t�1(dt) ¼
ð1
0

lim
x!1

�1(x � t)

�1(x)
�1(dt) < lim inf

x!1

�1 � �1(x)
�1(x)

, 1:

Similarly, we have �̂�(�ª) , 1. Now we can define a measure �ª and a probability measure

�ª by
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�ª(x) ¼
ð1

x

eª t�(dt),

�ª(x) ¼ c1

ð1
x

eª t�(dt), where c1 ¼ (�̂�(�ª))�1:

This is one of the density transformations called Esscher or exponential transformations.

Then, �ª is in IDþ with Lévy measure �ª. See Sato (1999; 2000). Integral by parts leads, for

y . x . 0, to ð y

x

eª t�(dt) ¼ �(x)eªx � �(y)eª y þ ª

ð y

x

eª t�(t)dt:

We have lim y!1�(y)eª y=ª
Ð y

x
eª t�(t)dt ¼ 0 by the slow variation of xª�(log x) (Feller 1971,

Theorem 1, p.281). Further, since
Ð1
0

eª t�(dt) , 1, we see that
Ð1
0

eª t�(t)dt , 1. Then,

again by Feller (1971),

lim
x!1

�(x)eªx=ª

ð1
x

eª t�(t)dt ¼ 0:

Thus, we obtain

lim
x!1

�ª(x)=

ð1
x

eª t�(t)dt ¼ ªc1:

Similarly,

lim
x!1

�ª(x)=

ð1
x

eª t�(t)dt ¼ ª:

Since limx!1�(x)=�(x) ¼ c, we obtain that

lim
x!1

�ª(x)=�ª(x) ¼ lim
x!1

c1

ð1
x

eª t�(t)dt

�ð1
x

eª t�(t)dt ¼ c1c:

This means that �ª 2 WIS. On the other hand, we see that �ª 2 L from � 2 L(ª). Thus
�ª 2 WIS \ L ¼ S \ IDþ. Therefore, c1c ¼ 1 by Theorem A, that is, c ¼ �̂�(�ª).
Drawing everything together, we have � 2 L(ª), �̂�(�ª) , 1 and �̂�(x) � �(�ª)�(x).

Finally, by Theorem B, we conclude that � 2 S(ª) \ IDþ. h

Proof of Corollary 1.3. For a 2 R, put

g(a) ¼ lim
x!1

�(x þ a)

�(x)
¼ c(a)

c(0)
:

Then, g(a) is monotone and satisfies g(a þ b) ¼ g(a)g(b): This means that g(a) ¼ e�ªa for

some ª > 0. Therefore, � 2 L(ª) and limx!1�(x)=�(x) ¼ c(0). It follows from the proof of

Theorem 1.2 that c(0) ¼ �̂�(�ª) and � 2 S(ª) \ IDþ. Finally, we have c(a) ¼ c(0)e�ªa ¼
�̂�(�ª)e�ªa. h
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3.3. Proof of Theorem 1.3

Lemma 3.4 (Yakymiv 1987). Let � 2 IDþ with Lévy measure �. If �1 2 D, then, for

arbitrary E, � 2 (0, 1), there exists x0 such that

(1� E)�((1þ �)x) < �(x) < (1þ E)�((1� �)x) for x > x0:

Proof of Theorem 1.3. Note that the Lévy measure � has a certain periodicity, that is,

�(bE) ¼ b�Æ�(E) for a Borel set E in (0, 1).

(i) It is obvious from Theorem C and �1 2 D that � 2 D.

(ii) By Proposition 3.4, we have

1 < lim inf
x!1

�(x)

�(x)
: (3:10)

Since �(x) is continuous by Example 28.2 of Sato (1999),

lim inf
x!1

�(x)

�(x)
¼ lim inf

x!1
lim
E!0

�(x � E)
�(x � E)

¼ lim inf
x!1

�(x)

�(x�)
: (3:11)

By Lemma 3.4 and the periodicity of �, we obtain

lim sup
x�1

�(x)

�(x)
< inf

r,1
lim sup

x!1

�(rx)

�(x)
¼ inf

r,1
sup

1<x,b

�(rx)

�(x)
, (3:12)

lim inf
x!1

�(x)

�(x�)
¼ lim sup

x!1

�(x�)

�(x)

� ��1

¼ sup
1<x,b

�(x�)

�(x)

� ��1

: (3:13)

Choose sequences fxk : k 2 Ng and frk : k 2 Ng such that 1 < xk , b, xk ! x0,

1 < x0 < b, rk " 1 and limk!1�(rk xk)=�(xk) ¼ inf r,1sup1<x,b�(rx)=�(x). Then, we see

that

inf
r,1

sup
1<x,b

�(rx)

�(x)
¼ lim

k!1

�(rk xk)

�(xk)
<

lim sup
k!1

�(rk xk)

lim inf
k!1

�(xk)

<
�(x0�)

�(x0)
< sup

1<x,b

�(x�)

�(x)
: (3:14)

We obtain from (3.10)–(3.14) that
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1 < lim inf
x!1

�(x)

�(x)
¼ lim inf

x!1

�(x)

�(x�)

¼ lim inf
x!1

�(x)

�(x)

�(x)

�(x�)

< lim sup
x!1

�(x)

�(x)
lim inf

x!1

�(x)

�(x�)

< inf
r,1

sup
1<x,b

�(rx)

�(x)
sup

1<x,b

�(x�)

�(x)

� ��1

¼ 1:

Thus, we obtain lim inf x!1�(x)=�(x) ¼ 1 and lim supx!1�(x)=�(x) ¼ sup1<x,b�(x�)=�(x).
(iii) First, we show that sup1<x,b�(x�)=�(x) < bÆ. Let x 2 I k ¼ [bk x0, bkþ1x0) for k 2 N

with x0 . 0. Since �(x�) <
P1

j¼k�(I j) ¼ (1� b�Æ)�1�(I k) and �(x) >
P1

j¼kþ1�(I j) ¼
(1� b�Æ)�1�(I kþ1), we have �(x�)=�(x) < �(I k)=�(I kþ1) ¼ bÆ. It is obvious that

sup1<x,b�(x�)=�(x) ¼ bÆ if �(dx) ¼ c
P

k2Zb�kÆ�b k x0 (dx). Conversely, if sup1<x,b�(x�)=
�(x) ¼ bÆ, then there exists a sequence fxk : k 2 Ng such that 1 < xk , b, xk ! x0 and

lim
k!1

�(xk�)

�(xk)
¼ bÆ:

Since �(xk) ¼ b�Æ�(b�1xk), this implies that limk!1�(b�1xk , xk) ¼ 0. Since

�(b�1x0, x0) < �(lim inf
k!1

(b�1xk , xk)) < lim inf
k!1

�(b�1xk , xk) ¼ 0,

we see that the support of � is concentrated in [k2Zfbk x0g. That is, �(dx) ¼
c
P

k2Zb�kÆ�bk x0 (dx) with some c . 0. h

3.4. Proof of Proposition 1.1

(iii) Use �(x) < �n�(x) < n�(x=n).

(iv) Instead of r, we study, adding a mass on f0g, the distribution � defined by

�(dx) ¼ c1
X
n2T0

e�n

(n þ 1)2
�n(dx),

where T0 ¼ fn 2 N [ f0g : n ¼
P1

i¼1 ji3
i�1, ji ¼ 0 or 1g and c1 is the normalized constant.

It is enough to show that � =2 OS and �n� 2 OS for n > 2, because it is shown by

Proposition 2.7 that �n�(x) � rn�(x) for n > 2.

Throughout this proof, let every integer be expressed in the ternary system and f (n, i)

denote the ith digit of an integer n (counting from the right). Let us prove � =2 OL, which
leads to � =2 OS. Let nk be the largest number consisting of k digits in T0, that is,

f (nk , i) ¼ 1 for 1 < i < k, and mk be the smallest number consisting of k þ 1 digits in T0,

that is, f (mk , k þ 1) ¼ 1 and f (mk , i) ¼ 0 for 1 < i < k. Note that mk is next to nk in T0,

and
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nk ¼
Xk�1

i¼0

3i ¼ 1

2
(3k � 1), mk ¼ 3k :

From

�(nk � 1) . �(fnkg) ¼ c1
e�nk

(nk þ 1)2

and

�(nk) ¼ �[mk , 1) , c1
X1
n¼m k

e�n(n þ 1)�2 ,
c1e

e� 1

e�m k

(mk þ 1)2
,

we see that

�(nk � 1)

�(nk)
.

e� 1

e

(mk þ 1)2

(nk þ 1)2
emk

en k
¼ 4(1� e�1) exp

1

2
(3k þ 1)

� �
:

Hence,

lim sup
x!1

�(x � 1)

�(x)
¼ 1:

This means that � =2 OL.
We have to show that �n� 2 OS for every n > 2. By Proposition 2.6, it is enough to

show that �2� 2 OS. We have

�2�(fng) � e�n
X
(C0)

1

(n1 þ 1)2(n2 þ 1)2
,

where (C0) means the condition n1, n2 2 T0, n1 > n2 and n ¼ n1 þ n2. It is easy to see that

the support of �2� is N [ f0g.
The representation of n 2 N in the ternary system is denoted by h.i. For example,

3 ¼ h10i. We now prove the following:

�2�(fng) � e�n

n2

2q(n)

32 p(n)
, (3:15)

where

p ¼ p(n) ¼ sup i : ji ¼ 2, n ¼
X1
i¼1

ji3
i�1

( )
,

q ¼ q(n) ¼ #fi : ji ¼ 1, 1 < i < p(n)� 1g,

with the understanding that p ¼ 0 for n 2 T0 and q ¼ 0 for p ¼ 0 or 1. For example, p ¼ 4

and q ¼ 2 for n ¼ h102101i.
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Put I(n) ¼
P

(C0)
(n2 þ 1)�2. Since

�2�(fng) � e�n
X
(C0)

1

(n1 þ 1)2(n2 þ 1)2
� e�n

n2
I(n),

(3.15) is equivalent to the relation

I(n) � 2q(n)

32 p(n)
: (3:16)

We estimate the number of combinations of n1 and n2 satisfying (C0) for given n. If

f (n, i) ¼ 2 (0) for some i > 1, then it necessarily means that ( f (n1, i), f (n2, i)) ¼ (1, 1)

((0,0)). However, if f (n, i) ¼ 1, then there may be two patterns: ( f (n1, i), f (n2, i)) ¼ (1, 0)

or (0, 1). For instance, the set of (n1, n2) corresponding to n ¼ h211i is f(h111i,
h100i), (h110i, h101i)g. Hence, only the digit 1 in the ternary representation of n influences

the number of combinations of n1 and n2 corresponding to n. Keeping this in mind, we

show (3.16) in the case p(n) ¼ 0 and in the case p(n) > 1 separately. If p(n) ¼ 0, then,

seeing that n1 ¼ n 2 T0 and n2 ¼ 0, we immediately obtain that I(n) > 1. Also, we easily

obtain

I(n) ¼
X
(C0)

1

(n2 þ 1)2
<

X
k2N[f0g

1

(k þ 1)2
, 1:

Let p(n) > 1 and consider the lower bound of I(n). Now we can find an n2 which has p(n)

digits. Such an n2 does not exceed 1
2
(3 p(n) � 1), which is the largest number consisting of p

digits in T0. On the other hand, if M ¼ #fn2: n2 is a number consisting of p digits

appearing in (n1, n2) and satisfying (C0)g, then M ¼ 2q or 2q�1. For example, if n ¼ h211i,
then p ¼ 3, q ¼ 2, and M ¼ 2q�1 ¼ 2; if n ¼ h1211i, then p ¼ 3, q ¼ 2, and M ¼ 2q ¼ 4.

Thus, we see that

I(n) >
2q(n)þ1

(3 p(n) þ 1)2
.

2q(n)

32 p(n)
:

Next we consider the upper bound of I(n), assuming p(n) > 1. Since f (n2, p) ¼ 1,

n2 ¼
X1
i¼1

ji3
i�1 >

X1
i¼ pþ1

ji3
i�1 þ 3 p�1:

Denote g(m) ¼ supfi : ji ¼ 1, m ¼
P1

i¼1 ji3
i�1g for m 2 T0nf0g and g(0) ¼ 0. Then g(n2)

> p(n). We write I(n) as the sum of I1(n) and I2(n), where

I1(n) ¼
X

(C0), g(n2)> pþ1

1

(n2 þ 1)2
, I2(n) ¼

X
(C0), g(n2)¼ p

1

(n2 þ 1)2
:

Suppose that g(n2) > p(n)þ 1. Then

n2 > 3 g(n2)�1 þ 3 p�1: (3:17)

Meanwhile, for j > p(n)þ 1, #fn2 : g(n2) ¼ jg is estimated by partitioning the digits of n2

into three parts and considering their combinations respectively as follows. The number of
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possible combinations of digits of n2 from the first to the ( p � 1)th is 2q, f (n2, p) is

necessarily equal to 1, and the number of possible combinations of digits of n2 from the

( p þ 1)th to the ( j � 1)th is not more than 2 j� p�1. Multiplying these together, we have

#fn2 : g(n2) ¼ jg < 2 j� pþq�1: (3:18)

From (3.17) and (3.18), we obtain

I1(n) <
X

j> pþ1

2 j� pþq�1

(3 j�1 þ 3 p�1)2
<

9

7

2q

32 p
: (3:19)

On the other hand, suppose that g(n2) ¼ p(n). Since n2 > 3 p�1 and #fn2 : g(n2) ¼ pg ¼
2q or 2q�1, we see that

I2(n) <
2q

(3 p�1 þ 1)2
< 93

2q

32 p
: (3:20)

From (3.19) and (3.20), we see in the case where p(n) > 1 that

I(n) ¼ I1(n)þ I2(n) <
72

7

2q

32 p
:

We have finished the case where p(n) > 1. Thus we have (3.16), which implies (3.15).

Now we shall show that

�3�(fng) � �2�(fng): (3:21)

Considering the case where n3 ¼ 0, we easily obtain the lower bound of �3�(fng),
namely, �3�(fng) > �(f0g)�2�(fng).

Let us show that �3
�
(fng)=�2�(fng) is bounded above. For a given n, let (C1) denote the

condition that n1, n2, n3 2 T0, n1 > n2 > n3 and n ¼ n1 þ n2 þ n3. Then

�3
�
(fng) � e�n

X
(C1)

1

(n1 þ 1)2(n2 þ 1)2(n3 þ 1)2
:

This time we estimate the number of combinations when n is the sum of three elements in

T0. In this case, we have to take into account the contribution from the lower places. Let

J (n) ¼
P

(C1)
(n2 þ 1)�2(n3 þ 1)�2. Recalling (3.15) and noticing that

X
(C1)

1

(n1 þ 1)2(n2 þ 1)2(n3 þ 1)2
<

9

(n þ 1)2
J (n),

we see that, in order to prove that �3�(fng)=�2�(fng) is bounded above, it is sufficient to

show that

J (n) < c0
2q

32 p
, (3:22)

where c0 is a positive constant that does not depend on n.
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If p(n) ¼ 0 or 1, then (3.22) is obtained fromX
(C1)

1

(n2 þ 1)2(n3 þ 1)2
,

X
n2,n32N[f0g

1

(n2 þ 1)2(n3 þ 1)2
, 1:

Next, we consider the case where p > 2. Then note that g(n2) > p � 1 > 1. We have

J (n) ¼
X

j> p�1

X
(C1), g(n2)¼ j

1

(n2 þ 1)2(n3 þ 1)2

<
X

j> p�1

1

(3 j�1 þ 1)2

X
(C1), g(n2)¼ j

1

(n3 þ 1)2

<
X

j> p�1

1

(3 j�1 þ 1)2

X
0<k< j

N (C1, j, k)

(3k�1 þ 1)2
, (3:23)

where N (C1, j, k) ¼ #f(n1, n2, n3) : (C1), g(n2) ¼ j, g(n3) ¼ kg. We shall show that

N (C1, j, k) < 2 j� pþqþ18k : (3:24)

Classifying (g(n2), g(n3)) ¼ ( j, k) into seven cases in the following way, we can prove

(3.24) in each case: (a) j > p þ 1, k < p � 1; (b) j > p þ 1, k ¼ p; (c) j > p þ 1,

k > p þ 1; (d) j ¼ p, k < p � 1; (e) j ¼ k ¼ p; (f) j ¼ p � 1, k < p � 2; (g)

j ¼ k ¼ p � 1. Since every case can be handled in a similar way, we give the proof

only for case (a). In this case, k , p , j. If k ¼ 0, then N (C1, j, 0) < 2 j� pþq. Let k > 1.

When we count the number of combinations, we partition the digits of n into several parts

and consider the combinations in each part. The parts in case (a) are as follows: from the

first digit to the kth; from the (k þ 1)th to the pth; from the ( p þ 1)th to the ( j � 1)th; and

from the jth to the last. The last of these does not increase the number of combinations.

The number of combinations from the first to the kth digit is not more than 8k , since each

digit in n1, n2 and n3 is 0 or 1. The combinations in this first part are of two kinds:

whether the contribution to the (k þ 1)th place from the kth place does not exist (call this

the first kind), or does exist (call this the second kind). In the case of the first kind, we can

deal separately with the first to the kth digits and with the (k þ 1)th digit onwards. From

the (k þ 1)th to the pth digits, the number of combinations is determined by the number of

1s from the (k þ 1)th to the (p � 1)th digits of n, which is not more than q. Hence, the

number of combinations in this part is bounded by 2q. From the (p þ 1)th digit to the

( j � 1)th, the number of combinations is determined by the number of 1s in this sequence,

which is not more than j � p � 1. Thus, the number of combinations in this part is

bounded by 2 j� p�1. Combining the combinations of each part, we see that the number of

combinations of the first kind from the (k þ 1)th digit does not exceed 2 j� pþq�1. For

combinations of the second kind, we pay attention to the (k þ 1)th digit of n. If

f (n, k þ 1) ¼ 2, then ( f (n1, k þ 1), f (n2, k þ 1)) ¼ (1, 0) or (0, 1) and there is no

contribution to the (k þ 2)th place from the (k þ 1)th place. If f (n, k þ 1) ¼ 1, then

necessarily ( f (n1, k þ 1), f (n2, k þ 1)) ¼ (0, 0). Lastly, if f (n, k þ 1) ¼ 0, then ( f (n1,

k þ 1), f (n2, k þ 1)) ¼ (1, 1) and there is a contribution to the (k þ 2)th place from the
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(k þ 1)th place. Then we consider the same thing for the (k þ 2)th digit and repeat the

same procedure inductively. Noticing that contribution to the next-left place stops before the

pth place, we see that the number of combinations of the second kind from the (k þ 1)th

digit to the last does not exceed twice the number of the first kind, that is, 2 j� pþq.

Combining these with the combinations in the part from the first digit to the kth, we have

finished the proof of (3.24) in case (a) with k > 1. Thus, we obtain

X
0<k< j

N (C1, j, k)

(3k�1 þ 1)2
<

X
0<k< j

2 j� pþqþ18k

(3k�1 þ 1)2
, 813 2 j� pþqþ1: (3:25)

From (3.23) and (3.25), we have (3.22). This completes the proof of (3.21).

Finally, we prove �2� 2 OS. We have

�4�(x)
�2�(x)

¼ �4�(x)
�3�(x)

�3�(x)
�2�(x)

:

Since it follows from (3.21) that, for positive constants c1 and c2 which do not depend on n,

0 , c1 ,
�3�(fng)
�2�(fng) , c2 , 1,

we see that c1 , �3�(x)=�2�(x) , c2. Furthermore, since

�4�(x)
�3�(x)

¼

ð1
0

�3�(x � t)�(dt)ð1
0

�2�(x � t)�(dt)

,

we obtain c1 , �4�(x)=�3�(x) , c2. Thus, we conclude that �2� 2 OS.

Remark 3.1. We conjecture that, for every p 2 N, it is possible to construct a distribution �
on [0, 1) such that �k� =2 OS for 1 < k < p and �k� 2 OS for k > p þ 1 by generalizing

the above method.

4. Additional remarks

Remark 4.1. Rogozin (2000) states that the proof of Theorem D by Chover et al. (1973a;

1973b) is not complete for ª ¼ 0 and that there is a logical gap in the equality on line 12 on

p. 356 of Cline (1987). See also Rogozin and Sgibnev (1999). We agree with him, but found

that the logical gap in Cline’s proof is not critical and thus Cline’s proof of Theorem D is

correct.

Remark 4.2. Lemma 2.1(iv) of Cline (1987) is not correct. A counterexample is as follows.

For n 2 N, define Ai(x) (i ¼ 1, 2, 3, 4) as A1(x) ¼ 1=n2, A2(x) ¼ 1, A3(x) ¼ 1=n, A4(x) ¼ 1

for 2n < x , 2n þ 1, and A1(x) ¼ 1, A2(x) ¼ 1=n2, A3(x) ¼ 1, A4(x) ¼ 1=n for 2n þ 1 <

x , 2(n þ 1).
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This lemma was used in Cline’s (1987) Lemma 3.1(iii), Corollary 3.2(i), Theorem

2.13(iii), Corollary 2.14, and Theorem 3.4. Moreover, Corollary 3.3, Theorem 4.1, and

Corollary 4.2 of Klüppelberg (1989) depend on Cline’s Corollary 2.14. Lemmas 1 and 2

and Theorem 1 of Klüppelberg and Villasenor (1991) depend on Cline’s Theorem 3.4.

Finally, Theorem 5.2 of Goldie and Klüppelberg (1998) depends on Cline’s Theorem

2.13(iii). Thus the all above results should be reconsidered.
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Klüppelberg, C. and Villasenor, J.A. (1991) The full solution of the convolution closure problem for

convolution-equivalent distributions. J. Math. Anal. Appl., 160, 79–92.

Leslie, J.R. (1989) On the non-closure under convolution of the subexponential family. J. Appl.

Probab., 26, 58–66.

Rogozin, B.A. (2000) On the constant in the definition of subexponential distributions. Theory Probab.

Appl., 44, 409–412.

Rogozin, B.A. and Sgibnev, M.S. (1999) Strong subexponential distributions and Banach algebras of

measures. Siberian Math. J., 40, 963–971.

Rudin, W. (1973) Limits of ratios of tails of measures. Ann. Probab., 1, 982–994.
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Sato, K. (2000) Density Transformation in Lévy Processes, MaPhySto Lecture notes no. 7. Aarhus:

MaPhySto.

Sgibnev, M.S. (1990) Asymptotics of infinitely divisible distributions on R. Siberian Math. J., 31,

115–119.

Teugels, J. (1975) The class of subexponential distributions. Ann. Probab., 3, 1000–1011.

Watanabe, T. (1996) Sample function behavior of increasing processes of class L. Probab. Theory

Related Fields, 104, 349–374.

Yakymiv, A.L. (1987) Asymptotic behavior of a class of infinitely divisible distributions. Theory

Probab. Appl., 32, 628–639.

Received July 2003 and revised March 2004

Infinite divisibility and generalized subexponentiality 469


	1.&X;Introduction and main results
	2.&X;Properties of the class
	3.&X;Proofs of the results
	3.1.&Y;Proof of Theorem 1.1

	Equation 1
	Equation 2
	Equation 3
	Equation 4
	3.2.&Y;Proof of Theorem 1.2

	Equation 5
	Equation 8
	Equation 9
	3.3.&Y;Proof of Theorem 1.3

	Equation 10
	Equation 11
	Equation 12
	Equation 13
	3.4.&Y;Proof of Proposition 1.1

	Equation 15
	Equation 16
	Equation 17
	Equation 18
	Equation 19
	Equation 20
	Equation 21
	Equation 22
	Equation 24
	Equation 25
	4.&X;Additional remarks
	Acknowledgement
	References
	mkr1
	mkr2
	mkr3
	mkr4
	mkr5
	mkr6
	mkr7
	mkr8
	mkr9
	mkr10
	mkr11
	mkr12
	mkr13
	mkr14
	mkr15
	mkr16
	mkr17
	mkr18
	mkr19
	mkr20
	mkr21
	mkr22
	mkr23
	mkr24
	mkr25
	mkr26
	mkr27
	mkr28
	mkr29
	mkr30

