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Abstract

We rigorously justify the infinite Prandtl number model of convection as the limit of the
Boussinesq approximation to the Rayleigh-Bénard convection as the Prandtl number
approaches infinity. This is a singular limit problem involving an initial layer.

1 Introduction

In physical situation, these are many scenario that fluid phenomena in-
volves heat transfer. What we shall consider here is the Rayleigh-Bénard
setting of a horizontal layer of fluids confined by two parallel planes a
distance h apart and heated at the bottom plane at temperature T5 and
cooled at the top plane at temperature 17 ( 75 > 71). Hot fluid at the bot-
tom then rises while cool fluid on top sinks by gravity force. If the relative
change of density is small with respect to a background density, we may
ignore density variation in the system except a buoyancy force propor-
tional to the local temperature in the momentum balance and we arrive
at the so-called Boussinesq approximation of the Rayleigh-Bénard convec-
tion. The dynamic model consists of the heat advection-diffusion of the
temperature coupled with the incompressible Navier-Stokes equations via
a buoyancy force proportional to the temperature (Tritton 1988). Taking
into account the effect of rotation, normalizing the background density to
1, we arrive at the so-called Boussinesq system in a rotating frame:

(1.1) g—? + (u-V)u+ Vp+ 20k x u = vAu+ gokT, V.-u=0,
T

(1.2) (?975 fu-VT = kAT,

(1.3) u|Z:07h = O,

Tlomo =T, Tl|o=p="T1,

where u is the velocity field of the fluid , p is the pressure, € is the rotation
rate, k is the unit upward vector, v is the kinematic viscosity, « is the
thermal expansion coefficient, T is the temperature field of the fluid, and
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k is the thermal diffusive coefficient. We also impose periodic boundary
condition in the horizontal directions for simplicity.

This set of equations is closely related to the rotating Boussinesq equa-
tions in geophysical fluid dynamics, with the temperature field replaced by
the negative density, (See Gill 1982, Pedlosky 1987 and Salmon 1998) and
suitable changes of boundary conditions appropriate to the atmosphere or
ocean. However the physics is very different. For instance the buoyancy
force plays a much more important role in Rayleigh-Bénard convection
than in geophysical problems.

This set of equations is much more complex than the Navier-Stokes
equations. For one thing, the dynamic similarity of the Navier-Stokes
flows has only one parameter, namely the Reynolds number. On the
other hand, for the Boussinesq approximation of Rayleigh-Bénard convec-
tion, the dynamic similarity requires two parameters, namely the Grashoff
number (Gr = ga(Ty — T1)h3/v?) and the Prandtl number (Pr = v/k)
(Tritton 1988) in the absence of rotation.

Since we are interested in convection, i.e., motion of the fluid induced
by buoyancy, the standard /natural non-dimensional form of the system is
achieved by using the units of the layer depth h as the typical length scale,
the thermal diffusion time h%/k as the typical time, the ratio of typical
length over typical time, i.e., k/h as typical velocity, the temperature on
a scale where the top plane is kept at 0 and the bottom plane kept at 1.
The non-dimensional form of the Boussinesq equations then take
the form

1 Ou 1
1. —(—=— . —k =A kT
(1.5) Pr<8t+(u V)u)—i—Vp—i—Ek X u u+ RakT,
V-u=0,
(1.6) %—{—I—u-VT: AT,
(1.7) u‘zzo,l = 0,
(1.8) Tlo=0=1, T|;=1=0.

The parameters of the system are thus absorbed into the geometry of the
domain plus three adimensional numbers: the Rayleigh number

T, — Th)h?
(1.9) Ra = 92 = TN
VK
measuring the ratio of overall buoyancy force to the damping coefficients;
the Ekman number

(1.10) Bk

v

~ 20n2
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measuring the relative importance of viscosity over rotation; and the
Prandtl number
(1.11) Pr=v/k

measuring the relative importance of kinematic viscosity over thermal
diffusivity.

As we stated earlier, this is a very complicated system and hence sim-
plifications are highly desirable. Physically simpler situations are achieved
if we consider large Ekman number or large Prandtl number limit. In
the large Ekman number case which is equivalent to strong rotation, the
physics is simpler due to the so-called Taylor-Proudman type phenomena
where the fluid flow is basically horizontal and hence inhibits heat con-
vection. Rapidly rotating fluids have been the subject of recent intensive
study in the mathematical community (see for instance the lecture notes
by Majda (2002) and the references therein) and we will refrain from
this subject except pointing out that this problem is more difficult due
to the presence of solid boundary (see Masmoudi 2000 and the reference
therein).

Another physically simpler case is when the Prandtl number is much
bigger than one which is the case for fluids such as silicone oil and the
earth’s mantle as well as many gases under high pressure (Bodenschatz,
Pesch and Ahlers 2000, Busse 1989, Chandrasekhar 1961, Grossmann and
Lohse 2000, Tritton 1988). This means that the viscous time scale of the
fluid (h?/v) is much shorter than the thermal diffusive time scale of h2/k.
Since we have normalized the time to the thermal diffusive time scale, we
expect that the velocity field has settled into some “equilibrium” state
due to the long time viscosity effect. Hence we expect that the velocity
field to be “slaved” by the temperature field. Moreover, since the typical
velocity is set to k/h, the Reynolds number is expected to be small. Thus
we anticipate “creeping” flow and hence the nonlinear advection term is
negligible. Therefore the velocity field should be linearly “slaved” by the
temperature field. Indeed, formally setting the Prandtl number equal to
infinity in the non-dimensional form of the dynamic equations (1.5-1.8) we
arrive at the so-called infinite Prandtl number convection system
of the form

1
(1.12) Tk w’ +Vp? = Au® + RakT?, V-u’=0,
or®
ot
(1.14) u’|.—01 =0,

+u’ - vT? = AT,
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The fact that the velocity field is linearly “slaved” by the temperature
field has been exploited in several recent very interesting works on rig-
orous estimates on the rate of heat convection in this infinite Prandtl
number setting (see Doering and Constantin 2001, Constantin and Do-
ering 1999, Constantin-Hallstrom-Poutkaradze 2001 and the references
therein, as well as the work of Busse 1989).

A natural question to ask then is if such an approximation is valid, i.e.

(1.16) (0, T) — (u°, 7% as Pr — oo?

(o, Tp) — (u),T7))

In order to understand the problem, we consider a special case with the
following type of initial data and ansatz for solutions

Ty =1-— 2z,
uy = (UOl(Z),0,0),
u = (ui(z,t),0,0).

The Boussinesq equations then reduce to

10w _ Pu
Pr ot 022’
UQE’U,gEo,
Tt)=1-=2

whose solutions can be derived explicitly as

32
ur(t, z) = e "0 ugy (2).

On the other hand, the infinite Prandtl number model reduces to an
ODE with solutions given by

Tozl—z,

u’ = 0.

We then observe that the limit as the Prandtl number approaches infinity
is a singular one involving an initial layer.

The study of such a singular perturbation problems suffers another
setback: the possible singularity of the solutions to the Boussinesq sys-
tem. Such a system embodies the Navier-Stokes system and hence the
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regularity of its solution in finite time in this three dimensional setting
is not known (see for instance Constantin and Foias 1988, Temam 2000,
Majda and Bertozzi 2001). Thus the convergence that we can expect
must be in some weak averaged form. As in most singular perturbation
problems, we benefit from the fact that the limit system, i.e., the infinite
Prandtl number model, has much more regular behavior as we can expect
from the linear slavery of the velocity field by the temperature field. Nev-
ertheless, the dynamics of the limit system is still highly nontrivial which
is evident from numerical simulations and from analytical results such as
a bifurcation analysis to be presented somewhere else.

The rest of the article is organized as follows. In the next section we
derive the effective dynamics of the Boussinesq system at large Prandtl
number utilizing two time scale approach. We then show that the effective
dynamics is nothing but the infinite Prandtl number dynamics plus initial
layer and lower order terms. In the fourth section we rigorously justify the
infinite Prandtl number limit on a finite time interval. In the last section
we provide concluding remarks and comments on the results proved here
and other related topics.

2 Derivation of the Effective Dynamics

In this section we derive the simplified effective dynamics for the Boussi-
nesq system at large Prandtl number. We then show in the next section
that the effective dynamics is directly related to the infinite Prandtl num-
ber model modulo an initial layer and lower order terms.

In order to derive the effective dynamics for the Boussinesq system
at large Prandtl number, we recognize that the large Prandtl number
problem is really a problem involving two time scales, namely, the fast
viscous time scale of 4~ (h—j before non-dimensionalization) and the slow
thermal diffusive time scale of 1 (h—: before non-dimensionalization). This
suggests that we should take a two time scale approach (see for instance
Holmes 1995, Majda 2002 among others) and introduce the fast time scale

t 1
2.1 =Prt=-, withe=—
(2.1) T r o withe=—-,

and replace the time derivative with

0 o 10
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and postulate the following formal asymptotic expansion

(2.3) u =u®(t,7)+euV(t, 1) + hot.,
T =TO(t,7) + TV (t,7) + h.o.t.

where h.o.t represents higher order terms in €.
We also impose the customary sub-linear growth condition
MW (¢ 7@ (¢
(2.5) lim D TTED)

T—00 T

in order to ensure the validity of the formal asymptotic expansion for
large values of the fast variable 7.

Inserting the formal asymptotic expansion into the Boussinesq equa-
tions (1.5-1.6), collecting the leading orders terms, we have

0
(2.6)827 N Eikk c1® £ V50 — Au® 4 RO, V.u® — g,
T
o7
2. =
(2.7) 57— =0

The solutions can be represented as

2.8) w9t 7) = e A uO(t,0) = Rae AT ATYPKTO) (1))
+Ra A (P(KTO) (1)),
2.9)  TO@ 1) =17O)
where P is the Leray-Hopf projector (see for instance Constantin and

Foias 1988, Temam 2000 among others) and A is an elliptic operator
defined as

(2.10) Au="{,
if and only if the following holds
1
(2.11) ﬂkxu—i—Vp:Au—i—f, V-u=0,
(2.12) u|,—01 = 0.

The next order dynamics is governed by

() (0)
(2.13) 8‘$T + Au® = —a‘a‘t — P((u©@ - V)u®) + Ra P(kTW),
1 0
(2.14) or = ATO _ aLU NN v ON

or
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We impose the sub-linear growth condition and we obtain, for the
temperature field,

a1
ot

(2.15) 0=ATO — —u® . y7©
which is basically the infinite Prandtl number model.

On the other hand, the sub-linear growth condition does not yield
anything on the dynamics of u(® since the equation for u( is dissipative.
This seems to be a problem. Nevertheless, we observe that u(®) has three
terms, one term linearly slaved by the leading order temperature field
T and another two terms that decay exponentially in time (initial layer
type). This means that no dynamics on u(® is necessary except the ones
that we already have. Moreover, we may modify the initial layer terms in
such a way so that the initial data are fixed. This only introduces lower
order error. Thus we propose the following effective dynamics

()
(2.16) agt +u® . vr® = ATO),
(2.17) u®(t) = Ra A~H(P(kT©)))
+e~Tuy — Rae 4T AT (P(KTy)),
(2.18) TOlLo=1, TO - =0.

This is to be compared with the infinite Prandtl number model casted in
a form with the operator A

0
(2.19) aﬁlt +u’- vT? = AT?,
(2.20) u’ = Ra A™Y(P(kT?)),
(2.21) T.—0=1, T°.—;=0.

3 Effective Dynamics and the Infinite Prandtl Number
Model

It is easy to see that the effective dynamics is closely related to the in-
finite Prandtl number model. Indeed, it is exactly the infinite Prandtl
number dynamics if we neglect the initial layer corrections in the velocity
field. Here we verify that the solutions to the effective dynamics and the
solutions of the infinite Prandtl number model dynamics remain close on
any fixed time interval modulo an initial layer. The proof here relies on
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the regularity of solutions of the infinite Prandtl number model which we
shall briefly address later.

Let us denote the difference in temperature field between the effective
dynamics and the infinite Prandtl number dynamics as w, i.e.,

(3.1) w="TO —71°

We then notice, after utilizing the effective dynamics (2.16-2.18) and
the infinite Prandt]l number dynamics (2.19-2.21)

(3.2)u” —u’ = RaA™ (P(kw)) + e 4"ug — Rae 4" A~ (P(KTy)),

(3.3) Aw = 881: +u® . Vw4 u® —u’) . v1°,
(34) w =0

2=0,1

together with zero initial data.

We proceed with usual energy method. For this purpose we first ob-
serve the following coercive property of the operator A which can be
derived easily by multiplying (2.11) by u, integrating over the domain
and applying Cauchy-Schwarz and Poincaré inequality

(3.5) [Aul[2 = [[Vul[r2 = |lul| 2.
It is also easy to check that the semigroup e~4* has the following property
(3.6) le™ Ml L2 < e7lull 2.

Next we notice that the nonlinear terms can be estimated as

IN

\/ RaA~ (P(kw)) - VT w| < Ra| A~ (P(kw))|;2|VTO| 1< |w],2
Q

A

c1Ralw|?,

and

IA

\/Qe_ATuO-VTOw| e A7 0| 12 |V T oo [w0] 12

A

colw|p2e” "

and similarly,

|/ Rae ATA Y (P(KTp)) - VI w| < c3Ralwl|j2e77.
Q
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Here and elsewhere, the c;s represent generic constants independent of
the Prandtl number or Rayleigh number, but depend on the domain and
the Ekman number as well as the initial data.

Combining these estimates together with usual energy method on (3.3)
we have

1d

(3.7) §£|w\%g + |Vw|3s < e1Ralw|3z + caRalw|p2e™"

which further implies

cycRa oo1Rat

(3.8) lwllzee0,6:22) < 1+ cieRa

This proves that the temperature fields of the effective dynamics and
that of the infinite Prandtl number model remain close which further
implies the closeness of the velocity fields modulo an initial layer according
to (3.2).

In short we have the following result

THEOREM 1  For any fized time interval [0,t] and any given initial data
(ug, Tp), the following hold

(3.9) [u® —u® — e " ug — Rae " A (P(KTD)) || 1o (0.0.12)
< C5€Ra2€c1Rat’
(3.10) [T = T oo (o 12y < cseRaerRat.

where (u®), 7)) is the solution of the effective dynamics (2.16-2.18) and
(u®, T%) is the solution of the infinite Prandtl number dynamics (2.19-
2.21).

Estimates in higher order Sobolev spaces for the temperature field are
possible. However, these estimates in higher order Sobolev spaces are
not really useful since the difference between the effective dynamics and
the Boussinesq system has to be measured in L? due to the regularity
constraint on the Boussinesq system.

Alternatively, we may derive the effective dynamics utilizing the so-
called corrector approach (see Lions 1973, Vishik and Lyusternik 1957).
The end result is very much similar with an initial layer.

Here we have used the regularity of the infinite Prandtl number model
which can be derived easily using classical methods as those available
from the books of Lions (1969), Temam (2000) among others. A sim-
ilar model, the so called Rayleigh-Bénard convection in porous media
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with zero Darcy-Prandtl number was study by Fabrie (1982), Ly and Titi
(1999) for the question of regularity among others. Their method can be
transplanted to our case. The center piece is a maximum principle for
the temperature field. A proof without invoking the maximum principle
is also possible.

4 The Justification of Effective Dynamics

We now proceed to justify the effective dynamics on any given finite time
interval.

As was mentioned earlier, the possible loss of regularity of the Boussi-
nesq system causes some difficulty in the rigorous justification which is
partially compensated by the regularity of the effective dynamics.

We follow the usual energy method approach which is natural here
due to the known regularity of the Boussinesq system. We consider the
difference of the solution (u,7’) to the Boussinesq system (1.5-1.8) and
the solutions (u(®, 7)) of the effective dynamics (2.16-2.18). Denoting

(4.1) w="T-T0,

4.2) v=u—u®,

we see that, after utilizing equations (1.5-1.8) and (2.16-2.18),

(4.3) %—Z} +u-Vw+v- VIO = Aw,
(4.4) wl,—g1 =0,
4.5 Wy = 0.

This leads to the following energy inequality

1d

S allwl2 + 19w]3e < 7O ] Vel V] 2.

Applying the classical Cauchy-Schwarz inequality we further deduce
d, o 2 0))12 2

(4.6) gl + IVwlze < [T Le[1v]z2

which implies that

(4.7) ||wHLoo(0,t;L2) CGHVHLQ(O,t;LQ)’

.8) lwllz2(0,6m1) < csllVIiL20422)-
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This motivates us to study the difference of velocity fields, namely
v. For this purpose we look for equations satisfied by v casted in an
appropriate form. Indeed, we have

1
(4@%V+(U-V)V—G—(V-V)u(o)}+—kxv—{—Vp: AV + Rakw + f,

Fk
V-v =0,
(4.10) v =0,
t=0
(4.11) v =0
2=0,1

with the extra forcing term f given by

(0)
(4.12) f = —ga‘;t — (@ . v)u©®
1
_ (0) (0) (0)
Ekkxu + Au'"” + Ra kT .

This extra forcing term has to be small if the effective dynamics is to be
valid. The smallness of this term is guaranteed by the explicit form of the
effective dynamics as we shall see below. As a matter of fact, we have,
thanks to the explicit form of the velocity field in the effective dynamics
given in (2.17) and the definition of the dissipative operator A given in
(2.11-2.12),

o7
ot
—e(u® . V)u® — A4u® + RakT® + vq
o1
ot

(4.13) f = —cRa A" (P(k )) + Ae ATug — Rae 7 (P(kTp))

= —cRa A" (P(k )) —e(m® . v)u® + vq.

Applying energy estimates we deduce

d
gilvl%z +[Vv[i2 < Ralw|r2|v]2 + e{[v|pa @4 Vv
1 pp 2T 0 . 7 ©
+HRa A7 (P(k— =)l v]zz + [(0™ - V)ull g1 [Vv]p2}
< Ralw|p2|v|z2 + e{cr|u® || Vv |2,
o1

+|Ra A7 (P(k——

5 Dlezlvic: + (- V)| Vv )
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Thus we have

d 1
(4.14) ﬁ\v@ + 52 VVipe

2Ra? o170
< fwlfs + 2 Ra AT (P ) + 1@ - V@)
provided that
1

which is satisfied for large enough Prandtl number since, thanks to the
explicit formula for the velocity field of the effective dynamics (2.17) and
the maximum principle on the temperature field as well as the dissipative
nature of the operator A

(4.16)u®|
< Ra|A™Y (P(RTY)| 11 + le " ug| g1 + Rale " A~ (PKTO))| 1
S Cg(Ra‘T()‘Loo + ’uO‘Hl)

Thus we have,

o170
ot

d, 2Ra?
(et vz <

e |w|2, + 2ee {|Ra A~ (P(k
Integrating in time and utilizing equation (4.7) we have

(417) V()7

2 2 2 -1 aT(O) 2
< AR [0} 0 2) + 423 Ra A P Be

+H (@ v)u® H%OO(O,t:H—l)}

B o1
< CQRCLZHVH%z(O’t;Lz) _|_452{||R6LA I(P(kW))H%OO(O,t:LQ)

HI@ - ) a1}

This implies, thanks to Gronwall inequality

HVH%Q(O,t;Lz)

2 _coRa’t aT(O)
c1pe”e 1

D

< O {lRa A7 (PR,

))H%OO(O,t:L?) +[(u® V)U(O)H%w(o,tﬂfl)}

NNie + 1@ - V)
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which further implies, thanks to (4.17),

(4.18) VI e 0.:22)

o Ra? _ oT®©)
< cpe’et {||Ra A~ (P (K ot ))H%w(o,t:m) + ||(11(0) -V)u(0)||%oo(07t:H,1)}

This leads to, provided we have adequate uniform in Pr bound on the
solutions to the effective dynamics which we shall derive later, the con-
vergence of the velocity field which further leads to the convergence of
the temperature field by (4.7-4.8).

It remains to prove appropriate bounds on the solutions of the effective
dynamics.

Here we only give a sketch although all the following arguments can
be made rigorous.

It is easy to see that there is a maximum principle for the temperature
field, i.e.,
(4.19) 17O o opszoe) < [ Tollze.

This immediately implies, utilizing the formula for the velocity field in
the effective dynamics (2.17) and the coercive property of the operator A
(see (3.5))

(4.20) @1 < c19Ra.

This further implies
(4.21) (- V)@ -1 < [u @7,

< c13)a@) 3
S 614Ra2 .

N

Since we need estimate on the time derivative, and since the velocity
field has an initial layer, the natural way to estimate the time derivative is
to estimate the gradient of the temperature field and use the temperature
equation. For this purpose, we consider the effective dynamics in the
perturbative variable (9(0),u(0)), i.e., perturbation away from the pure
conduction state (1 — z,0) with

(4.22) 90 = 7O _ (1 7).
The effective dynamics in the (#(?), u(®)) variable takes the form

0
©) _ 9600

(4.23) AB o

7O 0,
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(4.24) u®(t) = Ra A7 (P(kA)))
+e M ug — Rae " AT (P(KT)),
(4.25) 9 = 0.
2=0,1

One advantage of such a decomposition is that the fluctuation part
0©) satisfies the homogeneous Dirichlet boundary condition. The veloc-
ity equation remains unchanged after we replace the temperature field
with the deviation (fluctuation) from the pure conduction state since the
contribution from the pure conduction state can be absorbed into the
pressure field.

Next, we multiply the temperature equation (4.23) by A8 and inte-
grate over the domain in order to derive higher order estimates. For the
nonlinear term we have

| / ©). 7O A9O)| — | / V(u® . ve©). veO)
26 26
| / Z 1O OV o)
aw() 60|

'L

|/Zv

< ¢15[[u® HHl”A9 HLZW(O)HLOO
< clﬁRaHAH HL2

Utilizing this in the energy estimate on 6(°) we deduce

2dtIIW 3o+ [A0D22 < e16Ral A0 12 + [[uf”]| 2 A0 1

IN

§HA9(O)I|%2 + c17Ra’

This leads to

HVO(O) ||Loo(0,T*;L2) < ClgRa
HAQ(O) ||L2 (0,T*;L2) S ClgRa
which further implies
(4.26) IVTO Lo o.1-:22) < c19Ra

(4.27) AT 120 7.2y < cr9Ra
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When this is combined with the temperature equation (2.16) we deduce

T
(4.28) ”WHL“’(O,T*;H”)

< NTON oo o,rv1y + 1§l Loe .00, I T oo (0,7
< cypRa
Combing (4.18), (4.21), (4.28), and (4.7-4.8) we have the following

result

THEOREM 2 For any fized interval [0,t] and any given initial data (ug, Tp),
the following hold

(4.29) lu— u(0)||Loo(O,t;L2) < cy1eRa2eoRa12,

(4.30) IT = T g o12) < exeRa’e? /2,

which further implies, when combined with (46-47),

(4.31) Ju—u’— e uy — Rae " A" (P(KTY)) || Lo (0,1:12)
< czgsRa26623R“2t,
(4.32) T — Ty (04:12) < caneRaZecsfia™,

where (u®), T(0)) is the solution of the effective dynamics (2.16-2.18) and
(u®, TY) is the solution of the infinite Prandtl number dynamics (2.17-
2.21).

Notice the convergence rate of order ¢ is optimal which can be justified
via a systematic asymptotic expansion of the Boussinesq system in the
small parameter € = %.

5 Comments and Remarks

So far we have rigorously justified the effective dynamics (2.16-2.18) which
in turn justifies the infinite Prandtl number limit modulo an initial layer
on any fixed finite time interval with the other parameters such as the
Rayleigh number Ra fixed (see Theorem 2). A physically important ques-
tion is about the asymptotic behavior as the Prandtl number Pr and the
Rayleigh number Ra simultaneously approach infinity. It is easy to see
that our convergence rate has an exponential dependence on the Rayleigh
number Ra (see (4.29-4.30)). This implies, with the convergence result
that we proved here, we can allow the Rayleigh number Ra approach
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infinity simultaneously with a rate of lower order than +/In Pr. This esti-
mate can be improved if we consider higher order expansion with higher
order correctors to u and 7. However this could only improve the result
by some algebraic factors.

Encouraged by the finite time convergence, we naturally inquire if the
solutions of the Boussinesq system and solutions of the infinite Prandtl
number model remain close on a large time interval for large Prandtl num-
ber. In general we should not expect long time proximity of each individ-
ual orbit. Such a long time orbital stability result shouldn’t be expected
for such complex systems where turbulent/chaotic behavior abound. In-
stead, the statistical properties for such systems are much more impor-
tant and physically relevant and hence it is natural to ask if the statistical
properties (in terms of invariant measures) as well as global attractors (if
they exist) remain close.

The first obstacle in studying long time behavior is the well-posedness
of the Boussinesq system global in time. This is closely related to the well-
known problem related to the 3D Navier-Stokes equations(Constantin and
Foias 1988, Temam 2000, Majda and Bertozzi 2001 among others). For-
tunately, in the regime of large Prandtl number, we are able to prove the
eventual regularity for suitably defined weak solutions to the Boussinesq
system which exists for all time. The suitable weak solutions are defined
as Leray-Hopf type weak solution plus suitable energy inequality which
ensures certain maximum principle type estimates. We are then able to
show that the Boussinesq system possesses a global attractor which at-
tracts all suitable weak solutions for sufficiently large Prandtl number
(over the Rayleigh number). Furthermore, the global attractors of the
Boussinesq system converge to the global attractor of the limit infinite
Prandtl number model in some appropriate sense (see Wang 2003). The
set of invariant measures/ stationary statistical solutions for the Boussi-
nesq system also converge to the set of invariant measures/ stationary
statistical solutions to the infinite Prandtl number model. This further
validates the infinite Prandtl number model.

A fundamental quantity in Rayleigh-Bénard convection is the total
heat transport in the vertical direction. This is expressed in terms of the
Nusselt number in a non-dimensional fashion as

1 1 Ly Ls
5.1 Nu=1+ / / / ug 1.
(5.1) L.LyJo Jo Jo s

It is apparent that the Nusselt number for the Boussinesq approxima-
tion of the Rayleigh-Bénard convection converges to the Nusselt number
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(Nu) for the infinite Prandtl number for any fixed positive time due to
the convergence of temperature field (4.32) and the convergence of the
velocity field with initial layer (4.31). Again the convergence rate has an
undesirable exponential dependence on the Rayleigh number. A phys-
ically more interesting quantity for turbulent flow is the time averaged
heat transport in the vertical direction.

t
(5.2) Nu =1+ lim ! Nu.
t—oo t Jo

The limit here may need to be replaced by upper limit if necessary. The
convergence established in section 4 has no implication on the time av-
eraged heat transport since the convergence there is for fixed time. The
time averaged Nusselt number is actual a statistical property of the system
since we can prove, following arguments similar to those for the Navier-
Stokes equations (see for instance Foias, Manley, Rosa and Temam 2001)
that this averaged Nusselt number corresponds to average with respect
to some appropriate invariant measure (stationary statistical solutions).
However the convergence of the set of invariant measures (stationary sta-
tistical solutions) that we mentioned above carry no information on the
convergence of time averaged Nusselt numbers since we are not sure if the
limit of invariant measures induced by time average still correspond to
time average. Nevertheless, we can consider upper bounds on the Nusselt
number. It seems that one is able to derive upper bound on the Nusselt
number for the Boussinesq system which is consistent with the infinite
Prandtl number system in the sense that the new upper bound is the
sum of a physically relevant and known best upper bound for the infinite
Prandtl number model of the form Ra'/?(In Ra)?/3 (Constantin-Doering
1999) plus a correction term which vanishes as the Prandtl number ap-
proaches infinity.

As we remarked in section 3, the dynamics of the infinite Prandtl
number convection model is very regular, and the associated dynamical
system possesses a compact global attractor. It is easy to check that the
linearized solution operator contracts high modes. This further implies
the finite dimensionality of the global attractor (see for instance Con-
stantin and Foias (1988), Doering and Gibbon (1996), or Temam (1997)).
See Ly-Titi 1999 for a study on a related convection model in porous me-
dia with zero Darcy-Prandtl number. Furthermore, one can check that
the associated dynamical system possesses a finite dimensional exponen-
tial attractor which attracts all orbits at an exponential rate (see Eden,
Foias, Nicolaenko and Temam (1994) for more on exponential attractor).
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We do not dwell into the details here since we do not have a physical
prediction for the degrees of freedom for this infinite Prandtl number
model and hence we cannot make the connection to the dimension of at-
tractors. An interesting question to ask is if the infinite Prandtl number
model possesses a finite dimensional inertial manifold (See Temam (1997)
or Constantin, Foias, Nicolaenko and Temam (1988) for more on iner-
tial manifolds). This is not trivial since the spectral gap condition is not
satisfied for this dynamical system which prevents us from applying the
Foias-Sell-Temam theory in a straightforward fashion.

Within the simplified model of infinite Prandtl number, it is still in-
teresting to consider the asymptotic behavior for large Rayleigh num-
ber. Heuristically, this corresponds to the situation of simultaneous large
Prandtl and Rayleigh number but with the Prandtl number approaching
infinity at a much faster rate. Such a limit is highly non-trivial. Indeed,
for the special case of no rotation (Ek = c0), we may rewrite the infinite
Prandtl number model as

(5.3) %{ + RaA™ (KT) - VT = AT,
where A represents the Stokes operator. We see that on a short/fast time
scale of 7 = Rat, the problem of large Rayleigh number is equivalent to
the problem of vanishing viscosity for this non-local advection diffusion
problem with boundary. The large Rayleigh number asymptotics can be
viewed as the long time (on the time scale of Ra 7 for the fast time scale
T = t Ra) asymptotics for the temperature field. Thus the leading order
terms satisfies the following nonlinear non-local advection equation
0
(5.4) o1” + AN kT%) - vT? = 0.
or

This is quite different from the recent works on singular limits of PDEs
which heavily rely on the linearity of the leading order (singular term)
(see Schochet (1994), Majda (2002) and the references therein). In fact,
most (if not all) singular limit problem relies either on the linearity of the
leading order or ODE dynamics of the leading order. The study (even on
a formal level) of singular problem with leading order nonlinear and not
satisfying ODE may be extremely difficult and remains a major challenge.

A somewhat simpler problem is to consider pattern formation as the
Rayleigh number various. It is easy to see that for small enough Rayleigh
number, the global attractor is a single point consisting of the pure con-
duction solution. It is expected that we have spatially periodic solutions,
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corresponding to Bénard cells, as the Rayleigh number crosses a threshold
value utilizing techniques of Rabinowitz 1968 and Yudovich 1967.

As a final remark, the method that we used here for dealing with two
time scale problems related to dissipative system can be generalized to
many other systems as long as the limit system is regular enough and the
original system satisfies certain uniform estimates in terms of the singular
parameter such as the L? estimates in the velocity field for the Boussinesq
equations.
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