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Infinite Feature Selection:
a Graph-based Feature Filtering Approach

Giorgio Roffo, Simone Melzi, Member, IEEE , Umberto Castellani,

Alessandro Vinciarelli, Member, IEEE and Marco Cristani, Member, IEEE

Abstract—– We propose a filtering feature selection framework that considers a subset of features as a path in a graph, where a node

is a feature and an edge indicates pairwise (customizable) relations among features, dealing with relevance and redundancy principles.

By two different interpretations (exploiting properties of power series of matrices and relying on Markov chains fundamentals) we can

evaluate the values of paths (i.e., feature subsets) of arbitrary lengths, eventually go to infinite, from which we dub our framework

Infinite Feature Selection (Inf-FS). Going to infinite allows to constrain the computational complexity of the selection process, and to

rank the features in an elegant way, that is, considering the value of any path (subset) containing a particular feature. We also propose

a simple unsupervised strategy to cut the ranking, so providing the subset of features to keep. In the experiments, we analyze diverse

setups with heterogeneous features, for a total of 11 benchmarks, comparing against 18 widely-know yet effective comparative

approaches. The results show that Inf-FS behaves better in almost any situation, that is, when the number of features to keep are fixed

a priori, or when the decision of the subset cardinality is part of the process.–

Index Terms—Feature selection, filter methods, Markov chains.

✦

1 INTRODUCTION

O
VER the last few decades, successful approaches to machine

learning problems have been based initially on hand-crafted

features (e.g., SIFT and HOG-like [1], [2], [3], [4], dictionary-

based [5]) that evolved into automatically learned ones with the

diffusion of deep learning models [6], [7], [8]. Through these

advancements, feature selection (FS) still remains an active and

growing research area that enables both dimensionality reduction

and data interpretability, looking for features which are relevant

and not redundant [9], [10], [11].

In this paper we introduce a fast graph-based feature filtering

approach that ranks and selects features by considering the pos-

sible subsets of features as paths on a graph, and works in an

unsupervised or supervised setup.

Our framework is composed by three main steps. In the

first step, an undirected fully-connected weighted graph is built,

where the node ~vi, 1 ≤ i ≤ n, corresponds to the feature

fi, and each edge connecting ~vi to ~vj has associated a weight,

or value, modeling the expectation that features fi and fj are

relevant and not redundant. The weight comes from customizable

pairwise relations among feature distributions, which can be easily

crafted by the user, and, as a future perspective, learned directly

from data. Here we present two instances of pairwise relations:

one exploiting class information (Inf-FSS), the other one being

completely agnostic (Inf-FSU ).

In the second step, the weighted adjacency matrix associated

to the graph is employed to assess the value of each feature (i.e., a

node in the graph) while considering possible subsets of features

(i.e., subsets of nodes) as they were paths of variable length. Two
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interpretations can be exploited: one comes from the properties

of power series of matrices, the other one from the concept of

absorbing Markov chain. In both the cases, we compute a vector

which at the i-th entry expresses the value (or probability) of

having a particular feature in a subset of any length, summing

for all the possible lengths, until infinite. Going to infinite allows

us to reduce the computational complexity from O(n3lT ) (n
features, l path length, T samples) to O(n3T ). For this reason, we

dubbed our approach Infinite Feature selection (Inf-FS). Ranking

the values of the “infinite” vector gives the ordered importance of

the features.

In the third step, a threshold over the ranking is automatically

selected by clustering over the ranked value. The rationale is

to individuate at least two distributions, one which contains the

features to keep with higher value, the other the ones to discard.

The proposed framework is compared against 18 comparative

approaches of feature selection, with the goal of feeding the

selected features into an SVM classifier.

As for the datasets, we selected 11 publicly available bench-

marks to deal with diverse FS scenarios and challenges. In

particular we consider five DNA microarray datasets for can-

cer classification (Colon [12], Lymphoma [13], Leukemia [13],

Lung [14], Prostate [15]), handwritten character recognition

(GINA [16]), general classification tasks from the NIPS feature

selection challenge (MADELON, GISETTE [17], DEXTER [18]),

and two object recognition datasets with convolutional neural

networks (CNNs) features (PASCAL VOC 2007 [19] and CalTech

101 [20]).

One of the most interesting aspects shown in the experiments

is the flexibility of Inf-FS, both in its unsupervised and super-

vised version: independently on the scenario (small-sample+high

dimensional, unbalanced classes, severe interclass overlap, noise)

Inf-FS overcomes the competitors, and if not, it gives the sec-

ond or third best performance, promoting itself as all-purpose

feature selection strategy. Another important achievement is that
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the automatic thresholding individuates those features capable of

providing convincing performance on any given dataset. Finally,

Inf-FS operates also on neural features, improving relevance and

diminishing redundancy over cues that have been the state of the

art until very few years ago [21].

The proposed framework generalizes the previously published

Infinite Feature Selection (Inf-FS) [22], [23] presented as

an unsupervised filtering approach, explained by algebraic

motivations. Here we introduce a supervised counterpart and

a strategy to select a subset of features, supported by a novel

alternative way to explain the Inf-FS thanks to Markov chains

fundamentals.

The rest of the paper is organized as follows: Sec. 2 illustrates

the related literature, including the comparative approaches we

consider in this study. Sec. 3 introduces our approach showing

how the fully-connected graph is built for both the unsupervised

and supervised variants. Sec. 3.5 connects the proposed approach

to the absorbing Markov chain framework, deriving the subset se-

lection strategy. Extensive experiments are reported in Sec. 4, and,

finally, in Sec. 5, conclusions are given and future perspectives are

envisaged.

2 STATE OF THE ART

Feature selection (FS) algorithms are partitioned into three main

classes [24], [25]: filters, wrappers and embedded methods.

Filter methods make use of the intrinsic properties of the data

(e.g., correlation, variance, locality, information gain, or other

statistics) to evaluate the value of a feature. In contrast, wrapper

methods assign an importance score to each feature based on

the performance of a predictor, which is considered as a black

box [26]. Last, embedded methods include the feature selection

process as part of an internal regression model aimed at estimating

the relationships among variables. The outcome of this process is

also the solution to the feature selection problem (e.g., least square

regression (LSR) [10], least absolute shrinkage and selection

operator (LASSO) [27]).

Inf-FS belongs to the filter approaches, since it deals with the

sole properties of the data, without relying on a specific predictor.

This ensures a wider applicability, but at the same time does not

exploit the potentialities of a particular classifier.

Within each of the above families of algorithms, FS techniques

can be further classified into two sub-categories, unsupervised

and supervised, depending on the use of class-label information

in the selection process. In this paper we offer one specific

example of Inf-FS for both the cases, showing the portability of

the framework.

Most of the FS algorithms are sorting algorithms, that, after

having evaluated the feature set, the output is a sorted list of

features. The output is then used to decide which features to

keep (subset selection). Subset selection is commonly performed

by cross-validation strategies in a classification scenario with the

classifier exploiting the candidate features on some validation

data [25].

The section overviews the three families of FS methods (filters,

wrappers and embedded methods) specifying when they are unsu-

pervised or supervised, discussing their strengths and weakness.

2.1 Filter methods

2.1.1 Unsupervised approaches

In unsupervised scenarios, methods are mainly based on locality

preserving principia found by clustering (data from the same

cluster are often close to each other). The Laplacian Score (LS) for

FS [28] evaluates the value of features by considering their ten-

dency of preserving spatial relationships, that is, samples assigned

to a particular group are at a shorter distance to each other than

to those in other groups. Thus, LS constructs a nearest neighbor

graph and ranks high those features that are consistent with

Gaussian Laplacian matrix [28]. Similarly, in the multi-cluster

feature selection approach (MCFS) [29], features are selected

based on spectral analysis and solving a sparse regression problem,

encouraging the formation of compact clusters. Local learning

clustering (LLCFS) method [9] is a kernel learning method that

weights features and exploits the weights to regularize the clus-

tering. Noteworthy, uninformative features are left out before the

clustering.

These solutions, included in the experiments, are computation-

ally expensive since rely on clustering. In contrast, our approach

is faster since it only uses intrinsic properties of the data.

2.1.2 Supervised approaches

A standard two-class filter method is Relief and its multi-class

extension Relief-F [30]. In general, the strategy evaluates feature

value differences between nearest neighbor pairs and scores fea-

tures according to how well they contribute to the overall class

separation. One common criticism of relief is that it leads to

the selection of a redundant subset (i.e., features expressing the

same information), since it is not controlling feature correlation.

A solution is given by the minimum Redundancy and Maximum

Relevancy (mRMR) algorithm [31], minimizing the redundancy

and maximizing the relevance of the set of features (i.e., relevant

features are tightly connected to classes). This is obtained by

maximizing the joint mutual information (using Parzen Gaussian

windows [32]) between the values of a given feature and the

membership to a particular class. mRMR suffers from an expen-

sive computational cost (i.e., O(n2T 3) where n the number of

features and T the number of samples [31]), which makes this

algorithm not suitable for massive highly-dimensional data [25].

Another weakness of mRMR comes with the approximation of

the mutual information, which is inaccurate when the number of

training samples is small [32]. A practical yet faster filter approach

is the Fisher score [33], which assigns scores to features according

to the ratio of inter-class separation and intra-class variance while

evaluating each feature independently.

Several other algorithms employ mutual information (MI) to

assess features usefulness. The standard MI method for feature

selection proposed in [34] estimates the mutual information be-

tween feature distributions and class labels. All the features are

evaluated independently, one by one, obtaining a score that the

MI method uses to rank all the features set. The recent Max-

Relevance and Max-Independence (MRI) [35] introduces an

additional constraint: relevancy. MRI does maximize the inde-

pendent classification information while minimizes the redun-

dancy between features. Other MI-based [36] approaches, such as

CIFE [37], MIFS [38] and ICAP [39], quantify the redundancy (or

dependency) among the set of feature distributions (considered as

random variables) by proposing slightly different variations of the

objective function. i.e., the conditional likelihood of the training
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labels. Similarly, the joint mutual information (JMI) [40] and

conditional mutual information (CMIM) [41] for feature selection

can be included into this group. The common assumption behind

all these methods is that a less dependency among features can af-

fect the classification performance and enhance the discriminative

ability of the entire feature subset.

The Inf-FS framework is attractive since, in its computation of

the weighted adjacency matrix, allows to include inter/intra class

reasoning, but is independent from it: in fact, the supervised Inf-

FSS proposed in this paper makes use of a fast computation of

the mutual information and Fisher criterion, but is not a necessary

requirement. Especially in the case of large number of samples,

mutual information may be dropped in favor of other, faster,

feature analysis. Another difference with Inf-FS is that the MI-

based approaches take into account pairwise (feature-class label)

dependencies, while our approach extends the 2-nd order to n-th

order by considering subsets of features as paths on a graph.

Recently, other graph-based approaches have been proposed

such as the eigenvector centrality (ECFS) [42], [43] and the

infinite latent feature selection (ILFS) [22], which is an extension

of the unsupervised Inf-FSU . The ECFS ranks features according

to a centrality measure over the graph of features (eigenvector

centrality), and should be considered a lighter version of Inf-FSU ,

with the mathematical difference explained in Sec. 3). In ILFS the

features are grouped into token by probabilistic latent semantic

analysis (PLSA), which in practice learns the weights of the

adjacency graph of Inf-FS as to provide better class separability.

Instead, our framework requires to craft the weights manually.

Despite the experiments show our approach overcoming ILFS, we

think learning the weights is a convenient direction, which we are

interested at the present moment.

Summarizing, some advantages of using filter methods are:

• faster than wrapper and embedded methods,

• scalable,

• classifier independent (better generalization),

On the other hand, disadvantages are related to a general lower

performance, being independent on the specific classifier.

2.2 Wrapper approaches

2.2.1 Unsupervised approaches

In the dependence-guided unsupervised feature selection

(DGUFS) [44], graph-based clustering is adopted as clustering

approach. DGUFS iteratively performs feature selection by op-

timizing two terms: one term increases the dependence among

samples of the same cluster (i.e., assign samples to clusters),

while the other term favours those features that maximize the

dependence between samples and the assigned cluster labels. This

approach shows to be prone to local minima.

The feature selection with adaptive structure learning

(FSASL) [45] is an iterative approach that captures the global

structure of data within a sparse representation framework, where

the reconstruction coefficient is learned from the selected features.

Its main drawback is the high computational complexity (see

Table 1).

Finally, the unsupervised feature selection with ordinal locality

(UFSOL) is proposed in [46]. UFSOL is a clustering-based

approach that preserves the relative neighborhood proximities of

the samples and contributes to distance-based clustering.

Similarly to our approach, these last three methods methods

estimate inter-relationships among features, but in these cases

the estimations are intermediate steps of iterative clustering pro-

cedures that make them computationally expensive and prone

to local minima. Conversely, Inf-FS does not suffer from local

minima since it is one-shot, deterministic.

2.2.2 Supervised approaches

The support vector machine with recursive feature elimination

(RFE) [47] is a popular wrapper method that eliminates useless

features in a sequential, backward fashion, ranking high a feature

if it actively separates the samples using a linear SVM. However,

the performance of the RFE becomes unstable at some values

of the filter-out factor (i.e., the number of features eliminated in

each iteration) [48]. To overcome this weakness many different

variants of RFE have been proposed, where the initial feature

subset is selected using several SVM models with different filter-

out factors, and in the second stage, features are selected by

eliminating one feature at each iteration. For example, the sample

weighting version called SW SVM-RFE [49], gives more weight to

those samples that are close to the separating hyperplane. Another

extension of the RFE method is the Ensemble SVM-RFE [49]

that aggregates the results of several SVM-RFE selectors applied

to randomized training data and has been empirically shown to

be stronger than its original version. Finally, a slightly different

approach called recursive cluster elimination (RCE) [50] has been

introduce to overcome the RFE instability and provide improved

classification accuracy. RCE is a backward elimination algorithm

that combines K-means to identify correlated clusters of features

to identify and rank features for classification.

Some advantages of using wrapper methods are:

• they find specific features for a particular classifier better than

filters,

• they consider the dependence among features (multivariate

solutions),

• higher classification accuracy than filters.

The disadvantages are their tendency to be highly classifier

specific (different classifiers bring to diverse features) and their

computational requirements. On the contrary, Inf-FS is classifier

agnostic, focusing only on intrinsic properties of data and their

labels. We omit the RFE-X approaches in the experiments since

they have been already shown to be inferior to Inf-FS in [23].

2.3 Embedded methods

Finally, embedded methods include the selection process as part

of an internal regression model, and the overall ranking process

is less prone to overfitting than wrappers (e.g., L1, LASSO

regularization, decision tree). In contrast to wrapper methods,

which assess subsets of features according to their usefulness to a

given predictor, embedded methods proceed more efficiently to the

solution by directly optimizing an objective function that involves

two constraints: the goodness of fit of the statistical model and a

penalty for selecting a large number of features [51].

An example of unsupervised embedded method is the L2,1-

norm regularized discriminative feature selection for unsupervised

learning (UDFS) [52]. UDFS optimizes an objective function

representing a L2,1-norm regularized minimization problem with

orthogonal and locality preserving constraints [53] so that it

simultaneously exploits discriminative information and feature

correlations. However, such optimization problems are difficult

to solve due to the non-smooth objective function and non-convex

constraints [53].
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2.3.1 Supervised approaches

In supervised learning scenarios, the support vector machine

intervenes in many approaches. The Feature Selection concaVe

(FSV) [11] generates a separating plane by minimizing a weighted

sum of distances of misclassified points to the two margin planes,

minimizing the number of dimensions of the space used to

determine the separating plane, and at the same time, maximizing

the distance between the two margin planes. Another SVM-based

feature selection approach minimizes the 0-norm with SVMs

(L0) [54]. Indeed, L0 is a variant of the standard SVM algorithm,

obtained by an iterative multiplicative rescaling of the training

data. Feature selection is solved by minimizing the zero-norm in a

single optimization, resulting in a minimization of the training

errors and maintaining sparsity in the solution. After training,

features associated with higher scores are those that contribute to

the model construction and its performance the most. Least square

regression (LSR) and several variants of LSR have been applied

as a feature selection tool. The LASSO [27] regression approach

minimizes the squared prediction error while maintaining the sum

of the absolute values of the model parameters smaller than a fixed

value. Feature selection is a consequence of this process when all

the variables that still have non-zero coefficients are selected to

be part of the model. For classification, LASSO is modified by

exploiting a hinge loss (LASSOh) which penalizes linearly with

respect to the correct classification labels [55]. More recently,

unhinged losses have shown to be more robust against biased

estimates [56] which are a known issue of LASSO (LASSOu).

Since in the experiments we evaluate the goodness of the features

kept by the selection approaches with simple linear support vector

machines (as LASSO is), we consider as comparative approaches

both LASSOh and LASSOu.

Another way to deal with the bias issue of LASSO lies on the

use of non convex optimization strategies, as the ones of the hard-

thresholding approaches. Under the hypotheses of strong restricted

convexity/smoothness of the function to be minimized, recent hard

thresholding approaches are GraHTP [57], [58] and NHTP [59],

the latter included as comparative approach.

Advantages and disadvantages of using embedded methods are

similar to those listed for wrappers (they are tightly coupled to the

solver which separates the data), however, a further advantage that

the embedding process brings in is to be less prone to over-fitting

than wrappers. In any case, Inf-FS is conceptually different, being

a filter which prepares the data to a subsequent, disconnected

classification step. This makes it more versatile and customizable.

3 OUR APPROACH

We propose two different versions of Inf-FS: the unsupervised

Inf-FSU and the supervised Inf-FSS . In both the cases, we build

upon a weighted undirected fully-connected graph G = (V,E)
with node set V = {~v1, ..., ~vn} representing a set of n feature

distributions F = {f1, ..., fn}, and edge set E modeling relations

among pairs of nodes (i.e., relations among distributions). In the

following, the terms feature and feature distribution will be used

interchangeably.

Let us represent G with its adjacency matrix A, where each

of its elements A(i, j), 1 ≤ i, j ≤ n, models the confidence that

features fi and fj (the nodes ~vi and ~vj) are both good candidates

to be selected, thanks to an associated weight function ϕ(·, ·):

A(i, j) = ϕ(~vi, ~vj), (1)

where ϕ(·, ·) is a positive, real-valued function defining the value

of each edge. In the unsupervised version of our approach, referred

as Inf-FSU , the function ϕU (·, ·) is modeled as a function of both

the variance and correlation of the features, while in its supervised

form (Inf-FSS), the function ϕS(·, ·) adds the class information

using the Fisher criterion and the mutual information. It is worth

noting that other types of functions can be built, with the only

constraint that the higher the value of the function, the stronger

the preference of selecting both the features.

3.1 Graph Building for Inf-FSU

For the unsupervised scenario, ϕU (·, ·) is a weighted linear

combination of two pairwise measures relating the features fi and

fj , defined as:

ϕU (~vi, ~vj) = αEij + (1− α)corrij , (2)

with Eij indicating the maximal normalized standard deviation

over the two distributions, i.e., Eij = max (σi, σj), where σi

is the standard deviation over the samples {fi}, normalized to

the range [0, 1] by the maximum standard deviation over the set

F . The second term is the opposite of the correlation corrij =
1−|Spearman(fi, fj)|, with Spearman indicating Spearman’s

rank correlation coefficient. The α is a loading coefficient ∈ [0, 1],
with its value being estimated during the experiments by cross

validating on the training set for the classification tasks.

In practice, ϕU (·, ·) ∈ [0, 1] analyzes two feature distribu-

tions, accounting for the maximal feature dispersion (the standard

deviation) and how much they are uncorrelated (the Spearman

rank correlation coefficient).

3.2 Graph Building for Inf-FSS

The Inf-FSS introduces measures which consider class member-

ship information, where we assume to have G classes into play.

The function ϕS(~vi, ~vj) is formed by three factors: the first is

the Fisher criterion [60]:

h̃i =
|µi,1 − µi,2|

2

σ2
i,1 + σ2

i,2

, (3)

where µi,g and σi,g are the mean and standard deviation, respec-

tively, assumed by the i-th feature when considering the samples

of the g-th class, 1 ≤ g ≤ G. The multi-class generalization is

given by:

hi =

∑G
g=1(µi,g − µ̂i)

2

E2
i

(4)

where µ̂i and Ei denote the mean and standard deviation

of the whole data set corresponding to the fi feature (i.e.,

E2
i =

∑G
g=1(σi,g)

2). This score measures how much separated

and compact is a feature in comparison with all the other features

into play. The final scores are normalized to have maximum 1
and minimum 0. The closer hi to 1, the less redundant is the i-th
feature, since its domain does not overlap with the other ones.

The second factor is the normalized mutual information mi

between the features samples of the i-th class and the class

label [61]:

mi =
∑

y∈Y

∑

z∈fi

p(z, y)log
( p(z, y)

p(z)p(y)

)

, (5)
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where Y is the set of class labels and p(·, ·) stands for the

joint probability distribution. Its normalized version is obtained by

normalizing over all the n computed values (one for each feature

into play). In practice, mi measures the amount by which the

knowledge provided by the feature vector decreases the uncer-

tainty about a class, summed over all the classes.

The third factor is the normalized standard deviation σi as

computed for the unsupervised case.

The three factors are weighted linearly:

si = hiα1 +miα2 + σiα3 (6)

with 1 ≤ i, j ≤ n. The parameters αk are mixing coefficients,

0 ≤ αk ≤ 1,
∑

k αk = 1, and their values have been estimated

during the experiments by cross validating on the training set for

the classification tasks. Summarizing, the score si indicates how

much a feature is not redundant (Fisher criterion) and relevant

(mutual information, standard deviation) w.r.t. the other classes.

Finally, the weights of the adjacency matrix A are obtained by

coupling the correspondent s as follows:

ϕS(~vi, ~vj) = A(i, j) = sisj . (7)

It is worth noting that the formulation above is one among

the many possible alternatives expressing the value of having both

features i and j in the pool of selected features. Studying how to

evaluate them in an end-to-end fashion would be probably more

effective, and is subject of current work.

3.3 Feature Ranking Procedure

The Inf-FS procedure can be explained in two ways: with the

properties of power series of matrices, or borrowing from the

concept of absorbing Markov chain. Next, the analysis with the

power series of matrices is presented, while the Markov chain

view is given at Sec.3.5.

Let γ = {~v0 = i, ~v1, ..., ~vl−1, ~vl = j} denote a path of length

l between nodes i and j, that is, features fi and fj , through generic

nodes ~v1, ..., ~vl−1. Let us suppose that the length l of the path is

less than the total number of nodes n in the graph. In this case, a

path is simply a subset of the features.

We define the overall weight associated to γ as

πγ =
l−1
∏

k=0

A(~vk, ~vk+1), (8)

where πγ is actually the value of the path and it accounts for all

the features pairs that belong to it. There can be more than one

path of length l connecting nodes i and j. We define the set Pl
i,j

as containing all the paths of length l between two nodes i and j.

To estimate the overall contribution of all these paths, we calculate

the following sum:

Rl(i, j) =
∑

γ∈P
l
i,j

πγ , (9)

which, following standard matrix algebra, gives:

Rl = Al, (10)

that is, the power iteration of the adjacency matrix A. Rl contains

now cycles, and in our feature selection view, this is equivalent

to evaluate each feature several times, possibly associated to itself

in a self-cycle. This is a side effect that arises with this kind of

network, but this possibility holds for all the features, and is taken

into account by Rl.

We can evaluate the single feature score for the feature x(i) at

a given path length l as

cl(i) =
∑

j∈V

Rl(i, j) =
∑

j∈V

Al(i, j). (11)

In practice, Eq.11 models the value of the feature x(i) when

considered in whatever selection of l features; the higher cl(i), the

better. Therefore, a first idea of feature selection strategy could be

that of ordering the features decreasingly by cl, taking the first m
obtain an effective, relevant set. Unfortunately, the computation of

cl is expensive and amounts to (O((l−1) ·n3)): in fact, l is of the

same order of n, so the computation turns out to be O(n4) and

becomes impractical for large sets of features to select (> 10K);

our approach addresses this issue 1) by expanding the path length

to infinity l → ∞ and 2) using notions from algebra to analytically

solve the ranking problem in a computationally convenient way.

Eq.11 estimates the score for feature fi when injected in

whatever subset of l features. Taking into account all the possible

path lengths (l → ∞) allows the evaluation of all the feature

subsets.

c(i) =
∞
∑

l=1

cl(i) =
∞
∑

l=1

(

∑

j∈V

Rl(i, j)
)

. (12)

Let C be the geometric series of adjacency matrix A:

C =
∞
∑

l=1

Al, (13)

It is worth noting that C can be used to obtain c(i) as

c(i) =
∞
∑

l=1

cl(i) = [(
∞
∑

l=1

Al)e]i = [Ce]i, (14)

where e indicates a 1D vector of ones, and the square bracket

indicates the extraction of an entry of the vector, specified by the

index i.
The problem is, summing infinite Al terms could lead to

divergence; in which case, regularization is needed, in the form of

generating functions [62], usually employed to assign a consistent

value for the sum of a possibly divergent series. There are different

forms of generating functions [63]. We define the generating

function for the l-path as

č(i) =
∞
∑

l=1

rlcl(i) =
∞
∑

l=1

∑

j∈V

rlRl(i, j), (15)

where r is a real-valued regularization factor, and rl can be

interpreted as the weight for paths of length l. The parameter r

has been defined as r = 0.9/ρ(A), with ρ(A) spectral radius

of A (more on this at Sec. 3.4), ensuring that the infinite sum

converges.

From an algebraic point of view, č(i) can be efficiently

computed by using the convergence property of the geometric

power series of a matrix (for a proof, see Sec. 3.4):

Č = (I − rA)−1 − I, (16)

Matrix Č encodes the partial scores of our set of features.

The goodness of this measure is strongly related to the choice of

parameters that define the underlying adjacency matrix A.
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We can obtain final relevancy scores for each feature by

marginalizing this quantity:

č(i) = [Če]i. (17)

Ranking in decreasing order the č vector gives the output of the

algorithm: a ranked list of features where the most discriminative

and relevant features are positioned at the top of the list. The gist

of the Inf-FS is to provide a score of importance for each feature

as a function of the importance of its neighbors. See Algorithms 1

(unsupervised) and 2 (supervised) for a sketch of our approaches.

3.4 Choice of the regularization parameter r

In this section, we want to justify the correctness of the method

in terms of convergence. The value of r (used in the generating

function, and introduced in the previous section, Eq. 15) can

be determined by relying on linear algebra [64]. Let us define

{λ0, ..., λn−1} as the eigenvalues of the matrix A; drawing from

linear algebra, we can define the spectral radius ρ(A) as:

ρ(A) = max
λi∈{λ0,...,λn−1}

(

|λi|
)

.

For the theory of convergence of the geometric series of matrices,

we also have::

lim
l→∞

Al = 0 ⇐⇒ ρ(A) < 1 ⇐⇒
∞
∑

l=1

Al = (I −A)−1 − I.

Furthermore, Gelfand’s formula [65] states that for every matrix

norm, we have:

ρ(A) = lim
k−→∞

||Ak||
1

k .

This formula leads directly to an upper bound for the spectral

radius of the product of two matrices that commutes, given by the

product of the individual spectral radii of the two matrices, that is,

for each pair of matrices A and B, we have:

ρ(AB) ≤ ρ(A)ρ(B).

Starting from the definition of š(i) and from the following trivial

consideration:

rlAl =
(

rlI
)

Al = [(rI)A]
l
,

we can use Gelfand‘s formula on the matrices rI and A and thus

obtain:

ρ
(

(rI)A
)

≤ ρ(rI)ρ(A) = rρ(A). (18)

For the property of the spectral radius: liml→∞ (rA)
l
= 0 ⇐⇒

ρ(rA) < 1. Thus, we can choose r, such as 0 < r <
1

ρ(A)
; in

this way we have:

0 < ρ(rA) = ρ
(

(rI)A
)

≤ ρ(rI)ρ(A)

= rρ(A) <
1

ρ(A)
ρ(A) = 1 (19)

that implies ρ(rA) < 1, and so:

Č =
∞
∑

l=1

(rA)l = (I − rA)−1 − I

This choice of r allows us to have convergence in the sum that

defines č(i). Particularly, in the experiments, we use r =
0.9

ρ(A)
,

leaving it fixed for all the experiments.

Algorithm 1 Unsupervised Infinite Feature Selection

Input: F = {~f1, ..., ~fn} , α
Output: č final scores for each feature

+ Building the graph

for i = 1 : n do

for j = 1 : n do

σij = max(std(fi), std(fj))
corrij = 1− |Spearman(fi, fj)|
A(i, j) = ασij + (1− α)corrij

end for

end for

+ Letting paths tend to infinite

r = 0.9
ρ(A)

Č = (I − rA)−1 − I

č = Č e

return č

Algorithm 2 Supervised Infinite Feature Selection

Input: F = {f1, ..., fn} , Y = {1, ..., G} , α1, α2, α3

Output: č final scores for each feature

+ Building the graph

for i = 1 : n do

hi

∑K
k=1

(µi,k−µ̂i)
2

E2

i

m(i) =
∑

y∈Y

∑

z∈fi
p(z, y)log

(

p(z,y)
p(z)p(y)

)

Compute σi

si = hiα1 +miα2 + σiα3

end for

for i = 1 : n do

for j = 1 : n do

A(i, j) = sisj
end for

end for

+ Letting paths tend to infinite

r = 0.9
ρ(A)

Č = (I − rA)−1 − I

č = Č e

return č

3.5 An Alternative View of Inf-FS as Absorbing Ran-

dom Walks

This section provides a different perspective of the proposed

framework in terms of absorbing Markov chains and random

walks.

Following standard theory on stochastic processes [66], any

m×m transition matrix T of a discrete time, first-order Markov

chain with m states can be written in the canonical form, which

separates absorbing states (having probability of self-transition

= 1) from transient ones by re-ordering rows and columns as

follows:

T =

[

I 0

R Ã

]

(20)

where Ã is the square submatrix of size n × n giving the tran-

sition probabilities from non-absorbing to non-absorbing states

(n ≤ m), R is the non-null rectangular submatrix of size n × k
giving transition probabilities from non-absorbing to absorbing

states (k = m − n), I is the identity matrix of size k × k, and 0

is a rectangular matrix of zeros of size k × n.
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When k > 0, it means we have non-null probability of ending

in a absorbing state, with R and Ã that are both substochastic,

meaning that summing (separately) over their rows gives at least

one row less than 1; in the case of k = 0 we have that the matrices

R, I,0 vanish, and the transition matrix T = Ã is stochastic and

has no absorbing state. In the following, we assume that all of the

rows of Ã are substochastic, so that necessarily there is at least

one absorbing state, so that k > 0.

With the canonical form, it becomes easy to compute different

quantities, all related to the probability of having a particular

random walk associated to T . In particular, the probability of

having a walk of l steps1 from state i to state j, 1 ≤ i, j ≤ m is

given by

T l =

[

I 0

(I + Ã+ Ã2 + ...+ Ãl−1)R Ãl

]

(21)

The fact that Ã is substochastic in all its rows is a sufficient

condition which tells us that its spectral radius is ρ(Ã) < 1 [67],

which is the same condition that we required for the convergence

of the infinite sum at Sec. 3.4, this implying Ã = rA. Therefore,

let us suppose that Ã = rA, for a specific r which will be

discussed next, and A built as described in Sec. 3.2 and Sec. 3.1,

so that Ã(i, j) indicates the probability of choosing feature j after

having selected i. Under this probabilistic view, the higher Ã(i, j),
the higher the complimentarity between j and i. Going from a

(transient) state of Ã into an absorbing state b, 1 ≤ b ≤ k, driven

by probability Ã(i, b), would mean to end the feature selection

process. Intuitively, a high Ã(i, b) would mean that no other

transient state (feature) j, k + 1 ≤ j ≤ k + n is complimentary

w.r.t. i. Following this perspective, we may compute T∞ as

containing the probability of going from two states in an infinite

number of steps by rewriting Eq. 21 by putting Ã → ∞ = 0 and

T∞ =

[

I 0

CR 0

]

(22)

where the matrix

C = I + Ã+ Ã2 + ...+ Ã∞ = (I − Ã)−1 (23)

At this point, interesting facts do emerge:

• the matrix C of Eq. 23 resembles the matrix of Eq. 16 Č =
(I − rA)−1 − I, with Ã = rA and a difference given by the

identity matrix I .

• In the Markov chain hypothesis, matrix C expresses with

C(i, j) the expected number of visits to transient state j
starting from transient state i, before to go into an absorbing

state. In our feature selection case, C(i, j) could be seen as

the length of the path enabled by feature i before to end the

process of selection: a long path means that there is a pool

of features, including necessarily i and j, which are strongly

complimentary among each other (that have high probability

to have transitions among themselves). In the same way,

considering c = Ce, ci indicates how much, in general,

feature i enable long paths, irrespective of the arrival feature

j. The longer the path, the more complimentary is the feature

i with respect to all the other features.

• Unfortunately, the matrix A that we build with the procedures

in Sec. 3.1 and Sec.3.2, in general, could be not substochastic,

neither could be their regularized versions rA of Sec. 3.4. In

1. Here step means a single iteration of the stochastic process modeled by
the Markov chain

fact, Sec. 3.4 indicates a necessary and sufficient condition

for making rA convergent to 0 at infinity, which is not

sufficient for being substochastic.

The three observations above suggest a different, stronger regu-

larization than the one expressed by Sec. 3.4 (r = 0.9/ρ(A)),
in order to be compatible with the Markov chain paradigm;

in practice, we need to have rA with r = 0.9/rmax, where

rmax = maxi
∑n

j=1 A(i, j) is the max summation over the rows

of the original matrix adjacency A. This makes rA both conver-

gent to 0 at infinity, and substochastic, unlocking an alternative,

more interpretable view of our selection process.

At the same time, with the above regularization, the Č of ma-

trix Eq. 16 measuring the value of a couple of features at infinity

can be computed as the C matrix at Eq. 23, and, consequently, the

vectors to be ordered become č = Če and c = Ce.

It is worth noting that č and c give rise to the same ranking,

so choosing one regularization r = 0.9/ρ(A) or the other r =
0.9/rmax, in practice, makes absolutely no difference: the two

regularizations give just two different interpretations of the same

process.

3.6 Selection of the number of features

The vector č obtained by Eq.17 contains at the i-th entry, in term of

power series of matrices, the cumulative cost of having a particular

feature in any (possibly infinite) subset of features. Equivalently,

in terms of Markov chain, ci of Sec. 3.5 represents the expected

number of selections of features which are complimentary to i that

have been chosen before to finish the process of feature selection.

Ranking the c vector for feature filtering under the former

perspective amounts to rank features which ensures paths of higher

costs, where the cost, by construction, is higher for features which

are relevant and redundant. Choosing the high-ranked features

ensures to consider features of high value. In the Markov chain

assumption, ranking the c vector amounts to promote features

which are highly complimentary to each other.

Looking at how the values of č (or, equivalently, c ) are

distributed will give a global view of the features into play.

Experimentally, we have found that the features are bipartite

(especially in the supervised case), expressing features which are

useful for the classification process and features that carry few or

no value. In other words, it is easy to spot a structure in this data,

which can be extracted by a clustering procedure.

In this paper we propose to select a particular number of

features, by considering the distribution of the {ci} values, and

select by a clustering method the features which include the first

ranked feature. Different clustering strategies can be taken into

account: in our case, we consider 1D Mean-shift with automatic

bandwidth selection [68], which showed to be highly effective in

the experiments.

Future work will be devoted in looking for alternative ways

to cluster the data: in particular, we spot few cases in which the

Mean-shift was not working, due toPareto-like distributions.

4 EXPERIMENTS AND RESULTS

In this section, we compare our framework with several feature

selection methods considering both recent approaches [22], [42],

[43], [44], [46], [56], [59], as so as some established algorithms

[11], [29], [30], [33], [34], [47], [52], [55]. Methods are selected

to cover the three different families presented in Sec. 2, i.e.,
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Acronym Type Class Comp. complexity

LLCFS [9] f u N/A

LS [28] f u N/A

MCFS [29] f u N/A

Relief-F [30] f s O(iTnG)
MI [34] f s O(T 2n2)

Fisher [33] f s O(Tn)
ECFS [42],

[43]
f s O(Tn+ n2)

ILFS [22] f s O(n2.37+in+T+G)

CFS [47] f u O(n
2

2
T )

UDFS [52] f u N/A

DGUFS [44] w u N/A

FSASL [45] w u O(n3 + Tn2)
UFSOL [46] w u O(iTGn3)

RFE [47] w s O(T 2nlog2n)
FSV [11] e s O(T 2n2)
LASSO

(hinged) [55]
(unhinged) [56]

e s O(T 2n2)

NHTP [59] e s N/A

Inf-FSU f u O(n3(1 + T ))
Inf-FSS f s O(T 2 + n3(1 + T ))

TABLE 1
Feature selection approaches considered in the experiments of Sec. 4.
The methods follow the taxonomy of Sec. 2, and are characterized by
type (f=filter, w=wrapper, e=embedded), class (u = unsupervised, s =
supervised) and computational complexity. As for the complexity, T is

the number of samples, n is the number of initial features, i is the
number of iterations in the case of iterative algorithms, and G is the

number of classes.

filter, wrapper and embedded approaches. Tab. 1 lists the methods

included in the experiments, reporting their type (f = filters,

w = wrappers, e = embedded methods), and their class ( s =

supervised or u = unsupervised). Additionally, the table shows

the computational complexity whereas it has been provided.

The experiments are performed on 11 different publicly

available benchmarks, whose characteristics are summarized in

Table 2. The benchmarks allow to evaluate the proposed ap-

proach on supervised classification problems, focusing first on

small-sample, high-dimensional scenarios, studying the strengths

and weaknesses of the unsupervised and supervised Inf-FS on

heterogeneous datasets, dealing then with features produced by

deep learning algorithms. All of these experiments evaluate the

feature selection approaches when they are constrained to provide

a definite number b of features; different b’s are considered (see

in the following sections). In addition, we evaluate the automatic

subset selection capability, where the optimal number of features

has also to be decided. A conclusive statistics shows the Inf-FS

framework as the most versatile and effective general-purpose al-

gorithm among the considered competitors. All of the (MATLAB)

code is available at http://demo.polr.me/0.

4.1 Challenge 1: Small-sample, high-dimensional

Treating few samples described by many features is a traditional

feature selection challenge. For example, in the medical field [69]

observations are often difficult to collect (e.g., in the case of rare

diseases), while the number of measurements performed on each

sample can easily reach the order of thousands (e.g., set of DNA

sequences). The small-sample, high-dimensional scenario holds in

many other fields like business intelligence [70], geoscience [71]

and the automatic analysis of behavioural cues and social sig-

nals [72], [73]).

Here we consider five widely used small-sample, high-

dimensional 2-class microarray datasets: Colon [12], Lym-

phoma [13], Leukemia [13], Lung [14], and Prostate [15]. They

have been chosen for their variability in terms of number of

features (from 2000 to 12533, see Tab. 2) which characterize

45 to 181 samples, because they deal with balanced and unbal-

anced classes, and because they are widely used in the literature.

An exhaustive list of microarray small-sample, high-dimensional

datasets can be found in https://bit.ly/2OSlOfv, while an essay on

generic microarray datasets can be found in [74].

The experimental protocol consists in splitting the samples

of the dataset in 70% for training and 30% for testing. The

training procedure consists in building the matrix A as described

in Sections 3.1 and 3.2. In the case of Inf-FSS , the class labels

are taken into account, while in the unsupervised case they are

ignored. After the training, a selection of the ranked features

is considered, by keeping the top-b features, with b variable.

The selected features are used to train a linear SVM, where a

5-fold cross-validation on training data is used to set the best

C regularization parameter. The same experimental protocol has

been applied to all the comparative feature selection approaches.

The number b of selected features varies (i.e., b =10, 50,

100, 150, and 200) in order to show the performance at different

regimes. The performance is specified in terms of classification

accuracy. In order to avoid any bias induced by a particularly

favourable split, this procedure is repeated 20 times by shuffling

the data (keeping training and testing separated) and the results

are averaged over the trials. A cross-validation is carried out on

each training partition of the datasets to select the {α} parameters

introduced in Sec. 3.1 and 3.2.

Fig. 1 depicts the results: on the left, the average performance

obtained over all of the datasets by the unsupervised approaches

are reported; on the right, supervised approaches are shown.

On Fig. 1 (left and right), it can be seen that in both the

unsupervised and supervised case, the performance improves

substantially with the number of the selected features up to

a knee around 50 features; after 150 features, in general, the

performance tends to saturate. On the left, it can be seen that Inf-

FSU outperforms the existing methods with a mild but consistent

average gap. On the right, Inf-FSS achieves definitely the best

performance, in particular when the number of selected features is

fixed to be small (from 10 to 100).

Comparing Inf-FSU and Inf-FSS (Fig. 1, left and right) one

can see that, in general, Inf-FSS works better than Inf-FSU , since it

uses class-label information to guide the FS process. Nonetheless,

it is worth knowing (no curves are reported here) that on some

datasets (COLON, LEUKEMIA and LUNG) the performance of

the two approaches is comparable. This interesting aspect will be

further discussed in Sec. 4.4 and Sec. 4.3.

4.2 Challenge 2: Inf-FSU VS Inf-FSS

This section compares the supervised and unsupervised versions

of Inf-FS. Essentially, the difference between the two approaches

consists of the type of functions used for weighting the graph.

In fact, Inf-FSU does not employ any class-label information

according to Eq. 2, while Inf-FSS is a combination of three

different terms, two of them making use of the class labels (Fisher
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Fig. 1. Classification results on the small-sample, high-dimensional challenge. On the left, the average performance curves for unsupervised
approaches, and on the right, supervised methods are shown. In all of the cases, the performance is measured at different numbers of selected
features (on the x-axis).
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Fig. 2. Comparison between Inf-FSU and Inf-FSS . All the supervised approaches are reported by solid lines and the unsupervised ones by dotted
lines. Results are expressed in terms of classification accuracy (%).
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Dataset Ref. #Samples #Classes #Feat. few train unbal. (+/-) overlap noise sparse

COLON [12] 62 2 2K X (40/22) n.s. X
LEUKEMIA [13] 72 2 7129 X (47/25) n.s. X
LUNG [14] 181 2 12533 X (31/150) n.s. X
LYMPHOMA [13] 45 2 4026 X (23/22) n.s.
PROSTATE [15] 102 2 6033 X (50/52) n.s.

DEXTER [18] 2600 2 20K (1,3K/1,3K) X X X
GISETTE [17] 6000 2 5K (3K/3K) X X
GINA [16] 3153 2 970 (1,5K/1,6K) X
MADELON [17] 2000 2 500 (1K/1K) X X

VOC 2007 [19] 10K 20 4096 X X X

CalTech 101 [20] 10K 102 4096 X X X
TABLE 2

Datasets and the challenges for the feature selection scenario. The abbreviation n.s. stands for not specified (for example, in the DNA microarray
datasets, no information on class overlap is given in advance).

criterion and mutual information, see Eq. 6). When the difficulty

of a classification problem depends on classes that overlap, Inf-

FSS can naturally favour those features that best represent the

explanatory factors of the dissimilarity among the classes. On the

other side, Inf-FSS suffers when features are severely correlated,

even if they are representative for a specific class. In this case,

variance and correlation computed by Inf-FSU do represent a very

convenient option.

To validate these considerations, we consider four additional

datasets from the NIPS feature selection challenge, namely:

DEXTER [18], GISETTE, MADELON [17] and GINA [16].

GISETTE and GINA present severely overlapped classes. Indeed,

the GISETTE dataset [75] has instances of “4” and “9”, two con-

fusable handwritten digits (i.e., two overlapped classes) extracted

from the MNIST data [76]. Features consist of normalized pixels

and quantities derived from their combination.

The task of GINA is again handwritten digit recognition, but

in this case, the two classes are even and odd 2-digit numbers.

Obviously, only the unit digit is informative. In addition to the

overlapping issues among the single digits (which are taken again

from the MNIST data), a further consistent overlap is caused by

the digits indicating the tens.

As for a dataset with non-descriptive features, we selected

the DEXTER dataset [18], composed by sparse continuous bag-

of-words histograms, extracted from the Reuters text categoriza-

tion benchmark [75]. Noise is coming from 10, 053 distractors

(features having no discriminative power) put voluntarily in the

dataset.

A benchmark where Inf-FSU should perform comparably if

not superior to Inf-FSS is MADELON [17]. In fact, MADELON

is an artificial dataset containing data points grouped in 32

clusters placed on the vertices of a five-dimensional hypercube

and randomly labelled +1 or -1. The five dimensions constitute

5 informative features. 15 linear combinations of those features

were added to form a set of 20 (redundant) informative features.

Based on those 20 features one must separate the examples into

the 2 classes (corresponding to the +1, -1 labels). A number of

distractor features (480) called “probes” have no predictive power.

Other than this, correlated features are present.

The results are shown in Fig. 2. In general, Inf-FSS outper-

forms Inf-FSU on DEXTER, GINA and GISETTE and achieves

a absolute top performance in most of the cases. On the other

hand, Inf-FSU achieves a better performance on MADELON at 10

features w.r.t. the supervised counterpart, by discarding the several

correlated features in the set, and behaves comparably with Inf-

FSS at the other regimes.

Considering each dataset separately, on GISETTE (Fig. 2 top-

left) Inf-FSS betters all the comparative approaches when using 10

features, having NHTP close to its performance, while in the other

supervised cases the gap is substantial. Unsupervised approaches

do comparably to supervised ones when it comes to 10 features,

but this is probably due to the fact that 10 features are definitely

too few over the 5K which are originally available, and where

many of them are probably equally useful. In fact, when the

number of allowed features is growing (150, 200), it is visible that

most supervised approaches better the unsupervised ones. Among

the unsupervised approaches, our Inf-FSU ranks approximately

third after LLCFS [9] and LS [28], since the former is driven

by variance and correlation, and this does not allow to unveil

features which are overlapped among classes. Notably, LLCFS [9]

and LS [28] select features which are locality preserving, i.e.,

which agree on a clustering over the data. We may think that

this clustering is capable to naturally separating the digits data,

providing a more powerful solution than Inf-FSU .

ON GINA instead (Fig. 2 top-right), supervised approaches

show immediately at 10 features a consistent advantage over the

unsupervised methods. Here, Inf-FSS is on pair with the mutual

information MI [34] and the Fisher approach [33]. In facts, Inf-

FSS is containing both of them in the adjacency matrix A (see

Sec. 3.2), and they are useful to highlight features that do not

overlap across classes, i.e., which are non linearly correlated with

the class information. Inf-FSU gives here the worst performances,

ranking approximately fourth with respect to slower and more

complex approaches (MCFS [29], LLCFS [9], DGUFS [44])

which once again exploit the hypothesis that data is organized

in multiple clusters which we are ignoring with Inf-FSU .

DEXTER (Fig. 2 bottom-left) has the highest number of

features (20K) so that restricting to only 10-200 features opens to

many equivalent selections, which anyway are better individuated

by INf-FSS (among the supervised approaches, except the 10

features case where LASSO shows to be better) and by INf-FSU

(among the unsupervised approaches, on pair with LS [28] which

is better at 100-200 features).

On MADELON we already have discussed above the results

of Fig. 2 (bottom-right) .
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Fig. 3. Performance achieved for the image classification task reported in terms of mAP (VOC 2007) and classification accuracy (Caltech-101) while
selecting the first 5%, 10%, 15%, 20%, and 25% features. Solid lines individuate supervised feature selection approaches, dotted lines indicate
unsupervised approaches.

10 50 100 150 200
Subset Size

1

2

3

4

5

6

7

8

9

Av
g.

 R
an

k 

RANKING (UNSUPERVISED)
CFS [47]
DGUFS [44]
FSASL [45]
LLCFS [9]
LS [28]
MCFS [29]
UDFS [52]
UFSOL [46]
Inf-FSU [23]

10 50 100 150 200
Subset Size

1

2

3

4

5

6

7

8

9

Av
g.

 R
an

k 

RANKING (SUPERVISED)
NHTP [59]
ECFS [42]
Fisher [33]
FSV [11]
ILFS [22]
LASSOU [56]
LASSOH [55]
MI [34]
ReliefF [30]
RFE [47]
Inf-FSS

Fig. 4. Bubble plot showing the average ranking performance (y-axis) overall the datasets while increasing the number of selected features for the
unsupervised approaches (left) and supervised ones (right). The area of each circle is proportional to the variance of the ranking.

4.3 Challenge 3: Feature selection on CNN Features

Applying feature selection on deep learning-based cues is a recent

trend in image recognition [77], [78]. In fact, recent studies

show that feature learning and deep learning are not immune to

produce redundant or introduce useless information in the learned

representations. For example, [78] proposed a generic framework

for network compression and acceleration where CNNs are pruned

by removing neurons with least importance, resulting in more

robust networks. Neuron importance scores (usually associated to

the last layer of the network, before classification) are computed

by Inf-FSU as a function of the importance of all the other neurons

in the layer.

In this subsection, we evaluate the performance of the pro-

posed approach on features learned by the very deep ConvNet [21]

framework, where the pre-trained model used for the ImageNet

Large-Scale Visual Recognition Challenge 2014 (ILSVRC) is

adopted. We use the 4, 096-dimension activations of the last layer

as image descriptors (L2-normalized afterwards), and we focus

on the CALTECH 101 and PASCAL VOC-2007 datasets. These

datasets allow for a systematic testing of the feature selection

approaches taken into account in this paper, in a reasonable

amount of time. We omit to choose other benchmarks (Imagenet

for example) since for some of the comparative methods (LASSO

and MCFS) the running time for a single trial is exceeding the

week. Indeed, for each comparative approach, we perform a total

of 200 runs.

According to the experimental protocol provided by the VOC

challenge, a one-vs-rest SVM classifier is trained for each class

(where cross-validation is used to find the best parameter C) and

evaluated independently. Fig. 3 reports the performance curves

obtained with the 18 feature selection approaches (solid lines for

supervised approaches, dotted lines for unsupervised ones). In this

case, the goal was to investigate the classification while keeping

the first 5%, 10%, 15%, 20%, 25% of the features, corresponding

to 205, 410, 614, 819 and 1024 characteristics.

From Fig. 3 (Left), it can be seen that the supervised Inf-

FSS reaches good performance in general, with a slightly supe-

rior performance w.r.t. the eigenvector centrality-based approach

(ECFS). In general, the supervised approaches are organized into

two groups, the most performing ones are the INFFS, ECFS, that,

together with MI and ILFS gives an increase in the classification

performance when adding more features. The other supervised

approaches (RFE, FSV and RELIEF) seems to have a lower trend.

Viceversa, all of the unsupervised approaches are more consistent

among themselves, with Inf-FS positioning in the top 3 positions

after LS and LLCFS. In the case of CALTECH 101 it is easy to
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Fig. 5. Varying the cardinality of the selected features on VOC 2007.
Mean average precision instead of classification accuracy is provided
here.

see that the task is easier, with all of the approaches positioning in

a narrow band of performance. Notably, Inf-FSS and Inf-FSU are

on pair at the top position.

On the PASCAL 2007, we performed an additional experi-

ment, aimed at exploring the performances when spanning the

number of features retained from 5% to 100% (Fig. 5). The idea is

to check how much difference holds when keeping a small number

of features with respect to the whole set. In fact, feature selection

approaches often represent a compromise between admitting a

lower classification performance at the price of a faster time of task

execution [25]. We apply both Inf-FSS and Inf-FSU . Noteworthy,

both of the approaches provide features subsets leading to a perfor-

mance (mAP) superior to the one obtained with the entire pool. In

particular, with 25% of features, Inf-FSS raises the classification

performances of barely 1 percentage point (83.8% against 83.1%

fo the full set). Better performances are obtained in the range of

25%-45%. The Inf-FSS shows that there is a 10% of features

ranked last which cause a slight bending of the performances

(see the 90%-100% range). Inf-FSU has a similar behaviour, but

lower in mAP score: The peak is at 45% of features (83.6%).

To further explore the behavior of the approach in the range of

best performance (25%-45% for Inf-FSS and 35%-45% for Inf-

FSU ) we perform a fine-grained cardinality analysis reaching the

absolute best of Inf-FSS at 31.5% features (84.18% mAP) and

36.5% for Inf-FSU (83.91% mAP).

4.4 The versatility of Inf-FSU and Inf-FSS

In this section we want to summarize the diverse experiments

carried out so far, demonstrating that one of the most valuable

merit of the Inf-FS framework is that it applies favorably on every

genre of feature selection scenario. To this sake, we set up in

Fig. 4 two bubble-plots showing the average ranking (the lower,

the better) for each compared approach (y-axis), considering all

of the used datasets (except CALTECH 101 and PASCAL VOC

where LASSO did not apply, and where we evaluated different

numbers of features), separating the unsupervised and supervised

approaches that we have considered in the experiments.

In practice, the ranking represents the position of an approach

(as classification accuracy) with respect to all the others. In the

case a given approach has the best accuracy for a given benchmark,

its rank on that benchmark is 1, in the case it gives the second-best

accuracy the rank is 2, and so on. The average ranking shows how

an approach, independently on the accuracy score, is generically

better than the others, exhibiting a relative ordering.

The average ranking is computed with respect to different

subsets of features (x-axis), and is enriched by the standard

deviation in the ranking (how consistently an approach had a

particular rank), depicted by the size of the blob (the larger the

size, the higher the ranking variance).

The figures convey a clear message, since both Inf-FS unsu-

pervised and supervised have the best rank, with a variance of 0.23

which indicates a stable behavior of both the approaches. Notably,

Inf-FSS is definitely the most effective choice when it comes

to few features selected; the mutual information-based MI [34]

and the Fisher criterion for feature selection [33] follow. In the

case of unsupervised approaches, Inf-FSU is first, followed by the

clustering based approaches LS [28] and MCFS [29].

4.5 Challenge 4: Automatic Subset Selection

In this section, we test the process of selecting a subset of

relevant features from the ranking provided by Inf-FS, explained

in Sec. 3.6.

To this sake, we repeat all of the experiments with Inf-FSS and

Inf-FSU on the 11 datasets examined so far, selecting as relevant

features the ones indicated by the cluster which includes the first-

ranked feature, and using them for the classification tasks. As

comparative approach, we consider LASSO learned with hinge

loss [55] and unhinged loss [56], since it is the only which allows

to automatically select a precise number of features, that is, the

ones which survive the shrinking process during the training stage.

In particular, we individuate the best-performing LASSO by 5-fold

cross-validating the regularization parameter over the training set

of each benchmark, for both the hinged and unhinged versions.

The results are reported in Table 3

For each pair < dataset,method >, we report four different

quantities: in the Subset column we show in round brackets

the number of selected features, and alongside the classification

accuracy obtained with that number of features. In the Best Prev.

Perf. column, we report in round brackets the number of features

that provided the best performance obtained in the previous experi-

ments (following on the right). In the table, bold scores indicate the

highest classification performance among the scores obtained by

the automatic selection of feature subset, not the highest absolute.

From the results, several observations can be drawn:

• The automatic selection of the number of features allow

Inf-FSU and Inf-FSS to provide higher performances than

LASSO on 9 out of 11 cases, with LASSO unhinged beating

the Inf-FS framework on GISETTE and GINA;

• Tightly connected with the previous point, and worth noting,

the Inf-FS framework selects definitely less features than

the LASSO approaches (apart from the microarray datasets,

where anyway LASSO unhinged is giving scarce perfor-

mance). LASSO unhinged tends to keep features in a number

which is highly variable; for example, it suggests a very large

amount of features (2126 for GISETTE) or very few (the

five microarray datasets); this seems to be correlated with the

number of samples in the dataset, that, for the microarray

datasets, is quite small. LASSO hinge appears to be more

stable (but it gives the highest number of features).

• Inf-FSS requires for all of the datasets less features than Inf-

FSU (operating with the automatic selection), showing that



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

Dataset LASSO (unhinged) [56] LASSO (hinge) [55] Inf-FSU Inf-FSS

Subset Best Prev. Perf. Subset Best Prev. Perf. Subset Best Prev. Perf. Subset Best Prev. Perf.

DEXTER (10) 80.3% (50) 82.9% (2343) 79.9% (10) 81.1% (466) 83.8% (200) 84.8% (339) 92.8% (150) 92.9%
GISETTE (2126) 95.3% (200) 90.3% (2482) 85.9% (200) 83.5% (707) 87.7% (200) 90.2% (638) 94.1% (200) 93.3
GINA (478) 83.8% (200) 84.1% (485) 80.4% (200) 84.2% (152) 76.2% (200) 79.6% (127) 83.4% (200) 85.6%
MADELON (233) 55.9% (150) 56.9% (396) 54.3% (150) 53.9% (48) 58.7% (10) 61.0% (32) 57.1% (200) 60.0

COLON (22) 66.7% (50) 85.5% (1131) 84.4% (200) 80.0% (326) 91.1% (150) 92.7% (174) 91.1% (100) 92.7%
LEUKEMIA (18) 79.5% (200) 97.1% (1810) 93.8% (150) 93.3% (618) 94.7% (10) 94.7% (242) 95.2% (10) 94.8%
PROSTATE (43) 87.0% (100) 95.3% (3168) 90.7% (150) 93.7% (1014) 93.0% (100) 93.3% (563) 94.7.6% (150) 96.6%
LYMPHOMA (13) 56.7% (150) 91.6% (2105) 86.7% (150) 75.8% (674) 93.3% (150) 93.3% (395) 95.8% (200) 98.3%
LUNG (49) 89.8% (50) 96.6% (5297) 96.2% (150) 97.6% (400) 99.9% (200) 99.8% (361) 99.9% (200) 99.8%

VOC 2007 N/A N/A N/A N/A (1,883) 83.6% (1024) 83.1% (696) 83.5% (819) 83.8%

CalTech 101 N/A N/A N/A N/A (2250) 92.0% (1024) 92.1% (942) 91.8% (1024) 91.9%

TABLE 3
The feature subset selection results reported in terms of accuracy (%). The values enclosed in round brackets show the number of the features

kept. In bold the best performance for the Subset selection problem.

the class information enriches the discriminative power of

the cues.

• Inf-FS performance with the automatic selection remain com-

petitive in every scenario, while LASSO unhinged performs

very poor on the small-sample, high dimensional case.

5 CONCLUSIONS

In this work we considered the feature selection problem under

a brand-new perspective, i.e., as a regularization problem, where

features are nodes in a weighted fully-connected graph, and a

selection of l features is a path of length l through the nodes of the

graph. Under this view, the proposed Inf-FS framework associates

each feature to a score originating from pairwise functions (the

weights of the edges) that measure relevance and non redundancy.

This score has different explanations: under a power series of

matrices view indicates the value that a feature can bring in

a possibly infinite selection of features. Alternatively, under an

absorbing Markov chain perspective, the score indicates how

many times a feature would be associated to the other cues as

complementary, before to end the process of selection. A precise

subset of features can be provided, by examining the distribution

of these scores.

Inf-FS can be customized by hand-crafting the pairwise func-

tions, and here we presented two customizations, for unsupervised

and supervised scenarios, respectively. Future work will be spent

in designing an end-to-end system capable to infer the optimal

pairwise functions. Finally, Inf-FS showed to be an effective

general-purpose feature selection approach, comparing favorably

w.r.t. a large number of methods, on heterogeneous benchmarks.
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[36] M. Studený and J. Vejnarová, “Learning in graphical models,”
M. I. Jordan, Ed. Cambridge, MA, USA: MIT Press, 1999,
ch. The Multiinformation Function As a Tool for Measuring
Stachastic Dependence, pp. 261–297. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=308574.308673 2

[37] D. Lin and X. Tang, “Conditional infomax learning: an integrated
framework for feature extraction and fusion,” in European Conference

on Computer Vision. Springer, 2006, pp. 68–82. 2

[38] R. Battiti, “Using mutual information for selecting features in supervised
neural net learning,” IEEE Transactions on neural networks, vol. 5, no. 4,
pp. 537–550, 1994. 2

[39] A. Jakulin, “Machine learning based on attribute interactions,” Ph.D.
dissertation, Univerza v Ljubljani, 2005. 2

[40] H. H. Yang and J. Moody, “Data visualization and feature selection: New
algorithms for nongaussian data,” in Advances in Neural Information

Processing Systems, 2000, pp. 687–693. 3

[41] F. Fleuret, “Fast binary feature selection with conditional mutual infor-
mation,” Journal of Machine Learning Research, vol. 5, no. Nov, pp.
1531–1555, 2004. 3

[42] G. Roffo and S. Melzi, “Features selection via eigenvector centrality,”
in Proceedings of New Frontiers in Mining Complex Patterns (NFMCP

2016), Oct 2016. 3, 7, 8

[43] G. Roffo and S. Melzi, Ranking to Learn: Feature Ranking and Selection

via Eigenvector centrality, 2017, pp. 19–35. 3, 7, 8

[44] J. Guo and W. Zhu, “Dependence guided unsupervised feature selection,”
in Proc. AAAI Conf. Artificial Intell. (AAAI), New Orleans, Louisiana,
Feb. 2018, pp. 2232–2239. 3, 7, 8, 10

[45] L. Du and Y.-D. Shen, “Unsupervised feature selection with adaptive
structure learning,” in Proceedings of the 21th ACM SIGKDD interna-

tional conference on knowledge discovery and data mining. ACM, 2015,
pp. 209–218. 3, 8

[46] J. Guo, Y. Quo, X. Kong, and R. He, “Unsupervised feature selection
with ordinal locality,” in Multimedia and Expo (ICME), 2017 IEEE

International Conference on. IEEE, 2017, pp. 1213–1218. 3, 7, 8

[47] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene selection
for cancer classification using support vector machines,” Machine

Learning, vol. 46, no. 1-3, pp. 389–422, 2002. [Online]. Available:
http://dx.doi.org/10.1023/A:1012487302797 3, 7, 8

[48] Y. Tang, Y.-Q. Zhang, and Z. Huang, “Development of two-stage svm-
rfe gene selection strategy for microarray expression data analysis,”
IEEE/ACM Transactions on Computational Biology and Bioinformatics,
vol. 4, no. 3, pp. 365–381, 2007. 3

[49] L. Yu, Y. Han, and M. E. Berens, “Stable gene selection from microarray
data via sample weighting,” IEEE/ACM TCBB, vol. 9, no. 1, pp. 262–272,
2012. 3

[50] M. Yousef, S. Jung, L. C. Showe, and M. K. Showe, “Recursive
cluster elimination (rce) for classification and feature selection from gene
expression data,” BMC bioinformatics, vol. 8, no. 1, p. 144, 2007. 3

[51] G. Chandrashekar and F. Sahin, “A survey on feature selection methods,”
Comput. Electr. Eng., vol. 40, no. 1, pp. 16–28, Jan. 2014. 3

[52] Y. Yang, H. T. Shen, Z. Ma, and et Al, “L2,1-norm regularized dis-
criminative feature selection for unsupervised learning,” in In Conf.

International Joint Conference on Artificial Intelligence, 2011, pp. 1589–
1594. 3, 7, 8

[53] W. Chen, H. Ji, and Y. You, “An augmented lagrangian method for l1-
regularized optimization problems with orthogonality constraints,” SIAM

Journal on Scientific Computing, vol. 38, no. 4, pp. B570–B592, 2016. 3

[54] J. Weston, A. Elisseeff, B. Schölkopf, and M. Tipping, “Use of the
zero-norm with linear models and kernel methods,” Journal of machine

learning research, vol. 3, no. Mar, pp. 1439–1461, 2003. 4

[55] S. A. Van de Geer et al., “High-dimensional generalized linear models
and the lasso,” The Annals of Statistics, vol. 36, no. 2, pp. 614–645, 2008.
4, 7, 8, 12, 13

[56] B. Van Rooyen, A. Menon, and R. C. Williamson, “Learning with
symmetric label noise: The importance of being unhinged,” in Advances

in Neural Information Processing Systems, 2015, pp. 10–18. 4, 7, 8, 12,
13

[57] X. Yuan, P. Li, and T. Zhang, “Gradient hard thresholding pursuit
for sparsity-constrained optimization,” in International Conference on

Machine Learning, 2014, pp. 127–135. 4

[58] X.-T. Yuan, P. Li, and T. Zhang, “Gradient hard thresholding pursuit,”
The Journal of Machine Learning Research, vol. 18, no. 1, pp. 6027–
6069, 2017. 4

[59] S. Zhou, N. Xiu, and H.-D. Qi, “Global and quadratic convergence
of newton hard-thresholding pursuit,” arXiv preprint arXiv:1901.02763,
2019. 4, 7, 8

[60] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification (2Nd

Edition). New York, NY, USA: Wiley-Interscience, 2000. 4
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