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A system is operating as an M/M/∞ queue. However, when it becomes empty, it
is assigned to perform another task, the duration U of which is random. Customers
arriving while the system is unavailable for service (i.e., occupied with a U-task)
become impatient: Each individual activates an “impatience timer” having random
duration T such that if the system does not become available by the time the timer
expires, the customer leaves the system never to return. When the system completes
a U-task and there are waiting customers, each one is taken immediately into service.
We analyze both multiple and single U-task scenarios and consider both exponentially
and generally distributed task and impatience times.We derive the (partial) probability
generating functions of the number of customers present when the system is occupied
with a U-task as well as when it acts as an M/M/∞ queue and we obtain explicit
expressions for the corresponding mean queue sizes. We further calculate the mean
length of a busy period, the mean cycle time, and the quality of service measure:
proportion of customers being served.

1. INTRODUCTION

Impatience of customers as well as server vacations are important features involved
in the analysis of queuing models. Indeed, impatience of customers has lately been
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studied in Bonald and Roberts [3] in order to describe networks’ behavior in overload
conditions. Queues with servers’ vacations and their nice decomposition properties
(cf. Levy and Yechiali [9,10], Fuhrmann [6], Fuhrmann and Cooper [7], Doshi [5],
Takagi [16], Shomrony andYechiali [13],Yechiali [17]) have been studied extensively
in the literature and used for modeling various applications, including local area net-
works that are based on a Token Passing Ring (cf. Altman and Kofman [1]). Recently,
it has been used for describing WLANs (see, e.g., Zussman, Segall, and Yechiali [18]
and Zussman, Yechiali, and Segall [19] for vacations analysis in Bluetooth).

The common approach to studying impatience assigns a (possibly random) timer
to each customer that arrives (cf. Takacs [15]). If the customer has not terminated
service by the time its timer expires, then it abandons the queue (see, e.g., recent
work on call centers by Gans, Koole, and Mandelbaum [8]), or it is lost. In contrast,
we assume here that reneging occurs only when the system is unavailable to render
service (i.e., it is “on vacation”), possibly working on another task. For example, one
can observe such behavior of customers in various real-world public service systems.
If, upon arrival, new customers find closed or unattended windows, each individual
tends to wait for only a (random) limited time. If none of the closed windows is
reopened within this limited time, the customer abbandons the system. This type of
impatience has been recently introduced by Altman and Yechiali [2] and analyzed
for the cases of M/M/1, M/G/1, and M/M/c queues. Here, we extend the analysis
further and study this impatience phenomenon in an infinite-server queuing setting.

Our analysis approach is based on the use of probability generating functions
(PGFs), which quite often allows one to analyze queuing systems by transforming
difference equations (which represent the balance equations for the steady-state prob-
abilities) into algebraic ones. However, in the present work, the PGFs obtained from
the balance equations transform into a pair of differential equations rather than into an
algebraic set. By solving these equations, we are able to determine various important
performance measures specified below.

We consider various models that differ mainly according to the vacation pattern:
either a single-vacation or a multiple-vacation scenario. In the first case, if no cus-
tomers are present at the end of a task, the system stays ready for the first customer
to arrive in order to start a new busy period; however, if customers are present, work-
ing starts immediately. In the second case (multiple tasks), the system keeps taking
vacations until it finds at least one waiting customer upon completion of a task. At
this point, a new busy period starts. For each of these procedures we consider both
exponentially and generally distributed customers’ impatience T times and system’s
U-tasks. For each of the resulting four models, we derive several performance mea-
sures, such as the PGF of the stationary probabilities, the expected cycle time, the
expected number of customers in the system, and the important “quality of service”
performance measure: fraction of customers getting served without abandoning the
system.

The article’s sections are the following: Sections 2 and 3 deal with the multiple-
task operating scheme. The former treats the case in which both T and U are
exponentially distributed, whereas the latter considers the case in which each random
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variable has a generally distributed probability distribution function (PDF). Sections 4
and 5 study the single-task scenario, where in the former we assume exponentially
distributed T and U, and in the latter, we let T and U have general PDFs. Section 6
concludes the work.

2. MULTIPLETASKS, EXPONENTIALLY DISTRIBUTEDTASKS,
AND EXPONENTIALLY DISTRIBUTED IMPATIENCETIMES

2.1. The Model

A system is operating as an M/M/∞ queue with Poisson arrival rate λ and with
exponentially distributed service times having mean 1/μ. However, when the system
becomes empty, it is assigned to perform another (independent) task whose random
duration U is exponentially distributed with mean 1/γ .

Customers arriving while the system is unavailable to serve them (i.e., being
occupied with a U-task) become impatient: Each individual customer activates an
“impatience timer” T , exponentially distributed with parameter ξ , which is indepen-
dent of the number of waiting jobs at that moment. If the system completes its U-task
before the time T expires, the customer is immediately taken into service and leaves
the system upon his service completion. If, however, T expires before the system
becomes available, our customer abandons the queue never to return.

Multiple Tasks: If the system completes a U-task and no customers are waiting, it
is assigned a new U-task, independent of the previous U-tasks. If there are customers
waiting at the end of a U-task, the system starts a busy period, whose duration depends
on the number of customers still waiting.

2.2. Balance Equations

Let L denote the total number of customers in the system and let J = 1 if the system
is operating regularly or J = 0 if it is “unavailable,” being occupied with a U-task.
Then the pair (J , L) defines a continuous-time Markov process with transition rate
diagram as depicted in Figure 1.

Let Pjn = P{J = j, L = n}( j = 0, 1, ; n = 0, 1, 2, . . .) denote the system-state
probabilities. Then, the set of balance equations is given by the following:

FIGURE 1. Transition rate diagram for the multiple-task scenario.
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For j = 0:{
n = 0, λP00 = ξP01 + μP11,
n ≥ 1, (λ + nξ + γ )P0n = λP0,n−1 + (n + 1)ξP0,n+1;

(1)

for j = 1:{
n = 1, (λ + μ)P11 = 2μP12 + γ P01,
n ≥ 2, (λ + nμ)P1n = λP1,n−1 + (n + 1)μP1,n+1 + γ P0n.

(2)

Let P10 = 0 and define the (partial) PGFs

G0(z) =
∞∑

n=0

P0nzn, G1(z) =
∞∑

n=0

P1nzn.

Then by multiplying each equation by zn and summing over n, we get from (1) the
relation

ξ(1 − z)G′
0(z) = [λ(1 − z) + γ ]G0(z) − A, (3)

where A = γ P00 + μP11 and G′
j(z) = dGj(z)/dz, j = 0, 1. Similarly, using (2), we

obtain

λ(1 − z)G1(z) + μzG′
1(z) = μ[G′

1(z) − P11] + γ [G0(z) − P00]. (4)

2.3. Solution of the Differential Equations

Equation (3) is similar to Eq. (2.4) in Altman and Yechiali [2] and its solution is
given by

G0(z) = P00e(λ/ξ)z

∫ 1
s=z(1 − s)(γ /ξ)−1e−(λ/ξ)s ds

K(1 − z)γ/ξ
, (5)

where

K =
∫ 1

0
(1 − s)(γ /ξ)−1e−(λ/ξ)s ds. (6)

Also (see Eq. (2.11) in Altman and Yechiali [2]),

P00 = A

ξ
K = γ P00 + μP11

ξ
K = μK

ξ − γ K
P11. (7)

Define P0• = ∑∞
n=0 P0n and P1• = ∑∞

n=1 P1n. Then, by applying L’Hospital’s
rule to (5) and using (7), we get

G0(1) = P0• = ξ

γ K
P00 = A

γ
. (8)
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Now, (4) can be written as

G′
1(z) − λ

μ
G1(z) = 1

μ(1 − z)
[−γ G0(z) + A]. (9)

Multiplying both sides of (9) by e−(λ/μ)z, we can write

d

dz

[
e(−λ/μ)zG1(z)

] = e(−λ/μ)z 1

μ(1 − z)
[−γ G0(z) + A]. (10)

Integrating, we have

e−(λ/μ)zG1(z) − G1(0) = 1

μ

∫ z

s=0
(1 − s)−1e−(λ/μ)s[−γ G0(s) + A] ds. (11)

Thus, finally, since G1(0) = P10 = 0,

G1(z) = 1

μ
e(λ/μ)z

∫ z

s=0
(1 − s)−1e(−λ/μ)s[−γ G0(s) + A] ds, (12)

where G0(·) is given by (5).
In order to solve completely for G0(z) [and G1(z)], we need to calculate the value

of P00.

2.4. Calculation of P 00, P 0•, and P 11

From (8), we have P0• = (ξ/(γ K)P00, and (7) reads P00 = [μK/(ξ − γ K)]P11. Using
(12), we get, for z = 1,

G1(1) = P1• = 1 − P0• = e(λ/μ)

μ

∫ 1

s=0
(1 − s)−1e−(λ/μ)s[−γ G0(s) + A] ds. (13)

Now, G0(s) is a function of P00 and A = γ P00 + μP11. Hence, (7), (8), and (13)
comprise a set of three independent equations in the three unknowns P00, P11, and P0•.

2.5. Calculation of E[L0] and E[L1]
Define G′

j(1) = E[Lj] = ∑∞
n=0 nPjn, for j = 0, 1. Then, from (9) (since γ G0(1) = A),

G′
1(1) = 1

μ

[
λP1• + limz→1 {d[−γ G0(z) + A]/dz}

limz→1 {d(1 − z)/dz}
]

;

that is,

E[L1] = 1

μ
[λP1• + γ E[L0]]. (14)

Indeed, (14) written as

μE[L1] = λP1• + γ E[L0]
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states that the rate of arrivals to “level” J = 1 (viz. λP1• + γ E[L0]) is equal to the rate
of departures from that level (i.e., μE[L1]). Now, writing (3) as

G′
0(z) = [λ(1 − z) + γ ]G0(z) − A

ξ(1 − z)
,

we derive

G′
0(1) = E[L0] = −G0(1) + γ G′

0(1)

−ξ
= −λP0• + γ E[L0]

−ξ
;

that is,

E[L0] = λ

γ + ξ
P0• (15)

Again, the rate at which customers enter “level” J = 0 (viz. λP0•) is equal to the rate
of customers leaving that state, which is (γ + ξ)E[L0].

Substituting (15) in (14) and using 1 = P0• + P1• yields

E[L1] = λ

μ

(
1 − ξ

γ + ξ
P0•

)
. (16)

3. MULTIPLE TASKS, GENERALLY DISTRIBUTED TASKS,
AND GENERALLY DISTRIBUTED IMPATIENCETIMES

3.1. The Model

The underlying process is, as earlier, the M/M/∞ queue. The system is assigned a new
U-task at the end of a busy period, or whenever it completes a task but no customers are
present. U-tasks are generally distributed with mean E[U], second moment E[U2], and
Laplace–Stieltjes transform (LST) U∗(s) = E[e−sU ]. Impatience times of customers
are independent and identically distributed (i.i.d.) random variables, all distributed
as T , having mean E[T ], second moment E[T 2], and LST T∗(s). When the system
is unavailable (level J = 0) due to a U-task, the time evolution of the queue size is
that of an M/G/∞ queue with arrival rate λ and service times distributed as T . It
is well known (Takacs [14]) that for time t ≤ U, the number of customers present is
distributed as a Poisson random variable with parameter

�(t) = λ

∫ t

0
[1 − P(T ≤ y)] dy, t ≤ U. (17)

Let τ denote the duration of a consecutive series of U-tasks (from the end of a busy
period until the start of the next one). Then it was shown in Altman and Yechiali [2]
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that the LST of τ , τ ∗(s) := E
[
e−sτ

]
, is given by

τ ∗(s) =
U∗(s) − EU

[
e−s(U+�(U))

]
1 − EU

[
e−s(U+�(U))

] , (18)

with mean

E[τ ] = E[U]
1 − EU

[
e−�(U)

] . (19)

Let N be the number of customers at the start of a busy period. Then (see Altman
and Yechiali [2])

P(N = n) =
(1/n!)EU

[
e−�(U)(�(U))n

]
1 − EU

[
e−�(U)

] (n = 1, 2, 3, . . .), (20)

E[N] = E[�(U)]
1 − EU

[
e−�(U)

] . (21)

3.2. The Busy Period

Denote by �n the mean of a busy period �n starting with n customers in an
M(λ)/M(μ)/∞ queue. We have, for n ≥ 1,

�n = 1

λ + nμ
+ λ

λ + nμ
�n+1 + nμ

λ + nμ
�n−1, (22)

where �0 = 0. Define δn := �n − �n−1. Then

δn = 1

λ + nμ
+ λ

λ + nμ
�n+1 − λ

λ + nμ
�n−1

= 1

λ + nμ
+ λ

λ + nμ

(
δn+1 + δn

)
.

We thus obtain

δn+1 = nμ

λ
δn − 1

λ
.

Iterating with δn and �n, the solution is

δn = (n − 1)!
(μ

λ

)n−1
�1 − 1

λ

n−1∑
i=1

(n − 1)!
i!

(μ

λ

)n−1−i
. (23)
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Now, �m = ∑m
n=1 δn. Thus,

�m =
m∑

n=1

[
(n − 1)!

(μ

λ

)n−1
�1 − 1

λ

n−1∑
i=1

(n − 1)!
i!

(μ

λ

)n−1−i
]

. (24)

Hence, the mean duration of an arbitrary busy period � is given by

E[�] =
∞∑

m=1

P(N = m)�m

=
∞∑

m=1

EU

[
e−�(U)(�(U))m

]
m!

(
1 − EU

[
e−�(U)

])

×
(

m∑
n=1

(n − 1)!
[(μ

λ

)n−1
�1 − 1

λ

n−1∑
i=1

1

i!
(μ

λ

)n−1−i
])

. (25)

The LST of the cycle time in an M/M/∞ queue is given by Liu and Shi [11, p. 828] as

C∗
M/M/∞(s) = 1 − 1

s + λ

( ∞∑
n=0

(λ/μ)n

n!
1

s + nμ

)−1

, (26)

whereas the mean length of an ordinary busy period (starting with a single customer)
in an M/G/∞ queue is given by (see Browne and Steele [4] and Miorandi and
Altman [12])

�1 = 1

λ

(
exp(λE[B]) − 1

)
, (27)

where B denotes the service time of a single customer. For the M/M/∞ queue,
E[B] = 1/μ.

3.3. Calculation of P00

The proportion of time the system is empty, denoted as P00, is calculated by

P00 = E[D]
E[�] + E[τ ] , (28)

where D is the total time during τ in which there are no customers in the system. E[D]
was calculated in Altman and Yechiali [2] as

E[D] =
EU

[∫ U
0 e−�(t) dt

]
1 − EU [e−�(U)] . (29)

Combining (19), (25), and (29), P00 can now be calculated.
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3.4. Proportion of Customers Served

If N = m ≥ 1, the expected number of customers served during the immediate follow-
ing busy period is m + λ�m. Thus, the expected number of customers served during
an arbitrary busy period � is calculated as

∞∑
m=1

P(N = m)[m + λ�m] = E[N] + λE[�]. (30)

Hence, the proportion of customers served without abandoning the system is given by

P(served) = E[N] + λE[�]
λ(E[τ ] + E[�]) , (31)

where E[τ ], E[N], and E[�] are given by (19), (21), and (25), respectively.

3.5. Back to the Fully Markovian Case of Section 2

In the case where U and T are exponentially distributed with parameters γ and ξ ,
respectively, we get

EU
[
e−�(U)

] =
∫ ∞

u=0

(
e−λ

∫ u
0 e−ξy dy

)
γ e−γ u du

=
∫ ∞

u=0
e−(λ/ξ)(1−e−ξu)γ e−γ u du.

By letting s = 1 − e−ξu we have u = −(1/ξ) ln(1 − s), du = ds/[ξ(1 − s)], and
e−γ u = (1 − s)γ/s. Hence,

EU
[
e−�(U)

] =
∫ 1

s=0
e−(λ/ξ)s γ

ξ
(1 − s)γ/ξ−1 ds = γ

ξ
K . (32)

Now, by letting s = 1 − e−ξ t , we get

EU

[∫ U

0
e−�(t) dt

]
=

∫ ∞

u=0

(∫ u

t=0
e−(λ/ξ)(1−e−ξ t) dt

)
γ e−γ u du

=
∫ ∞

t=0
e−(λ/ξ)(1−e−ξ t)

(∫ ∞

u=t
γ e−γ u du

)
dt

=
∫ ∞

t=0
e−(λ/ξ)(1−e−ξ t)e−γ t dt

=
∫ 1

s=0

1

ξ
e−(λ/ξ)s(1 − s)(γ /ξ)−1 ds

= K

ξ
. (33)
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Thus, from (29),

E[D] = K/ξ

1 − (γ /ξ)K
= K

ξ − γ K
. (34)

Also, from (19),

E[τ ] = 1/γ

1 − (γ /ξ)K
= ξ/γ

ξ − γ K
. (35)

Applying (28) we obtain, for the Markovian case,

P00 = K/(ξ − γ K)

E[�] + (ξ/γ )/(ξ − γ K)
= γ K

γ (ξ − γ K)E[�] + ξ
. (36)

In order to get the corresponding expression for E[N], we calculate

E[�(U)] =
∫ ∞

u=0

(
λ

∫ u

y=0
e−ξy dy

)
γ e−γ u du

=
∫ ∞

u=0

λ

ξ

(
1 − e−ξu

)
γ e−γ u du

= λ

ξ

(
1 − γ

ξ + γ

)

= λ

ξ + γ
. (37)

Thus, from (21),

E[N] = λ/(ξ + γ )

1 − (γ /ξ)K
= λξ

(ξ + γ )(ξ − γ K)
= λ

γ

ξ + γ
E[τ ], (38)

where, for each individual customer, γ /(ξ + γ ) is the probability that the task U is
completed before T expires, implying that the customer will not abandon and will be
served. Thus, the expected number of customers present at the end of τ is

E[N] = λP(not abandoning)E[τ ].

Finally, substituting result (35) in (31) gives

P(served) =
(

λξ

(ξ + γ )(ξ − γ K)
+ λE[�]

) [
λ

(
ξ

γ (ξ − γ K)
+ E[�]

)]−1

=
(

ξ

ξ + γ
+ (ξ − γ K)E[�]

) (
ξ

γ
+ (ξ − γ K)E[�]

)−1

. (39)
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Remark 3.1: We can use (26) to obtain an alternative expression for K . From [Liu and
Shi [11] p. 828] we have

∫ ∞

0
e−γ ue−(λ/ξ)(1−e−ξu) du =

∞∑
n=0

(
λ

ξ

)n 1

n!
1

γ + nξ
.

Using the derivation of (32), it follows that the left-hand side of the above equation
equals K/ξ . Hence,

K =
∞∑

n=0

(
λ

ξ

)n 1

n!
ξ

γ + nξ
.

In the special case when ξ = γ (i.e., each individual customer is willing to wait,
on the average, the mean duration of U), we get a simpler expression for K :

K = ξ

λ

(
eλ/ξ − 1

)
.

4. SINGLE TASK, EXPONENTIALLY DISTRIBUTED TASKS,
AND EXPONENTIALLY DISTRIBUTED IMPATIENCETIMES

4.1. The Model

We consider now the case where as soon as the system becomes empty of customers,
it is assigned a single U-task, exponentially distributed with mean 1/γ .

Customers arriving while the system is occupied with a U-task are impatient:
Each individual customer, upon arrival, activates his impatience timer T , exponentially
distributed with parameter ξ .When the system completes its U-task and there are n ≥ 1
waiting customers, a busy period starts. However, if there are no customers waiting,
the system stays dormant until the first customer arrives. This customer initiates a
busy period, at the end of which the system is assigned a new U-task.

The transition-rate diagram is depicted in Figure 2.

4.2. Balance Equations and Generating Functions

As previously, let Pjn = P{J = j, L = n} ( j = 0, 1; n = 0, 1, 2, . . .) denote the system-
state probabilities, where L denotes the total number of customers in the system and

FIGURE 2. Transition rate diagram for the single-task scenario.
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J indicates whether the system is occupied with a U-task (J = 0) or it is available for
regular service (J = 1).

The set of balance equations is given by the following:
For j = 0: {

n = 0, (λ + γ )P00 = ξP01 + μP11,
n ≥ 1, (λ + nξ + γ )P0n = λP0,n−1 + (n + 1)ξP0,n+1;

(40)

for j = 1: {
n = 0, λP10 = γ P00,
n ≥ 1, (λ + nμ)P1n = λP1,n−1 + (n + 1)μP1,n+1 + γ P0n.

(41)

Note that the difference between this model and the multiple U-tasks is the positive
existence of the state (1, 0).

Define the (partial) PGFs as

Gj(z) =
∞∑

n=0

Pjnzn ( j = 0, 1).

Then, similar to the derivation of (3) and (4), we obtain

ξ(1 − z)G′
0(z) = [λ(1 − z) + γ ]G0(z) − μP11 (42)

and

λ(1 − z)G1(z) + μzG′
1(z) = μ[G′

1(z) − P11] + γ G0(z). (43)

The solution of the differential equation (DF) (42) is given, similar to (5), by

G0(z) = P00e(λ/ξ)z

(
1 −

∫ z
0 (1 − s)(γ /ξ)−1e−(λ/ξ)s ds

K

)
(1 − z)−(γ /ξ), (44)

where K is given in (6), and now

P00 = μP11

ξ
K . (45)

Define Pj• = ∑∞
n=0 Pjn ( j = 0, 1). Then, from (44), we have

G0(1) = P0• = ξ

γ K
P00 = μ

γ
P11 . (46)

Note that, in the multiple-task case,

P0• = ξ

ξ − μK

μ

γ
P11 .

Clearly, (46) can be directly obtained by considering a horizontal “cut” in Figure 2
between “level” j = 0 and “level” j = 1.
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Similar to (12), the solution of the DF (43) is given by

G1(z) = 1

μ
e(λ/μ)z

∫ z

s=0
(1 − s)−1e−(μ/λ)s[−γ G0(s) + μP11] ds. (47)

Also, similar to (13),

G1(1) = P1•
= 1 − P0•

= 1

μ
e(λ/μ)

∫ 1

0
(1 − s)−1e−(μ/λ)s[−γ G0(s) + μP11] ds. (48)

The set (45), (46), and (48) uniquely determines the values of P00, P11, and P0•.
Comparing the multiple- and single-task models, it is seen that

P00(single) + P10(single) = P00(multiple). (49)

The mean queue lengths E[L0] and E[L1] are readily calculated, similar to
Section 2.5. Indeed, they have the same form-namely E[L0] = [λ/(γ + ξ)]P0•
and E[L1] = λ

μ
(1 − [ξ/(γ + ξ)]P0•). The difference from the multiple-task case is

expressed by the different value of P0•.
In addition, the result for E[L1] can be explained as follows: The probability

of abandonment by an arbitrary customer is [ξ/(γ + ξ)]P0•. Thus, the “effective”
arrival rate is λeff = λ (1 − [ξ/(γ + ξ)]P0•). Now, the mean number of customers in
an M(λeff)/M(μ)/∞ queue is λeff/μ.

5. SINGLETASK, GENERALLY DISTRIBUTEDTASKS, AND
GENERALLY DISTRIBUTED IMPATIENCETIMES

5.1. The Model

Again, we study the case of a single U-task assignment after a completion of a busy
period, but where U has a general probability distribution function, and impatience
times T are generally distributed as well.

5.2. The Busy Period

Due to the impatience process, the number of customers, N(U), present at the end of
a single U-task is given by (M/G/∞ queue)

P(N(U) = m) = e−�(U) (�(U))m

m! (m = 0, 1, 2, . . .). (50)

If N(U) = 0, the server stays dormant until the first arrival, when a regular M/M/∞
busy period is initiated. If N(U) = m ≥ 1, the server starts serving immediately,
where the mean duration of the resulting busy period is �m.
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Thus, for the single-task (ST) scenario, the mean length of an arbitrary busy
period �ST is obtained by

E[�ST] = EU [P(N(U) = 0)]�1 +
∞∑

m=1

EU [P(N(U) = m)]�m

= EU
[
e−�(U)

]
�1 +

∞∑
m=1

1

m!EU
[
e−�(U)(�(U))m

]
�m, (51)

where �m is given by (24).

5.3. Mean CycleTime and P00

A cycle C consists of a single vacation U followed by either the sum of an interarrival
time plus �1 (with probability P(N(U) = 0)) or, with probability P(N(U) = m, by
�m (m ≥ 1). Thus,

E[C] = E[U] + EU
[
e−�(U)

] (
1

λ
+ �1

)
+

∞∑
m=1

1

m!EU
[
e−�(U)(�(U))m

]
�m

= E[U] + 1

λ
EU

[
e−�(U)

] + E[�ST], (52)

where E[�ST] is given by (51).
The time D, within U, where there are no customers in the system, is

D =
∫ U

0
I{N(t) = 0} dt, (53)

where N(t) is the number of customers present at time t (t in [0, U]) and I{N(t)} is
its indicator function.

Thus, P00, the fraction of time that the system is unavailable and there are no
customers present, is calculated as

P00 = EU [D]
E[C] =

EU

[∫ U
0 e−�(t) dt

]
E[C] . (54)

The fraction of time the system is available but no customers are present is given by

P10 = EU
[
e−�(U)

]
/λ

E[C] . (55)

Finally,

P0• = E[U]
E[C] . (56)
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5.4. Proportion of Customers Served

The proportion of customers not abandoning the system is calculated as

P(served) = EU [P(N(U) = 0)](1 + λ�1) + ∑∞
m=1 EU [P(N(U) = m)] · (m + λ�m)

λE[C]

= EU
[
e−�(U)

] + λE[�ST] + EU [�(U)]
λ

(
E[U] + 1

λ
EU

[
e−�(U)

] + E[�ST]) . (57)

This performance measure of effectiveness is important when evaluating the (indirect)
“cost” to the system, in terms of lost customers, due to vacations.

5.5. Back to the Fully Markovian Case of Section 4

When U and T are exponentially distributed with parameters γ and ξ , respectively,
we get, from (33),

E[D] = EU

[∫ U

0
e−�(t) dt

]
= K

ξ
(58)

and, from (32),

E
[
e−�(U)

] = γ K

ξ
.

Thus, using (54), (58), and (52), we have

P00 = (K/ξ)

(
1

γ
+ γ K

λξ
+ E[�ST]

)−1

(59)

and, by (51),

P10 = γ K/(λξ)

E[C]

=
(

γ K

λξ

) (
1

γ
+ γ K

λξ
+ E[�ST]

)−1

. (60)

Equations (59) and (60) imply that P10 = (γ /λ)P00, which is exactly the balance
equation for n = 0.

Now, by using (37), (57) is simplified

P(served) =
(

γ K

ξ
+ λE[�ST] + λ

ξ + γ

) (
λ

γ
+ γ K

ξ
+ λE[�ST]

)−1

. (61)

In order to get, in this case, a more explicit expression for E[�ST], we write

EU
[
e−�(U)�(U)m

] =
∫ ∞

u=0
e−(λ/ξ)

(
1 − e−ξu

) [
λ

ξ

(
1 − e−ξu

)]m

γ e−γ u du, (62)
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By using the transformation s = 1 − e−ξu, we have

EU
[
e−�(U)�(U)m

] = γ

ξ

∫ 1

s=0
e−(λ/ξ)s

(
λ

ξ
s

)m

(1 − s)(γ /ξ)−1 ds

= γ

ξ

(
λ

ξ

)m ∫ 1

s=0
e−(λ/ξ)ssm(1 − s)(γ /ξ)−1 ds. (63)

Hence, from (51),

E[�ST] = γ K

ξ
�1 +

∞∑
m=1

1

m!
[
γ

ξ

(
λ

ξ

)m ∫ 1

s=0
e−(λ/ξ)ssm(1 − s)(γ /ξ)−1 ds

]
�m. (64)

6. CONCLUSION

Impatience of customers is a phenomenon affecting the performance of many real-life
queuing systems. For example, its affect has been demonstrated and extensively ana-
lyzed in recent works on the so-called “call centers” (see Gans et al. [8]). In almost
all previous works in the literature it has been assumed that customers’ abandonment
occurs as a result of exceeding waiting time already experienced or due to an antic-
ipation of a too long waiting time. In contrast, in this work we analyze the situation
in which customers’ impatience is due to absence (or unavailability) of the servers
or of the system. In a previous work we studied the M/M/1, M/G/1 and M/M/c
queues. Here, we further extend the scope of the analysis by examining the M/M/∞
case. It turns out that various results from the analysis of the single-server or the
multiserver queues can be utilized in the study of infinitely many servers systems.
We have derived the (conditional) PGF of the number of customers in the system
when it is functioning or when it is unavailable and we have calculated values of key
performance measures such as mean queue sizes, mean length of a busy period, and
mean duration of a cycle. We have considered both multiple and single system’s task
scenarios, for both exponentially and generally distributed impatience and task dura-
tions, and for each model we calculated the “quality of service” index: the proportion
of customers being served without abandoning the system.
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