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Abstract—Few theoretical results are known about the joint dis-
tribution of three or more arbitrarily correlated Rayleigh random
variables (RVs). Consequently, theoretical performance results are
unknown for three- and four-branch equal gain combining (EGC),
selection combining (SC), and generalized SC (GSC) in correlated
Rayleigh fading. This paper redresses this gap by deriving new
infinite series representations for the joint probability density
function (pdf) and the joint cumulative distribution function
(cdf) of three and four correlated Rayleigh RVs. Bounds on the
error resulting from truncating the infinite series are derived. A
classical approach, due to Miller, is used to derive our results.
Unfortunately, Miller’s approach cannot be extended to more than
four variates and, in fact, the quadrivariate case considered in this
paper appears to be the most general result possible. For brevity,
we treat only a limited number of applications in this paper.
The new pdf and cdf expressions are used to derive the outage
probability of three-branch SC, the moments of the EGC output
signal-to-noise ratio (SNR), and the moment generating function
of the GSC(2,3) output SNR in arbitrarily correlated Rayleigh
fading. A novel application of Bonferroni’s inequalities allows
new outage bounds for multibranch SC in arbitrarily correlated
Rayleigh channels.

Index Terms—Characteristic function (chf), diversity, moment
generating function (mgf), quadrivariate Rayleigh distribution,
trivariate Rayleigh distribution.

I. INTRODUCTION

S RAYLEIGH fading is frequently used to model the re-

ceived signal amplitudes in urban and suburban areas [1],
the joint probability density function (pdf) of a set of L corre-
lated Rayleigh signals is required for several performance-anal-
ysis problems. It is well known that this is an exceedingly dif-
ficult problem and, indeed, some authors claim that the joint
pdf for more than two correlated Rayleigh envelopes cannot
be found [2]. However, since the envelopes of multiple corre-
lated complex Gaussian random variables (RVs) are Rayleigh
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distributed, the underlying complex Gaussian joint pdf can be
converted to polar form to give the joint pdf of amplitudes and
phases and, in principle, the phase terms can be integrated out
to give the joint amplitude pdf. Following this approach, Miller
[3] derives an infinite series of products of modified Bessel func-
tions for the joint pdf of three correlated Rayleigh RVs. While
this holds for arbitrary correlation models, it is intractable to
derive the joint pdf for L > 3 using this approach. All the avail-
able results therefore treat restricted correlation models. For ex-
ample, Blumenson and Miller [4] derive the joint pdf of L cor-
related Rayleigh RVs, provided the inverse covariance matrix ®
of the underlying Gaussian RVs is tridiagonal (i.e., ¢;; = 0 if
|i — 7] > 1). The exponential correlation model generates this
particular pattern.

The joint pdf of Rayleigh RVs has many applications, which
include determining the impact of correlation on diversity sys-
tems and modeling fading processes [2], [S]-[8]. The pdf of
bivariate correlated Rayleigh distribution has been derived by
Rice [9]. Tan and Beaulieu [10] derive an infinite series repre-
sentation for this bivariate joint cumulative distribution func-
tion (cdf). Consequently, many published papers treating selec-
tion combining (SC) and equal gain combining (EGC) in cor-
related Rayleigh fading are limited to the dual-branch case [2],
[11]-[13]. Using Blumenson and Miller’s result [4], Karagian-
nidis et al. derive a joint distribution that holds only for expo-
nentially correlated Nakagami fading channels [14], [15], and
apply their results with Green’s matrix to approximate arbi-
trarily correlated fading [16], [17]. However, their approach may
not work for the constant correlation case.

In this paper, we use Miller’s result [3] to derive new in-
finite series representations for the joint pdf, cdf, moments,
and characteristic function (chf) of three arbitrarily correlated
Rayleigh RVs. For four correlated Rayleigh RVs, we gener-
alize Blumenson and Miller’s result [4] (which is limited to
tridiagonal inverse covariance matrices) to the case where the
inverse covariance has five nonzero diagonals (i.e., only ¢14
needs to be zero). Our trivariate and quadrivariate cdf series
generalize Tan and Beaulieu’s series for the bivariate Rayleigh
cdf [10]. Although there are many applications of the new pdf
and cdf expressions, three- and four-branch diversity systems
are particularly of interest. For diversity systems in arbitrarily
correlated Rayleigh channels, we derive the outage probability
of three-branch SC, Bonferroni upper and lower bounds for the
output complementary cdf (ccdf) of L-branch (L > 3) SC,
moments of the three-branch EGC output signal-to-noise ratio
(SNR), and the output moment generating function (mgf) of
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the generalized SC (GSC) (2,3) receiver. For brevity, additional
results are omitted here, but a detailed application of our results
for three-branch SC performance can be found in [18].

This paper is organized as follows. Section II derives new in-
finite series representations for the joint pdf, cdf, moments, and
chf of the trivariate Rayleigh distribution. Bounds on the trun-
cation error are also derived. Section III derives infinite series
representations for the joint pdf and cdf of a certain class of the
quadrivariate Rayleigh distribution. Section IV presents some
applications of the new results. Section V provides several nu-
merical and simulation results. Section VI concludes this paper.

II. TRIVARIATE DISTRIBUTION

Let G = {G1, G2, G5} be joint complex Gaussian RVs with
zero means and positive definite covariance matrix ¥, whose
element is defined as ¢;;, = E(G;G}), where E(X) is the
mean value of X. We may write G, in terms of polar coordinates
as

Gr = Rrexp(i®y), ke {1,2,3} @))
where R, = |Gy| is the envelope of Gi. Thus, R =
{R1, R2, R3} is a set of Rayleigh RVs, and © = {0;,0,, 03}
is a set of jointly distributed phases. The joint pdf pg e(r,0)
of R and © can be related to the density pg(g) of G. Hence,
the marginal density pg(r) can be obtained by integrating out
pr,e(r,0) over 0. This approach yields [3], [19]

pR(r1,72,73) =8 det@)mrge—<Tf¢n+f%¢2z+r§¢33>

XEEk

X Ik (2T27‘3|¢23|) I (2r3r1|éa1]) )

*cos(kx) Ik (2r17ra|d1a])

where ¢y, is the Neumann factor (g = 1, e, = 2 for k =

1,2,...) and

X = X12 + X23 + X31 3)

and ® is the inverse covariance matrix

) P11 d12 P13 '
D=U"" = |9y P22 a3 bjk = |pjrle™*  (4)
i3 933 ¢33

where s = /—1. Based on (2), we next derive the infinite series
representations for the joint pdf, cdf, moments, and chf of the
trivariate Rayleigh distribution. New bounds on the truncation
error of the infinite series are also developed.

A. Joint pdf and Joint cdf

The expression (2) is not very useful, as it is not in a product
form of the variables r1, 72, and 73. Representing the modified
Bessel function by an infinite series [20, eq. (9.6.10)], we readily
obtain an infinite series representation for the joint pdf as

pR(T17T27T3)

— 8det(®)e(TiPntrsdatrion)
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X Z&:k k cos (kx)
y Z L e Y S 2 i
l' L+ k) m!(m + k) nl(n + k)!
% T%(l—l—n—l—k)+1T§(l+m+k)+17"§(m+n+k)+l. (5)

Note that (5) is in a product form of 71,72, 73, and is therefore
suitable for our purposes. Using the definition of the incomplete
gamma function [20], we obtain the infinite series representation
for the joint trivariate cdf as

_det(®) = &
Fr(A1, Ao, A er(—1)" cos(k
R(A1; Ao, da) = ¢11¢22</>33 kZ:O e(=1) (k)
X Z C’I/i;r2 1/23+2 ((51,)\ ¢11)
l,m,n=0
X 7 (82, A3¢h22) ¥ (63, A333) (6)
where  is defined as (3) and
C= L (7a)
U+ E)!ml(m + k) Inl(n + k)!
x|
Vi — (7b)
%P
Sy =l+n+k+1 (7¢)
o=m+Il+k+1 (7d)
bs=n+m+k+1. (7e)

The above notations (3) and (7) will be used throughout this
paper for brevity. The cdf (6) holds for any arbitrary 3 x 3 cor-
relation matrix. Let us consider two commonly used spatial cor-
relation models.

1) Constant Correlation Model: The constant correla-
tion model is valid for a set of closely placed antennas [21].
The normalized correlation matrix of this model is given by
Yir = p(j # k) and ¢p;; = 1, where —(1/2) < p < 1.Itcan
be shown that x = x12 + X23 + x31 = 3. Thus, the joint cdf
(6) reduces to

Fr(A1, A2, A3)
(1= p)(+2p)?
B (1 + 9)3

ngk >

< p )51 +62+63—3
l,m,n=0 1+p
8 (617

(1+p)A? PR 0L
1+ 0—92,2 T p—2p2 Y 02, 75
ol (53;

14 p—2p2

(140X
1+p—2p2)"°

2) Exponential Correlation Model: The exponential cor-

relation model can be used to describe the correlation among

equally spaced linear antenna arrays [14]. The normalized

correlation matrix of this model is described as 1, = pli—kl,

®)
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TABLE 1
NUMBER OF TERMS NEEDED IN (8) TO ACHIEVE FIVE-SIGNIFICANT-FIGURE ACCURACY. A1 = Az = A3 = A
A=1 A=3 A=5
p=0.1 K=L=M=N=2 K=2L=M=N=3|K=L=M=N=3
p=03| K=2L=M=N=3|K=5L=M=N=6|K=L=M=N=6
p=05|K=3L=M=N=4|K=7L=M=N=8| K=L=M=N=28

where 0 < p < 1. It can then be shown that ¢p3; = ¢13 = 0.
Thus, the joint cdf can be simplified considerably to
F R()\h A2, )\3)

pz I+m
1+p2 Z <1+p)
)\2 (1+ p2)A2
[+1, -1 l 1,—— 2772
7<+ ’1—p2)v<+m+ Tl p? )
A3
><fy<m+1,1_p2> 9)

which is equivalent to [14, eq. (6)].

B. Truncation Error

Assume that the cdf series (6) is limited to K, L, M, and N
terms in the variables &, [, m, and n, respectively. The remaining
terms constitute the truncation error. It is desirable to obtain a
simple bound for the truncation error, because such a bound is
useful for studying the impact of correlation ¥ on the truncation
error. Unfortunately, this is not always possible. For example,
Tan and Beaulieu [10] derive a truncation error bound in terms
of the confluent hypergeometric functions, where the relation-
ship between the correlation p and the truncation error is not
immediately evident. Here, we provide an alternative method to
bound the truncation error.

We notice that the incomplete gamma function (a,z) <
I'(a) and | cos(x)| < 1. The truncation error of (6) can therefore
be upper bounded by

+ > G(k,1,m,n) (10)
k=0 1=0 m=0 n=N
where
det(®) <l+n+k> <l+m+k>
Gk, l,m,n)= ——=¢
(k.1 ) P11P22P33 ¥ l m
m+n+k mtk npk
><< . ) VEELIEE S ()

Further simplification of (10) is complicated. Due to the space
limitation, we only provide an upper bound for the truncation

error in the special case of exponentially correlated models
where ¢13 = 0. This leads to

B < ii(”m)( )
T
gl—(l—p4)l1—<1fpz> H1—<1fp2>M]. (12)

As expected, the upper bound for the truncation error increases
as p increases, and decreases as the number of terms increases.
However, compared with the bounds developed in [14], our
bounds (10) may be loose for small values of Ax’s in (6).

The converge rate of (6) depends not only on the correlation
W but also on the values of A’s. For brevity, we consider the
constant correlation model here. Table I lists the number of the
terms required in (8) to achieve five-significant-figure accuracy.
As \’s increase, more terms are needed in the cdf series, i.e.,
the truncation error increases for the same number of terms.

C. Joint Moments and Joint chf

Moments and chf are often used to characterize the RVs.
Using the infinite series representation for the joint trivariate
pdf (5), we derive the joint moments and the joint chf of three
Rayleigh RVs.

If «, 3, 8 > —2, the joint moments are given by

det(®
E (r?rgrg) T T dta/2 1+3/2 1+6/2 ng
11

* cos(kx)

% Z Cu l+k/2 m+k/2 n+k/2r (51+%)

l,m,n=0

F<52+§>F<53+g>

where I'(a) is the gamma function [20]. The joint moments have
many applications. We will show that statistical moments of the
output SNR of certain diversity systems can be evaluated using
(13).

The joint chf of the trivariate Rayleigh distribution is defined
as the statistical average

(13)

d(v1,v2,v3) =F [ei(“m“’ﬂ?“’“"i)}
det @ >
- h11P22033 Z k(= 1)" cos(hx)

k=0

% Z Cl/l+k/2 m+k/2 n+k/2

l,m,n=0
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<o [~ (G s+ )|
P 8p11 Sz 8¢z
(260 = 1)I(25, — 1)!(28 — 1)
201 +62165—3

—’L"Ul —Z'UQ
X D2, <\/2¢11> Do, (\/2¢22>

—1U3
* Doz, <W>

(14)

where D_,,(z) is the parabolic cylinder function [30].

III. QUADRIVARIATE RAYLEIGH DISTRIBUTION

Blumenson and Miller [4] derive the joint pdf and the joint
cdf of the multivariate Rayleigh distribution. However, their ex-
pression is only valid when the inverse covariance matrix satis-
fies ¢ = 0 for |j — k| > 1 (i.e., for the matrix in (15), both
¢13 and ¢24 would be zero). However, we can derive more gen-
eral results than [4] for the quadrivariate case. We consider the
inverse covariance matrix given by

¢11 g1z 1z O

F Y Tl ¢Ta P22 P23 P2u i
T3 @55 ¢33 @3 Djk |¢]k|€
0 ¢34 9% Paa

15)
Using the relation between complex Gaussian RVs and Rayleigh
RVs, we show that the joint pdf of four Rayleigh RVs, R =
{R1, Rz, R3, R4}, with positive definite ¥ and its ® satisfying
(15) can be obtained as a product of the modified Bessel func-
tions of the first kind (see Appendix A)

pR(r17 T2,T3, T4)
=16 det(‘1>)n7”27’37“46_(T12¢11+”§¢22+T§¢3a+r§¢44)

SIP

=0 k=—oo
x cos [j(x12 + X253 + Xa31) + k(Xx23X34 + Xa2)]
X I (2r172|¢12|) I; (2r173]¢us)

X I, (2rora|daal) I (2r3ra|daal)

X Ljyk (2rars|das|) .

J+k

(16)

To the best of our knowledge, (16) is a novel result which
allows evaluation of four-branch diversity combiners in several
kinds of correlated fading channels. Equation (16) reduces to
previous results for two special cases. We believe that an ex-
pression akin to (16) cannot be derived unless ¢14 = 0. Thus,
this appears to be the most general quadrivariate case that yields
an infinite series solution. Moreover, if ¢4 is not zero in a given
application, we may choose a “best” approximation ¥ of W sat-
isfying (15), as follows. We can use a constrained least-squares
approach by minimizing || ¥ — v ||, subject to the constraint that

[\fl ]3,4 = 0. A similar problem is discussed in [16].

1) Independent Rayleigh Envelopes: Since the covariance
matrix ¥ for independent Rayleigh RVs is diagonal, the in-
verse covariance matrix ® is also diagonal, which is given by

2095

i =0(j # k) and ¢,;; = 1 for 5,k € {1,...,4}. Therefore,

our new expression (16) can be simplified to

2
L2 _3 _4
(wu+ o+ )

1671727374 Va2 T3 T Uus

P119221)33 l/144
(I7)

which is the product of four independent Rayleigh pdfs [22, eq.
(2-1-128)].

2) Exponentially Correlated Rayleigh Envelopes: Substi-
tuting ¢o4 = ¢13 = 0 into (16), we obtain the joint pdf of the
exponentially correlated quadrivariate Rayleigh distribution

PR(A1, A2, A3, \y) =

2 (1402 (r2402)
( ) 1671rorgry — \ 1-52 + 1—p2
T1,T2,T3,74) = —————¢
PR(T1,72,73,T4 1= p2)3

2r119p 2r3rap 2rar3p
x I 1 I 18
0<1—p2 o1z ) {12 (18)
where p = 115. This expression is equivalent to the previous
result [14, eq. (3)].

Expanding I,,,(z) in infinite series and integrating (16) yield
an infinite series representation for the corresponding joint cdf

FR()‘17 )‘27 /\3 )‘4)

det(®
= E E gi(—1)7** cosw
¢11¢>22¢>33¢>44 <
=0 k=—oc0
> 141 mtd n+u| ut L&l
X E Vg™ V13 "Vay T Vyy

I,m,n,u=0
v (ut]k]+n+1, Ajdas) v
nlul (u+|k])! (n+]k|)!

(I+j+m+1, i)
ml(1+5)! (m+j)!

v |J+H 1
o I i

v=0

x'y(m+n+v+T+1,)\2¢>22)

Xy (m+utv+7+1,\¢s) (19)
where w = j(x12 + X23 + x31) + k(Xx23 + X34 + x42) and

= (|7 + k| + |k| + j)/2. We observe that both (5) and (16)
are series of the product of the modified Bessel functions. For
brevity, we only discuss the trivariate Rayleigh distribution and
its applications in the rest of this paper. Similar results can be
obtained for the special class of quadrivariate Rayleigh distri-
bution.

IV. APPLICATIONS

The new results developed in Section II enable the perfor-
mance analysis of three-branch diversity systems in arbitrarily
correlated Rayleigh fading channels. This section presents four
possible applications.

A. Outage Probability of Three-Branch SC

Outage probability is a standard and widely used performance
measure of diversity systems. It is defined as the probability
that the output instantaneous SNR + falls below a certain given
threshold ~},. For independent fading, outage expressions have
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been fully developed [23]. This is not, however, true for corre-
lated fading. Here, we use the joint trivariate Rayleigh cdf (6) to
evaluate the outage probability of three-branch SC in correlated
fading channels.

We assume that the noise components at different diversity
branches are additive white Gaussian noise (AWGN) with iden-
tical power spectral density. Let v and 7 denote the instan-
taneous and the average SNR at the kth branch (k = 1,2, 3).
In SC, the branch with the largest instantaneous SNR is se-
lected as the output, ysc = max(~y1, ¥2,3). Using the relation
Ve = W/E@)ri = (Yk/v¥rr)ri, where 7y, is the ampli-
tude of the received signal at the kth branch, we may obtain the
outage probability as

PI‘ 0 < Vsc < ’yth

(\/%1&/’11 \/%M/’m \/%M/’SZS) 20)
3

where Fr(A1, A2, A3) is the joint cdf of the branch amplitudes
(6). Note that the covariance matrix ¥ specifies the correlation
(fading correlation) between two complex Gaussian samples.
The relationship between the envelope correlation (i.e., the cor-
relation between the two Rayleigh samples) and the fading cor-
relation can be found in [6, eq. (1.5-26)]. Thus, the outage can
be evaluated in terms of envelope correlation and the average
branch SNRs.

out

B. Bounds for the Output ccdf of Multibranch SC

Performance of multibranch SC (L > 3) is completely
known for independent fading branches. If, however, branch
signals are allowed to be correlated (which is a very realistic
assumption), known theoretical results are few and far between.
In [24] and [25], the performance of multibranch SC in a
correlated Rayleigh fading channel is analyzed. However, their
results are fairly complicated for large L(> 3). From both
practical and theoretical standpoints, performance bounds for
multibranch SC are therefore desirable. For this problem in its
most general setting, we need to know the Lth-order joint dis-
tribution of the instantaneous branch SNRs for any correlation
structure. As mentioned before, unfortunately, it is extremely
difficult to derive this joint pdf for L. > 3. Using (5) and (6),
we can handle any arbitrary correlation pattern for L = 3. Can
we use our new results to obtain the performance bounds of
multibranch SC for L > 3? Strangely enough, the answer is
yes. For this purpose, we need to use the Boole formula, which
shows that the probability that at least one of the L events

{Aq, Ao, ..., , Ar} occurs is given by [26]
L L L
Pr (U Au) =) Pr(A,) - > Pr(4.nA,)
u=1 u uiiu<:01
S1
Sa
L
+ Z Pr(A,NA,NA,) —
u<v’<:u3

J

~~

S3

+ (=D Pr(41n4,0---NAL). (21)
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Note that S is the sum of the first-order event probabilities, ig-
noring any dependency among the events. However, Ss is the
sum of the pairwise event probabilities, which takes into con-
sideration pairwise dependencies among the events. Using the
fact that the sum of an even (or odd) number of terms on the
right-hand side of (21) provides a lower (or upper) bound of
PT(U5=1 A,,), we obtain the Bonferroni inequalities, of which
the second is

L
Sp — Sy gPr(U Au> < 81— S5+ Ss. (22)

u=1

We are now in a position to apply this to evaluate the perfor-
mance of multibranch SC in correlated Rayleigh fading chan-
nels. Let A,, denote the event that the instantaneous SNR of the
uth branch v, exceeds z : A, = {7y, > «}. Since the SC output
SNR is the maximum of all the branch SNRs, when at least one
branch SNR exceeds z, so does the SC output. Therefore, we
readily bound the ccdf of the multibranch SC output SNR by

L

7@(‘ > LIZ' ZPI‘ Yu > fl? Z PI‘(’)/", >, Y > Jj)
u<i‘

’Vsc>$ ZPI‘ 'Yu>f17 Z Pr(’Yu>‘T7’Yv>$)

w,v=1

v=
w<v

L
+ Z Pr(yu > ,% > ¢, > ) (23)

u,v,w=1
u<v<w

where Pr(,, > x) is the probability that any single branch SNR
exceeds x, and Pr(y, > x,7, > =) is the probability that any
two branch SNRs exceed x simultaneously, which are given,
respectively, by [2, Egs. (10-4-8, A-7-1)]

PI‘('YU > fI})

=e

Pr (771

=z
Fu

(24a)
Yo > LIZ'

- Wll Q(\/ 1- puu’ ’pm’\/ 1-p2,) 7)]
e Q<puu\/<1_puv)’yv \/(1_puv)’7u) (24b)

where puy = Yuw/VPuuPus is the fading correlation between
the uth and the vth branches, and Pr(vy, > z,v, > z,v, > )
is the probability that any three branch SNRs exceed x simulta-
neously, which can be derived using (5) as

Pr(vy > 2,70 > ,Y0 > )

det ® >
5 COS k uv + vw + wu
¢UU¢UU¢U)U/ Z k (X X X )
I+% £ £
Z Cur 2 v -ywu F(éhd x)T(62,dypx)
l,m,n=0
x T(83, d) (25)

where d, = ¢uutuu/Vu Will be used in the following, and
I'(a, z) is the complementary incomplete gamma function.
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C. Moments of the Three-Branch EGC Output SNR

A combiner’s output moments can be used as alternative
performance measures to the conventional error-rate analysis.
However, a single moment, such as the mean SNR, is not
sufficiently informative, and higher order moments can furnish
additional information for system design. For example, the
Chebyshev inequality yields Pr(|X — p| > t) < 03 /t2, where
E(X) = p. Thus, if X is taken to be the output of a diversity
combiner, the variability of the outputs is indicated by the
variance. The new expression (13) enables us to evaluate the
moments of the output SNR of a three-branch EGC system, the
output of which can be written as

2
Yege = s rs) B, (26)
0
where FE is the transmitted signal energy and Ny is the noise
power spectral density per branch. The moments of output SNR
can be obtained as

E(v.) = <3%0)HE [(r1 + o +73)"]

&), 5

oo Veal
oty Talhalhs!
ki+kotk3=2n

ki, ko, k3
><E’(7"1 To T )

27)
where E(r¥1r5215%) can be computed using (13). To the best
of the authors’ knowledge, (27) is a new result and provides
high-order moments of the three-branch EGC output SNR for
the most general case.

D. Output mgf of Three-Branch GSC

GSC(M, L) achieves a good tradeoff between performance
and implementation complexity [27], [28]. However, very few
theoretical results are known for the GSC performance in cor-
related fading channels. The only published paper dealing with
this topic is Mallik and Win [29], who analyze the performance
of GSC(M, L) in equally correlated Nakagami fading. The dis-
tribution theory for order statistics of arbitrarily correlated RVs
is not fully developed [26]. Our new result (6) enables the per-
formance analysis of three-branch GSC in arbitrarily correlated
Rayleigh fading channels.

Since GSC(1,3) and GSC(3,3) are simply SC and MRC, these
cases are not treated here. Instead, we consider the GSC(2,3)
system, which combines the largest two branch SNRs to form
the output

Ygsc = V(2) + Y(3) (28)

where (1) < v2) < 7(3)- We derive the joint cdf of () and
7Y(3) Vvia the first principles as

F’Y(g),'y(g) ((X.//B) = Pr(’Yl S /6772 S «, Y3 S (1)
+Pr(y1 < a,72 < B3 <)
+ PI"(% S Qa, 7Y2 S a, 73 S ﬁ)

- 2Pr(’Yl S @, Y2 S @, Y3 S Ol) (29)

where § > o > 0.
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Applying (6) and differentiating (29) with respect to o and (3
yields the joint pdf of v(2) and v(3) as

det @ >
p"/ (2)-7(3) (1’ U) ¢11¢22¢33 Z ( l)k COS(kX)
Z C«ngngré nt3
l,m,n=0
X Z (8w dop)dS dP>
Pl
% [xéu—1y5,v—16—(a;du+yd,u)} (30)

where y > = > 0.
Using (30), we can obtain the output mgf of GSC(2,3) as

Mysc(s) = E(e™7)
//p’Y(z)a’Y(s) T,y)e (m+y)sd'yd$
0 =z
det®
=7 ex(=1)* cos(ky)
Pr122033 =5
X Z CI/H—kI/;:; ]-c/ +%
l,m,n=0
by
6
X “Z;l <d +S> dorg(u,v,w)  (31)
uAvEw
where
g(u,v,w) = /xﬁu_le_""‘(d“"'s)fy(éw,xdw)
0
X ' [6y, (dy + $)x] dx
_ di}” (6u + 6u) - 1)'(60 B 1)'
b | (dy+dy + 5)0utow
d
F 5u 51117 1a 5111; —
><21( + dw—}—du—}—s)
(6 — )!(d, + s)%
5v(d+28)6
dy
Fal6:1,1:60 41,68, +1; —2
X A( 3 Ly Ly + + d—|—28/
dy + s
32
d+25)} (32)
where  oFi(a,b;c;2) is the Gauss hypergeometric
function, which is defined as [30, eq. (9.100)] and
Fala; 81,y By e oy Yni 215 -5 2n) 1s the nth-order

Appell hypergeometric function [30, (9.180.2)]. Equation
(32) follows from [30, eq. (9.236.4)] and [31, eq. (C.1)].
Using the output mgf (31), the performance of various digital
modulations with GSC(2,3) may be evaluated.

V. NUMERICAL RESULTS

Consider a linear array of three antennas in a base station
[32]. Assume that the antenna is A = 100 ft high, operating at
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Fig. 1. Outage probability P, of SC versus the normalized average branch

SNR #7/4¢n in correlated Rayleigh fading channel.

850 MHz (i.e., wavelength is 1.16 ft). The antenna spacing is
d =10 x 1.16 = 11.6 ft, and the mean angle of arrival (AOA)
is o9 = 30°. The normalized envelope covariance matrix of the
linear array is determined using empirical curves [33] as

1 0.61 0.37
¥=1061 1 061 (33)
037 0.61 1

Using [6, eq. (1.5-26)], (33) can be converted to the covariance
matrix of the underlying Gaussian RVs ¥. The outage proba-
bility of three-branch SC in Rayleigh fading channel with this
linear antenna array is plotted in Fig. 1.

Consider an antenna array with normalized covariance matrix

1.0000 0.2920 0.2998 0.1121

W 0.2920 0.6602 0.2031 0.1585 (34)
0.2998 0.2031 0.7625 0.1888
0.1121 0.1585 0.1888 0.6431

The inverse covariance matrix now satisfies (15). Thus, using
(19), we may evaluate the outage probability of four-branch SC,
as is shown in Fig. 1. Semianalytical simulation results are pro-
vided as an independent check of our numerical results. We use
the Cholesky decomposition approach [34] to generate corre-
lated complex Gaussian variables, and their amplitudes give the
required correlated Rayleigh envelopes. Our numerical results
agree with the semianalytical simulation results.

Fig. 2 shows the impact of an exponentially decaying power
delay profile (; = e "~V4;, 1 = 1,2,3, where 7 is the
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Fig.2. Outage probability P, of three-branch SC versus normalized average
SNR of the first branch i /v, over exponentially correlated Rayleigh fading
channel.

power decay factor) [35] and an exponentially correlated
Rayleigh fading on the outage probability of three-branch SC.
As expected, the performance of three-branch SC degrades as
the power decay factor 7 or the branch correlation p increases.
That is, both the branch SNR imbalance and fading correlation
degrade the performance of diversity systems. This observation
agrees with that in [35].

Clarke [36] derived the relationship between envelope cor-
relation and antenna separation assuming a uniform AOA dis-
tribution. However, the measurement data in [37] shows that a
Gaussian AOA distribution is more realistic than the uniform
AOA distribution for GSM systems in rural and suburban areas.
Thus, we consider a linear antenna array of five vertical omni-
directional antennas, with antenna spacing of 80% of the wave-
length. The AOA is assumed to be Gaussian distributed [38]
with mean ¢q 30° and variance (angular spread) o
10°. The covariance matrix of the underlying complex Gaussian
components can be computed using [39, eq. (33,34)] (see (35),
shown at the bottom of the page).

Fig. 3 shows that our bounds fit the simulation results well in
the high-SNR region. In this particular case, the lower bound
is more accurate than the upper bound. The tightness of our
bounds is subject to the covariance matrix. We also find that
these bounds for an equally correlated system are tight. From
(21) and (22), the exact outage probability can be dominated
by first- and second-order events. Particularly, for high SNR,
this appears to be the case. That the lower bound includes all
the first- and second-order events contributes its tightness. How-
ever, the upper bound in Fig. 3 breaks down for SNRs less than

1 —-0.6+0.45 0.13—-0.3: —0.02+40.08: 0.01 —0.01z2
—0.6 — 0.45: 1 —-0.64+0.45: 0.13-0.3¢ —0.02+ 0.082
¥=xy 0.13+ 0.3z —0.6 — 0.45¢ 1 —0.6 + 0.45¢ 0.13 —-0.3% (35)
—0.02-0.08 0134032 —0.6—0.45: 1 —0.6 4 0.45:
0.01 +0.01z —0.02—-0.08: 0.1340.3¢ —0.6—0.45¢ 1
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10 dB. The reason is that there are a large number of third-order
events [see (23)], and their probability sum can be quite large.
Fig. 4 shows the effect of fading correlation on the normal-
ized mean output SNR of three-branch EGC. As fading corre-
lation increases, the mean output SNR also increases. This con-
tradicts the conventional wisdom that diversity combiner per-
formance degrades with increasing correlation. However, it can
be explained by (27). Since E(R;Ry) > E(R;)E(Ry), (j #
k), for p > 0, the average output SNR of EGC in correlated
fading channels is higher than that in independent fading chan-
nels [40]. As p approaches one, the average output SNR of EGC
approaches that of MRC. It should be noted that common EGC
performance measures, such as bit-error rate (BER), cannot be
solely characterized by the average output SNR; they also de-
pend on the higher moments. The average output SNR by it-
self is not a comprehensive metric for the EGC performance in
correlated fading channels. Caution must therefore be exercised
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when using the average output SNR as a performance measure,
and one should consider the higher order moments of the com-
biner output SNR [41].

VI. CONCLUSION

In this paper, using Miller’s classical approach, we have de-
rived the new infinite series representations for the joint pdf and
the joint cdf of three and four correlated Rayleigh RVs. Several
previous results have turned out to be special cases of our new
results. Our results are canonical, in that they can accommodate
any arbitrary 3 X 3 correlation matrix, as well as a fairly gen-
eral class of 4 x 4 correlation matrices. These representations
pave the way for solving certain long-standing diversity prob-
lems. For example, the performance of three-branch SC, EGC,
and GSC in arbitrarily correlated Rayleigh fading can now be
evaluated analytically. To the best of our knowledge, these have
never been developed up to now. Similarly, the performance
of four-branch diversity combiners in a fairly general correla-
tion setting can now be completely solved using our results.
Our novel use of Bonferroni’s inequality allows the bounding of
the multibranch SC performance for arbitrary correlation struc-
tures among the diversity branches. Other applications may in-
clude finding transition probabilities for Markov modeling of
the Rayleigh fading channel [42]. Finally, theoretical perfor-
mance results of diversity systems in correlated fading are very
scarce, compared with that of independent fading. The results
derived in this paper partly redress this issue, while much more
work remains to be done.

APPENDIX A
DERIVATION OF (16)

LetG = {G4,G3, G3, G4} be jointly complex Gaussian RV's
with zero means and the inverse covariance matrix ® given by
(15). The joint pdf pg,e(r, ) of the corresponding amplitudes
R and phases © of G is given by [3]

1 .
Pr,e(r,0) = — |det(®)| rirorarse™ &9 (36)

wt
where g = r¢’%. The marginal density pr(r) can therefore be
obtained

1
PR(T1,72,73,74) = oy |det @| ri7ror3ry

[V

27 2w
o

Writing G, in terms of polar coordinates, we obtain

T 4T

2
"9 2930, drdfsd0s.  (37)
0

o

9" ®g =1711 + 1320 + r3das + ridus
+ 2r172|¢p12| cos(01 — 02 — x12)

+ 2r173|p13| cos(6r — O3 — x13)

+ 27973 |p23| cos(fa — O3 — x23)

+ 27974 | 24| cos(O2 — 04 — x24)

( )

+ 27374 |¢34] cos(03 — 01 — x34). (38)
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Making variable transforms 61 — 65 = u, 3 — 63 = v, and
03 — 0, = w, and substituting (38) into (37), we obtain the pdf
of R as

PR(T17 2,73, T4)

2 2 2 2 2
== | det (I’|T1T2T3T4€_(T1¢11+T2¢22+T3¢33+T4¢44)
™

2w 2w 2w

><///e—2r2r3|¢23\cos(vfxgg)ef(agcosw+a4sinw)
0 0 O

x (@1 cosutassinw) g, g, oy (39)
where a1, as, a3, and a4 depend on v, but not on v and w
a1 =2r172|¢p12| cos x12+2r173| 13| cos(v—x13)  (40a)
as =2r172|p12|sin x12 —2r173] 13| sin(v—x13)  (40b)
a3 =2r374|p34| COS X34 +27r274|P24| cOS(v—x24)  (40c)
a4 =2r374|p34|SIn X34 — 27r274|P2s| cOS(v—x24). (40d)
Using the relationship [3]
27
/exp [—(acosf + bsinb)] df = 2w lp(/a? + b2)  (41)
0

and Neumann’s addition theorem [43, p. 365], we obtain the
joint pdf of quadrivariate Rayleigh distribution as (42)

PR(T17 2,73, 7“4)
4
= —(det ®)ryrorary
T

X exp [~ (ri¢11+13hao+73 ¢33+ 17 has) ]

X 3 emenlm (2r172]¢12]) Im (2r173]f13])
m=0n=0
X In (2r274|d24|) In (2r374|P34])

2
X /6—2T2T3|¢23|COS(U—X23)
0
x {cos [m(v+x12—X13) +n(v+X34— X24)]
+cos [m(v+x12—x13)

—n(v+x3a—Xx24)]} dv. (42)

Using the relation [19, eq. (3-3.14)], we obtain (16) after al-
gebraic manipulation.
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