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INFINITE TENSOR PRODUCTS IN FOURIER ALGEBRAS

SADAHIRO SAEKI
(Received April 25, 1974)

This paper is a continuation of the author’s article [8], and the main
purpose is to improve Theorem 4 in [8]. The reader is required to read
[8] before proceeding to the present one.

Let G be a locally compact abelian group with dual G. For a se-
quence (E;); of (non-empty) compact subsets of G, we write £ = [, E;.
We say that >3, E; converges if > 7., x; converges for every z = (z;)7 € E.
If this is the case, we define

E’:éE,.z {gx,.:(x,.)reE}.

Any set E obtained in this way is called a multi-symmetric set. We
also define a map p;: £ — E by setting

pi(@) = X7, (@= @) eh).

Notice that if >,° F; is a convergent series of compact sets then so is
Sw E; for every natural number ne N, and that to each neighborhood
V of 0e G there corresponds an N N such that

nzN=3ECV.

In fact, suppose this is false for some compact neighborhood V. Then
for each pe N there exists an arbitrarily large M, e N such that

(1) se By = M) and 3 w,eV

J=My
for some choice of (x;,). Suppose that such an M, and a sequence (z,,)
have been chosen for some pe N. Since V is compact, there is an N, ¢
N, with N, > M,, such that

(2) e,V (n=N,).

J=Mp
Then we choose M,,, > N, so that (1) with p replaced by » + 1 is satisfied

for some sequence (%;w.,). If we set z; =2, for M, £ < M,.,, p =
1,2 ..., then (2) and our choice of M, show that the series > ; z; does
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not converge, which contradicts the convergence of >; F,.
Thus we conclude that for any convergent series >); E, of compact
sets the map p;is continuous and therefore E = p (E) is compact.

THEOREM 1. Let (F;)7 be a sequence of non-empty finite subsets of
the real line R. Then every locally compact abelian I-group G contains
a convergent series K = 3° E; of compact subsets satisfying the follow-
ing three conditions:

(a) the map py induces an isometric isomorphism Py of the restric-
tion algebra A(E) onto the S-temsor product Az = @7 A(E;) by Puf =
S opz. Moreover, A(E;) is isometrically isomorphic to A(F;) for each
i=12 ---.

(b) E is an S-set.

(¢) E is a Dirichlet set, that is,

IiAm inf [[x — 1lea = 0.
G300

To prove this, we need two lemmas.

LEMMA 1.1. Let G be a locally compact abelian I-group, and FC R
and E,C G finite sets. Then every meighborhood V of O, contains a
Jfinite set E such that Gp(E) N Gp(E,) = {04} and A(E) = A(F) algebraically
and isomorphically.

PrOOF. Since F is finite, there exists a rationally independent finite
set {v, ---, vy} in R such that

FcGp({vy, <+, val) -
Take a finite set F < Z¥ so that

F= {2]:[‘, NV M = ('nj){"eﬁ} .

Let V be an arbitrary neighborhood of O,. Since G is an I-group and
E, is a finite subset thereof, we can find a finite set {x, ---, 24} in G,
which is independent (over the ring Z of integers), so that

E = {Z}j‘,njxj:neﬁ’}CV

and Gp(E) N Gp(Ey) = {Og}.
Define a map p: Gp({z;}¥) — Gp({v;}¥) by setting

M M
p(Z nj%') = > nw; (neZ¥).

Then p is an onto isomorphism and p(E) = F. Therefore it is easy to
prove that
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Nfepllam = 1 llam (f €AF)),

which completes the proof.

LEMMA 1.2. Let E be a finite set in a locally compact abelian group
G, and € > 0. Then there exists a compact neighborhood V of O, such
that:

(i) The sets x +V,xe E, are disjoint.

(ii) For each 7e G, G, being the group G with the discrete topology,
let f,e A(E+ V) be defined by

[z +v)y=7k) (xeKE, veV),
Then || f [lagsr < 1+ e.

Proor. Let >0 be given. Since E is finite, there exists a finite
subset I of G such that {y|z: x €I’} is n-dense in {Y|z;:7e G;} C C(E).
Take a compact neighborhood W of O, so that

(1) z,yeFand e vy=@+ W)Nnwyw+W)=9o,
(2) yel” =diam [y(W)] < 7.

Next choose a g€ A(G) so that

(3) gllsem <2, supp gc W, and

(4) g = 1 on some compact neighborhood V of O, .

Then VC w, and (i) holds.
Let 7€ G, be given. By the choice of I', there exists a y =y, el

such that |Y — x| <7 on E. We can write
fr=57@0. = 5, (1) ~ @0,
+ 5@ — .+ on E+V,
where ¢.(y) = g(y — 2). It follows that
1z = 317@) — 2@ - 1192 Lace
+ 3@ — 10:llaw + 1
< 27Card E + 3, 12) — 2llacesm 19 lluier + 1
<20+ Mp)Card £+ 1,

where M is an absolute constant (cf. Lemma 1 in [8]). Therefore (ii)
holds if » > 0 is sufficiently small.

PrROOF OF THEOREM 1. Let G be any locally compact abelian group,
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and H a closed subgroup thereof. As is well-known, H is an S-set (see
Theorem 2.7.5 in [4]), and if a closed subset £ of H is an S-set (or a
Dirichlet set) in H, then so is E in G. Moreover, the restriction algebra
of A(G) to H is isometrically isomorphic to the Fourier algebra A(H)
on H (Theorems 2.7.2 and 2.7.4 in [4]), and every I-group contains a
metrizable closed I-group (Theorem 2.5.5 in [4]). Consequently, to prove
Theorem 1, we may and will assume that G is a metric I-group with
translation-invariant metric d.

Let (K,)‘f’ be an increasing sequence of compact subsets of G such
that every compact subset of G is contained in some K,. We shall now
inductively construct a sequence (V,)? of compact neighborhoods of O,
a sequence (X,)r of finite subsets of G, and a sequence (¥,)r of charac-
ters in G which satisfy the following conditions:

(1) A(E,) = A(F,) algebraically and isometrically .

(2) %.eG\K, and |y, — 1/ <won E + -+ E, + V.
(3) O.€E, and E,+V, ,CintV,.

(4) The sets x +V,,, x€ E, + --- + E,, are disjoint .
(5) S s mirny < 1+ 070 (Y€ o),

where f7 is defined by
f?(wl‘*" cer 2, +Vn+1) = 7(371'*‘ cee 4 y,) V(OchEj)f .

For » = 1, we first take any compact neighborhood V, of O, with
diamV, < 1/2. By Lemma 1.1, intV, contains a finite set E, which con-
tains O, and satisfies (1) for » = 1. Since E, is finite, there is a ¥, €
G\K, such that [y, — 1| <1 on E..

Let ne N, and suppose that V,, E,, and y, have been chosen for all
k < n so that

[%. — 1] <n™ on zn‘,E',, , and E,CintV,.
Then we can take a compact neighborhood W, of O, so that
(2y %o =1/ <7 on NE +W,,

(3), En+WnCVn'

By Lemma 1.2, W, contains a compact neighborhood V,., of O, which
satisfies (4) and (5). Clearly (2) and (8) hold. We can also demand that

(6) diam V,., < 27" .



INFINITE TENSOR PRODUCTS 359

By Lemma 1.1, intV,,, contains a finite set E,., with O,¢c E,., which
satisfies (1) with = replaced by % + 1 and

(7) Gp(E, U --- U E,) N Gp(E,.,) = {04 .
Finally choose a %.;. € CAJ\I?H1 so that

741

[Xwr: — 1] <(n+ 1)7' on ZAEk .

This completes the irlduction.
_ By (3) and (8), E = 37 E; converges. We now want to prove that
E has the required properties. Notice that (3) assures that

(8) S EcitV, (n=12 ).

PrOOF OF (a). We must prove that P, is an isometric (onto) iso-
morphism.

Let Me N and v,, -+, Yx€ G be given. Define fe A(SY E; + Vi)
by setting

M
(9) f(x1+ tee +xM+VM+1): Hf)/:'(xj) V(ijEj)iw,
=1
which is well-defined by (4) and (7). Then we claim that
(9.1) ||f||A():1§’Ej+VM+1> <1+ M, and
9.2) Pef =7, @7 ® - ®7y.

Indeed, Gp(E,U---UEy) is the direct sum of Go(E), ---, Go(E,) by (7).
Therefore
M
XY+ oo+ Yy) = ]lzI Ti{Ys) V(y;e Gp(E)

is a character of Gp(E, U --- U Ey), and therefore it can be extended to
a character of Gy, But then f = f¥, and so (5) yields (9.1). Also, for
every ¢ = (x;) e E = 1I" E;, we have by (8) and (9)

(PEf)(x)zf(x1+x2+ coe T 2y + )
= f@, + 2+ o0 + 2y + Vi)
=T 7)) = (1@ -+ @)@,

which establishes (9.2).
We now prove that the function f defined by (9) also satisfies

9.3) Hf llae = 1.
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In fact, take any natural number N > M, and put 7; = 1 for all j with
M< j<N. If we define ge A(E, + --- + Ey + Vy.,) by the right-hand
side of (9) with M replaced by N, then f = g on the domain of g, and so

1 e = Hg”A(}:IfE_,-+VN+1) <1+ N

by (9.1). Since N may be arbitrarily large, this establishes || f|l.5 =1
and hence (9.3).
Notice now that the absolute convex hull of elements of the form

7®%® - ®7 (V;€G, MeN)

is dense in the unit ball of the Banach algebra A, (see the proof of
Theorem 3 in [8]). It follows from (9.2), (9.3), and Lemma 3 in [8] that
P; is an isometric isomorphism. This establishes part (a).

~PROOF OF (b). For each Me N, we define a homomorphism L, from
A(E) into AGY E; +V,.,,) by setting

(10) (L )y + « - +xM+VM+1):f(xl+ coe o+ Ty)
for fe A(E) and ;€ E;, 1 < j < M. Notice then
(10.1) HLMfHA(ZJ‘I’EﬁVMH) =@+ MY a

for all € A(E). In fact, since £ is compact, it suffices to prove this
for f = 7|3 with Y€ G (cf. Lemma 2 in [8]). But then (10.1) is a special
case of (9.1). We now claim

(10.2) Um || Ly ~ Vllagtzirien = 0 (7€ G).

To see this, fix any 7€ G. By (6) and the definition of L,, we have
(10.3) lim || L7 = 7oz, ey = 0 -

On the other hand, (10.1) yields

(10.4)  [[(Lu)fla = 1 Lu(™)|a 1+ M (0 =0, £1, £2, --+).

Thus (10.2) follows from (10.3), (10.4), and Lemma 1 in [8].
Notice now that (8) implies

(11) ECéEj—i—intVMH M=12 -.+),

and so PM(E)C A(S¥ E; + Vy..). To complete the proof of (b), take
any Se€ PM(E). Then, the definition of L, shows

supp (LiS) C ﬁ”__‘, E,cE.
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Since each E; is a finite set, this implies that LS is a finitely supported
measure in M(E) for each M =1,2, .... Also, we have

I LiSllew = 1+ M) |[Sllew (M=1,2,--+)

by (10.1); and (10.2) and (11) assure that for all ve G
(LESN™) — S(r)| = <7, LES) — <7, S|
= [{LyY ~ 7, 8|
= || LyY ~ 7|IA<>:1§{E]-+VM+1)”S”PM = o(1) .

It f~ollows from Lemma 2 in [8] that the sequence (L}S)? of measures in
M(E) converges to S iri the weak-* togology of PM(G). Since this is
true for every Se PM(E), we conclude £ is an S-set (actually a strong
S-set).

Proor oF (c) follows from (2) and (11).
REMARKS. (a) If F'is a compact Dirichlet set in G, then we have
(cy lim sup [ S| = [1S|lew (S PM(F)) .

To see this, take any Se PM(F). Let ¢ >0,7eG and a compact subset
K of G be given. Since F is a Dirichlet set, there exists a ¥ = y.¢€
G\v'K such that |y — 1| < e on F. But then |7y — 7| = [x —1] < €& on
some compact neighborhood V of F' by the continuity of %. Thus
7y — 7llawy = Me by Lemma 1 in [8], where M is an absolute constant.
Since Se PM(F)c A(V)', it follows that

sup {|S(@): e G\K} = |S(0|
> [SM)] — |SO) ~ SO0 2 15(7)| — Me||S|[ps -
Since Y€ G and ¢ > 0 are arbitrary, this shows
sup {|S(@)|: @e G\K} = sup {|S(M)|: v € G} = ||S]]px »

which establishes (c)'.

(b) In Theorem 1, we can replace R by any torsion-free group.

(¢) The technique in the proof of Theorem 1 can be used to improve
Example 4 in [8] as follows. Let (E;)? be a sequence of finite subset
of R¥, N being a fixed natural number. Then there exists a sequence
(¢,)r of positive real numbers which satisfies the following conditions.
(i) The series K = 3 ¢,;E; converges; (ii) A(K) is isometrically isomorphic
to A, = ®; A(E;); (iii) K is an S-set and a Dirichlet set.

THEOREM 2 (cf. Theorem 4 in [8]). Ewery locally compact I-group
G contains a multi-symmetric set K = 30 K;, each K; being a compact
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perfect Kronecker set in G, which satisfies the following conditions:
(i) The natural map Py A(K) — S(K) = ®F C(K;) induced by py:
K=TI7 Kj——>I? 18 an isomelric isomorphism.
(ii) K is an S-set and a Dirichlet set.

Proor. Without loss of generality, we may assume that G has a
translation-invariant metric d compatible with its topology. Then Theorem
1 and its proof show that there exists a countable subset {r;.: 7, ke N}
of G which is independent over Z and has the following properties:

(1) a0, 7)) <277% (4, k=1,2,---).
(2) E= zk‘, E;, satisfies the conclusions of Theorem 1.

Here E;, = {0, r;.} for~a11 j and k. .
Put =11, Es, E; = > Es, ' = I1; E;, and define a map

g=p: B —E= J_zkE,.,FJzEj

in the natural way. Then, by part (a) of Theorem 1, the natural map
Q@ induced by ¢ is an isometric isomorphism of A(K) onto

Ay = @A) = ®[® AED] = © AEy) .

(Notice that p; is a homeomorphism from E onto E since P; is an iso-
morphism.)

We now claim that each E; contains a perfect Kronecker set. In
fact, since {r;}, is independent over Z, E, has the following property:
for any natural number %, any =, -n,xneE',-, and any ¢ >0, there
exist distinct y,, -+, ¥, € E; such that d(x, v,) < ¢ for all I and {y,}, is
independent over Z. This property assures that E; contains a perfect
Kronecker set (cf. 5.2.3 and 5.2.4 in [4]).

We now choose and fix a perfect Kronecker set K; in E; for each
j=12, ---, and first prove that K, x -.- x K, is an S-set for the
algebra @Y A(E;). In fact, every Kronecker set is an S-set (see [11],
[5], and [7]). Since A(G¥) is the N-fold projective tensor product of
A(G), it follows that K, X .- X K, is an S-set in G" (see Theorem
1.5.1 in [12] and Theorem 2.2 in [6]). Since

@ A(E;) = A(E, x -+ x Ey)

algebraically and isometrically, this assures that K, x .-+ x K, Is an
S-set for the algebra (@Y A(E)).



INFINITE TENSOR PRODUCTS 363

Next we prove that K = JI” K; is an S-set for the algebra A,.. To
do this, choose and fix any point y = (¥,)° € K, and define a sequence of
homomorphisms

Ty Ay — @ A(E) C A,

by setting

(o )@y ooy @0) = (@, 200, Tuy Ynssy Ynaay *°°)
for feA, and 2,eE,1<j<N=12 ---. Then we have
(3) Um [Jof = fllay =0 (feA4p)

(cf. [8: p. 283]). If fe A vanishes on K, then each J,f vanishes on
K, x -+ x K. Since each K, X --- x K, is an S-set, it follows that

Jufeclge® AE):suppg N (K, x - x K) = 0}
cel {he@)A(E’,-):supphﬂK= @}

for all N, which combined with (3) implies that K is an S-set for A4,.

Finally K = 3¢ K; = q(K) is an S-set for A(K) since Q: A(K)— A,
is an isomorphism. Therefore K is an S-set for A(G) since so is E by
part (b) of Theorem 1. That K is a Dirichlet set follows from part (c)
of Theorem 1. Also we have

AK) = A(E)|z = Aplx
= ©® AE)x, = © C(K) = S(K)
with natural identification, which completes the proof.

It is an interesting problem to find an explicit example of a multi-
symmetric set £ = 3 E; for which we have A(F) = @7 A(E,) algebraically
and topologically. If G is an infinite product of compact groups, then
this is very easy (Theorem 3 in [8]). Since every non-discrete non I-
group contains such a group as a closed subgroup, it is reasonable to
consider the problem only for I-groups. However, to obtain an explicit
example of a set of a certain type, we much know the group under
consideration. Consequently we will consider the above problem only for
G = the group of a-adic integers and for G = RY. Of course, then the
problem will turn out trivial for any groups which contain, as a closed
subgroup, one of the following groups: an infinite produet of non-trivial
compact groups; the group of e-adic integers for some a; RY or T¥ for
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some natural number N.

Let a = (a,, @, a;, --+) be a sequence of positive integers =2, and
4(a) the compact group of the a-adic integers (cf. [1: (10.2)]). Topologically
we will identity 4(e¢) with the product space of all {0,1, ---, a, — 1},
n=20,12 ..., Let u, be the element of 4(¢) whose n-th coordinate
is one and other coordinates are all zero. Thus we have

U = QiU y = GprGg =+ Qglho (n=1,2...)¢

and each element z <€ 4(a) can be uniquely written in the form
z = (x,) = i LU, o
n=0

where #,€{0,1, ---,a, — 1} for all n=0,1,2, ---. We also set
a(l, m) = a0, -+ Ay (I <m).

THEOREM 3. Let a be as above, and let (n,, n, ---) and (k, &y, +-+)
be two sequences of natural numbers such that

1y < Niyy and k; < @, G=12 --).
Iy
(*) 3, dlsfalng, mps — 1) < oo
then A(E) is topologically isomorphic to Ay = ®F A(E;), where
B={ru,;t=0,1 -k} and E= Z‘,E .

Proor. For each m, put
4, = da, m) = {(z,)y € da): z, =0 for all n < m},

which is an open-and-compact subgroup of 4(a). Thus, if I < m, the
coset u, + 4,, has order a,a,,,++* a,_, = a(l, m — 1) as an element of the
quotient group 4(a)/4,.. Notice that the subgroup of T = {z:|z| = 1} con-
sisting of p elements is 7,-dense in T, where 7, = |1 — exp (7i/p)| =
2sin (7/2p). It follows that for each pair I < m of non-negative integers
and each character 7 of 4(a), there exists a character ¥ < 4% such that

(1) |7(w) — 2w}l < =/all, m — 1),
where 4, denotes the annihilator of 4, in A/(?J,). Obviously (1) implies
(2) [7(cw) — y(ew)| < txfal,m — 1) (t=0,1,2, .--).

If the sets E; are defined as in the theorem, then £ = 3¢ E; con-
verges, and
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(3) X B4, k=12 --.).
Notice that (*) implies
(4) 3.7 — N+ Dhsfa(ns, ns — 1) =0 as N—oo .

7~

We apply the arguments in [8: pp. 294-295] with [I'; = 4;.,, and ¢; =
wk;ja(n;, n;y, — 1), and infer from (2), (3) and (4) that Ay E;) is to-
pologically isomorphic to ®% A(E;) for all sufficiently large N. Since
each E; is a finite set and the natural map p; associated with (E,) is
injective, it follows that A(E) is topologically isomorphic to A;. This
completes the proof.

We now prove an analog of Theorem 3 for G = Z. For each natural
number je N, let 4; be a semi-simple commutative Banach algebra with
spectrum FE;. We identify A; with a subalgebra of C,(E;) in the usual
way, and assume that A; contains an idempotent &, of norm one. If
fiy, <+, fv are functions in A4,, ---, Ay, we define a function

f:fl@"'@fN@EN+l©"'

on the set
17}0=’QE1 X voe X B X &L X --o
by setting
F@y = {IL £@H I &@)}  @=@)reE).

We denote by S = S(4, 4,, ---) the algebra of all functions f on E,
which have expansions of the form

F=3f@® OO ®@ym® -,
where ¥ € A;, N, e N, and
M= 3080 1y, < o -

For feS, the norm |/ f]|ls of f is defined to be the infimum of the
numbers M taken over all expansions of f of the above form. We call
S with norm || -]|s the S-tensor product of A, A, --- relative to &, &,
... (or, relative to 0,, 0,, --- if each £(1) is a singleton {0;}). Therefore
S is a semi-simple commutative Banach algebra. Notice that if & =1
for all j, then S is the algebra @7 A; defined in [§].
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THEOREM 4. Let (a, @, +--) and (k, ks, ---) be two sequences of
natural numbers such that

(*) hi<a; Vi and 3 jksja; < oo .
§=1
Let also E, be the subset of Z comsisting of all elements of the form

Ty + Tty oo T ToQp vt By g+ 500,
where 7;€1{0, 1, -+, k;} for all j and 7; =0 for all but except finitely
many j. Then A(E,) is topologically isomorphic to the S-tensor product
S of
AJ:A({O’ 17 ] kl}) (-7: 1’ 2’ ...)
relative to 0,0, «+-- .

ProOF. Let a = (a, @, +--), and let 4(a) be the compact group of
the a-adic integers. Put

Ej:{z’uj:f:oil’"'fki} (j=1,2,"'),
E=T1E;=>E=Ec4a).
j=1 g=1

Then the natural homomorphism P, of A(FE) into A; = @7 A(E)) is norm-
decreasing by Lemma 3 in [8], and is actually an (onto) isomorphism by
Theorem 3 and (*). v

For each Ne¢ N, we define a norm-decreasing homomorphism Jy: A, —
@Y A(E;)C A; by setting

(1) (JNf)(x):f(xly"';xNyoyoy"') (er)‘
Notice that if we regard J, as an operator on A(E) then J, has norm
< || Pz, and that

(2) lim (| Juf = £ llacsr = 0 (f € A(B)) .

(See [8: p. 283].)
Put

E0=CIE1>< eve X By x {0} x {0} X ---,
N=1

which is a dense subset of E. Let B(E, be the restriction algebra of
B(4,) to E,. Here 4, denotes the group 4(a) with the discrete topology,
and B(4,) denotes the Banach algebra of Fourier-Stieltjes transforms of
measures on Zi\d = the Bohr compactification of 2(\11). Let also M.(E,) be
the space of finitely supported measures on E,. Then pec M,(E,) implies
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Il 110w = sup {| (%) |: 7 € d(a)} = sup {| AX)|: x € A} ,

since f is continuous on 2: and 2(\a) is dense in ZI: The space B(E,)
may be identified with the conjugate space of M (E,): f € B(E,) if and
only if

”f”B(En) = 8sup {ISEOfd/'": pe Mo(Ey), | ¢#llpn = 1} < oo,

Since F), is dense in E and A(E)cC C(F), we can and will identify
A(F) with its restriction to E,. Then the embedding A(E)C B(E,) is
a norm-decreasing homomorphism. We claim that A(F) is indeed closed
in B(E,). To see this, take any f < A(E). Then there exists a A€ M(/A\d)
such that X = f on E, and ||\, = || f llzzy. Since E, is countable there
exists a sequence (f,)7 in A(4(a)) such that || f,|liswn = |IN]]x for all =
and f, — X on E, pointwise. Then we have

HIwSf Nam = N Iwf — Ixfallam + Hxfullam
= Hsz(f - fn)”A(E) + HJNH'”f“B(EO)

for all N,n =1,2, .... Notice that the range of J is finite-dimensional
and Jyf, converges to J,f pointwise by (1), for each N=12, ...,
Thus (3) yields

xS llaw S NIull- [ f llap S PPN llaey (N=1,2,--2),

(3)

and hence

(4) ||f”B(E0) = ”‘f”A(E) = ”PEIH ° “f”B(EO)

by (2). Since (4) holds for every f < A(E), we conclude that A(E) is
closed in B(E,).

We now prove that the S-tensor product S; of the A(E;) relative
to 0,0, --- can be naturally identified with A(E,)—the restriction algebra
of A(4;) to E,. To do this, we introduce two maps

S5 20 @F A(E) 5 8,
for each N:
(Kx/)o) = f(my -++, 2y, 0,0, -+¢) (@B X -+ X Ey),
szf = f@5N+1©§N+2@ St

It follows from the definition of S, that K, is norm-decreasing, that L,
is an isometry, and that the sequence (L K) converges to the identity
operator on Sy in the strong operator topology. Take now any fc¢S;.
Then, by the first inequality in (4), we have
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(5) [ Ewfllsmp = W ExS llaey S |1 PE ]| | By Nlag = 1 P[] F (lsy
for all N. Here we regard ®F A(E;)C Az = A(F) in the usual way.
Since K f — f pointwise on E, (5) assures

(6) feB(E) and Ilf”B(Eo) = ”P?””f”sE .
To prove the converse inequality, choose a sequence (f,)7 in A(E) so
that ||fullse = 1| f |z, and f, — f pointwise on E,. Then we have
W Lydwfullsy = 1 Iufallag = 1 fallag
= fallae = NS sy -

But it is clear that Jyf,— K,f pointwise on E as n— < for each fixed
N. Since @® A(E;) is a finite-dimensional linear space, this implies

| Txfn— Kyfllaiy—0 as mn—o  (N=12 ---).
Therefore we have
| LyKyf llsp = lm | Lodwfullsy < N fllaeg (N=1,2,+-).

Since LyKy converges to the identity operator, we have || f|ls, = [/ |lzzg>
and hence

(7) W sy = 11 F azg = [1PE 1S Nlsg (feSz).
Now it is easy to see that all the functions on E, with finite support
are contained in A(E,) N S; and are dense in both A(E,) and S;. Therefore
(7) assures A(E,) = S;.

Finally, there exists a unique group isomorphism ¢: Z— Gp(E,) C 4,
such that ¢(1) = u,, and we have ¢(&,) = E,. The adjoint map ¢* induces
an isometric isomorphism @: B(E,) — B(E,) which maps A(E,) onto A(E).
The composite of the maps

SOt ;
AE) S Ay L s,
is therefore a norm-decreasing topological isomorphism. Since A({0, 1,
.-+, k;}) = A(E;) algebraically and isometrically for all j, this completes
the proof.
REMARK. The above proof shows that B(E,) contains a closed sub-
algebra which is topologically isomorphic to Aj.

We now fix a natural number N. For each j=1,2, ..., let {v,;}i_,
be an orthogonal basis in RY, and E; a finite set such that

{0} & E; C Gp({vyjy +++, Vi) -
We put
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B; = sup{||z]|l: z€ E};}, r; = inf {Jlv,;||: 1 = k < N},

and assume that
(UTMS) 3 Busfr < oo

Under these conditions, we call £ = 3¢ E; a UTMS set (ultra thin multi-
symmetric set).

The following theorem is a generalization of the Meyer-Schneider
theorem (cf. [3], [10], and [2: Chapter XIV]).

THEOREM 5. Let = ST E; be a UTMS set in R”, and define a
map Pz E = [I7E; — E as usual. Assume that pj is one-to-one. Then
we have:

(a) The map Py A(E) — Az = @7 A(E,)) induced by g is a topological
1s0morphism.

(b) E is an S-set.

(¢) E is a set of uniqueness, i.e., PF(E) = {0}.

To prove this, we need several lemmas. Although the first two of
these lemmas are well-known, we give a complete proof to make the
paper self-contained.

For v = (v,)¥ and z = (x,)Y € R”, write

7(x) = e,(x) = €'* = exp [i(V,2, + <+ ¢ + Vy¥y)] .

If % is a unit vector in R and ¢e C'(R"), we define

(D)) = 34

0¢ .
5, ") (e RY)

which is the derivative of ¢ in the direction of 4. We also write S, =
{xe R":||z]]| =1} for I > 0.
LEMMA 5.1. (Bernstein’s inequality). If Pe PM(S,), then we have
”Df’fP“o(RN) = lk“P”PM k=12 --)
for every unit vector w in RY.
PrOOF. Let f, be the 4l-periodic odd function on R' defined by
¢ o=st=
Sit) = {
20—t (I=st£2).

Then we have

(1) =13 {(sin ﬁz’i) / (%”) }2(— i) exp (i mrt/21)
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(2) 1 o = .3, {(sin 22) [ (2E)} = 2.

To prove (1), we identify [—2[, 2]) with T in the usual way and compute
the Fourier coefficients of f,(t — 1)+ 1. (2) follows from || f,||sx = fi(}) = L.
Let now Pe PM(S) be given. Since
P() = (7, P, (re R"),
we have Pe C*(R") and
(3) (DEP)(Y) = ((—iux)*e™*, P,y (YeR k=12, --+)

for any unit vector » in R¥. Notice that |ux| < |[|z|| by Schwarz’ ine-
quality, and so

(4) Si(uz) = uax (xesS) .
Since S, is an S-set [4: Theorem 7.5.4], we have by (2), (3), and (4)
[(DEPY(M)| = |<f luz)e™%, P,)|
< || fl(ux) e || pam) « || Pllpy
= Il s} | Pllese = TP -
This completes the proof.

LEMMA 5.2. (Schneider’s inequality [10]). Let Pe PM(S),1l > 0, and
N >0 be given. Let also K be any 7-dense subset of R". Then we have

sup | P(7)| = {1 = 27 (@7’ HI Pllea -

PROOF. We first prove this assuming P e PF(S), i.e., Pe C,(RY).
Then there exists a v,€ RY such that

| P(Yo) | = | Pllom, = || Pllpa -

Without loss of generality, we may assure P(7;) = 0. Choose any 7,€ K
so that ||7, — 7|l < 7. Let u be the unit vector in the direction of
v, ~%,. Thus

Y.=" + tu, where t=1|7",—TI=Z7.
By the Taylor formula, we then have
Re P(7,) = Re P(v, + tw)

= Re [13(70) + ¢D,P)(7y) + g(Diﬁ)(v’)]

= || Plloy + 0 + —tziRe (DLB)()

for some 7' € RY, It follows from Bernstein’s inequality that
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sup [P(7)| = | Re P(7,)]
= 1= 27| Pllex = A — 279B) || Pllps -

Let now Pe PM(S,) be arbitrary. Given ¢ > 0, take any probability
measure p, € M(S,) N PF(S,). Then we have

Psp.e PM(S,,.) and Pxp, = Pj, e C(R").

It follows from the first case that

~ N
“sup | P(7)| = sup | Px p.(7)]
7€ K 7€K
= {1 —27(C + &)} P tte||par -
Since lim, fZ.(Y) = 1 V7€ R?, this yields the desired inequality.

LEMMA 5.3. Let {v,}} be an orthogonal basis in RY and E any
subset of Gp({v,}¥). Then the set

Et={veR":¢""=1 Vzec k)
is n-denmse in R", where 7 = n(Z¥ || v, |7
Proor. It suffices to note that E* contains
N
Gpl): = {E merllovine 2} .

LEMMA 5.4. Let E be a finite set in RY, and 0 <1 < o. Suppose
that E* is 7n-dense in R™ for some 0 < 1 < 2"*/l. Then

5,0.me | < {1 - L7 510,40,

2EE

sup

7.8e RV PM

holds for every finite subset {Q,: x€ E} of PM(S)). Here 0, is the unit
mass at x.

ProoF. Let {Q,:xe E} < PM(S;) and g€ R" be given. Then we have
S, Q.*5, S, Qe

ze E ze E

Q.00 + B)e

zc K

= 8su
Py 7eRpN

(1)

= sup
T 2eEt

Let @€ PM(S,) be the sum of all e™**Q,, x€ E. Since E* + g is 7-dense
in R”, it follows from Schneider’s inequality that

A+ )| 2 {t = E2QL,

sup
leEL
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or, equivalently, that the last term in (1) is larger than or equal to

{1 - —(%7—)2—} sup | 3 Q,(v)e i

7yeRN | zeE

Since B¢ RY is arbitrary, this gives the desired inequality.

LeMMA 5.5. Let o = (2aN)™, and let

) N 1/2
=3 R and ;= =(3 lloll)

E=5+1
To prove Theorem 5, we can assume the following:

(i) r;>4nNl; and A+ a)l;); <1 (7=1,2, ---).
(ii) The sets Dt x; + S,,,, ;€ E; (1 = j < n), are disjoint for each
n=12 ...

ProoF. We first prove that (i) implies (ii). Fix any =€ N, and take
two distinet points >rx; and >7ry; of SUE;. If 1<k <n is the first
number such that x, # y,, then we have

] n %
!{51_‘.901“21‘41/:’

But (i) assures that »; — 2l; > »;,, — 2;,, for all 7, and so

IZ%—@%
Moreover, we have
(r, — 2L,) — 2ar, = (1 — 2a)r, — 21,
>{l—2a— @2rN)}r,>0

by (i) and the definition of . Thus (i) implies (ii).
Take now any real a so large that

(1) a>4rN and (1 + a)rN“ja <1.

ng—2lk.

=r, — 2L, .

By (UTMS), there exists a natural number j, such that r; > (¢ + 1)R;,,
for all j > j,. Since R; = r;, it follows that j > j, implies

(2) r; > AR+ 1i > aRy, + aRys + Ty
>01,kiI R,=al;.

=i+1
Notice now that 7; < zN"?/r,. It follows from (1) and (2) that 5 > j,
implies

QA+ a)lm; <@+ a)a'r;-aNVr; < 1.
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In other words, (i) is the case for every j > 7,.

Let now ¢, .-+, t; be any real positive numbers. Put Ej= E; if
J>Jo, B =t;E; if 7 < 7, and let ()7, ) and (I}); be the numerical
sequences corresponding to (E))". We choose successively ¢;, - - -, t, ¢, 80
that the above three sequences satisfy (i).

Then both £ = S E; and E' = 3 E; are disjoint unions of the
same number of translates of 3;.; E;. Therefore it is trivial that if E
has the required properties in Theorem 5, then so does £. This completes
the proof.

LEMMA 5.6. Suppose that the UTMS set E satisfies condition (i)
in Lemma 5.5. Let {Q,..;%;€ E;, 1 <j=n} be a finite subset of
PM(S,.,), » being a natural number. Then we have

SUD{ xjﬂ%éjén Q.yorna(7) €XD (—i ]i‘,zl V25 ) I 1Y, 7;€ RN}
< (2/C.) sup { 18,00, (7) exp (-w S x]-> Sve RN} :
. =
where C, = II17" {1 — (7:,)°}.
ProOOF. Write
8, = ATy Sy = 8, + R, = ar, + R,; -+
s, =8 +R=ar,+R,+ -+ R,.
Let v, -+, 7, € RY be fixed. In the expression
#(7) :wnez;‘?n {zg}zj Qn---xn(7) exp (—i :Z:;fijj>}e—irnwn ,
1€ j<n

the functions of v in the brackets are Fourier transforms of pseudo-
measures in PM(S, ). Since Ej; is 7,-dense in RY by Lemma 5.3, and
since 7,8, < tNY’a < 2'%, it follows from Lemma 5.4 that

Sio3 Je
Tpe€Ey, xjeEj,1§j<n

sup |¢(7)| = At sup
7 s

n—1
= 4750 | 3 S Qo) O} exp (=i X))
7 zjeEj Tp€E, j=1
1s5<n

where A, =1 — (4,s,)*/2. Notice that

supp {z% (Qxl...,,n*ﬁzn)} c8,, + 8z =25,

for all ;€ E;,1 < j <mn. Therefore an inductive argument applies, and
we have
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sup
7

Qs (V) exp (—i 3 )
zjeEj,lgjgn J=1

S (Ay s A SUD |5 @upny 102 53,)°)|
7 zj

< 2C;'sup lE Qxl...,,n(”/) exp (— Y i‘, x]->
7 g j=1

Since 7, ---+, 7, € RY are arbitrary, this yields the required inequality.

ProoOF OF THEOREM 5. We will assume the two additional conditions
(i) and (ii) given in Lemma 5.5. Notice that then

Cy=21mCi* =211 {1 — ()™ < o ,

since 7;l; < (AN*/r;) (R + ;1) < 2aNR;, /r; and so X7 (7,0, < by
condition (UTMS). Notice also that (i) implies

S, E,c 8, 8., (n=12 ---).
j=n+1

To prove part (a), take any ne N and any = vectors v, ---,7, in
R”. We define a function f = f, .., € AQIE; + S..,) by setting

(1) f(S‘:, z; + S) — exp (q; §=; mj) Vi, e B,

which is well-defined by (ii).
We then claim that

(L.1) ”frl---r,,.”A<zI‘Ej+sMn) <GC,, and

(1.2) PE(frlu-rn) = &, ®:---® Orp ¢

In fact, (1.2) is trivial. To prove (1.1), take any Qe A(S! E; +
S.r,) = PM(Z! E; + S,.»,) (notice that 33t E; + S,., is a finite disjoint
union of translates of the S-set S,.). Write

¢ :x-eE.z;‘stanr"xn*5z1+...+%
jeEj1sis

with Q,,...., € PM(S,,,). Then we have
(o @ = S, Qupry Doy

= %‘, Qzl...%(O) exp (i Jz:‘: “/]-x,-> .

Therefore, by Lemma 5.6, we have

<, @I GllQlew  vQe A(SE; + s)
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This, combined with the Hahn-Banach Theorem, yields (1.1).
It is now easy to see that P, is a topological isomorphism of A(K)
onto A; and satisfies

”-PEf”AE S [ Fllae = COHPEf“AE erA(E) .

(cf. the proof of part (a) of Theorem 1).
To prove part (b), fix a natural number %, and define an algebra

homomorphism

L.: A(E)— A(3\E; + S..,)

by setting

(2) L) 305+ Sury) = F(314) V(s By}t .

We then claim that

(2.1) LS Nlasm 24509 = Coll f llack) Vfe AE).

In fact, it suffices to prove this for f = ¢, with ve R, But then f =

S1wry Where v, = .. =7, =7, Thus (2.1) is a special case of (1.1).
We next prove

(2.2) | Loe; — erllaznpjvs,) < MGl Y]l-1,

for every ve R”, where M is an absolute constant. Fix v e R", and set
=1, We have by (2.1)

[|(Lnen)® ”A(ZIT‘ Ejsp = i Lnekr”mz’{ Ej+8p
= Gollew la = Co (k=0, 1, £2, -..).
On the other hand, (2) shows
|arg [(Laee] | < [|7]]-1 on >tE;+ S, .

Thus (2.2) follows from Lemma 1 in [8].
Notice now 7. E; < S, and so

PM(E)c A E; + 8.) .
Given any Q¢ PM(E), we prove
(2.3) LiQe M(i E,.)c M(E), and

(2.9 (L2Q)(7) — QM| = MC,[712.11Qlsu vYe RV .
The definition (2) of L, shows supp L}Q is contained in the finite set
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>wE;, and hence (2.3). If 7€ R¥, we have by (2.2)
(L2 () — Q)| = [{Lue—r — ey, |
= [[Lye; — e—TllA(Z’;Ej+Sln)'||QHPM
= MG L || @ll2x »

which establishes (2.4).

We infer from (2.1), (2.3), and (2.4) that M(E) is weak-* dense in
PM(E) and E is therefore an S-set.

To prove part (c), let f be the characteristic function of the unit
ball S, divided by its volume (hence ||f|, = F(0) = 1). Set f,(z) =
(ar,) " f(ar,)'a) for n = 1,2, --., so that each f, is supported by S,,,
and has Fourier transform f,(v) =7 (ar,7), ve R*. We can choose a
positive real number B, so that Y€ RY and ||7|| = B, imply |flaV)| <
(2Cy)~'. Notice then

(3) 7] = Byjr, = | F(7)] < (2C)™ n=12.-).
Given n = 1, pe M3 E;), and 7,€ RY, we now prove
(3.1) Il tllesr = Cosup {| (M) |: Y€ RY, ||Y — Yo|| £ By/ra} -

First notice that supp (f,*pg) <>t E; + S..,. Regarding LI(RNZ as a
subspace of PM(R") in the usual way, we have for every gec A(%&)

g, Li(fur 1)) = (L9, Furtt)
= (Lng) (@) - (foxp)(2)de

o
Ly Ej+Sar,

=2{l,1,, .0, A5 0)7(o = Sen)isp ({2}

=2 g<i x:)#({i x]}) =<9, 1)
where the sum 3 is taken over all z;€¢ E;, 1 <j <n. This shows
Li(f.xp) = p. It follows from (2.1) and (8) that

1 2tllpy = ”er({‘n*ﬂ)upu = Gl farxttllpn

= Cusup |£,(NAM)]

< Cymax {sup {| Z()|: [|7]] = Bu/ra}, [ #4102/ (2Co)}
and so

| tllon < Cosup {|AM[: [|7]] < Bofra}

Replacing ¢ by e_, tt, we thus have (3.1).
Take now any Q € PM(E). By (2.3) and (2.4), we have L¥Q <€ M(> ' E;)
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and

(3.2) (L@ ()] = 19| + MCy|| 71111 Qllpa (v € RY)
for all » = 1. We apply (3.1) to # = L}*Q and have

(3.3) I LERlpu = sup {[{(LxQ) (MY e RY, |7 — Y|l £ Bo/r,}

for every n = 1 and 7v,€ RY. It follows from (8.2) and (3.3) that

(3.4) Citll LiQllow < sup {|Q()|: Y€ RY, [|7 — %[l < By/r,}

+ MC,({[7l] + Bo/r)la || Qllpw -

Since 7,€ R is arbitrary, we can replace it by any vector 7, with ||7,]|| =
2B,/r, for each n. Then (3.4) yields

Co | LEQ|low < sup {|Q(M)|: Y€ RY, || 7| = Byfr,)
+ 3MCOBO(Z,,/’I",,) “ Q ”PM s

which shows
C 1@l < Tm Q1)

since L*@Q — @ in the weak-* topology of PM(E'), r,—0 and l,/r,— 0 as
N —> oo,

This completes the proof of part (¢) and Theorem 5 was established.

We now give four examples of “explicit” non S-sets in certain groups,
although the first two of them are essentially contained in [8].

EXAMPLES OF NON S-SETS. Let U be the union of the two open
intervals (0, 7?/6 — 1) and (1, #%/6). Then the following sets, denoted by
the same notation £, are non S-sets.

(1) Let G be the product group of any non-trivial compact abelian
groups G,,» =1,2, ---. Choose and fix a non-zero element z,€ G, for
each » = 1. Put

E, = {(snx”)‘f €G:e,e{0,1} Vo, and 2 - a}

for ac U.

(2) Let G=T or R, and p = 3 any natural number. Define
E, = {i‘, e,p " ¢6,€{0,1} vn, and i N oy 1€2n = a}

for ac U.
(8) Let G=R", and (x,)° any sequence of non-zero vectors such
that 337 (|| 2,41/l #]l.)? < 1/2. For each ae U, put
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E = {Z €,%,:6,€{0,1} Vu, and 3\ n%,,_.&, = a,} .
n=1 n=1

(4) Let a = (ay, a, --+) be any sequence of natural numbers =2,
G = 4(a) the group of the a-adic integers, and u,, %, %,, - -+ the elements
of 4(a) defined as before. Choose any increasing sequence (n,)” of natural
numbers so that 337 j/a(n;, n;,, — 1) < o, where a(m, n) = Gpmps *** G
for m < n. Put

EN’a = {i €iUn;i €5 € {0,1} vj, and i T84 16s5 = a}
j=1 j=1

for ac U.
The proof that these sets are non S-sets mainly follows from Remark
(a) in [8: p. 288]. We omit the details.

REMARKS. (a) The set & given in Theorem 3 is an S-set. The proof
is similar to that of part (a) of Theorem 1, although we need a more
subtle argument.

(b) We can use Bernstein’s and Schneider’s inequalities to improve
the estimate of 7(d) given in Lemma 1 of [8]. Let 0 <d < 21/ 2, and
A(d) the restriction algebra of A(T) to [—d, d]. Then we have

(d) = ||e" — 1|l = |a]d/(l — 87d) VaeR.

In fact, fix any a > 0. If Pe PM([—d, d]), then
faz __ — “. itz
(é — 1, P) <Some dt, Pa,>
- S“@x ¢, Pydt = — S“ﬁ'(~t)dt :
0 0

It follows from Bernstein’s and Schneider’s inequalities that
| < e — 1, Py| < @l P'llom < @d| Pllow

< ad(l — 87| Pllow -

This, combined with the Hahn-Banach Theorem, yields the desired ine-
quality.

(¢) Most of the results in this paper is part of the author’s lecture
notes [9].
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