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ABSTRACT

This paper proposes a differentiable linear quadratic Model Predictive Control
(MPC) framework for safe imitation learning. The infinite-horizon cost is enforced
using a terminal cost function obtained from the discrete-time algebraic Riccati
equation (DARE), so that the learned controller can be proven to be stabilizing in
closed-loop. A central contribution is the derivation of the analytical derivative of
the solution of the DARE, thereby allowing the use of differentiation-based learning
methods. A further contribution is the structure of the MPC optimization problem:
an augmented Lagrangian method ensures that the MPC optimization is feasible
throughout training whilst enforcing hard constraints on state and input, and a pre-
stabilizing controller ensures that the MPC solution and derivatives are accurate at
each iteration. The learning capabilities of the framework are demonstrated in a set
of numerical studies.

1 INTRODUCTION

Imitation Learning (IL, Osa et al., 2018) aims at reproducing an existing control policy by means of a
function approximator and can be used, for instance, to hot-start reinforcement learning. Effective
learning and generalisation to unseen data are paramount to IL success, especially in safety critical
applications. Model Predictive Control (MPC, Maciejowski, 2000; Camacho & Bordons, 2007;
Rawlings & Mayne, 2009; Kouvaritakis & Cannon, 2015; Gallieri, 2016; Borrelli et al., 2017;
Raković & Levine, 2019) is the most successful advanced control methodology for systems with hard
safety constraints. At each time step, a finite horizon forecast is made from a predictive model of
the system and the optimal actions are computed, generally relying on convex constrained Quadratic
Programming (QP, Boyd & Vandenberghe, 2004; Bemporad et al., 2000). Stability of the MPC
in closed loop with the physical system requires the solution of a simpler unconstrained infinite
horizon control problem (Mayne et al., 2000) which results in a value function (terminal cost and
constraint) and a candidate terminal controller to be accounted for in the MPC forecasting. For Linear
Time Invariant (LTI) models and quadratic costs, this means solving (offline) a Riccati equation
(Kalman, 2001) or a linear matrix inequality (Boyd et al., 1994). Under these conditions, an MPC
controller will effectively control a system, up to a certain accuracy, provided that uncertainties in the
model dynamics are limited (Limon et al., 2009). Inaccuracies in the MPC predictions can reduce its
effectiveness (and robustness) as the forecast diverges from the physical system trajectory over long
horizons. This is particularly critical in applications with both short and long-term dynamics and it is
generally addressed, for instance in robust MPC (Richards, 2004; Raković et al., 2012), by using a
controller to pre-stabilise the predictions.

This paper presents an infinite-horizon differentiable linear quadratic MPC that can be learned
using gradient-based methods. In particular, the learning method uses an MPC controller where
the terminal cost and terminal policy are the solution of an unconstrained infinite-horizon Linear
Quadratic Regulator (LQR). A closed-form solution for the derivative of the Discrete-time Algebraic
Riccati Equation (DARE) associated with the LQR is presented so that the stationary solution of
the forward pass is fully differentiable. This method allows analytical results from control theory
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to be used to determine the stabilizing properties of the learned controller when implemented in
closed-loop. Once the unconstrained LQR is computed, the predictive model is pre-stabilised using a
linear state-feedback controller to improve the conditioning of the QP and the numerical accuracy of
the MPC solution and gradients. The proposed algorithm successfully learns an MPC with both local
stability and intrinsic robustness guarantees under small model uncertainties.

Contributions This paper provides a framework for correctly learning an infinite-horizon, LTI
quadratic MPC using recent developments in differentiable QPs (Amos & Kolter, 2017) and principles
from optimal control (Blanchini & Miani, 2007). A primary contribution is that the Discrete-time
Algebraic Riccati Equation (DARE) is used to provide infinite-horizon optimality and stability, and an
analytical derivative of the solution of the DARE is derived so that differentiation-based optimization
can be used for training. This connects known results on MPC stability (Limon et al., 2003; 2009)
and on infinite-horizon optimality (Scokaert & Rawlings, 1998) to imitation learning (Osa et al.,
2018).

A further contribution is the MPC control formulation: a pre-stabilizing linear state-feedback con-
troller is implemented from the solution of the DARE, and then the total control input is obtained
as a perturbation of the feedback control law from the solution of a convex QP. The pre-stabilizing
controller ensures that the QP is well conditioned and promotes a highly accurate global solution,
which in turn ensures that the gradients calculated in the backwards pass are accurate. Additionally,
an augmented Lagrangian penalty method is used to enforce constraints on state and control input.
This approach ensures that the hard constraints are strictly enforced if the penalty term is sufficiently
large, and also guarantees that the MPC problem is feasible throughout the training process. These
contributions are in contrast to (Amos et al., 2018) which did not consider state constraints, and
implemented a differential dynamic programming (Tassa et al., 2014) method to solve the MPC
optimization for which convergence could not be guaranteed.

The framework is implemented on a set of second order mass-spring-damper systems and a vehicle
platooning model, where it is demonstrated that the infinite horizon cost can be learned and the hard
constraints can be guaranteed using a short finite prediction horizon.

Notation In := n × n identity matrix. Om×n := m × n matrix of zeros. 0n := a vector of n
zeros. 1n := a vector of n ones. All inequalities ≤ and ≥ are considered element-wise in the context
of vectors. ρ(A) := largest absolute eigenvalue of given matrix A. vec : Rm×n 7→ R

mn is defined
as vec ([c1 · · · cn]) := (c1, · · · , cn), i.e. the columns of a matrix stacked into a vector. For a matrix
A ∈ R

m×n, the Vm,n ∈ R
mn×mn permutation matrix is implicitly defined by Vm,nvecA := vecA⊤.

The Kronecker product, ⊗, is defined as in (Magnus & Neudecker, 1999, pp. 440).

2 DIFFERENTIABLE MPC

Linear quadratic MPC This paper considers linear time invariant systems of the form

xt+dt = Axt +But, (1)

where xt ∈ R
n is the system state, ut ∈ R

m is the control input, A ∈ R
n×n is the state transition

matrix, B ∈ R
n×m is the input matrix, t ∈ R is the time, and dt ∈ R is the timestep (assumed

constant). The control problem for this system is to determine the sequence of values of ut that
achieve a desired level of performance (e.g. stability, frequency response, etc...), and when the system
is subject to hard constraints on control input, ut ∈ U, and state, xt ∈ X, (or a combination of both),
a well studied framework for controller synthesis is MPC. The principle of MPC is that the system’s
control input and state are optimized over a finite prediction horizon, then the first element of the
obtained control sequence is implemented at the current time step and the process is repeated ad
infinitum. For linear MPC it is common to use a quadratic stage cost and box constraints on state and
control ( x ≤ xk ≤ x and u ≤ uk ≤ u where u ≤ 0 ≤ u), so that at each time index t the vector of
optimized control variables û⋆ is obtained from
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û⋆
0:N = argmin

û
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k=0

û⊤

k Rûk +
1

2

N−1∑

k=1

x̂⊤

k Qx̂k +
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x̂⊤

NQN x̂N + ku

N−1∑

k=0

1⊤mrk + kx

N∑

k=1

1⊤n sk

s.t. x̂0 = xt,

x̂k+1 = Ax̂k +Bûk, k ∈ {0, . . . , N − 1},

u− rk ≤ ûk ≤ u+ rk and rk ≥ 0, k ∈ {0, · · ·N − 1},

x− sk ≤ x̂k ≤ x+ sk and sk ≥ 0, k ∈ {1, . . . , N},
(2)

where û0:N is the predicted control trajectory, x̂ is the predicted state trajectory, R ∈ R
m×m � 0

represents the stage cost on control input, Q ∈ R
n×n � 0 represents the stage cost on state,

QN ∈ R
n×n � 0 represents the terminal cost on state, N ∈ N is the prediction horizon, rk ∈ R

m

are slack variables for the control constraint, sk ∈ R
n are slack variables for the state constraint,

and ku ∈ R > 0 and kx ∈ R > 0 represent the cost of control and state constraint violations. The
variables s and r enforce the box constraints on state and control using the augmented Lagrangian
method (Nocedal & Wright, 2006, §17.2), and it can be shown that for sufficiently high kx and ku the
constraints x ≤ xk ≤ x and u ≤ uk ≤ u can be exactly guaranteed (Kerrigan & Maciejowski, 2000)
(i.e. s = r = 0). The benefit of this approach is that it ensures that the MPC optimization is feasible
at each iteration of the learning process, whilst still ensuring that the constraints are ‘hard’. To close
the MPC control loop, at each timestep, t, the first element of the optimized control sequence, û⋆

0, is
implemented as ut.

Pre-stabilised MPC If the control input is decomposed into ut = Kxt + δut, where K ∈ R
m×n

is a stabilizing linear state-feedback matrix and δut is a perturbation to the feedback control, system
(1) becomes

xt+dt = (A+BK)xt +Bδut, (3)

and problem (2) becomes

δû⋆
0:N = argmin

δû

1

2

N−1∑

k=0

(Kx̂k + δûk)
⊤R(Kx̂k + δûk) +

1

2

N−1∑

k=1

x̂⊤

k Qx̂k +
1

2
x̂⊤

NQN x̂N

+ ku

N−1∑

k=0

1⊤

mrk + kx

N∑

k=1

1⊤n sk

s.t. x̂0 = xt,

x̂k+1 = (A+BK)x̂k +Bδûk, k ∈ {0, . . . , N − 1},

u− rk ≤ Kx̂k + δûk ≤ u+ rk and rk ≥ 0, k ∈ {0, . . . , N − 1},

x− sk ≤ x̂k ≤ x+ sk and sk ≥ 0, k ∈ {1, . . . , N},

(4)

so that û⋆
0 = Kxt + δû⋆

0 is implemented as ut. Using this decomposition, system (3) controlled with
the solution of (4) is precisely equal to system (1) controlled with the solution of (2), but problem (4)
is preferable from a computational standpoint if A is open-loop unstable (i.e. ρ(A) > 1) and N is
‘large’, as this can lead to poor conditioning of the matrices defined in Appendix A. This is important
in the context of differentiable MPC, as if A is being learned then there may be no bounds on its
eigenvalues at any given iteration.

MPC derivative. Problems (2) and (4) can be rearranged into the QP form (details in Appendix A)

z⋆ = argmin
z

1

2
z⊤Hz + q⊤z s.t. lb ≤ Mz ≤ ub. (5)

When z⋆ is uniquely defined by (5), it can also be considered as the solution of an implicit function
defined by the Karush-Kuhn-Tucker (KKT) conditions, and in Amos & Kolter (2017) it was demon-
strated that it is possible to differentiate through this function to obtain the derivatives of z⋆ with
respect to the parameters H , q, l, M , and u. 1 The MPC controller can then be used as a layer in a

1Note that (5) differs from the form presented in Amos & Kolter (2017), and is instead the form of problem
solved by the OSQP solver used in this paper. Appendix B demonstrates how to differentiate (5) using the
solution returned by OSQP.
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neural network, and backpropagation can be used to determine the derivatives of an imitation cost
function with respect to the MPC parameters Q, R, A, B, u, u, x, x, kx and ku.

Imitation Learning. A possible use case of the derivative of a model predictive controller is
imitation learning, where a subset of {cost function, system dynamics, constraints} are learned from
observations of a system being controlled by an ‘expert’. Imitation learning can be performed by
minimizing the loss

1

T

T∑

t=0

‖ut:t+Ndt − û⋆
0:N (xt)‖

2
2 + β‖ŵt‖

2
2, (6)

where ut is the measured control input, û⋆
0:N (xt) is the full MPC solution, and β ≥ 0 is a hyperpa-

rameter. It is assumed that both the learning algorithm and MPC controller have completely precise
measurements of both the state and control input. The first term of (6) is the control imitation loss,
and the second term penalises the one-step ahead prediction error ŵt = Axt + But − xt+dt. In
practice, the prediction error loss might not be needed for the MPC to be learned correctly, however
its use can be instrumental for stability, as discussed in the next section.

3 TERMINAL COST FOR INFINITE HORIZON

Terminal cost. The infinite-horizon discrete-time Linear Quadratic Regulator (LQR, Kalman, 2001)
is given with state feedback gain

K = −(R+B⊤PB)−1B⊤PA, (7)

where P is obtained as a solution of the DARE

P = A⊤PA−A⊤PB(R+B⊤PB)−1B⊤PA+Q. (8)

The principle of the approach presented in this paper is the MPC controller (2,4) is implemented with
QN = P . Proposition 1 summarises the relevant properties of the proposed MPC, building on classic
MPC results from Scokaert & Rawlings (1998); Limon et al. (2003; 2009).

Proposition 1. Consider the MPC problem (4) with QN = P , where P and K solve (7-8). Define
V ⋆
N (x) as the optimal objective in (4) with xt = x. Denote the optimal stage cost with xt = x as

ℓ(x, û⋆
0(x)) = x⊤Qx+ û⋆

0(x)
⊤Rû⋆

0(x). Then, for the closed-loop system, it follows that:

1. For any N̄ ≥ 1, there exists a closed and bounded set, ΩN̄ , such that, if x0 ∈ ΩN̄ and
ŵt = 0, ∀t ≥ 0, then the MPC solution is infinite-horizon optimal for any N ≥ N̄ .

2. There exist positive scalars d, α, such that, for any N ≥ 1, if ŵt = 0, ∀t ≥ 0 then the MPC
constraints are feasible, ∀t ≥ 0, and the origin is asymptotically stable ∀x0 ∈ ΓN , with

ΓN = {x ∈ R
n : V ⋆

N (x) ≤ ℓ(x, û⋆
0(x)) + (N − 1)d+ α} . (9)

3. There exist a scalar, µ ≥ 0, such that, for any N ≥ 1 the MPC constraints are robustly
feasible, ∀t ≥ 0, and the system is Input-to-State Stable (ISS) ∀x0 ∈ ΓN given an additive
model error, ŵ, such that: ‖ŵt‖ ≤ µ, ∀t ≥ 0. In other words:

V ⋆
N (xt+dt) ≤ V ⋆

N (xt)− ℓ(xt, û
⋆
0(xt)) + σ(‖ŵt‖),

for some strictly increasing, bounded function, σ(·), with σ(0) = 0.

4. The QP matrices, H , M and the vector q, in (5), have finite norms for any N ≥ 1.

Proof. Proof of Proposition 1 is given in Appendix C.

Implications. Proposition 1 has some important implications. First, point 1 implies that there
exists a state-dependant finite horizon length, N̄ , which is sufficient to make the MPC problem
infinite-horizon optimal. This N̄ can be upper bounded for a closed and bounded set of feasible
states, ΩN̄ . Scokaert & Rawlings (1998) proposed an iterative search that increases the horizon until
optimality is verified; a similar algorithm is discussed in Appendix E where learning is completed
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with a large horizon and then iteratively reduced afterwards, although it is not implemented in this
paper. Point 2,3 state that MPC that can provide stability and constraints satisfaction, hence safety, if
the model error is small. This also applies to small errors in the QP solution. Finally, point 4 states
that the QP matrices have finite norm when the system dynamics are pre-stabilised using the LQR
gain2, so the MPC problem is well conditioned and can be solved reliably to high accuracy, even
over long horizons. If the open-loop system is unstable then the terms of the matrices in Appendix A
for the standard form are unbounded, so the QP solution may be poorly conditioned and the result
inaccurate for long horizons. This can in turn invalidate the results of Amos & Kolter (2017) which
assumes that the KKT conditions are exactly satisfied in order to compute its gradients.

DARE Derivative. In order to implement QN = P in a differentiable imitation learning framework
such as that presented in Section 2, the solution of the DARE is differentiated as follows.

Proposition 2. Let P be the stabilizing solution of (8), and assume that Z−1
1 and (R+B⊤PB)−1

exist, then the Jacobians of the implicit function defined by (8) are given by

∂vecP

∂vecA
= Z−1

1 Z2,
∂vecP

∂vecB
= Z−1

1 Z3,
∂vecP

∂vecQ
= Z−1

1 Z4,
∂vecP

∂vecR
= Z−1

1 Z5,

where Z1, . . . , Z5 are defined by

Z1 := In2 − (A⊤ ⊗A⊤)
[
In2 − (PBM2B

⊤ ⊗ In)− (In ⊗ PBM2B
⊤)

+ (PB ⊗ PB)(M2 ⊗M2)(B
⊤ ⊗B⊤)

]

Z2 := (Vn,n + In2)(In ⊗A⊤M1)

Z3 := (A⊤ ⊗A⊤)
[
(PB ⊗ PB)(M2 ⊗M2)(Im2 +Vm,m)(Im ⊗B⊤P )

− (In2 +Vn,n)(PBM2 ⊗ P )
]

Z4 := In2

Z5 := (A⊤ ⊗A⊤)(PB ⊗ PB)(M2 ⊗M2),

and M1,M2,M3 are defined by

M1 := P − PBM2B
⊤P, M2 := M−1

3 , M3 := R+B⊤PB.

Proof. The proof of Proposition 2 is given in Appendix D.

The sensitivity of the DARE solution has been investigated in the context of robustness to perturbations
in the input matrices, e.g. Sun (1998); Konstantinov et al. (1993), and the analytical derivative of
the continuous-time algebraic Riccati equation was derived in Brewer (1977) by differentiating the
exponential of the Hamiltonian matrix, but to the best of the authors’ knowledge this is the first
presentation of an analytic derivative of the DARE using the differential calculus approach of Magnus
& Neudecker (1999).

Algorithm 1: Infinite-horizon MPC Learning

In: M\ S , N > 0, β ≥ 0, Ne > 0. Out: S
for i = 0...Ne do

Forward Pass
(K, P )← DARE (7-8) solution
QT ← P
û⋆

0:N ←MPC QP (3-5) solution
L← Imitation loss (6)
Backward Pass
Differentiate loss (6)
Differentiate MPC QP solution, û⋆

0:N ,
using Appendix B
Differentiate DARE, (P,K),
using Proposition 2
Update step
S ← Gradient-based step

Algorithm overview Algorithm 1 presents
the overall procedure for learning a subset,
S, of the MPC controller parameters, M =
{A,B,Q,R, x, x, u, u, ku, kx}, with the key
steps of the forwards and backwards pass of
a gradient-based optimization method. In each
forward pass the MPC terminal cost matrix, QN ,
and the pre-stabilizing controller, K, are set
from the solution of the DARE, then the DARE
and MPC QP solutions are differentiated in the
backward pass to obtain the gradients. Note
that the horizon, N , is not differentiable, and
that learning the entire set M simultaneously is
challenging in general.

2Note that any stabilising gain would be acceptable for the purpose of QP conditioning only.
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4 NUMERICAL EXPERIMENTS

In this section the performance of the algorithm was demonstrated through numerical experiments in
two test cases: firstly on a set of second order mass-spring-damper models to provide a performance
baseline in an easily interpretable setting, and then on vehicle platooning problem to investigate a
higher-dimensional real-world application.

4.1 MASS-SPRING-DAMPER

Model & Expert Expert data was generated using a mass-spring-damper model parameterized by
a mass, m ∈ R > 0, damping coefficient, c ∈ R, stiffness, k ∈ R, and timestep dt ∈ R > 0, where

A = exp(Acdt), Ac =

[
0 1

− k
m

− c
m

]

, B = (A− In)A
−1
c Bc, Bc =

[
0
1
m

]

,

so that xt ∈ R
2 is the position and velocity of the mass, and the ut ∈ R is a force applied to the mass.

Table 1: Damping coefficient c used to generate the
seven imitation systems.

System 1 2 3 4 5 6 7

c 1 0.5 0.1 -0.1 -0.3 -0.5 -0.6

Seven models were created with m = 1,
k = 1, and dt = 0.2, and c was varied as
shown in Table 1 to affect the open-loop
stability of the models (c > 0 ⇒ stable,
c < 0 ⇒ unstable). The expert data was
then generated by simulating each of the
systems the initial condition x0 = (0, 3) in
closed-loop with an infinite-horizon MPC
controller (i.e. the horizon was increased until the open-loop state predictions matched the closed-loop
response), using Q = diag([1, 1]), R = 2, (u, u) = (−∞, 0.5), x = (−1,−∞), and x) = (1,∞).
The constraint set was chosen so that the constraints on both state and control input were strongly
active at the solution whilst ensuring that the expert MPC optimization was feasbile. The values
ku = kx = 100 were found to be sufficient to enforce the hard constraints and were used for all
experiments. It is important to note that the approach of (Amos et al., 2018) cannot be used reliably
for even this simple example as it does not consider state constraints, and when hard constraints are
added to the method it fails in general because the optimization problem has become infeasible in the
forwards pass at some time t.
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Figure 1: Mass-spring-damper. Imitation loss and model loss
at each iteration of the training process. Top row: imitation
loss. Bottom row: model loss given by ‖vecA− vecAj‖

2
2, where

Aj is the learned model at iteration j, and A is the correct model.
The model loss was not used as part of the training process, and
shown only to indicate whether the model is converging correctly.

Learning The learner and ex-
pert shared all system and con-
troller information apart from the
state transition matrix A, which
was learned, and the MPC hori-
zon length, which was imple-
mented as each of N ∈ {2, 3, 6}
in three separate experiments.
A was initialized with the cor-
rect state transition matrix plus
a uniformly distributed pseudo-
random perturbation in the in-
terval [−0.5, 0.5] added to each
element. The learner was sup-
plied with the first 50 elements
of the closed loop state trajectory
and corresponding controls as a
batch of inputs, and was trained
to minimize the imitation loss (6)
with β = 0, i.e. the state dy-
namics were learned using pre-
dicted control trajectories only,
and the state transitions are not
made available to the learner (this is the same approach used in Amos et al., 2018). The experiments
were implemented in Pytorch 1.2.0 using the built-in Adam optimizer (Kingma & Ba, 2014) for
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1000 steps using default parameters. The MPC optimization problems were solved for the ‘ex-
pert’ and ‘learner’ using OSQP (Stellato et al., 2017) with settings (eps_abs=1E-10, eps_rel=1E-10,
eps_rim_inf=1E-10, eps_dual_inf=1E-10).

Results Figure 1 shows the imitation and model loss at each of the 1000 optimization iterations for
each of the tested horizon lengths. It can be seen that for all of the generated systems the imitation
loss converges to a low value, although this is a local minimum in general. In most cases, the learned
model converges to a close approximation of the real model, although as the problem is non-convex
this cannot be guaranteed, and it is also shown that there are some cases in which the model does
not converge correctly. This occurred exclusively for N = 2, where neither system 4 nor system 2
converge to the correct dynamics. Additionally, it can be seen that both the imitation loss and model
loss converge faster as the prediction horizon is increased. This suggests that a longer learning horizon
improves the learning capabilities of the methods, but there is not sufficient data to demonstrate this
conclusively.
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N = 2
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0 50

t
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0

1
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Figure 2: Mass-spring-damper. Closed-loop trajectories using
the expert and learned controllers. Trajectories only shown for
x1 (position), but x2 (velocity) can be inferred. Expert controllers
shown with solid lines, and learned controller shown with dotted
lines. The hard state constraints are shown in the red regions.

To test generalization perfor-
mance, each of the systems was
re-initialized with initial condi-
tion x0 = (0.5, 2) and simu-
lated in closed loop using the
learned controller for each hori-
zon length. The results are com-
pared in Figure 2 against the
same systems controlled with an
infinite horizon MPC controller.
The primary observation is that
as the learned MPC horizon is
increased to N = 6, the closed
loop trajectories converge to ex-
pert trajectories, indicating that
the infinite horizon cost has been
learned (when using the infinite
horizon cost with no model mismatch or disturbance, the predicted MPC trajectory is exactly the same
as the closed loop trajectory), and that the state constraints are guaranteed for N ≥ 4. Furthermore, it
can be seen that the learned controllers are stabilizing, even for the shortest horizon and the most
unstable open-loop systems. This is also the case for systems 2 and 4 where the incorrect dynamics
were learned, although in this case the state constraints are not guaranteed for N = 2.

4.2 VEHICLE PLATOONING

y1 y2 ynv−1 ynv

Figure 3: Platoon Model. nv vehicles in 1 degree
of freedom where y is longitudinal displacement.

Model & Expert Vehicle platoon control is
a problem that has been studied using control
theory (e.g. Zheng et al. (2019)), but here it is
demonstrated that a safe, stabilizing controller
can be learned from examples of vehicles driv-
ing in formation. Figure 3 shows an illustration
of a platoon of nv vehicles for which the objec-
tive is to stabilize the relative longitudinal positions of each vehicle to the steady-state conditions
yi − yi−1 → yss and ẏi − ẏi−1 → 0 ∀i, subject to the hard constraint that relative position of the
vehicles is never lower than a safe threshold yi − yi−1 ≥ y ∀i, and that the vehicles’ ability to brake
and accelerate is constrained by b ≤ ÿi ≤ a ∀i where b < 0 < a (note that only the relative positions
and velocities of the vehicles is considered, as the global position and velocity of the platoon can
be controlled separately by adding an equal perturbation to each element of ÿ). In appendix F it is
shown that this can be modelled as a discrete time LTI system. Expert data was generated from the
model with nv = 10 vehicles so that xt ∈ R

18 and ut ∈ R
10. 20 instances were generated using

random feasible initial conditions with yss = 30 m and y = 10 m, and then simulated for 20 s in
time intervals of dt = 0.7 s with an infinite-horizon MPC controller, using Q = In and R = 2Im.
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Learning The learner and expert shared all system and controller information apart from the cost
matrices Q and R, which were learned, and the MPC horizon length, which was implemented as
each of N ∈ {5, 10, 15, 20} in four separate experiments. The matrices Q and R were initialized
as completely random diagonal matrices with each element uniformly distributed in the interval
[0, 3], and the diagonal structure was maintained through training. 500 training iterations were used;
otherwise the learning process (loss function, learning rate, etc...) was the same as in Section 4.1.
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Figure 4: Vehicle platooning. Imitation loss and cost
function loss at each iteration of the training process.
Left: imitation loss. Right: model loss given by ‖vecQ−
vecQj‖

2
2 + ‖vecR − vecRj‖

2
2, where Q and R are the

correct cost matrices and Qj and Rj are the cost matrices
at iteration j.

Results Figure 4 shows the imitation
and cost function losses at each of the
500 optimization iterations for each of
the tested horizon lengths and initial con-
ditions. As with the mass-spring-damper
experiments, it is suggested that a longer
prediction horizon improves training as
the imitation loss generally converges
to a lower value for the examples with
N ∈ {15, 20}, but only convergence to
a local minimum is achieved in general.
The cost error also does not converge
in general (although better convergence
is observed again for the longer horizon
lengths), however for this learning prob-
lem there is a manifold of matrices Q and
R with the same minimizing argument,
so divergence of the cost error does not
necessarily indicate that the learned cost
function is ‘incorrect’. Furthermore, in this case the model is known exactly, so the closed-loop
infinite-horizon properties can be obtained even without the correct cost function.

Figure 5 shows the model simulated from the same initial condition in closed loop using a learned
controller for each of the horizon lengths, together with the error between the MPC state predictions
and ensuing closed-loop behaviour. All of the controllers are observed to successfully satisfy the hard
constraints on vehicle separation, and all converge to the correct steady-state vehicle separation. The
differences between the prediction capabilities of the controllers is highlighted by the state prediction
errors, and it can be seen that for N = 20 the state predictions match the ensuing behaviour, indicating
that the infinite horizon cost is being used and that closed-loop stability is guaranteed, even without
the use of a terminal constraint set. It is also demonstrated for N < 20 that the largest errors occur
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Figure 5: Vehicle platooning. Closed loop simulation and prediction error for all horizon
lengths. Top row: closed loop simulation where each shaded region is the safe separation dis-
tance for each vehicle. Bottom row: prediction error given by x[t:t+N ] − x̂t, where x̂ is the state
trajectory predicted by the MPC at time t.
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from predictions made at times when the state constraints are active, suggesting that these controllers
deviate from their predictions to satisfy the constraints at later intervals.

4.3 LIMITATIONS

The above approach is limited in scope to LTI systems, and a more comprehensive solution would
cover linear time varying systems (for which the MPC is still obtained from the solution of a QP).
In this case the infinite horizon cost cannot be obtained from the solution of the DARE, and the
extension of the methods presented in this paper to time varying or non-linear models is non-trivial
(see Appendix G for further discussion). Additionally, the derivative of the DARE in Proposition 2
involves multiple Kronecker products and matrix inversions (including an n2 × n2 matrix) that do
not scale well to large state and control dimensions, although the dynamics of physical systems can
usually be reasonably approximated with only a few tens of variables, so this may not become an
issue in practice. The algorithm also requires a stabilizing solution of the DARE to exist; theories for
the existence of stabilizing solutions are non-trivial (e.g. Ran & Vreugdenhil, 1988), and it is not
immediately obvious how to enforce their existence throughout the training process (stabilizibility
can be encouraged using the one-step ahead term in (6)).
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APPENDICES

A MPC QUADRATIC PROGRAM

Problem (2) is equivalent to

z⋆ = argmin
z

1

2
z⊤





R+Ψ⊤QΨ
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 z +

[
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where
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are of conformal dimensions. Using the above, problem (4) is then equivalent to

z⋆ = argmin
z
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2
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where now
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δû
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 and Ψ =






B
...

. . .

(A+BK)N−1B · · · B




 ,

and

Q̂ =

[
On×n

Q

]

, Φ̂ =

[
In
Φ

]

, Ψ̂ =

[
On×Nn

Ψ

]

, K =






K
. . . ONm×n

K




 ,

are of conformal dimensions.
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B OSQP DERIVATIVES

OSQP solves quadratic programs of the form (5), and returns values for z, y, and s that satisfy

Mz = s,

Hz + q −M⊤y = 0,

s ∈ C, y ∈ NC(s),

(Stellato et al., 2017, §2), where C is the set {s : l ≤ s ≤ u}, and NC is the normal cone of C.
The values of y that are returned by the solver can be used to determine whether the constraints are
strongly active at the solution, where yi = 0 indicates that the constraints li ≤ Miz and Miz ≤ ui

are inactive, yi > 0 indicates that Miz ≤ ui is strongly active, and yi < 0 indicates that li ≤ Miz is
strongly active. The solution can therefore be completely characterised by the KKT system





H M⊤
U

M⊤
L

MU

ML





[
z
yU
yL

]

=

[
q
uU

lL

]

(10)

where U = {i : yi > 0} and L = {i : yi < 0}, and the notation MS indicates a matrix consisting of
the i ∈ S columns of given matrix M , and vS indicates a vector consisting of the i ∈ S elements of
given vector v. Equation (10) can then be differentiated using the techniques detailed in (Amos &
Kolter, 2017, §3).

C PROOF OF PROPOSITION 1

Proof. (Proposition 1) The first point follows from (Scokaert & Rawlings, 1998). The next two
points of Proposition 1 stem from the results in (Limon et al., 2003; 2009). In particular, the closed-
loop is Lipschitz since the model is linear and the controller is the solution of a strictly convex QP.
Moreover, the LQR provides a contractive terminal set. The final point follows from the fact that
(A+BK)N has eigenvalues in the unit circle, ∀N ≥ 1. Proof of point 4 is concluded by inspection
of the QP matrices (Appendix A) and by application of Theorem 5.6.12, page 298 of Horn & Johnson
(2012) which states that, given a bound, ρ, on the spectral radius, then there exists a matrix norm
which is also less than ρ.

D PROOF OF PROPOSITION 2

Proof. (Proposition 2) If a stabilizing solution (ρ(A+BK) ≤ 1) to (8) exists, it is unique (Ionescu
& Weiss, 1992, Proposition 1), and the DARE can therefore be considered an implicit function of A,
B, Q, and R. Using the assumption that (R+B⊤PB)−1 exists, it can be concluded that Z1, . . . , Z5

and M1,M2,M3 exist (the Kronecker product and matrix addition, subtraction, and multiplication
always exist). Equation (8) can be given by

P = A⊤M1A+Q, (11)

which is differentiable, and M1,M2,M3 are also differentiable. Differentials are taken for (11) and
each of M1,M2,M3 as

dvecP =(Vn,n + In2)(In ⊗A⊤M1)dvecA+ (A⊤ ⊗A⊤)dvecM1 + dvecQ

dvecM1 =
[
In2 − (PBM2B

⊤ ⊗ In)− (In ⊗ PBM2B
⊤)

]
dvecP

− (PB ⊗ PB)dvecM2 − (In2 +Vn,n)(PBM2 ⊗ P )vecdB

dvecM2 =− (M2 ⊗M2)dvecM3

dvecM3 =dvecR+ (B⊤ ⊗B⊤)dvecP + (Im2 +Vm,m)(Im ⊗B⊤P )vecdB,

then these can be combined using the differential chain rule (Magnus & Neudecker, 1999, Theorem
18.2) to obtain

Z1dvecP = Z2dvecA+ Z3dvecB + Z4dvecQ+ Z5dvecR.

The Jacobians, as defined in Proposition 2, therefore exist if Z−1
1 exists.
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E VERIFICATION AND REDUCTION OF THE PREDICTION HORIZON

Algorithm 2: MPC horizon verification and reduc-
tion

In: N > 0, X0 ⊆ X, M, (P,K) from (7-8), ǫ > 0,
ns > 0, η ∈ (0, 1).

Out: N̄ ,X
X ← X0

while X ⊃ ∅ do

N̄ ← N

while N̄ > 0 do
Xsample ← ns uniform state samples, s.t.: x ∈ X
δû⋆ ← Solution of MPC QP (3-5), ∀x ∈ Xsample

if ‖δû⋆

k(x)‖ ≤ ǫ, ∀k ≥ N̄ , ∀x ∈ Xsample then
return TRUE

N̄ ← N̄ − 1

X ← ηX

Procedure failed
N ← N + 1
Go to Algorithm 1

A method is proposed for the reduction
of the MPC prediction horizon after im-
itation learning. The idea is to be able
to reproduce the infinite-horizon optimal
MPC up to a tolerance ǫ with high prob-
ability. Do do so, we check that, for a
candidate horizon N̄ , the MPC action
deltas, δû⋆

k, satisfy ‖δû⋆
k‖ ≤ ǫ, for all

k ≥ N̄ . This means that the optimal ac-
tion is equal to the LQR up to a tolerance
ǫ. In order to provide a high probability
guarantee of this condition, we propose
the use of a probabilistic verification ap-
proach, similar to Bobiti (2017). This
is described in Algorithm 2. In particu-
lar, the condition is checked on a high
number, ns, of initial states. These states
are sampled uniformly from a set of in-
terest X , which can be either the state
constraints X or an estimate of the region of attraction, ΓN . If verified, this set is a region of attraction
for the system with high probability. The relationship between the number of samples and the
verification probability is discussed in (Bobiti, 2017, Chapter 5). The algorithm also checks whether
the infinite horizon condition has been reached for the N used during training. Finally, a line search
for a suitable X is proposed using a scaling factor η ∈ (0, 1). In particular, the initial set is downscaled
until either an horizon is found or the set becomes empty. In latter case the search fails and the
procedure returns to the training algorithm with an increased N . Noticeably, the proposed algorithm
does not require to explicitly compute the terminal set in which the LQR is invariant and it could be
used also for non-linear MPC if an infinite-horizon (or a stabilising) terminal controller is available.

F PLATOON MODEL DERIVATION

The problem described in Section 4.2 can be decomposed into the regulation problem





y2 − y1
...

yn − yn−1




 =






z2 − z1
...

zn − zn−1




+ 1yss,






z2 − z1
...

zn − zn−1




 → 0,

subject to the constraints
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...
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 ≥ 1(y − yss), and 1b ≤ ÿ ≤ 1a.

If each vehicle is modelled as a mass then a continuous-time LTI state space model can be formed as
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︸ ︷︷ ︸

ẋ
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, (12)

which can then be given as

ẋ =

[
0 I
0 0

]

x+

[
0

B̂

]

u.
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If it is assumed that the control input is constant between sampling intervals t and t+ dt, then this
can be given in discrete time as

xt+dt
=

[
I dtI
O I

]

xt +

[
1
2 B̂c(dt)

2

B̂cdt

]

ut, B̂c =






−1 1
. . .

. . .

−1 1




 (13)

where xt ∈ R
2(nv−1), and u ∈ R

nv and are subject to the constraints

xt ≥

[
(y − yss)1nv−1

−∞

]

, and b1 ≤ ut ≤ a1 ∀t.

G NONLINEAR MODELS

As discussed in the main paper, our approach is currently limited to Linear Time Invariant (LTI)
systems. In general, conditions for infinite-horizon optimality of systems that are not LTI are non-
trivial. Some of the results on MPC stability could however be maintained, for example in the case
when the LQR value function, x⊤Px, is a local control Lyapunov function (Khalil, 2014; Mayne
et al., 2000). In this case, the stability and intrinsic robustness results are maintained (see Limon et al.,
2003; 2009). For these system, it would be possible to use our method, for instance in combination
with Amos et al. (2018), to provide a stable Non-linear MPC. This is however a big assumptions for
systems that are very non-linear. Assessing this LQR controllability condition could be done, for
instance, by training a local linear model around the target equilibrium (origin) and then checking
whether the DARE is solvable. This should be performed before starting the imitation learning. We
leave the study of more general systems to future work.
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