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Abstract

Feature selection is playing an increasingly significant

role with respect to many computer vision applications

spanning from object recognition to visual object tracking.

However, most of the recent solutions in feature selection

are not robust across different and heterogeneous set of

data. In this paper, we address this issue proposing a ro-

bust probabilistic latent graph-based feature selection al-

gorithm that performs the ranking step while considering

all the possible subsets of features, as paths on a graph,

bypassing the combinatorial problem analytically. An ap-

pealing characteristic of the approach is that it aims to dis-

cover an abstraction behind low-level sensory data, that is,

relevancy. Relevancy is modelled as a latent variable in a

PLSA-inspired generative process that allows the investiga-

tion of the importance of a feature when injected into an

arbitrary set of cues. The proposed method has been tested

on ten diverse benchmarks, and compared against eleven

state of the art feature selection methods. Results show that

the proposed approach attains the highest performance lev-

els across many different scenarios and difficulties, thereby

confirming its strong robustness while setting a new state of

the art in feature selection domain.

1. Introduction

Performance of machine learning methods is heavily de-

pendent on the choice of features on which they are ap-

plied. Different features can entangle and hide the differ-

ent explanatory factors of variation behind the data. Fea-

ture Selection (FS) aims at improving the performance of a

prediction system, allowing faster and more cost-effective

models, while providing a better understanding of the in-

herent regularities in data. In the recent computer vision

literature there are many scenarios where FS is a crucial op-

eration [5, 30, 10, 13, 24, 28]. From multiview face recog-

nition [13] where FS is used to speed up the multiview face

recognition process and to maintain the generalization per-

formance, to object recognition [30], until real-time visual

object tracking [28, 25] where FS dynamically identifies

discriminative features that help in handling the appearance

variability of the target by improving tracking performance.

In this paper, we propose a probabilistic latent graph-

based feature selection algorithm that performs the ranking

step by considering all the possible subsets of features ex-

ploiting the convergence properties of power series of ma-

trices. We map the feature selection problem to an affinity

graph (e.g., feature ≈ node), and then we consider a subset

of features as a path connecting set of nodes. An appeal-

ing characteristic of the approach is that the importance of

a given feature is modelled as a conditional probability of a

latent variable and features, namely P (z|f). Our approach

aims to model an important hidden variable behind data,

that is, relevancy in features. Raw values are observable

while relevancy to a particular task is not (e.g., in classifica-

tion), therefore, relevancy is modelled as an abstract latent

variable. In particular, our approach consists of three main

parts:

• Pre-processing: a quantization process is applied on

raw feature distributions ~xi, mapping their values to

a countable nominal smaller set of tokens. The pre-

processing step assigns a descriptor fi to each raw fea-

ture ~xi.

• Graph-Weighting: we build an undirected fully-

connected graph, where nodes correspond, one by one,

to each feature fi, and each weighted edge among

fi  fj models the probability that features xi

and xj are relevant. Weights are learnt automati-

cally by a learning framework based on a variation of

the probabilistic latent semantic analysis (PLSA) tech-

nique [21], which models the probability of each co-
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occurrence in fi, fj as a mixture of conditionally in-

dependent multinomial distributions. Parameters are

estimated using the Expectation Maximization (EM)

algorithm.

• Ranking: the ranking step is done following the idea

of the Infinite Feature Selection (Inf-FS) [30], that con-

siders all the possible paths among nodes investigating

the redundancy of any features when injected into ar-

bitrary sets of cues.

The proposed method is compared against 11 state of

the art feature selection methods selected from recent lit-

erature in the machine learning and pattern recognition do-

mains, reporting results for a total of 576 unique tests (note,

the source code is available at Matlab-Central). We se-

lected 10 publicly available benchmarks of cancer classifi-

cation and prediction on DNA microarray data (Colon [32],

Lymphoma [14], Leukemia [14], Lung [15], Prostate [1]),

handwritten character recognition (GINA [2]), text classi-

fication from the NIPS feature selection challenge (DEX-

TER [18]), and a movie reviews corpus for sentiment

analysis (POLARITY [26]). More extensively, two object

recognition datasets have been taken into account (PAS-

CAL VOC 2007-2012 [11, 12]). Results show that the pro-

posed approach represents the most robust algorithm, which

achieves the highest level of performance across many dif-

ferent domains and challenging scenarios.

The rest of the paper is organized as follows: Sec. 2 illus-

trates the related literature, mostly focusing on the compara-

tive approaches we consider in this study. Sec. 3 details the

proposed approach, also giving a formal justification and

interpretation based on absorbing Markov chain (Sec. 3.4).

Extensive experiments are reported in Sec. 4, and, finally,

in Sec. 5, conclusions are given, and future perspectives are

envisaged.

2. Related Work

Since the mid-1990s, few domains used more than 20

features. The situation has changed considerably in the past

few years and most papers explore domains with hundreds

to tens of thousands of features. New approaches were pro-

posed to address these challenging tasks involving many ir-

relevant and redundant variables and often comparably few

training examples. Typically, FS techniques are partitioned

into three classes [19]: Filters, Wrappers and Embedded

methods. The proposed approach is a filter method, which

analyzes intrinsic properties of data, ignoring the type of

classifier. Conversely, wrappers use classifiers to score a

given subset of features, and embedded methods inject the

selection process directly into the learning process of the

classification framework.

Among the most used filter-based strategies, Relief-

F [23] is an iterative, randomized, and supervised approach

that estimates the quality of the features according to how

well their values differentiate data samples that are near to

each other. Another effective yet fast filter method is the

Fisher method [17], which computes a score for a feature

as the ratio of inter-class separation and intra-class vari-

ance, where features are evaluated independently. A Mu-

tual Information based approach (MI) is proposed in [35].

MI considers as a selection criterion the mutual informa-

tion between the distribution of the values of a given fea-

ture and the membership to a particular class. Even in the

last case, features are evaluated independently, and the final

feature selection occurs by aggregating the m top ranked

ones. In unsupervised learning scenarios, a widely used

method is the Laplacian Score (LS) [20], where the im-

portance of a feature is evaluated by its power of locality

preserving. In order to model the local geometric struc-

ture, this method constructs a nearest neighbor graph. LS

algorithm seeks those features that respect this graph struc-

ture. The unsupervised feature selection for multi-cluster

data is denoted MCFS in [8], which selects those features

such that the multi-cluster structure of the data can be best

preserved. [34] proposed a L2,1-norm regularized discrim-

inative feature selection for unsupervised learning (UDFS)

which selects the most discriminative feature subset from

the whole feature set in batch mode. Feature selection

and kernel learning for local learning-based clustering (LL-

CFS) [36] associates a weight to each feature and incorpo-

rates it into the built-in regularization of the LLC algorithm

to take into account the relevance of each feature for the

clustering. In the experiments, we also compare our ap-

proach against the unsupervised graph-based filter method

dubbed Inf-FS [30]. In the Inf-FS formulation, each feature

is a node in the graph, a path is a selection of features, and

the higher the centrality score, the most important (or most

different) the feature. Another widely used FS method is

SVM-RFE (RFE) [19], which is a wrapper method that se-

lects features in a sequential, backward elimination manner,

ranking high a feature if it strongly separates the samples by

means of a linear SVM. Finally, for the embedded methods,

the feature selection via concave minimization (FSV) [7]

is a popular FS strategy, where the selection process is in-

jected into the training of an SVM by a linear programming

technique. For further information, please see Tab. 2.

3. Our Approach
Given a training set X represented as a set of feature dis-

tributions X = {~x1, ..., ~xn}, where each m × 1 vector ~xi

is the distribution of the values assumed by the ith feature

with regards to the m samples, we build an undirected graph

G, where nodes correspond to features and edges model re-

lationships among pairs of nodes. Let the adjacency matrix

A associated to G defining the nature of the weighted edges:

each element aij of A, 1 ≤ i, j ≤ n, models pairwise re-

lationships between the features. Each weight represents

the likelihood that features ~xi and ~xj are good candidates.

https://goo.gl/uTuZhc


Weights can be associated to a binary function of the graph

nodes:

aij = ϕ(~xi, ~xj), (1)

where ϕ(·, ·) is a real-valued potential function learned

by the proposed approach in a PLSA-inspired framework.

The learning framework models the probability of each co-

occurrence in ~xi, ~xj as a mixture of conditionally indepen-

dent multinomial distributions, where parameters are learnt

using the EM algorithm. Given the weighted graph G, the

proposed approach analyses subsets of features as paths

connecting them. The cost of each path is given by the joint

probability of all the nodes belonging to it. The method ex-

ploits the convergence property of the power series of ma-

trices as in [30], and evaluates in an elegant fashion the rele-

vance of each feature with respect to all the other ones taken

together. For this reason, we dub our approach infinite la-

tent feature selection (ILFS).

3.1. Discriminative Quantization process

Since the amount of possible distinct values in ~xi is huge,

we map this large set of values to a countable smaller set,

hereinafter referred to as set of tokens. Tokens are the words

of our dictionary of features. Thus, each feature will be

represented by a new low-dimensional vocabulary of mean-

ingful tokens. The way used to assign each value to a spe-

cific token is based on a quantization process, we called dis-

criminative quantization (DQ). The rationale behind the DQ

process is to take into account how well a given feature is

representative of a class before performing the many-to-few

mapping.

Firstly, the Fisher criterion is used to compute a scoring

vector Φ = [·, ..., ·] which takes into account both means

and standard deviations of the classes, for each sample and

feature. In binary classification scenarios, this is given by

Φ =
1

Z

[ (s− µ1)
2

σ2

1
+ σ2

2

,
(s− µ2)

2

σ2

1
+ σ2

2

]

, (2)

where s is a sample from the ith feature ~xi, µk and σk

denote the mean and standard deviation of class k, respec-

tively. A normalization factor Z is introduced to ensure that

the scores are a valid distribution over both classes. A nat-

ural generalization of these scores into a multi-class frame-

work is given by

Φ =
1

Z

[ (s− µ1)
2

∑K
k=1

σ2

k

, ...,
(s− µK)2
∑K

k=1
σ2

k

]

, ∀k∈K (3)

where K is the number of classes, s is a single sample from

the ith feature. Therefore, considering all the samples, Φ
results to be a m×K matrix.

Now, let us assume that the sample s belongs to class k.

If ~xi is a strong discriminant feature, s will score high at

f z t

n

Features Latent Variables Tokenst1t2
t6

z1𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑦
z2𝐼𝑟𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑦

f1f2
fn

(a)

(b)

Figure 1. Illustration of the general structure of the model. (a) The

intermediate layer of latent topics that links the features and the

tokens. (b) The graphical model using plate representation.

Φk. Then, we derive our priors π by extracting Φ scores for

each feature according to the ground truth as follows:

π = diag(ΦY )

where Y is the 1-of-K representation of the ground truth. It

is a particularly convenient representation where the class

labels are represented by K-dimensional vectors in which

one of the elements equals 1, and all remaining elements

equal 0. As a result, π ∈ [0, 1] is a 1×m vector containing

a score for each element of a particular feature i. It takes

into account how well each element is represented by the

feature i according to Eq.3.

Finally, quantization is performed. The first step is to di-

vide the entire range of values [0, 1] into a series of T inter-

vals (i.e., we use T = 6 in this work: interval 1 corresponds

to not-well-represented samples, and interval 6 is associated

to well-represented samples). Secondly, we assign a token

to values falling into each interval. Given the outcomes of

the DQ process, we obtain a meaningful new representa-

tion of our training data X in the form of F = {f1, ..., fn},

where each feature is described by a vocabulary of few to-

kens. In other words, the derived feature representation fi
comes from xi where each value is assigned to a token T .

According to this formulation, a strong discriminative fea-

ture will be intuitively associated to a descriptor fi contain-

ing many relatively large tokens (e.g., 5, 6) rather than small

ones (e.g., 1, 2).

3.2. From cooccurrences to graph weighting
Weighting the graph according to the nodes discrimina-

tory power has a great influence on the quality of the rank-

ing process. We designed a framework to automatically per-

form the graph weighting from training data, such that the



learnt parameters can be used to sort features according to

their degrees of relevance or importance.

Our solution is based on a variation of the PLSA [21]

technique, that considers co-occurrences of tokens and fea-

tures, 〈t, f〉, to model the probability of each co-occurrence

as a mixture of conditionally independent multinomial dis-

tributions.

In order to better understand the intuition behind the pro-

posed model, we need to make some assumptions. We as-

sume that a feature consists of only two topics represent-

ing the two main latent variables of any feature selection

algorithms: Relevancy and Irrelevancy. Therefore, we in-

troduce an unobserved class variable Z = {z1, z2} obtain-

ing a latent variable model for co-occurrence tokens. As

a result, there is a distribution P (z|f) over the fixed num-

ber of topics for each feature f . Similarly, original PLSA

model does not have the explicit specification of this dis-

tribution but it is indeed a multinomial distribution where

P (z|f) represents the probability that topic z appears in fea-

ture f . Fig. 1.(a) shows the general structure of the model,

each feature can be represented as a mixture of concepts

(Relevant/Irrelevant) weighted by the probability P (z|f)
and each token expresses a topic with probability P (t|z).
Fig. 1.(b) describes the generative process for each of the

n features in the set by using plate representation. We can

write the probability a token t appearing in feature f as fol-

lows:

P (t|f) = P (t|z1)P (z1|f) + P (t|z2)P (z2|f).

By replacing this for any feature in the set F we obtain,

P (f) =
∏

t

{

P (t|z1)P (z1|f) + P (t|z2)P (z2|f)
}

.

The unknown parameters of this model are P (t|z) and

P (z|f). As for PLSA, we derived the equation for com-

puting these parameters by maximum likelihood. The log-

likelihood function is given by

L =
∑

f

∑

t

Q(f, t) log[P (t|f)]

where Q(f, t) is the number of times token t appearing in

feature f . The EM algorithm is used to compute optimal

parameters. The E-step is given by

P (z|f, t) =
P (z)P (f |z)P (t|z)

P (z1)P (f |z1)P (t|z1) + P (z2)P (f |z2)P (t|z2)
,

and the M-step is given by

P (t|z) =

∑

f Q(f, t)P (z|f, t)
∑

f,t′ Q(f, t′)P (z|f, t′)
,

P (f |z) =

∑

t Q(f, t)P (z|f, t)
∑

f ′,t Q(f ′, t)P (z|f ′, t)
,

P (z) =

∑

f,t Q(f, t)P (z|f, t)
∑

f,t Q(f, t)
.

The responsibility for assigning the “condition of be-

ing relevant” to features lies to a great extent with the un-

observed class variable Z. In particular, we initialize the

model priors P (t|z) in order to link z1 to the abstract topic

of Relevancy, and hence z2 to Irrelevancy. By construc-

tion we limited the range of the tokens to values between

1 and 6 (see Sec.3.1), with 1 that behaves the same way

as being the lowest rating for a sample of a particular fea-

ture, and 6 being the highest quality. As a result, a natural

way to initialize these priors is to generate a pair of linearly

spaced vectors assigning a higher probability P (t′|Z = z1)
for those tokens t′ which score higher, and consequently the

opposite for P (t′|Z = z2).
Finally, the graph can be weighted by the estimated prob-

ability distribution P (Z = z1|f). According to Eq.1, each

element aij of the adjacency matrix is the joint probability

that the abstract topic of relevancy appears in feature fi and

fj , namely:

aij = ϕ(~xi, ~xj) = P (Z = z1|fi)P (Z = z1|fj), (4)

where mixing weights P (Z = z1|fi) and P (Z = z1|fj) are

conditionally independent. Indeed, knowledge of whether

P (Z = z1|fi) occurs provides no information on the like-

lihood of P (Z = z1|fj) occurring, and knowledge of

whether P (Z = z1|fj) occurs provides no information on

the likelihood of P (Z = z1|fi) occurring.

3.3. Probabilistic Infinite Feature Selection
Let γ = {v0 = i, v1, ..., vl−1, vl = j} denote a path

of length l between nodes i and j, that is, features ~xi and

~xj , through other nodes v1, ..., vl−1. For simplicity, sup-

pose that the length l of the path is lower than the total

number of nodes n in the graph. In this setting, a path is

simply a subset of the available features/nodes that come

into play. Moreover, the network is characterized by walk

structure [6], where nodes and edges can be visited multiple

times.

We can then estimate the joint probability that γ is a good

subset of features as

Pγ =
l−1
∏

k=0

avk,vk+1
. (5)

Let us define the set Pl
i,j as containing all the paths of

length l between i and j; to account for the energy of all the

paths of length l, we sum them as follows:

Cl(i, j) =
∑

γ∈P
l
i,j

Pγ , (6)

which, following standard matrix algebra, gives:

Cl(i, j) = Al(i, j),



that is, the adjacency matrix A elevated by l.

However, we want to consider all the possible paths of

any length in the graph, which turns out to be the same as

considering all the the possible subsets of features of any

cardinality. Therefore, extending the path length to infinity

implies that we have to calculate the geometric series of

matrix A

Ĉ =

∞
∑

l=1

Al. (7)

Summing infinite Al terms brings divergence. Therefore,

regularization is needed. Regularization is used to assign a

consistent value for the sum of a possibly divergent series.

Among the different forms of regularization [4, 16], we use

a simple generating function for the l-path as

Č =
∞
∑

l=1

rlAl, (8)

where r is a real-valued regularization factor, and rl can be

interpreted as the weight for paths of length l. Thus, for

appropriate choices of r, it is ensured that the infinite sum

converges. From an algebraic point of view, Č can be effi-

ciently computed by using the convergence property of the

geometric power series of a matrix [22]:

Č = (I − rA)−1 − I, (9)

Matrix Č encodes all the information about the goodness of

our set of features. We can obtain final scores for each node

simply by marginalizing this quantity:

č(i) = [Če]i, (10)

where e indicates a 1D array of ones. Ranking in decreasing

order the č(i) scores gives the output of the algorithm: a

ranked list of features where the most discriminative and

relevant features are positioned at the top of the list. The

gist of the ILFS is to provide a score of importance for each

feature as a function of the importance of its neighbors.

3.4. Markov chains and random walks

This section provides a probabilistic interpretation of the

proposed algorithm based on Absorbing Random Walks.

Here, we reformulate the problem in terms of Markov

chains and random walks. The set of nodes in a Markov

chain are called states and each move is called a step. Let

T be the matrix of transition probabilities, or the transi-

tion matrix of the Markov chain. If the chain is currently

in state vi, then it moves to state vj at the next step with

a probability denoted by tij , and this probability does not

depend upon which states the chain was in before the cur-

rent state. The probabilities tij are called transition prob-

abilities. The process can remain in the state it is in, and

this occurs with probability tii. An absorbing Markov chain

is a special Markov chain which has absorbing states, i.e.,

states which once reached cannot be transitioned out of (i.e.,

tii = 1). A Markov chain is absorbing if it has at least one

absorbing state, and if from every state it is possible to go

to an absorbing state in a finite number of steps. In an ab-

sorbing Markov chain, a state that is not absorbing is called

transient. The transition matrix for any absorbing chain can

be written in the canonical form

T =

[

I 0

R A

]

where R is the rectangular submatrix giving transition

probabilities from non-absorbing to absorbing states, A is

the square submatrix giving these probabilities from non-

absorbing to non-absorbing states, I is an identity matrix,

and 0 is a rectangular matrix of zeros.

Note that R and 0 are not necessarily square. More pre-

cisely, if there are m absorbing states and n non-absorbing

states, then R is n ×m, A is n × n , I is m ×m, and 0 is

m× n. Iterated multiplication of the T matrix yields

T 2 =

[

I 0

R A

] [

I 0

R A

]

=

[

I 0

R+AR A2

]

T 3 =

[

I 0

R+AR A2

] [

I 0

R A

]

=

[

I 0

R+AR+A2R A3

]

and hence by induction we obtain

T l =

[

I 0

(I +A+A2 + ...+Al−1)R Al

]

The preceding example illustrates the general result that

Al → 0 as l → ∞. Thus

T∞ =

[

I 0

CR 0

]

where the matrix

C = I +A+A2 + ...+A∞ = (I −A)−1

is called the fundamental matrix for the absorbing chain.

Note that C, which is a square matrix with rows and

columns corresponding to the non-absorbing states, is de-

rived in the same way of Eq.9. C(i, j) is the expected num-

ber of periods that the chain spends in the jth non-absorbing

state given that the chain began in the ith non-absorbing

state. Perhaps this interpretation comes from the specifica-

tion of the matrix C as the infinite sum, since Al(i, j) is

the probability that the process which began in the ith non-

absorbing state will occupy the jth non-absorbing state in

period l. However, Al(i, j) can also be understood as the

expected proportion of period l spent in the jth state. Sum-

ming over all time periods l, we thus obtain the total number

of periods that the chain is expected to occupy the jth state.



Dataset Ref. #Samples #Classes #Feat. few train unbal. (+/-) overlap noise sparse

GINA [2] 3153 2 970 (1,5K/1,6K) X

DEXTER [18] 2600 2 20K (1,3K/1,3K) X X

POLARITY [26] 2K 2 3K (1K/1K) X

COLON [32] 62 2 2K X (40/22) n.s. X

LEUKEMIA [14] 72 2 7129 X (47/25) n.s. X

PROSTATE [1] 102 2 6033 X (50/52) n.s.

LYMPHOMA [14] 45 2 4026 X (23/22) n.s.

LUNG [15] 181 2 12533 X (31/150) n.s. X

VOC 2007 [11] 10K 20 4096 X X X

VOC 2012 [12] 20K 20 4096 X X X

Table 1. Datasets and the challenges for the feature selection scenario. The abbreviation n.s. stands for not specified (for example, in the

DNA microarray datasets, any information on class overlap is given in advance).

4. Experiments and Results

This section has three main goals. The first goal is to

evaluate the robustness of the proposed method, by choos-

ing datasets spanning over a variety of domains and difficul-

ties. For example, we consider the problems of dealing with

few training samples and many features (few train in Tab. 1),

sparse or dense dataset, unbalanced classes (unbalanced),

or classes that severely overlap (overlap), or whose samples

are noisy (noise) due to: a) complex scenes where the object

to be classified is located (as in the PASCAL VOC series)

or b) many outliers (as in the genetic datasets, where sam-

ples are often contaminated, that is, artifacts are present into

the data during the acquisition of the samples). The second

goal is to analyze and empirically clarify how well impor-

tant features are ranked high by the ILFS. We also include

several comparative algorithms from recent literature, in-

cluding filters, wrappers, and embedded methods. The last

goal is to assess the reliability and validity of our research

results. We present results obtained from more than 550
different tests, evaluating if the difference in performance is

statistically significant by means of a set of Student’s t-test

and binomial cumulative distribution functions.

Comparative approaches and complexity

Tab. 2 lists the methods compared, where we note their type

(f = filters, w = wrappers, e = embedded methods), and their

class ( s = supervised or u = unsupervised, i.e., using or not

using the labels associated with the training samples in the

ranking operation). Additionally, we report their computa-

tional complexity (if it is documented in the literature). The

complexity of our approach is O(n2.37 + in+ T + C), the

matrix inversion for a n× n matrix requires O(n2.37) [33],

and the second term O(in+T+C) comes from the estimate

of P (z|f) through PLSA; hidden constants are the number

of latent variables (Z = 2) and the number of tokens used

(T = 6). Finally, Tab. 2 reports the execution time of each

method when applied to a randomly generated dataset con-

sisting of 2 classes, 10k samples, and 5k features (features

follow a uniform distribution - range [0,1000]), on an Intel

i7 CPU 3.4GHz, 16.0 GB of RAM, using MATLAB 2016b.

ID Acronym Type Cl. Comp. Complexity Exec.Time

1 CFS [19] f u O(n
2

2
T ) 2

2 Fisher [17] f s O(Tn) 1

3 FSV [7] e s O(T 2n2) 2985

4 LLCFS [36] f u N/A 2934

5 LS [20] f u N/A 455

6 MCFS [8] f u N/A 10

7 MI [35] f s ∼ O(n2T 2) 7

8 Relief-F [23] f s O(iTnC) 2024

9 RFE [19] w s O(T 2nlog2n) 91799

10 UDFS [34] f u N/A 1954

11 Inf-FS [30] f u O(n2.37(1 + T )) 12

12 Ours f s O(n2.37+in+T+C) 7

Table 2. Feature selection approaches considered in the experi-

ments [29, 27]. The table reports their Type, class (Cl.), complex-

ity (Compl.), and execution times in seconds (Exec.Time). As for

the complexity, T is the number of samples, n is the number of

initial features, i is the number of iterations in the case of iterative

algorithms, and C is the number of classes.

4.1. Exp. #1: Deep Representation with pretraining

This section proposes a set of tests on the PASCAL

VOC-2007 [11] and VOC 2012 [12] datasets. We want to

assess the strengths and weaknesses of using the ILFS in

an object recognition classification task. For this reason,

we compare our approach against the 11 state-of-the-art FS

methods reported in Tab. 2. This experiment considers as

features the cues extracted with a deep convolutional neu-

ral networks (CNNs). We selected the pre-trained model

called very deep ConvNets [31], which performed favor-

ably to the state of the art for classification and detection

in the ImageNet Large-Scale Visual Recognition Challenge

2014 (ILSVRC). We use the 4,096-dimension activations of

the last layer as image descriptors (i.e., 4,096 features in to-

tal). According to the experimental protocol provided by

the VOC challenge, a one-vs-rest SVM classifier for each

class is trained (where cross-validation is used to find the

best parameter C) and evaluated independently. The per-

formance is measured as mean Average Precision (mAP)

across all classes. This metric is used rather than the sim-

ple classification accuracy because some datasets (particu-

larly the VOC series) were unbalanced in class cardinality.



The PASCAL Visual Object Classes (VOC)

VOC 2007 VOC 2012

CFS Fisher FSV LLCFS LS MCFS MI ReliefF RFE UDFS Inf-FS Ours CFS Fisher FSV LLCFS LS MCFS MI ReliefF RFE UDFS Inf-FS Ours

90.72 92.67 91.57 91.32 91.43 91.00 92.46 90.30 91.44 91.98 91.37 91.75 96.83 96.97 97.20 97.70 97.32 97.30 97.35 96.54 96.95 96.84 96.11 97.05

87.09 86.76 84.91 86.42 87.25 87.44 87.79 85.66 85.00 87.57 87.21 87.60 82.01 82.72 82.19 82.52 82.44 82.64 82.69 81.42 78.68 82.52 79.05 82.83

89.72 90.17 89.51 89.11 89.74 90.23 88.75 89.20 88.61 89.12 89.25 90.25 89.75 90.21 89.84 89.91 89.80 90.07 90.28 89.19 88.56 89.81 88.44 89.44

88.28 88.33 88.83 88.32 88.45 87.60 88.11 88.18 87.51 88.28 88.41 88.57 89.32 90.00 89.88 89.37 89.80 89.60 89.96 89.09 87.39 89.39 88.05 90.20

56.45 56.06 56.27 54.44 55.53 54.83 55.80 54.51 50.35 57.84 54.63 56.18 60.02 60.99 60.61 60.45 60.18 60.81 62.21 57.93 50.91 61.31 56.18 61.47

81.71 81.74 82.07 81.50 81.21 81.76 82.16 80.97 80.12 81.28 81.20 83.02 88.05 88.66 88.46 89.55 88.36 88.47 88.69 87.42 88.16 88.69 86.51 89.36

86.97 87.32 87.77 87.28 87.09 87.13 87.47 87.93 85.52 87.71 87.47 87.23 81.42 81.91 81.62 81.31 81.26 81.67 81.77 80.30 73.98 81.02 78.80 81.74

86.61 87.21 87.44 87.49 88.06 87.28 86.85 86.82 86.57 87.46 87.61 86.61 93.10 93.04 93.24 92.83 93.28 93.43 93.14 92.96 92.07 93.16 91.24 92.83

67.05 67.19 63.50 67.25 67.53 67.14 67.35 64.74 59.34 66.93 67.61 66.96 71.04 72.44 70.46 71.40 72.29 71.70 71.60 69.72 59.31 72.03 67.42 71.89

75.79 76.38 74.94 75.47 76.36 76.16 76.31 73.84 73.84 75.16 76.89 76.70 78.19 79.33 78.86 78.66 78.55 78.97 79.64 77.94 73.94 76.88 68.65 79.06

73.85 75.81 74.95 75.89 75.10 75.55 75.41 73.12 68.97 74.53 75.16 75.07 76.04 76.55 75.40 75.73 75.97 76.55 76.43 73.35 68.45 76.50 71.19 76.70

85.22 87.47 86.69 86.39 86.93 86.45 86.46 86.08 84.85 86.60 86.55 87.16 92.06 92.31 92.31 91.79 92.14 92.14 92.27 91.59 89.40 92.28 89.28 92.25

87.40 87.74 87.78 87.43 87.64 87.79 87.91 86.93 86.81 87.16 87.37 87.92 88.09 89.18 88.61 88.29 89.00 87.93 88.97 87.21 86.19 87.97 82.46 88.59

85.65 85.82 85.10 84.68 85.42 85.64 85.35 84.61 84.75 85.54 85.32 85.87 88.71 89.29 88.89 89.07 89.24 88.86 89.28 87.89 86.69 89.38 86.69 89.59

92.37 92.58 91.27 92.46 92.28 92.46 92.63 92.39 89.70 92.20 92.15 92.22 94.24 94.37 94.04 94.21 94.40 94.31 94.37 94.02 92.75 94.24 91.73 93.65

58.16 61.33 57.50 58.06 58.06 58.16 60.22 56.11 50.19 60.42 57.54 58.13 55.39 56.72 54.73 55.73 56.07 55.94 56.47 52.73 43.80 55.95 46.65 55.48

81.13 81.13 80.33 82.38 83.10 80.94 80.88 77.99 79.51 79.94 83.23 81.88 81.19 82.04 80.65 80.78 81.37 81.45 82.39 79.72 78.97 81.77 76.39 81.37

67.03 67.58 65.01 67.53 68.35 69.10 68.19 64.58 61.50 68.25 69.30 70.87 64.67 67.14 65.71 66.12 66.20 66.00 67.21 63.13 55.83 64.90 60.86 68.11

92.33 91.50 92.60 92.00 92.36 92.90 92.49 91.66 91.32 93.13 92.08 92.50 94.85 94.38 94.95 94.23 94.35 94.30 94.25 93.71 94.37 94.92 93.12 94.22

76.61 76.61 76.88 76.37 76.08 77.10 76.83 74.54 73.64 77.57 76.93 77.62 80.63 80.43 80.67 80.56 80.24 80.77 80.57 78.83 77.41 81.54 78.24 81.80

80.52 81.07* 80.25 80.59 80.90 80.83 80.97* 79.46 77.98 80.93 80.86 81.21* 82.28 82.93* 82.42 82.48 82.61 82.65 82.98* 81.23 78.19 82.56 78.86 82.85*

Table 3. The image classification results achieved in terms of mean average precision (AP) scores while selecting the first 2, 048 (50%)

features. In bold the top score of each class. We indicate with an asterisks the top three methods.

mAP is calculated according to the standard evaluation pro-

tocol which involves the use of the PASCAL VOC Evalua-

tion Server. As for the Inf-FS, we set its parameters without

any cross-validation (i.e., α = 0.2). Tab. 3 serves to an-

alyze how well important features are ranked high by sev-

eral FS algorithms. The number of features used for both

the experiments is set to: 50% of the total. The results are

significant: our method achieved the best performance in

terms of mean average precision (mAP) on the VOC-2007,

followed by Fisher, MI. In the same way, results on VOC-

12 shows that the ILFS is still one of the first three best

approaches, namely: MI, Fisher, and ours. This set of FS

methods achieved the best performance compared with the

others, moreover, according to the overall performance over

both VOC datasets the methods can be ranked as: ILFS,

Fisher, and MI. However, it is not possible to infer which

one of them performs better to a statistically significant ex-

tent (see Sec.4.3 for further details).

4.2. Exp.#2: Miscellaneous Datasets

In this section we provide results obtained on 8 different

publicly available benchmarks provided without a particu-

lar definition of what the training, validation and testing set

are. Therefore, the experimental protocol used in this sec-

tion consists in splitting the dataset up to 2/3 for training

and 1/3 for testing. In order to avoid any biases given for a

particular favorable split, this procedure is repeated for 20

times and results are averaged over the trials. Accordingly,

each method has been compared against all the others on

the same splits for a fair comparison. Feature selection is

applied only on the training set and features are selected,

generating different subsets of different cardinality (i.e., 10,

50, 100, 150, and 200). As for the previous scenario, the

classification is performed using a linear SVM, where a 5-

fold cross validation on training data is used to set the best

parameters. Results are reported in terms of mAP as for the

previous experiment. Tab. 4 lists the mAP obtained by aver-

aging the results of the different cardinality. As for the Inf-

FS, we set its parameters without any cross-validation (i.e.,

α = 0.2). Results show that our approach is very robust

across all datasets. All the other methods show a high per-

formance on some datasets and low on others. For example,

MI is very close to a random performance on POLARITY

and DEXTER, thereby indicating a weakness of the method

when applied to sparse data (see Tab. 1). The ILFS is not

affected by this problem, and it achieves the best significant

performance on DEXTER (≈ 20K features) and a high

performance on POLARITY. Fisher, which performs well

over all the datasets does not show the same ranking qual-

ity as ILFS. Tab. 4 also reports the overall average scores

across the datasets, which clearly show that our approach

outperforms all the competitors at all the features’ cardinal-

ity. Min/Max values are reported in Table 4 to highlight

the robustness of the ILFS to different datasets. In particu-

lar, on DNA Microarray data the overall minimum value re-

ported by the ILFS is +8.35% over the second best (FSV).

As for the other datasets, the ILFS still represents the top

scoring method according to its overall average, minimum,

and maximum scores.

4.3. Reliability and Validity

In order to assess whether the difference in performance

is statistically significant, a set of Student’s t-test have been

applied to the results [3]. We use the statistical tests to

determine if the accuracy given by the proposed approach

is significantly different from the one of the other methods

(whereas both the distribution of values were normal). The

test for assessing whether the data come from normal distri-



DNA Microarray data Data from other sources

Methods COLON LEUKEMIA PROSTATE LYMPHOMA LUNG Average

[Min,Max]]

GINA DEXTER POLARITY Average

[Min,Max]

CFS 81.25

± 0.08

96.27

± 0.06

85.00

± 0.08

84.00

± 0.10

94.50

± 0.17

88.20

[81.25,96.27]

81.91

± 0.11

79.56

± 0.06

86.99

± 0.05

82.82

[79.56,86.99]

Fisher 87.83

± 0.05

95.21

± 0.006

93.55

± 0.03

94.62

± 0.05

97.75

± 0.06

93.79

[87.83,97.75]

89.36*

± 0.03

95.65

± 0.06

82.61

± 0.13

89.20

[82.61,95.65]

FSV 88.00

± 0.05

91.57

± 0.01

93.50

± 0.02

89.38

± 0.04

98.83

± 0.01

92.25

[88.00,98.83]

81.73

± 0.12

96.39

± 0.01

86.12

± 0.12

88.08

[81.73,96.39]

LLCFS 90.00

± 0.05

99.37

± 0.02

85.80

± 0.09

84.12

± 0.11

97.69

± 0.04

91.39

[84.12,99.37]

81.91

± 0.09

84.16

± 0.10

97.31

± 0.02

87.79

[81.91,97.31]

LS 91.58

± 0.05

93.57

± 0.006

82.00

± 0.12

78.88

± 0.16

97.81

± 0.06

88.76

[78.88,97.81]

78.10

± 0.08

85.25

± 0.12

97.77*

± 0.02

87.04

[78.10,97.77]

MCFS 90.92

± 0.05

92.00

± 0.02

76.75

± 0.08

84.38

± 0.09

96.53

± 0.16

88.11

[76.75,96.53]

85.69

± 0.07

87.80

± 0.07

95.26

± 0.03

89.58

[85.69,95.26]

MI 86.92

± 0.05

93.36

± 0.04

90.50

± 0.04

94.00

± 0.04

98.72

± 0.02

92.70

[86.92,98.72]

88.85

± 0.04

59.51

± 0.04

56.19

± 0.09

68.18

[56.19,88.85]

ReliefF 84.75

± 0.07

93.07

± 0.02

93.25

± 0.04

91.75

± 0.05

97.33

± 0.03

92.03

[84.75,97.33]

88.86

± 0.03

89.54

± 0.12

95.82

± 0.03

91.40

[88.86,95.82]

RFE 82.58

± 0.09

86.43

± 0.07

78.90

± 0.10

77.50

± 0.12

94.25

± 0.17

84.53

[77.50,94.25]

83.05

± 0.09

87.38

± 0.09

94.20

± 0.02

88.21

[83.05,94.20]

UDFS 88.00

± 0.05

89.21

± 0.07

84.25

± 0.08

80.50

± 0.12

96.36

± 0.13

87.66

[80.50,96.36]

72.28

± 0.11

80.40

± 0.12

87.43

± 0.08

80.03

[72.28,87.43]

Inf-FS 96.10

± 0.05

99.44

± 0.008

92.10

± 0.07

96.50

± 0.06

97.36

± 0.06

96.30

[92.10,99.44]

78.97

± 0.04

81.95

± 0.08

68.88

± 0.09

76.60

[68.88,81.95]

Ours 96.35*

± 0.05

99.60*

± 0.007

97.35*

± 0.03

99.00*

± 0.03

98.98*

± 0.03

98.25*

[96.35,99.60]

89.03

± 0.03

97.81*

± 0.01

97.76

± 0.01

94.87*

[89.03,97.81]

Table 4. Performance of Feature Selection Methods. Average performance obtained with the first 10, 50, 100, 150, and 200 features. The

final results are expressed as mean Average Precision (mAP) and their standard deviation. Furthermore, “*” indicates the top performance.

butions with unknown, but equal, variances is the Lilliefors

test [9]. Each accuracy reported in Tab. 4 comes from the

average of the accuracies obtained from a series of SVM

classifications over 20 different splits of the data for 5 dif-

ferent subsets of features (i.e., a total of 100 different tests

for each method). Thus, given the distribution of these ac-

curacies for the proposed method dp, and the ones of the ith

competitor dci , a two-sample t-test has been applied obtain-

ing a test decision for the null hypothesis H0 that all the data

come from independent random samples from normal dis-

tributions. As for the object recognition task (see Tab. 3),

we consider as dp the distribution of accuracies obtained

over the 20 classes, and then we compare this distribution

against the ones of all the other methods dci . From each t-

test we consider the probability (p-value) at which the null

hypothesis H0 can be rejected. Based on this result, we as-

sess the validity of the reported results by the binomial cu-

mulative distribution function [3, 9]. We consider N = 10
independent experiments (i.e., one for each dataset) with ex-

actly two possible outcomes: success and failure. Success

when the ILFS outperforms all the other methods with a cer-

tain probability to do it by chance p. From Tab. 4 and Tab. 3

we observe k = 7 successes where p is given by the exact

p-value at which H0 can be rejected. Since our approach is

tested 10 times in the experiments and has p of probability

of outperforming the competitors by chance, then the prob-

ability of ILFS outperforming more than k times by chance

is 4.82 · 10−3. In conclusion, our approach achieved top

performance across many different datasets and difficulties.

5. Conclusion

In this paper we proposed a probabilistic feature selec-

tion algorithm that performs the ranking step by consider-

ing all the possible subsets of features bypassing the com-

binatorial problem. The most appealing characteristic of

the ILFS is that it aims to model the features “relevancy”

using PLSA-inspired process. The derived mixing weights

P (z|f) are used to weight a graph of features. The weighted

graph, serves to perform the ranking step providing a score

of importance for each feature as a function of the impor-

tance of its neighbors. Our approach overcomes all the

methods in comparison in terms of robustness and rank-

ing quality in a statistically significant extent, attaining the

highest performance levels across all the challenging sce-

narios and difficulties. This study also points to many fu-

ture directions. From a methodological perspective, the in-

vestigation of the absorbing Markov chains has every op-

portunity to reveal a criterion to perform the subset selec-

tion step automatically. Results of our work can possibly

be improved by performing a validation over multiple T
intervals. As for the applications, we hope that this work

motivates researchers to take into account the use of FS as

an integral part of future computer vision systems. Finally,

for the sake of repeatability, the source code is available

at https://goo.gl/uTuZhc to provide the material

needed to replicate our experiments.
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