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INFINITE SUM RELATIONS ON UNIVERSAL C*-ALGEBRAS

GIULIANO BOAVA AND GILLES G. DE CASTRO

Abstract. We extend the usual theory of universal C*-algebras from generators and
relations in order to allow some relations to be described using the strong operator
topology. In particular, we can allow some infinite sum relations. We prove a univer-
sal property for the algebras we define and we show how the Cuntz algebra of infinite
isometries as well as the Exel-Laca algebras can be described using infinite sum relations.
Finally, we give some sufficient conditions for when a C*-algebra generated by projec-
tions and partial isometries is a universal C*-algebra using only norm relations, in case
one still wants to avoid using relations with respect to the strong operator topology.

1. Introduction

One tool used to define a C*-algebra is to consider a certain family of operators on a
Hilbert space H and then consider the C*-subalgebra of B(H) generated by this family,
that is, we define a C*-algebra represented on H . If we want the family to satisfy certain
conditions, such as reflect the properties of another mathematical object, one can ask to
what extent the algebra depends of the representation or if it can be uniquely defined.

Looking at the history of C*-algebras generated by partial isometries - including projec-
tions, isometries and unitaries - we see examples of such uniqueness theorems: Coburn’s
work on the C*-algebra generated by one isometry [4], Cuntz’s result on the simplicity
of certain algebras generated by isometries with mutually orthogonal ranges [5], and the
uniqueness theorem of Cuntz and Krieger for the C*-algebra defined from a square matrix
of zeros and ones [6].

Instead of proving a uniqueness theorem for each class of algebra, we can try to define a
C*-algebra in terms of a universal property. This was done by Blackadar in [1] by defining
a universal C*-algebra in terms of generators and relations. Although he hinted that we
could use any relation for operators on a Hilbert space or for elements on a C*-algebra, he
only developed the theory for what we call norm relations in this paper. His first example
said that any C*-algebra is universal with respect to all elements as generator and all
*-algebraic relations in the algebra, however this is not very helpful when defining a C*-
algebra. Indeed, if we define a C*-algebra using operators as explained above, we would
like to use a set of generators corresponding the operators used to define the C*-algebra.
For the algebras of the previous paragraph, Blackadar showed how to do that, except
for the Cuntz-Krieger algebras associated with infinite matrices and implicitly the Cuntz
algebra O∞, since we need to deal with infinite sums converging in the strong operator
topology and these cannot be directly described in terms of norm relations.
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Going back to the history of C*-algebras generated by partial isometries after Black-
adar’s paper, we get the impression that using a relation involving an infinite sum is a
forbidden practice. For example, when studying Cuntz-Krieger algebras of infinite matri-
ces, Exel and Laca in [8] state that the theory developed in [1] “breaks down when the
relations involve the strong topology” so they found norm relations in order to define a
universal C*-algebra for infinite matrices of zeros and ones. Other examples are consid-
ering at first only row-finite graphs for the C*-algebra of graph [9] and asking that an
integral domain has the property that the ideal generated by a non-zero element has finite
index [7].

The main goal of this paper is to extend Blackadar’s construction in order to define a
universal C*-algebra that allows for relations using the strong operator topology, more
specifically we allow as a relation a net of operators converging to zero with respect to
the strong operator topology. This is done in Section 2. For the universal property, in
order to define a *-homomorphism from our algebra to a C*-algebra A, we need a faithful
representation of A on a Hilbert space so that we can have access to the strong operator
topology (Theorem 2.11). Another difficulty added by allowing relations involving the
strong operator topology is that not all representations of the universal C*-algebra satisfies
the relations, as shown in Example 3.1, however we prove that there exists a faithful
representation of the algebra that satisfies all relations (Theorem 2.14).

In Section 3, we work out in details how we can indeed allow infinite sum relations in
order to define the Cuntz algebra and Exel-Laca algebras. In particular for Exel-Laca
algebras, the relations we use are exactly the infinite sum relations Exel and Laca avoided
in [8].

Finally, despite the main goal of this paper being using relations with respect to the
strong operator topology in order to define a universal version of a given C*-algebra,
in Section 4, we deal only with norm relations. We show that under some conditions a
C*-algebra generated by projections and partial isometries, independently on how it was
defined, can be described using as generators a family corresponding to the projections
and partial isometries and only using norm relations (Theorems 4.2 and 4.4), in case one
still wants to avoid relations using the strong operator topology.

The other result of Section 4, namely Corollary 4.3, gives a strategy for finding a
“correct” set of norm relations describing a certain C*-algebra. As mentioned above,
sometimes a C*-algebra generated by partial isometries (and projections) is originally
defined represented in a Hilbert space. To define a universal version of this algebra, we
can start by using all algebraic relations that can be written using generators associated
to each partial isometry (including the projections). The result of Corollary 4.3 says that
at least we have a *-isomorphism between a distinguished commutative C*-subalgebra
generated by projections of the universal and represented versions. One way of using this
conclusion is in avoiding relations with respect to the strong operator topology involving
only a distinguished subset of mutually commuting projections by replacing them with
all algebraic relations. However, one usually wants to choose a smaller list of relations
and expects that this list encodes all other relations. Another way of using the conclusion
of Corollary 4.3 is that we can take the spectrum of this commutative C*-subalgebra
generated by the projections to define, for example, a partial action or a groupoid and
then a C*-algebra from them. If the new construction and the universal C*-algebra of
the restricted list of relations coincide, it means that we arrived at the “correct” set of
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relations. Implicitly, this was done in [8], when they showed that their version of the
Cuntz-Krieger algebras for infinite matrices is isomorphic to a partial crossed product.

2. Strong operator topology relations on universal C*-algebras

In this section, we adapt Blackadar’s construction [1] to include relations that can be
used to describe how some infinite sums should behave with respect to the strong operator
topology (SOT) when a C*-algebra satisfying these relations is represented on a Hilbert
space.

Let G be a non-empty set and G∗ be a disjoint copy of G, where each element of G∗ is
denoted by g∗ for some g ∈ G. Let BG := C〈G ∪ G∗〉 be the free C-algebra generated by
G ∪ G∗ with the standard involution, that is, BG is the free *-algebra over C generated by
G.

Definition 2.1. Let G and BG be as above. We define a norm relation as a pair (x, η) ∈
BG × R+, and a SOT relation as a net (xi)i∈I on BG . A generating triple is a triple
(G,RN ,RS), where RN is a set of norm relations and RS is a set of SOT relations.

The idea is that a norm relation (x, η) is interpreted as the inequality ‖x‖ ≤ η when x is
represented on a C*-algebra, and a SOT relation (xi)i∈I interpreted as s− limi→∞ xi = 0
(limit on the strong operator topology), when the net is represented as operators on a
Hilbert space. We use this as motivation for the following definition.

Definition 2.2. Let (G,RN ,RS) be a generating triple and H a Hilbert space. We say
that a *-algebra homomorphism ρ : BG → B(H) is a representation of (G,RN ,RS) if
‖ρ(x)‖ ≤ η for every (x, η) ∈ RN and s− limi→∞ ρ(xi) = 0 for every (xi)i∈I ∈ RS.

Remark 2.3. Let (G,RN ,RS) be a generating triple. Since BG is the free *-algebra over
C generated by G, in order to describe a *-homomorphism ϕ : BG → A, where A is a
*-algebra, it is sufficient to know the values ϕ(g) for the elements g ∈ G. In particular, if
{Tg}g∈G is a family of operators in B(H), we say that this family forms a representation
of (G,RN ,RS) if the map ρ : BG → B(H) defined by ρ(g) = Tg is a representation of
(G,RN ,RS).

In order to build a universal C*-algebra from a generating triple, we need to somehow
control the representations of the triple. This is done with the notion of admissibility as
in [1, Definition 1.1].

Definition 2.4. We say that the generating triple (G,RN ,RS) is admissible if for every
family {ρα : BG → B(Hα)}α of representations of (G,RN ,RS), the map

(2.5)

⊕
α ρα : BG −→ B (

⊕
αHα)

x 7−→
⊕

α ρα(x)

is a well-defined representation of (G,RN ,RS).

The following result is useful when checking admissibility of a triple.

Proposition 2.6. Let (G,RN ,RS) be a generating triple. If for every g ∈ G there exists
ηg ∈ R+ and for every net x = (xi)i∈I ∈ RS there exists η

x
∈ R+ such that for every

representation ρ of (G,RN ,RS), we have that ‖ρ(g)‖ ≤ ηg and ‖ρ(xi)‖ ≤ η
x
for every

i ∈ I, then (G,RN ,RS) is admissible.
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Proof. By using the properties of the norm on a C*-algebra, we can easily check that for
every x ∈ BG , there exists ηx ∈ R+ such that ‖ρ(x)‖ ≤ ηx for all representation ρ of
(G,RN ,RS). This implies that given a family {ρα : BG → B(Hα)}α∈Ω of representations
of (G,RN ,RS), the map given by (2.5) is well-defined. It remains to show that

⊕
α∈Ω ρα

is a representation of (G,RN ,RS).
For (x, η) ∈ RN , we have that

∥∥∥∥∥
⊕

α∈Ω

ρα(x)

∥∥∥∥∥ = sup
α∈Ω

‖ρα(x)‖ ≤ η.

Suppose now that x = (xi)i∈I ∈ RS and take ξ = (ξα)α∈Ω ∈
⊕

α∈ΩHα. Given
ε > 0, there exists a finite set F ⊆ Ω such that

∑
α∈Ω\F ‖ξα‖2 <

ε
2(η2

x
+1)

. Also, since

limi→∞ ρα(xi)(ξα) = 0 for every α ∈ Ω, using that I is a directed set, we can find i0 ∈ I
such that for every i ≥ i0 and every α ∈ F , we have that ‖ρα(xi)(ξα)‖

2 < ε
2(|F |+1)

, where

|F | is the cardinality of F . Hence, for i ≥ i0,
∥∥∥∥∥
⊕

α∈Ω

ρα(xi)(ξ)

∥∥∥∥∥

2

=
∑

α∈Ω

‖ρα(xi)(ξα)‖
2 ≤

∑

α∈F

‖ρα(xi)(ξα)‖
2 +

∑

α∈Ω\F

‖ρα(xi)‖
2‖ξα‖

2 <

|F |
ε

2(|F |+ 1)
+ η2

x

ε

2(η2
x
+ 1)

< ε.

Therefore, limi→∞

⊕
α∈Ω ρα(xi)(ξ) = 0, and hence s − limi→∞

⊕
α∈Ω ρα(xi) = 0, since ξ

was arbitrary. �

The following definition is motivated by the previous proposition.

Definition 2.7. Let (G,RN ,RS) be a generating triple. We say that a relation x =
(xi)i∈I ∈ RS is bounded by η ∈ R+ if for every representation ρ of (G,RN ,RS), we have
that ‖ρ(xi)‖ ≤ η for every i ∈ I.

The next goal is to define a C*-seminorm on BG in order to build a C*-algebra from
a generating triple (G,RN ,RS). For that, let P(G,RN ,RS) be the set of all C*-seminorms
p : BG → R such that p(x) = ‖ρ(x)‖ for all x ∈ BG , where ρ is a representation of
(G,RN ,RS).

Proposition 2.8. Let (G,RN ,RS) be an admissible generating triple. Then,

sup
p∈P(G,RN,RS )

p(x) <∞

for all x ∈ BG .

Proof. Suppose that x ∈ BG is such that

sup
p∈P(G,RN,RS)

p(x) = ∞.

Then, for each n ∈ N, there exists a representation ρn of (G,RN ,RS) such that ‖ρn(x)‖ ≥
n. This would imply that

⊕
n∈N ρn(x) is an unbounded operator, contradicting the ad-

missibility of (G,RN ,RS). �
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Let (G,RN ,RS) be an admissible generating triple. For each x ∈ BG , we define
~x~ = supp∈P(G,RN,RS)

p(x) and N(G,RN ,RS) = {x ∈ BG | ~x~ = 0}. It’s well known

that ~ · ~ : BG → R is a C*-seminorm, N(G,RN ,RS) is a self adjoint ideal of BG and
‖ · ‖ : BG/N(G,RN ,RS) → R given by

‖x+N(G,RN ,RS)‖ = inf
y∈N(G,RN ,RS)

~x+ y~

is a norm.

Definition 2.9. Let (G,RN ,RS) be an admissible generating triple. We define the C*-
algebra generated by (G,RN ,RS) as the completion of BG/N(G,RN ,RS) with respect to the
norm ‖ · ‖ above and we denote it by C∗(G,RN ,RS). We also denote by i : BG →
C∗(G,RN ,RS) the canonical *-homomorphism.

Remark 2.10. If there are no SOT relations, that is RS = ∅, then C∗(G,RN ,RS) =
C∗(G,RN ), where C

∗(G,RN) is the C*-algebra considered by Blackadar in [1].

We are now ready to state and prove a universal property for C∗(G,RN ,RS).

Theorem 2.11. Let (G,RN ,RS) be an admissible generating triple and let A be a C*-
algebra. If ϕ : BG → A is a *-homomorphism such that there exists a faithful represen-
tation π : A → B(H) of A on a Hilbert space H for which π ◦ ϕ is a representation of
(G,RN ,RS), then there is a unique *-homomorphism ϕ̃ : C∗(G,RN ,RS) → A such that
ϕ = ϕ̃ ◦ i.

Proof. We prove that the map ϕ̃ : C∗(G,RN ,RS) → A given by ϕ̃(x+N(G,RN ,RS)) = ϕ(x)
is well-defined. For that, take x ∈ N(G,RN ,RS) arbitrary. By the definition of N(G,RN ,RS),
we have that ‖π(ϕ(x))‖ = 0, which implies that π(ϕ(x)) = 0. Since π is faithful, we have
that ϕ(x) = 0 showing that ϕ̃ is indeed well-defined.

Clearly ϕ = ϕ̃ ◦ i and ϕ̃ is the unique *-homomorphism from C∗(G,RN ,RS) to A
satisfying this property. �

Remark 2.12. Generally, relations defining C*-algebras are given in terms of a equality.
If all products and sums are finite, we present the relation (x, 0) ∈ RN as x = 0 (or some
variation of the expression). For relations involving infinite sums or products, we have to
somehow transform it as net converging to zero on the strong operator topology. We will
show how to this in Section 3.

We now prove that the canonical *-homomorphism i : BG → C∗(G,RN ,RS) satisfies
the hypothesis of Theorem 2.11. First, we need a lemma.

Lemma 2.13. Let (G,RN ,RS) be an admissible generating triple. For every x ∈ BG \
N(G,RN ,RS), there exists a representation ρ of (G,RN ,RS) such that ‖ρ(x)‖ = ~x~.

Proof. Since x /∈ N(G,RN ,RS), we have that ~x~ > 0. Then, for each positive integer n,
there exists ρn representation of (G,RN ,RS) such that 0 ≤ ~x~ − ‖ρn(x)‖ < 1/n. Since
the triple is admissible, ρ =

⊕
n ρn is a representation of (G,RN ,RS). For this ρ, we have

that ‖ρ(x)‖ = supn ‖ρn(x)‖ = ~x~. �

Theorem 2.14. Let (G,RN ,RS) be an admissible generating triple. Then, there exists
a faithful representation πu : C∗(G,RN ,RS) → B(Hu) on a Hilbert space Hu such that
πu ◦ i is a representation of (G,RN ,RS).
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Proof. For each x ∈ BG \ N(G,RN ,RS), we take a representation ρx of (G,RN ,RS) such
that ‖ρx‖ = ~x~ as in Lemma 2.13. By Theorem 2.11, there exists a representation πx of
C∗(G,RN ,RS) such that ρx = πx ◦ i. Define πu =

⊕
x∈BG\N(G,RN ,RS)

πx.

Notice that πu ◦ i =
⊕

x πx ◦ i =
⊕

x ρx, which is a representation of (G,RN ,RS), since
the triple is admissible.

It remains to show that πu is faithful. For a ∈ C∗(G,RN ,RS) \ {0}, let x ∈ BG \
N(G,RN ,RS) be such that ‖a− i(x)‖ ≤ ‖a‖/4. An easy computation with the definition of
‖i(x)‖ shows that ~x~ ≥ ‖i(x)‖ ≥ ‖a‖ − ‖a‖/4 = 3‖a‖/4. Then

‖a− i(x)‖ ≥ ‖πu(a− i(x))‖ ≥ ‖πu(i(x))‖ − ‖πu(a)‖ ≥ ‖πx(i(x))‖ − ‖πu(a)‖ =

‖ρx(x)‖ − ‖πu(a)‖ = ~x~ − ‖πu(a)‖,

which implies that

‖πu(a)‖ ≥ ~x~ − ‖a− i(x)‖ ≥ 3‖a‖/4− ‖a‖/4 = ‖a‖/2 > 0.

Hence πu(a) 6= 0, and since a 6= 0 was arbitrary, πu is faithful. �

As we will see at the end of Section 3.1, contrary to what happens if we only have norm
relations, for a representation π : C∗(G,RN ,RS) → B(H), even if it is faithful, it is not
always true that π ◦ i is a representation of (G,RN ,RS).

3. Examples

Although some examples fall in a broader class of algebras, we decided to use some sim-
pler examples to give all the details of the construction. The main tool will be interpreting
an infinite sum as a net that converges to zero in the strong operator topology.

As it is implicitly done in [1], equality relations involving only finite sums and finite
products can be written as a pair (x, 0) for some x ∈ BG . For instance, if you want to
say that a certain generator S is a partial isometry, that is SS∗S = S, we can give the
relation (SS∗S − S, 0).

The following lemmas will be useful to study our examples.

Lemma 3.1. If (Pi)i∈I is a net of positive operators on a Hilbert space H such that
Pi ≤ Pj if i ≤ j and s− limi→∞ Pi = 0, then Pi = 0 for all i ∈ I.

Proof. Let ξ ∈ H be given and notice that (〈Piξ, ξ〉)i∈I is a non-decreasing net of non-
negative real numbers that converges to zero. This implies that 〈Piξ, ξ〉 = 0 for all i ∈ I.
Since ξ is arbitrary and for each i ∈ I, Pi is a positive operator, then Pi = 0 for all
i ∈ I. �

Lemma 3.2. Let (Pi)i∈I be a net of projections on a Hilbert space H such that
∑

i∈I Pi = 1
with respect to strong operator topology. Then PiPj = 0 whenever i 6= j.

Proof. Let P0(I) the set of finite subsets of I. Translating the infinite sum
∑

i∈I Pi =
1 to a net, we obtain the net (

∑
i∈X Pi)X∈P0(I) which converges to 1 with respect to

strong operator topology. Fix i0 ∈ I and observe that the subnet (
∑

i∈X Pi)i0∈X∈P0(I)

also converges to 1 with respect to strong operator topology. By multiplying by Pi0 on
the left, we conclude that the net (

∑
i∈X\{i0}

Pi0Pi)i0∈X∈P0(I) is non-decreasing, of positive
operators and converges to 0 with respect to strong operator topology. By Lemma 3.1,∑

i∈X\{i0}
Pi0Pi = 0 for every X ∈ P0(I) such that i0 ∈ X . Fix j0 ∈ I such that j0 6= i0

and consider X = {i0, j0}. For this choice of X , we obtain Pi0Pj0 = 0. Since i0 and j0 are
arbitrary, the result follows. �
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Lemma 3.3. Let H be a Hilbert space with orthonormal basis {eλ}λ∈Λ and let {Ti}i∈I be
a bounded net in B(H). If limi→∞ Ti(eλ) = 0 for all λ ∈ Λ, then s− limi→∞ Ti = 0.

Proof. By linearity and the continuity of operation on H , we can see that for every
h ∈ span{eλ}λ∈Λ, we have that limi→∞ Ti(eλ) = 0. Fix M > 0 such that ‖Ti‖ ≤M for all
i ∈ I and let h ∈ H be arbitrary. Given ǫ > 0, there exists h0 ∈ span{eλ}λ∈Λ such that
‖h− h0‖ ≤ ǫ/2M . Also, there exists i0 such that for all i ≥ i0, ‖Ti(h0)‖ < ǫ/2. Then, for
all i ≥ i0, we have that

‖Ti(h)‖ = ‖(Ti(h− h0) + Ti(h0)‖ ≤ ‖Ti‖‖h− h0‖+ ‖Ti(h0)‖ < M
ǫ

2M
+
ǫ

2
= ǫ.

The result follows. �

3.1. Cuntz algebras. The class of algebras On studied by Cuntz [5], when 2 ≤ n <∞,
can be seen as the universal unital C*-algebra generated by n isometries S1, . . . , Sn such
that

(3.4)
n∑

i=1

SiS
∗
i = 1.

For n = ∞, Cuntz defined O∞ as a C*-subalgebra of B(H) generated by isometries
{Si}∞i=1 on an infinite dimensional Hilbert space H such that

∑n
i=1 SiS

∗
i ≤ 1 for all n. He

showed this algebra is simple so it does not depend on H or the isometries. It known that
we can see O∞ as the universal unital C*-algebra generated by isometries {Si}∞i=1 such
that S∗

i Sj = 0, whenever i 6= j.
We would like to use (3.4) as a relation when n = ∞, however this cannot be true with

respect to the norm topology, since in O∞, for all r, we have that 1 −
∑r

i=1 SiS
∗
i is a

projection of norm 1.
We can interpret (3.4) as a sum with respect to the strong operator topology. More

specifically, we consider the triple (G,RN ,RS), where G = {Ti}∞i=1∪̇{1}, RN is the set of
relations that say that 1 is a unit and T ∗

i Ti = 1 for all i, and RS is the singleton set with
element (1−

∑r

i=1 TiT
∗
i )

∞
r=1. To see that the triple is admissible, we take a representation

ρ of (G,RN ,RS) and notice that the set {ρ(Ti)}∞i=1 is composed of isometries so that
ρ(Ti)ρ(Ti)

∗ are projections such that
∑∞

i=1 ρ(Ti)ρ(Ti)
∗ = 1 with respect to the strong

operator topology. By Lemma 3.2, the projections ρ(Ti)ρ(Ti)
∗ are mutually orthogonal.

This implies that 1−
∑r

i=1 ρ(Ti)ρ(Ti)
∗ is a projection for all r, so its norm is bounded by

1. By Proposition 2.6, (G,RN ,RS) is admissible.
To prove that O∞

∼= C∗(G,RN ,RS), notice that if ρu is the faithful representation given
by Theorem 2.14, then the above computations show that ρu(Ti)

∗ρu(Tj) = 0 if i 6= j, and
hence T ∗

i Tj = 0 for i 6= j inside C∗(G,RN ,RS). By the universal property of O∞, there
is a unital *-homomorphism ϕ : O∞ → C∗(G,RN ,RS) such that ϕ(Si) = Ti for all i. We
build an inverse for ϕ using Theorem 2.11. Let H be an infinite dimensional separable
Hilbert space and decompose H as H =

⊕∞
n=1Hn, where each Hn is again an infinite

dimensional separable Hilbert space. For each i ∈ N with i ≥ 1, let Ri be an isometry
from H to Hi seen as an element of B(H). Clearly

∑n

i=1RiR
∗
i ≤ 1 for every n ≥ 1, so that

there exists a faithful (because O∞ is simple) representation π : O∞ → B(H) such that
π(Si) = Ri. Also notice that

∑∞
i=1RiR

∗
i = 1 with respect to the strong operator topology.

By Remark 2.3, there is a *-homomorphism ψ : BG → O∞ such that ψ(Ti) = Si. We then

get that π ◦ ψ is a representation of (G,RN ,RS). The map ψ̃ : C∗(G,RN ,RS) → O∞
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given by Theorem 2.11 is a unital *-homomorphism such that ψ̃(Ti) = Si for all i, which

then implies that ψ̃ = ϕ−1.
Another way to prove that ϕ is a *-isomorphism would be to observe that ϕ is surjective,

and since O∞ is simple, it would suffice to show that C∗(G,RN ,RS) is not the algebra
{0}.

We now show that there exists a faithful representation ρ of O∞ such that ρ ◦ ψ is
not a representation of (G,RN ,RS). The construction is analogous to the construction
of π above. The difference is that we add an extra non-zero subspace H0, in the direct
sum, that is, H =

⊕∞
n=0Hn. Defining Ri as above, we get a faithful representation

ρ : O∞ → B(H). In this case, notice that
∑∞

i=1RiR
∗
i converges with respect to the strong

operator topology to the projection on the proper subspace
⊕∞

n=1Hn, and therefore ρ ◦ψ
is not a representation of (G,RN ,RS).

3.2. Exel-Laca algebras. In [6], Cuntz and Krieger defined an algebra OA associated
with a finite square matrix of zeros and ones A and studied its relationship with topological
Markov chains. They remarked that a similar construction could be done with infinite
matrices as long as infinite sums are considered in the strong operator topology. In their
paper, they defined the algebra already represented on a Hilbert space and showed that
under some conditions on the matrix, the algebra is unique in the sense that it does not
depend on the representation [6, Theorem 2.13].

When the matrix is finite, Blackadar described OA as universal C*-algebra [1, Example
1.3(e)(9)]. One of the main goals of [8] was to define a universal C*-algebra of an infinite
matrix of zeros and ones. Since they relied on Blackadar’s construction, they couldn’t
use the same relations as Blackadar used since they would be dealing with infinite sums.
They, then, had to find enough norm relations to describe the algebra in question. In
this section, using the theory developed in Section 2, we show that the algebra defined
by Exel and Laca is indeed the same one obtained by allowing infinite sum relations in
Blackadar’s example.

Definition 3.5. [8, Definition 7.1] Given a set of indices I and a 0-1 matrix A = (Aij)i,j∈I
with no identically zero rows, the unital Exel-Laca algebra ÕA is the universal C*-algebra
generated by a family of partial isometries {Si}i∈I and a unit 1 satisfying the following
relations:

EL1. S∗
i SiS

∗
jSj = S∗

jSjS
∗
i Si, for all i, j ∈ I;

EL2. SiS
∗
i SjS

∗
j = 0, whenever i 6= j;

EL3. S∗
i SiSjS

∗
j = AijSjS

∗
j for all i, j ∈ I;

EL4. for all X, Y ⊆ I finite such that

A(X, Y, j) :=
∏

x∈X

Axj

∏

y∈Y

(1−Ayj)

is zero for all but a finite number of j’s, we have that,
∏

x∈X

S∗
xSx

∏

y∈Y

(1− S∗
ySy) =

∑

j∈I

A(X, Y, j)SjS
∗
j .

Let I and A be as in the above definition. Our next goal is to describe ÕA using infinite
sum relations. As generators we set G = {Ti}i∈I∪̇{1}. The norm relations RN are the
ones that say that Ti is a partial isometry for each i ∈ I and that 1 is a unit. The SOT
relations RS are given by:
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CK1.
∑

i∈I TiT
∗
i = 1;

CK2. for each i ∈ I, T ∗
i Ti =

∑
j∈I AijTjT

∗
j ,

seen as nets in the natural way. This way, we get a generating triple (G,RN ,RS). To
prove that this triple is admissible, we use Proposition 2.6 and find constants η

x
that

bound the relations CK1 and CK2. As in the example of the Cuntz algebra, we see
that the first is bounded by 1 and that {ρ(Ti)ρ(Ti)∗}i∈I is a set of mutually orthogonal
projections for every representation ρ of (G,RN ,RS). This implies that the relations on
CK2 are all bounded by 2.

To build a *-homomorphism from ÕA to C∗(G,RN ,RS), we use a faithful representation
π of C∗(G,RN ,RS) on a Hilbert space H as in Theorem 2.14. In order to simplify the
notation, we will use Ti instead of π(Ti) in the computations below. As mentioned in the
previous paragraph, EL2 holds for the Ti’s. To prove the remaining relations, take h ∈ H .
By CK2, for i, j ∈ I,

T ∗
i TiT

∗
j Tj(h) = lim

X→∞
lim
Y→∞

∑

x∈X

∑

y∈Y

AixAjyTxT
∗
xTyT

∗
y (h) = lim

X→∞

∑

x∈X

AixAjxTxT
∗
x (h),

where the limits are taken over the directed set of all finite subsets of I and the last equality
holds by EL2. Since Aix and Ajx are numbers, we see that the same final expression is
valid for T ∗

j TjT
∗
i Ti(h). It follows that T ∗

i TiT
∗
j Tj = T ∗

j TjT
∗
i Ti, which is EL1. Next, we

prove EL3. For i, j ∈ I,

T ∗
i TiTjT

∗
j (h) = lim

X→∞

∑

x∈X

AixTxT
∗
xTjT

∗
j (h) = AijTjT

∗
j ,

where the first equality is due to CK2 and the last equality follows from EL2. Finally, for
EL4, let X , Y and J be finite subsets of I such that A(X, Y, j) = 0 for all j ∈ I \ J , and
A(X, Y, j) 6= 0 for all j ∈ J . A similar argument as above shows that

∏

x∈X

T ∗
xTx(h) = lim

R→∞

∑

r∈R

(
∏

x∈X

Axr

)
TrT

∗
r (h),

and also, using CK1, that

∏

y∈Y

(1− T ∗
y Ty)(h) = lim

S→∞

∑

s∈S

(
∏

y∈Y

(1− Ays)

)
TsT

∗
s (h).

Then, by CK2 and EL2, we have that
∏

x∈X

T ∗
xTx

∏

y∈Y

(1− T ∗
y Ty)(h) =

lim
R→∞

lim
S→∞

∑

r∈R

∑

s∈S

(
∏

x∈X

Axr

)(
∏

y∈Y

(1−Ays)

)
TrT

∗
r TsT

∗
s (h) =

lim
R→∞

∑

r∈R

(
∏

x∈X

Axr

)(
∏

y∈Y

(1−Ayr)

)
TrT

∗
r (h) =

lim
R→∞

∑

r∈R

A(X, Y, r)TrT
∗
r (h) =

∑

j∈J

A(X, Y, j)TjT
∗
j (h) =

∑

j∈I

A(X, Y, j)TjT
∗
j (h).
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By the universal property of ÕA, we have a unital *-homomorphism ϕ : ÕA →
C∗(G,RN ,RS) such that ϕ(Si) = Ti.

To find the inverse, we recall a faithful representation of ÕA given in [8, Section 9].
We define PA = {(in)n∈N ∈ IN | Ainin+1 = 1, for all n ∈ N}. The hypothesis that A has
no identically zero rows implies that PA is non-empty. Considering ℓ2(PA) be the Hilbert
space with its canonical basis {εµ}µ∈PA

, we define the operators Li : ℓ
2(PA) → ℓ2(PA) for

each i ∈ I by

Li(εµ) =

{
εiµ if Aiµ0 = 1,

0 if Aiµ0 = 0,

where µ = µ0µ1 . . . ∈ PA, and notice that

L∗
i εµ =

{
εµ1µ2... if µ0 = i,

0 if µ0 6= i.

Therefore, LiL
∗
i is the projection on the space span{εµ | µ0 = i}, and L∗

iLi is the projection
on the space span{εµ | Aiµ0 = 1}.

Also let F be the free group generated by I, with regular left representation λ of F on
ℓ2(F), whose canonical basis is denoted by {δg}g∈F. By [8, Proposition 9.1], there is a

unique faithful representation ρ : ÕA → B(ℓ2(PA)⊗ ℓ2(F)) such that ρ(Si) = Li ⊗ λi for
all i ∈ I.

We want to use Theorem 2.11 in order to find a *-homomorphism from C∗(G,RN ,RS)

to ÕA. For that, it suffices that {Li⊗λi}i∈I ∪{Id} forms a representation of (G,RN ,RS)

(see Remark 2.3). The norm relations are satisfied since ρ is a representation of ÕA. We
check the SOT relations. For that take µ ∈ PA and g ∈ F, and notice that

(Li ⊗ λi)(Li ⊗ λi)
∗(εµ ⊗ δg) = LiL

∗
i (εµ)⊗ δg,

and that

(Li ⊗ λi)
∗(Li ⊗ λi)(εµ ⊗ δg) = L∗

iLi(εµ)⊗ δg.

Since there is a unique i ∈ I such that µ0 = i, we have that
∑

i∈I

(Li ⊗ λi)(Li ⊗ λi)
∗(εµ ⊗ δg) = εµ ⊗ δg

and, by Lemma 3.3, CK1 follows.
Noticing that span{εµ | Aiµ0 = 1} =

⊕
j:Aij=1 span{εµ | µ = j}, we conclude that

(Li ⊗ λi)
∗(Li ⊗ λi)(εµ ⊗ δg) =

∑

j:Aij=1

LjL
∗
j (εµ)⊗ δg =

∑

j∈I

Aij(Lj ⊗ λj)(Lj ⊗ λj)
∗(εµ ⊗ δg),

and hence, by Lemma 3.3, CK2 holds.

By Theorem 2.11, there exists an unital *-homomorphism ψ : C∗(G,RN ,RS) → ÕA

such that ψ(Ti) = Si. By the universality of these algebras, we have then that ψ = ϕ−1.
We now consider the not necessarily unital version of Exel-Laca algebras.

Definition 3.6. [8, Definition 8.1] Given a set of indices I and a 0-1 matrix A = (Aij)i,j∈I
with no identically zero rows, the Exel-Laca algebra OA is the C*-subalgebra of ÕA gen-
erated by {Si}i∈I .
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Notice that the above definition for OA is not as a universal C*-algebra. In order to
do that, we have to observe that the relation EL4 uses a unit, but OA is not necessarily
unital. We can rewrite EL4 without the use unit whenever X 6= ∅. In fact, Exel and
Laca showed in [8, Proposition 8.5] that there exists Y ⊆ I finite such that A(∅, Y, j) = 0

for all but a finitely many j’s if and only if OA is unital, in which case OA = ÕA. So
we have to consider two cases in order to describe OA as a universal C*-algebra. If there
exists Y ⊆ I finite such that A(∅, Y, j) = 0 for all but a finitely many j’s, then OA is the
unital C*-algebra generated by a family of partial isometries {Si}i∈I satisfying EL1-EL4.
If there is no such Y , then we rewrite EL4 without the use of unit and OA is the universal
C*-algebra generated by a family of partial isometries {Si}i∈I satisfying E1-E4.

By allowing infinite sums we are able to describe OA as universal C*-algebra in a unified
way. We just need to change CK1 in order to avoid the need for a unit. If we check our
computations as well as the example of the Cuntz algebra, we see that we can replace
CK1 by the relations T ∗

i Tj = 0, whenever i 6= j. Similarly to what we have done for ÕA

above, we can show that OA is isomorphic to the universal C*-algebra generated by a
family of partial isometries {Ti}i∈I with mutually orthogonal final projections such that

CK. for each i ∈ I, T ∗
i Ti =

∑
j∈I AijTjT

∗
j .

In the case that there exists Y ⊆ I finite such that A(∅, Y, j) = 0 for all but a finitely
many j’s, we should be able to find a unit in our version of OA. Indeed, supposing the
existence of such Y , consider the sets J1 = {j ∈ I | A(∅, Y, j) = 0} and J2 = {j ∈ I |
A(∅, Y, j) 6= 0}, so that J2 is finite. Notice that A(∅, Y, j) = 0 if and only if there exists
y ∈ Y such that Ayj = 1. We consider a faithful representation ρu of OA as in Theorem
2.14, and to simplify the notation we use the isomorphism OA

∼= ρu(OA) as a equality.
Using the inclusion-exclusion principle and CK, we see that, with respect to the strong
operator topology,

∑

∅6=Z⊆Y

(−1)|Z|+1
∏

z∈Z

T ∗
z Tz =

∑

j∈J1

TjT
∗
j .

Notice that the left hand side is an element of OA, and if we define

U =
∑

∅6=Z⊆Y

(−1)|Z|+1
∏

z∈Z

T ∗
z Tz +

∑

j∈J2

TjT
∗
j ,

then U ∈ OA and UTi = Ti = TiU for all i ∈ I, and hence U is a unit for OA.

4. C*-algebras generated by projections and partial isometries

In this section, we prove that under some conditions a C*-algebra generated by projec-
tions and partial isometries can be described as a universal C*-algebra using only norm
relations and generators corresponding to the projections and partial isometries. This
means that we can define a C*-algebra using SOT relations or any other means, and if
we prove the conditions of Theorem 4.2 or Theorem 4.4, we know that there is a set of
norm relations describing the same C*-algebra.

We start by studying commutative C*-algebras generated by projections seen as them-
selves or as a C*-subalgebra of a not necessarily commutative C*-algebra.
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Lemma 4.1. Let A be a C*-algebra and Q = {q1, q2, . . . , qn} ⊆ A be a subset of mutually
commuting projections. Then the set

P =




∏

j∈X

qj
∏

k∈{1,...,n}\X

(1− qk)

∣∣∣∣ ∅ 6= X ⊆ {1, . . . , n}





is formed by projections that are mutually orthogonal and spanP is the C*-subalgebra of
A generated by Q.

Proof. Before starting the proof, we note that the elements in P can be written without
using the unit because X 6= ∅. Clearly, the elements in P are projections. Let X1 and
X2 be non-empty subsets of {1, . . . , n} such that X1 6= X2. Without loss of generality,
consider m ∈ {1, . . . , n} such that m ∈ X1 e m /∈ X2. Then the projection

∏

j∈X1

qj
∏

k∈{1,...,n}\X1

(1− qk)

contains the factor qm and the projection
∏

j∈X2

qj
∏

k∈{1,...,n}\X2

(1− qk)

contains the factor 1− qm. Since the projections qi commute with each other, then


∏

j∈X1

qj
∏

k∈{1,...,n}\X1

(1− qk)





∏

j∈X2

qj
∏

k∈{1,...,n}\X2

(1− qk)


 = 0,

showing that the projections in P are mutually orthogonal. From this, it is easy to see
that span P is a C*-subalgebra of A, since it is closed under the operations and it is finite
dimensional. Furthermore, for every i ∈ {1, . . . , n},

qi =
∑

X⊆{1,...,n}

i∈X



∏

j∈X

qj
∏

k∈{1,...,n}\X

(1− qk)


 ∈ spanP,

which says that C∗(Q) ⊆ spanP . Since that it is clear that spanP ⊆ C∗(Q), the result
follows. �

Theorem 4.2. Let A be a commutative C*-algebra which is generated by a family of
(mutually commuting) projections {qi}i∈I . Denote by R0 the set of all finite algebraic
relations in A involving the generators in {qi}i∈I , i.e., R0 is the set of all relations of the
form

finite∑

m

λm

finite∏

n

qimn
= 0

that are satisfied in A. Consider a set {pi}i∈I with the same cardinality of I and define

R1 = {pi = p∗i = p2i | i ∈ I} ∪ {pi1pi2 = pi2pi1 | i1, i2 ∈ I}

and

R2 =

{
∑

m

λm
∏

n

pimn
= 0

∣∣∣∣
∑

m

λm
∏

n

qimn
= 0 ∈ R0

}
.

Then C∗({pi}i∈I ,R1 ∪R2) is *-isomorphic to A by the map pi 7→ qi.
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Proof. Since the relations inR1 make each pi a projection, then the pair ({pi}i∈I ,R1∪R2)
is admissible and, since relations in R1 ∪ R2 are satisfied in A (replacing pi by qi), then
there is a *-homomorphism φ : C∗({pi}i∈I ,R1 ∪ R2) → A given by φ(pi) = qi. Denote
by A0 the ∗-subalgebra of A generated by {qi}i∈I , i.e., A0 is the C-span of finite products
of qi’s, and consider the map ψ0 : A0 → C∗({pi}i∈I ,R1 ∪ R2) given by ψ0(qi) = pi in the
generators and extended to A0 in such way that it is a *-homomorphism. We need to
verify that ψ0 is well defined. To see this, consider x ∈ A0 such that

x =
∑

j

λj
∏

k

qijk

︸ ︷︷ ︸
x1

=
∑

u

µu

∏

v

qiuv

︸ ︷︷ ︸
x2

.

Since x1 − x2 = 0 ∈ R0, then∑

j

λj
∏

k

pijk −
∑

u

µu

∏

v

piuv = 0 ∈ R2

and, hence, ψ0(x1) = ψ0(x2), showing ψ0 is well defined. We claim that ψ0 is contractive.
Indeed, let

y =

J∑

j=1

µj

Kj∏

k=1

qijk ∈ A0.

Denote by Ã0 the *-subalgebra of A0 generated by the (finite) set {qijk}
J,Kj

j,k=1. By Lemma

4.1, Ã0 is a C*-algebra and so ψ0 restricted to Ã0 is contractive. Since y ∈ Ã0, then
||ψ0(y)|| ≤ ||y|| and since y ∈ A0 is arbitrary, then ψ0 is contractive. Denote by ψ the
extension of ψ0 to the closure of A0, which is A. Clearly, φ and ψ are the inverse of each
other. �

Next corollary gives a step in looking for a universal version of a C*-algebra generated
by projections and partial isometries. In some examples in the theory such as for graph
C*-algebras [11] and labelled spaces C*-algebras [2], there is a commutative C*-subalgebra
generated by projections that plays an important role when studying the structure of the
algebra.

Corollary 4.3. Let A be a C*-algebra generated by a family of partial isometries {tj}j∈J
and B a commutative C*-subalgebra of A generated by family of projections {qi}i∈I . Con-
sider a set {sj}j∈J with the same cardinality of J , a set {pi}i∈I with the same cardinality
of I and disjoint from {sj}j∈J and define G = {pi}i∈I ∪ {sj}j∈J . Let R0 be the set of all
finite algebraic relations in A involving tj and qi and denote by R1 the set of all relations
obtained from R0 by replacing each tj and each qi with sj and pi, respectively. Then,
the natural surjective *-homomorphism Φ : C∗(G,R1) → A restricts to an isomorphism

Φ̃ : C∗({pi}i∈I) → B, where C∗({pi}i∈I) is the C*-subalgebra of C∗(G,R1) generated by
the family {pi}i∈I .

Proof. Clearly Φ̃ is surjective, so we only need to proof the injectivity. Let {ri}i∈I be a set
with the same cardinality of I and R2 be the set of all relations obtained by considering
in R0 those relations that can be written using only {qi}i∈I and then replacing each qi
with ri. By Theorem 4.2, the universal *-homomorphism Ψ : C∗({ri}i∈I ,R2) → B given
by Ψ(ri) = qi is an isomorphism. The universal property of C∗({ri}i∈I ,R2) also give us
a surjective *-homomorphism Θ : C∗({ri}i∈I ,R2) → C∗({pi}i∈I) given by Θ(ri) = pi.
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Since (Θ ◦ Ψ−1) ◦ Φ̃(pi) = pi and Φ̃ ◦ (Θ ◦ Ψ−1)(qi) = qi, then Φ̃ : C∗({pi}i∈I) → B is an
isomorphism. �

The next result is inspired by what in the literature is known as the Gauge Invariance
Theorem. This class of results can be thought as being a uniqueness theorem and describes
conditions to conclude that a map defined in a universal C*-algebra is injective. As we
have seen in the previous results, if we use the generators of a C*-algebra to define a
universal version of it, we automatically get a surjective *-homomorphism and, under
conditions of Corollary 4.3, we get a *-isomorphism of a distinguished C*-subalgebra. In
the next theorem, under stronger hypothesis, we obtain a *-isomorphism for the whole
algebra.

Notation. In next theorem, we use 〈B〉 to denote the set of all finite products of elements
in B.

Theorem 4.4. Let A be a C*-algebra generated by a family of projections {qi}i∈I and
a family of partial isometries {tj}j∈J and suppose that there exists a strongly continuous
action γ : T → Aut(A) such that for every z ∈ T, i ∈ I and j ∈ J , we have that
γz(qi) = qi and γz(tj) = ztj. Let N =

〈
{qi}i∈I ∪ {tj}j∈J ∪ {t∗j}j∈J

〉
∩ Aγ and suppose

that for every finite subset Y ⊆ N , the C*-algebra generated by Y is finite dimensional.
Consider a set {pi}i∈I with the same cardinality of I and a set {sj}j∈J with the same
cardinality of J and disjoint from {pi}i∈I . Let G = {pi}i∈I ∪ {sj}j∈J and Φ : BG → A
be the map given by Φ(pi) = qi for all i ∈ I and Φ(sj) = tj for all j ∈ J . Define
M = {x ∈ 〈G ∪ G∗〉 |Φ(x) ∈ N} and define sets of norm relations

R1 = {pi = p∗i = p2i | i ∈ I} ∪ {sjs
∗
jsj = sj | j ∈ J}

and

R2 =

{
finite∑

x∈M

λxx = 0

∣∣∣∣ Φ

(
finite∑

x∈M

λxx

)
= 0

}
.

Then Φ factors to an isomorphism between C∗(G,R1 ∪R2) and A.

Proof. The proof will follow the steps: we define a strong continuous action β : T →
Aut(C∗(G,R1∪R2)), find its invariant set C∗(G,R1 ∪R2)

β, show that Φ is injective over
C∗(G,R1 ∪ R2)

β and then conclude that Φ is an isomorphism.
Let y ∈ N and let m, n and k be the number of qi’s, tj ’s and t

∗
j ’s in y, respectively. For

z ∈ T, we have γz(y) = zn−ky and since y ∈ Aγ , then n = k. Then x ∈M if and only if x
has the same quantity of sj’s and s

∗
j ’s. Fix z ∈ T and consider βz : BG → C∗(G,R1 ∪R2)

given by βz(pi) = pi and βz(sj) = zsj . It’s clear that βz satisfies the relations in R1.
From the previous characterization of elements in M , if x ∈ M then βz(x) = x and,
therefore, βz satisfies the relations in R2 too. Hence, βz factors to an endomorphism of
C∗(G,R1 ∪ R2). Since βzβw and βzw coincides in G, then βzβw = βzw showing β is an
action by automorphisms. A standard ε/3 argument shows that β is strongly continuous.

We claim that C∗(G,R1 ∪ R2)
β = C∗(M), where C∗(M) is the C*-subalgebra of

C∗(G,R1 ∪ R2) generated by M . Clearly, C∗(M) ⊆ C∗(G,R1 ∪ R2)
β. To see the other

inclusion, consider the conditional expectation E : C∗(G,R1 ∪ R2) → C∗(G,R1 ∪ R2)
β

associated with β given by

E(b) =

∫

T

βz(b)dz.
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If x ∈ 〈G ∪ G∗〉, then E(x) = x if x ∈ M and E(x) = 0 if x /∈ M . Let b ∈ C∗(G,R1∪R2)
β

and choose a sequence (bk)k∈N in BG converging to b. Each bk is a linear combination of
elements in 〈G ∪ G∗〉 and then E(bk) is a linear combination of elements in M . Thus,

b = E(b) = E(lim
k
bk) = lim

k
E(bk) ∈ C∗(M).

Now, let’s deal with Φ. Since the image by Φ of relations in R1 ∪ R2 are obviously
satisfied in A, then Φ factors to a surjective homomorphism Φ : C∗(G,R1 ∪ R2) → A.
We claim that Φ is injective on C∗(G,R1 ∪ R2)

β. To achieve this goal, it suffices to
show that Φ is isometric on linear combinations of elements of M , which is dense in
C∗(G,R1 ∪ R2)

β. By relations in R2, Φ is injective on linear combinations of M . Now,
fix X a finite subset of M . By hypothesis, C∗(Φ(X)) is finite dimensional and since Φ
is injective on linear combinations of elements of M , then C∗(X) is finite dimensional.
Furthermore, since C∗(X) is contained on the set of linear combinations of elements of
M , then the restriction Φ : C∗(X) → C∗(Φ(X)) is an injective homomorphism between
C*-algebras and, hence, isometric. Since X is arbitrary, then Φ is isometric on linear
combinations of elements of M . This shows Φ is injective on C∗(G,R1 ∪ R2)

β.
Clearly Φ(βz(b)) = γz(Φ(b)) for all b ∈ BG , and all z ∈ T. By continuity we can extend

to all b ∈ C∗(G,R1 ∪ R2). Hence,
∥∥∥∥Φ
(∫

T

βz(b)dz

)∥∥∥∥ =

∥∥∥∥
∫

T

γz(Φ(b))

∥∥∥∥ ≤ ‖Φ(b)‖

for all b ∈ C∗(G,R1 ∪ R2). By [3, Lemma 2.2], Φ is injective. �

Example 4.5 (Ultragraph C*-algebras). An ultragraph is a quadruple E = (E0, E1, s, r),
where E0 and E1 are sets, whose elements are called vertices and edges respectively, and
s : E1 → E0 and r : E1 → P(E0) are functions called source and range, where P(E0) is
the power set of E0. We denote by E0 the smallest subset of P(E0) closed under finite
intersections and unions containing ∅, r(e) for all e ∈ E1 and {v} for all v ∈ E0. We
adapt Tomforde’s definition in [10] allowing infinite sum relations. We define C∗(E) to be
the universal C*-algebra generated by a set of projections {pA}A∈E0 and partial isometries
with mutually orthogonal ranges {se}e∈E1 satisfying the relations:

(1) p∅ = 0, pA∩B = pApB and pA∪B = pA + pB − pA∩B for all A,B ∈ E0;
(2) s∗ese = pr(e) for all e ∈ E1;
(3) p{v} =

∑
e∈s−1(v) ses

∗
e for all v ∈ E0 such that s−1(v) 6= ∅.

As in the examples of Section 3, we can prove that the relations are admissible and that
C∗(E) coincides with the one defined by Tomforde in [10] and, in fact, both examples of
Section 3 can be modeled using ultragraphs. Assuming that we did not have Tomforde’s
description, let us prove that we can apply Theorem 4.4 to this example. Given n ∈ N with
n ≥ 1, a path of length n is a sequence of n edges α = α1 . . . αn such that s(αi+1) ∈ r(αi)
for all i = 1, . . . , n− 1. The set of all paths of length n is denoted by En. The elements
of E0 are thought to be paths of length zero and we define E∗ =

⋃∞
n=0 E

n. For a path
α = α1 . . . αn with positive length, we define |α| = n and sα = sα1 · · · sαn

, and for A ∈ E0,
we set |A| = 0 and sA = pA. As pointed out in [10, Remark 2.10], any finite word
in {pA}A∈E0, {se}e∈E1 and {s∗e}e∈E1 can be rewritten as sαpAs

∗
β for some α, β ∈ E∗ and

A ∈ E0. Also, it is standard to show that there is a strongly continuous action γ of T on
C∗(E) given by γz(pA) = pA and γz(se) = zse for all z ∈ T, A ∈ E0 and e ∈ E1.
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IfM is the set described in the statement of Theorem 4.4, we can see that elements ofM
can be written as sαpAs

∗
β for some α, β ∈ E∗ and A ∈ E0 where |α| = |β|. A finite X ⊆M

is of the form {sα1pA1s
∗
β1
, . . . , sαn

pAn
s∗βn

} for some n ∈ N and αi, βi ∈ E∗, Ai ∈ E0 for all
i = 1, . . . , n. We let F be the set of all edges that appears in a path αi or βi for some i, N
be the greatest length of all paths αi, and Q = {pAi

}ni=1 ∪ {pr(e)}e∈F . Since the elements
of Q are commuting projections, we can apply Lemma 4.1, to find a set P of mutually
orthogonal projections such that spanP = spanQ. Consider also W the set of all paths
of length at most N and whose edges belong to F and Y = {sαps∗β | α, β ∈ W, p ∈ P}.
Using [10, Lemmas 2.8 and 2.9], we see that C∗(X) ⊆ C∗(Y ) = spanY , concluding that
C∗(X) is finite dimensional, and therefore Theorem 4.4 can be applied, which means that
the C*-algebra of an ultragraph can be defined using infinite sum relations but can be
described using only norm relations.
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