
INFINITE SUBCLASSES OF RECURSIVELY
ENUMERABLE CLASSES

J.  B. FLORENCE

P. R. Young [l] has constructed an infinite recursively enumerable

(r.e.) class with no proper infinite r.e. subclasses, and has asked if

infinite r.e. classes with m + 1 infinite r.e. subclasses exist for every

#2 = 0. It can further be asked what is the most general partially

ordered set we can represent by the infinite r.e. subclasses of such a

class (under inclusion). These questions are answered by the theorem

below. The author wishes to thank A. H. Lachlan for his guidance

and encouragement. Our construction is based on a formulation of

Young's due to Lachlan.

Theorem, (a) Let m7>i, » = 1. Let {F,-| 1 g,i^m + l} be a class of

subsets of {x\ l—x^w) closed to subsets and with

U{F,| 1 = i g m + 1} = {x\ 1 = x = »}.

Then there is an infinite class Q* of r.e. sets and distinct r.e. sets Ai,

■ - - , An not in G* such that

C = C*U {Ai\ 1 g i = n}

is an infinite r.e. class with infinite r.e. subclasses

Q-{Ai\iEFj}     (l=i = w+l).

(b)  There is an infinite r.e. class with one infinite r.e. subclass.

Conversely, any infinite r.e. class with finitely many infinite r.e.

subclasses is of one of these forms.

Proof. We prove the converse first. Let C be an infinite r.e. class

with m + 1 (wStl) infinite r.e. subclasses. If Ci is an r.e. subclass and

XEQ — Qi, then <S,iU{X} is an r.e. subclass. It follows that each in-

finite r.e. subclass lacks only finitely many members of 6. Let 6* be

the intersection of the infinite r.e. subclasses, then 6 — 6* is finite,

with members Ai, • • • , A„, say (raSil). Now the infinite r.e. sub-

classes of 6 have the form

e-U,|t£Fy} (lg/ = OT+l)

where the Fj are subsets of {x|l=x = «}. These are closed to sub-

sets, for if FQFj
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e-{Aj\iEF} = (6- {Ai\iEFj))Vj{Ai\iEFj- F}

and the union of two r.e. classes is an r.e. class. Also, by definition

of Au ■ ■ ■ , A„,

U{F<| 1 g i ^ m+ 1} = {x| 1 g x g «}.

This completes the proof of the converse.

Note that in (a) w + lg2n. We give a construction for the case

B + K2" and obtain as corollaries the case m + f =2" and (b), both

of which Young has already proved.

Since m-\-\ <2n there are subsets Gx, • • • , Gx say of {x| 1 ̂ x^w}

different from all the TV For each i, k (l^i^l, l<k^m + l) there

is a number

P(i, k)EGi- Fk,

since the T\- are closed to subsets. For each k with l^k^m-\-l there

will be a different variation of the construction. We will show that

these variations in the construction all give rise to the same 6*,

Ai,   •   •   •   ,  An.

At this point we make some informal remarks. 6 will be enumerated

in an r.e. sequence

(Ax, •  ■  -,An,Vo,Vi,--  •>•

To begin with the sets in the sequence are all disjoint. By "amal-

gamating" sets we force the following situation: there will be an in-

creasing function r(i) such that the Vi different from each of Ai, ■ ■ ■ ,

An are Vr(0), Vra), ■ •■ ■ These will be disjoint from each other and

from each of Ai, ■ ■ • , An. Also if an r.e. set W intersects infinitely

many of Vr<o), Fr(i), • • •   it intersects them all and

lgig /=*(£*)[* E W & (z)(x EAz^zE Gi)].

Now if we take W to be UCi where Ci is an infinite r.e. subclass we

get for all i Vra)EGi and for all i with 1 ̂ i^l there is zEGf with

AzEQi. Thus the only possibilities for &i are

Q- {A,\zEFk}        (l^k^m+f).

Ax, r(x) and Vr(x) will be independent of the variation used to get the

sequence

(A1} • • ■ , A„, Vo, Vi, • • • ),

but in variation k use of the function p will ensure for no y, z do we

have
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Vv = A*   with   z£ Fk,

and thus an enumeration of ©— {^4z|z££a} is easily obtained. The

number rii) is approximated to by a sequence

rii, 0), rii, 1), • • • .

Because we care only about r.e. sets W which intersect Frfy) for in-

finitely many j we are able to allow W to make r(i, s + l)^rii, s)

only if i>e (the index of W) and thus to make the sequence constant

eventually. Now we proceed with the details.

Variation k. Let (fFe|e3i0) be an r.e. sequence enumerating all

the r.e. sets. Let P= {id, e)\dEW,}. The 5th pair will mean the sth

member of P to appear in an effective enumeration of P without

repetitions. We define:

We = {d | id, e) is among the first s pairs}.

We define for each $3i0, by induction on s, sets A{, ■ ■ ■ , A'n and a

sequence of sets (VI, V\, • ■ ■ ). Let

A°x={x-l}    (1 = x = n),       V°x={n + x}    ix = 0).

Assume for induction

(1) the V'x, A'x are all finite;

(2) the A'x are all different, in fact x — lEA'x — U{Al\y^x};

(3) only finitely many of the Vx can be the same;

(4) if Vx is different from all the A\ then it is disjoint from them

all;

(5) of the Vx which differ from all the Asv, different ones are dis-

joint;

(6) Fq is different from all the A'x, properties evidently possessed

by the A\,  V°x.

We can define a function rii, s) by

r(0, s) = 0,

rii + l,s) = px[x > rii, s) & Vl ?* A' for 1 = _; = n

&V'X^ Via..) for 0 = j = »].

Suppose the (s+l)tri pair is id, e) and there is a j>e such that

dE F*(yiS). There is at most one such j by (5). Define

Rie, s,i,x) = x E w'e+1 & (z) (* £ A', & z £ Gi).

Case 1. There is i with 1 _i^/ and ~(E#)i?(e, s, i, x). Let i be the
least such number. Put
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A\    = Az VJ V'ru,,)        ifxE Gi,

AT = Ax       if x £ G\-,

Fx    = Ay if Vx = Ay for some y (there can be only

one such y by (2)),

8-\-1 4 S <S S

Fx    = ^4p(,-,s;) W Fry,„)        if Vx = F,y,,),

«+i        t
Vx    = Fx       otherwise.

This is where variation k arises.

Case 2. Case 1 does not obtain but there is i with i<j and We+1

n I7*(iiS) = 0. Let i be the least such number. Put

^4*    = Ax       for all x,

Fl    = Fry,.) VJ f'0i<)        if V'x = Fr(i,.)    or    Fro\S),

F^    = Fx       otherwise.

If there is no j>e such that dE V'(j:S) or if neither Case 1 nor Case 2

occurs, put

Ax    = Az    for all x;        Vx    ~ Vx    for all x.

We show that (1), ■ • • , (6) are preserved. We have AXQAZ+1,

V'XQ V°x+1 (so that the^J, Vx are all nonempty), V'z = Vy=^Vx+1= Vy+1,

yx = A'v=>Vx+1 = Al+l for all x, y. (1) and (3) are clear.

For (2) we need consider only Case 1, where the result follows by

induction hypothesis (4) and the definition of r.

For (4) and (5), consider Vx+1, Vsy+1 different from each other and

from all the A'z+1. Then V'x, Vv are different from each other and from

all the A\, so by induction hypothesis (4), (5) they are disjoint from

each other and from all the A\. The desired conclusion is that V'x+l,

Vy+1 are disjoint from each other and from all the Asz+1. If Case 1

occurs, then neither V'x nor Vy is equal to V'cjit), for Vx= F'^,,)

implies that Vx+l = Ap{mKJVsriJ,s) = Av^k). Thus' V°X+1=VSX and

Vsy+1= Vy. The two are therefore disjoint. Also V% is disjoint from

Vr(iiS) and from A\ for all z, and so F*+1 is disjoint from A'z+1 for all z.

If Case 2 occurs at least one of Vx, V\ is different from both F*(4iJ)

and Fr'as), or V*x+1= Vv+X. If both have this property then FJ+1= Vx

and Vy+1= Vy and the result follows since A\+1 = ASZ for all z. This

leaves the case where say Vx= F*(ijS) and V'v differs from both V^U)

and Vr(Ji,), then Vy+1 — F* and the result follows by induction hy-

potheses (4), (5).
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(6) follows by a similar argument, using the fact that in the con-

struction j>0.

Define:

Ax = \J{a'x\s 3t 0} (1 = x = n),

Vx = U{F*| s 3t 0} ix = 0).

We can find the members of A%, Vx effectively from x, s so

(Ai, • • ■ , An, Vo, Vi, • • - )

is    an    r.e.    sequence    enumerating    an    r.e.    class    6.    Let    S*

= e-{Au ■ ■ ■ ,  An}.
For each x and all sufficiently large (s.l.) s,

r(x, s) is a constant, say r(x).

We prove this by induction on x. r(0, 5) =0 for all s, so r(0) =0. We

suppose the result holds for all y = x and we show it holds for x + 1.

There is an s0 such that if s^s0 riy, s) =r(y) for all y =x. In Case 1

or Case 2

riz, s + 1) = r(z, s)       if z < j,

r(z, s + 1) = r(z + 1, s)        if z = /,

for if we divide the members of the sequence

Vo, Vi, ■ • ■

which differ from each of A\, • • • , A'n into equivalence classes under

set equality, F'fes) is the first member of the (z + l)th such class, and

by (4) and (5) the only effect of either case on the computation of r

is the loss of the original (J+l)th class. So if r(x+l, s + l)?^r(x + l, s)

with 5 3:so, Case 1 or Case 2 occurs with x + 1 ̂ j>e and by our induc-

tion hypothesis x+1 =j. If Case 1 occurs we have i?(e, t, i, d) for all

t>s by (4), because d does not belong to F'(y|() for any j. Now

r(x + l, s + l)5^r(x + l, 5) can hold for only finitely many s^s0

through Case 1—at most I times for each e<x + l, and through Case

2—at most x + 1 times for each e<x + l by our induction hypothesis.

Thus r(x + l, s)=rix + l), a constant for all s.l. s.

By (2) A\, ■ ■ ■ , A°„ are distinguished by the numbers 0, ■ • • , n — 1

for all s, so Ai, ■ ■ ■ , An are.

We now wish to prove that the Vr(U) are distinct, disjoint from each

other and from all the Au. Suppose xEVr<u)C\VTM with u^v. Then

for all s.l. 5 x£ Vr(u)f~\ V'rW, so all s.l. s, x£ VsrMn V'tM, contradict-
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ing (5). Similarly xEVr(u)C\Av contradicts (4). The VrM are there-

fore distinct since they are nonempty.

Now we show that for all x, either Vx= VtM for some u or Vx

= AP(n,k) for some u. It follows by induction on s that if Vz is equal to

one of the A v then it is equal to A\U<V) for some u. Suppose that there

is no u such that Vz= Vr(U). There is then a u such that r(u) <x

<r(u-\-l). Consider 5 s.l. that r(v, s)=r(v) for all v^u + l. Then

Vx = A'p(Z]k) for some z, in which case Vx = Ap(!,k), or Vx= Fr(M) for

some v^u, in which case Vx= VT(V).

By induction on s, Ax, r(x, s) and FJ(XiJ) are all independent of k.

Thus Ax, r(x) and Vr(X) are all independent of k.

Now we show that if We intersects infinitely many of Fr(o>,

Fr(i), • • • , then

1 g i ^ / => (Ex)R(e, i, x), where we define

(7) R(e, i,x) = xEW.&(z)(xeAl^zE Gi);

(8) i^O^(Ex)[xEWenVTii)].

First we have: if a, t are any given numbers there is s>t and j>a

such that the (s4T)th pair is (d, e) and dE FJyiS). For there are in-

finitely many y>a such that We intersects Fr(„>. Also these Fru,) are

disjoint. So for infinitely many members d of We, dEVr<V) for some

y>a. So there is s>t such that (d, e) is the (s + l)th pair and dE Vr^)

with y>a. Now dEV'^^ for some j. Suppose j<y. Consider u>s

s.l. that r(y, u)=r(y) and dEVur(v). Then dEV^CW^ so by (4)

and (5) V"(ViU)= F"y,,), but r(y, u)>r(j, u)^r(j, s) contradicting the

definition of r(y, u). Thus j^y^a.

Now suppose there is a least i^l such that ~(Ex)R(e, i, x). For

each y <i let d(y) be such that R(e, y, d(y)). Let / be s.l. that for each

y <i R(e, t, y, d(y)). Put a — e and let s, j correspond to a, t as above.

Since for each y<i we have R(e, s, y, d(y)) and ~(7ix)i?(e, 5, i, x)

Case 1 ensures that R(e, s + l, i, d) and so R(e, i, d), contradiction.

Suppose there is a least i such that <^>(Ex)[xEWer\Vr(i)]. Let t

be s.l. that r(i, t)=r(i), for each y<i(Ex)[xEWe+1r\V'M] and

r(y< t)=r(y) and for l^y^l R(e, t, y, d(y))(d(y) as above). Put

a = max(e, i) and let s, j correspond to a, t as above. Then Case 2

ensures that ^GH^+2nFrJj+1) so (Ex)[xEWer\VT{i)], contradic-

tion.

Recall that <3 has distinct members

Ai, • • - , An, F,(o), F,(i), • • •

and C*= { Fr(o), Fr(i), • • • }. Suppose ©i is an infinite r.e. subclass.

Put USi= We (it is an r.e. set). IF, intersects infinitely many of the
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Vr(i) so we can apply (7) and (8). By (8), since the VTu) are disjoint

from each other and from all the Ai, Fr(,-)£Ci for all i. So the only

possibilities for (3i are

e-{Az\zEGi}        (l^i^l)

C- {Az\zEFk}        (1 = k = w+ 1).

We discount the first possibility. For by (7),

x E We & (z) (x E A z <=> z £ Gi)       for some x.

x E F-o') for any j so the only members of C which x belongs to are the

{^4z|z£C7i}. So one of these sets must be in 6i.

We complete the proof by showing that

e- {Az\zEFk} is r.e.        (1 = i = m + 1).

For consider the construction of Q by variation k, in an r.e. sequence

(Au ■ ■ • , An, Vo, Fi, • • • ).

Since Fz^any member of Q*=>Vx = Ap(iik) some i and p(i, k)EFk,

the r.e. sequence obtained by omitting the zth member of the original

one for each zEFk enumerates the desired class.

(a) when w + l=2": Let n'=n + l, m' = 2n+x — 2 and the Fk'

(lg&g2"+1-l) be all the subsets of {x|l=x = ra + l} other than the

whole set. Let G, G* be constructed for m', n', Fi as above. Define

d = e*u{An+i}.

Then Ci has no proper infinite r.e. subclasses (and this proves (b))

and UGiC {x|x3tw}. Define

62 = 6iU {{i} | 0 g i = n - 1}

and 62 is the required class. For given an infinite r.e. subclass C3

of G2, G3— { {i} |0 = i^=n — 1} is an infinite r.e. subclass of Qi and

therefore is Ci. On the other hand, any combination of the {i} can

be added to 6i.
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