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In a previous work [12] we presented COB, an object calculus which features 

objects with dynamically changing service offers. We also defined a type sys

tem for interfaces and a typing discipline that guarantees that no object may 

experience an unexpected service request at run-time. In the present paper, we 

extend our type system such that it describes "infinite state" types. We define 

equivalence and sUbtyping relations over those types based on bisimulation and 

simulation relations. We also define an algorithm to decide the equivalence or 

the subtyping relation of two types. 

The type system is applied to OL, a new calculus that uses the interface 

"states" in the behavior of the objects. As in COB, in OL there is a distinction 
between private and public interfaces. A private interface can have at most 

one client at a time whereas a public interface can be known by more that one 

client. Private interfaces can thus propose a non-uniform service offer (the set 

available services may change during the computation). OL extends the results 

of COB to infinite types: in spite of non-uniform service offers, in a well-typed 
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configuration, there may not occur any "service not understood" error at run

time. 

INTRODUCTION 

behavior types 

Usually type systems for objects or for object interfaces are satisfied by defining 

the signatures of methods that an object may accept. In [12], we defined a type 

system where one can define ordering constraints on the messages (methods) 

that can be handled by an object. For example the behavior type of a one place 

buffer interface can be written like this: 

OneBuffer = put ( ... ); Full 

Full = get(···); OneBuffer 

Interfaces of this type expect to receive repeatedly put messages followed by 

get messages. To define a two place buffer, one must introduce an intermediate 

state where both put and get messages are allowable: 

TwoBuffer = put(··· );Intermediate 

Intermediate = + 
put(··· ); Full 

get(··· ); TwoBuffer 

Full = get ( ... ); Intermediate 

The definition of the type of a larger buffer may be very complex because of the 
multiplication of states. A simple way to avoid this complexity is to introduce 

a counter in the buffer: 

TwoBuffer[n] = + 
[n < 2] put(···); TwoBuffer[n + 1] 

[n > 0] get(···); TwoBuffer[n - 1] 

The parameter n represents the difference between the number of put and 

get messages. Actually, this is the definition of an infinite family of buffers, 

TwoBuffer[O], TwoBuffer[l], .... The empty two place buffer being TwoBuffer[O]. 

The put messages are possible only if n < 2; Le., less than two elements in the 
buffer, while get messages are possible only if n > 0; i.e., the buffer is not 

empty. With this representation it is very easy to define the type of a larger 

buffer. The put messages have to be guarded with the maximum number of 

elements allowed in the buffer: [n < max] put(··· ); Buffer[n+ 1]. The principal 

novelty of this representation of behavior types comparing to the one presented 

in [12] is that it is possible to describe types with unbounded number of states: 

put(···); Buffer[n + 1] 
Buffer[n] = + 

[n > 0] get(···); Buffer[n -1] 
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The above definition is the behavior type of an unbounded buffer. There is no 

restriction on the number of elements it can hold. The only constraint is that 

the number of put's must be greater or equal to the number of get's. 
The aim of this type system is to provide a way to record the history of 

the usage of an interface. Typically, we want to be able to count the messages 

handled by an interface and compare them. So in our type system after receiv

ing a message the type state may be incremented or decremented by a certain 

positive integer value (counting) and the receiving of a message can be guarded 

by a predicate of the form: n < cor n > c where c is a positive integer constant 

(comparison). 
This type system allows to define relations between more than two messages. 

Suppose that we have a special buffer with two put operations. Of course, we 

want the total number of put's to be greater or equal to the number of get's: 

+ 
Buffer[n] = 

Putl(··· )jBuffer[n + 1] 

put2(··· );Buffer[n + 1] 

[n> 0] get(···)j Buffer[n - 1] 
+ 

The calculus 

We define OL, a calculus that describes configurations of objects running in 

parallel and communicating with each other by exchanging messages. The 

syntax of the language is given by the grammar of table 1. In this syntax, the 

I .. -
Del .. -

Guard .. -
Recep .. -

B .. -

u:T 

A[i] = B 

u.n > c I u.n < c 

?u([Guard1]ml (jl) = Bl ,··· ,[Guardn]mn(jn) = Bn} 

o 
!u.m(pil) > B 

L~=l Recepi 

A[Pii] 

create A [Pil] > B 

if Guard then Bl else B2 

a .. - B I Gla I new u:p.x[a] in a 

Table 1 Syntax of OL 

terminal T denotes an interface type. An interface type is a pair consisting 
of a mode (public or private) and a behavior type. A private interface can 

be known, i.e., its client role held, by only one client at any time whereas 
a public interface can have multiple clients. As a public interface must be 
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able to offer services to multiple clients, its service offer has to be uniform; 

Le., the set of services available at a public interface does not change during 

the computation. In contrast, the services available at a private interface can 

change dynamically depending on the protocol of interaction between the two 

partners. The mode (noted p,) also determines the kind of interaction on this 

interface. The communication on a private interface is by rendez-vous. The 

invocation of a public interface creates a message that will be absorbed by its 

destination interface in a subsequent step. These two modes of interaction are 

inspired by the interaction modes of the ODP computational model (see [13] 

for a formal definition of this model). In this model, communication between 

objects is possible only if their interfaces are bound. There are two forms of 

bindings: implicit and explicit. Using an "implicit binding", an object only has 

to know the reference of one of the interfaces of a server. A service invocation 

then corresponds to a message creation that has to be transported by the system 

infrastructure to its destination. The public interfaces are intended to model 

this form of interaction. The second form of binding in ODP is the "explicit 

binding". In this case, the two objects, 0 1 and O2 , wanting to communicate 

have to create a binding object. This binding object is distributed; i.e., one 

of its interfaces will be co-located with the object 0 1 and another one co

located with the object O2 • The invocation of a service of O2 by 0 1 is dealt 

with as follows: 0 1 sends the invocation message to the binding object's co

located interface and then the binding object delivers the message to O2 via 

the O2 co-located interface. The interaction between 0 1 , O2 and the binding 

object are synchronous. This is possible because interfaces are co-located and 

private (the interfaces of the binding object have been created especially for the 

communication between 0 1 and O2 ). The "explicit binding" form of interaction 

of ODP corresponds to the interaction mode of private interfaces. 

We briefly introduce the main features of our calculus using the following 

stack example: 

Stack[self: private ?Buffer[n], top: private !TCellJ= 

?selfUself.n>O]get(r1: T1)= new r2: T2 in 

!top.read(!r2) > 

?r2[ret(e: T, next: TCell)= !r1.ret(!e) > 

Stack[?self, !next] 

I 
put(e: T)= new cell: private TCell in 

create Cell[?cell, !top, !e] > 

Stack[?self, !cell] 

Cell [self: private ?TCell, next: private !TCell , e: T]= 

?self[read(r: T2)= !r.ret(!e, !next) > 0] 

The first object, Stack, has the server role (ability to receive messages) ofthe 

private interface self. Its behavior is specified by its parametric behavior type, 

Buffer[nJ introduced in the preceeding section. All the put and get services' 
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invocations will arrive on this interface. Stack also has the client role (ability 

to emit messages) of the private interface top of type TCell (interfaces of type 

TCell can only perform once one read action). The behavior of Stack is to wait 

for a put or a get message. This behavior is non-uniform in the sense that the 

get service is guarded with a predicate and thus is not always available. The 

guard of the get service ensures that the behavior type state (n) is not null 

which means that the stack is not empty. 

get service. the argument rl is a reference to the interface where to return the 

top ofthe stack. The client role ofthe newly created interface is sent to top as 

an argument of read. Stack then waits on this interface for e the element on 

the top the stack and next the reference (client role) ofthe Cell containing the 

next element. Stack sends e along rl and then returns to it initial state with 

an updated value of its top. 

put service. Stack simply creates a new Cell with top as successor and then 

returns to its initial state with the new cell as the value of top. 

This piece of code is very similar to what would have been the coding of 

a stack in ADA, for example. The advantage of the OL approach is that 

the "synchronization constraints" are encapsulated in the behavior type. The 

typing system then ensures that the user (programmer) has checked that the 

stack accepts get action only if the behavior type parameter is greater than o. 
In languages like ADA, this is the responsibility of the programmer. 

BEHAVIOR TYPES 

A parametric behavior type is a quadruplet (E, x, n, r), noted E t> rx[n], where 

n is the parameter of the type, r is the set of capabilities of the behavior type: 

r C {l,?p. The environment E is a set of equations of the form xi[n] = ei. 

Each Xi is a behavior type variable that appears once and only once in the 

left-hand side of an equation. Each ei is an expression defined by the following 

syntax: 

n 

e ::= L[predi]mi(Pixi[ai]); xali] 
i=l 

where: 

• each mi is a method name. We consider only deterministic behavior_types 

i.e. i "I- j =} mi "I- mj 

• each Xi is a list of behavior type variables describing the behavior of the 

method arguments 

• each Pi is the role, client (1), server (?) or both (l?) 

1 Note that the set of capabilities may be empty whereas a role cannot 
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• each ai is a positive integer constant 

• each predi is a predicate of the form pred( n) = n < c or pred( n) = n > c 
where c is a positive integer constant 

• each Ii is a function of the form: f(n) = n + cor f(n) = n - c where c 
is a positive constant. 

Notation. we will write (x[nJ -+ [pred]m(px [a]) j xl[j]) E E to mean that the 

environment E contains the equation: 

x[n] = [pred]m(px[a])jx/[f] + L~tlpredi]mi(pixi[ai])jx~[Ii] 

Behavior type action 

Since we want to deal with non-uniform service availability, we have to specify 

how types evolve. We consider here only instantiated behavior types, ranged 

over by the meta-variable X. A type evolves by performing a type action. 

A type action is a method signature annotated with a role: pm(XI' ... ,Xn). 
After performing an action a type evolves to another type as shown in the 

following rule: 

(x[nJ -+ [pred]m(pixi [al]'·· . ,PnXn[an])i y[f]) E E 
pred(b) = TRUE 

....:....-...:...;:..----------------- with per 
E I> rx[b] pm(El>p,X,[a,] .... ,EI>Pnxn[an]\ E I> ry[f(b)] 

Which informally readsj If there is an equation containing a method m in the 

parametric behavior type definition and if the predicate is evaluated to TRUE 

for a value b then the instantiation of this behavior type with the value b can 

perform an m action. Let us, for example, consider how the type of an empty 

unbounded buffer can evolve .2 

?putO 
?Buffer[O] ~?Buffer[l] 

?Buffer[OJ can perform a put action and then evolves to ?Buffer[l]. 

Behavior type equivalence 

To define the equivalence of two behavior types we use the well known bisimu

lation relation (see [9]). 

Definition 1 (Bisimulation) 

A binary relation (3 over behavior types is a bisimulation if (Xll X 2 ) E (3 implies: 

.) X pm(Y, ) XI X pm(Y2 ) XI d (XI X') (3 d (y;- y;-) (3 
1 1 -'---'---'+ I=} 2 -'---'---'+ 2 an I , 2 E an I , 2 E 

2 Usually, we consider, without loss of generality, that all the type equations are defined in 

the same environment E. So, the behavior type E I> rx[n] is written rx[n]. 
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Definition 2 (Type equivalence) 

Two types Xl, X2 are equivalent, noted Xl '" X 2 , iff (Xl, X 2 ) E (3 for some 

bisimulation relation B. 

Behavior subtypes 

Two behavior types Xl and X 2 are in a subtyping relation if: 

server case: all receiving actions that Xl can perform can be performed by 

X2 too 

client case: all sending actions that X 2 can perform can be performed by Xl 

too 

Definition 3 (Subtyping relation) 

A binary relation R over behavior types is a subtyping relation if (Xl, X 2 ) E R 
implies: 

1·) X ?m(l\) X' X ?m(Y2) X' d (X' X') 'D d (Y;- y;-) 'D I ---'---'-+ I::::} 2 ---'---'-+ 2 an 1 , 2 E 1'- an 1 , 2 E 1'-

Let us consider the following example where u is a client interface and v a 

server interface: 

The interface w instantiates both u and v so X is a subtype of both XI and X 2 • 

A d· d fi .. .) X lmO X'· 1· X lmO X' .. ) X ?mO X' ccor mg to our e mtlOn: 1 1 ---"-+ 1 Imp les· ---"-+ ; 11 ---"-7 

implies X 2 ?mO) X~. We are then sure that all the services invoked by BI will 

be available in B2 • 

Definition 4 (Subtyping) 

A behavior type Xl is a subtype of a behavior type X 2 , noted Xl :::; X 2 , if 

(X I ,X2 ) E R for some subtyping relation R. 

Deciding behavior type equivalence 

As we have seen before, to prove the equivalence of two types Xl and X 2 we 

must exhibit a bisimulation relation (3 such that (Xl, X 2 ) E (3. 

Definition 5 (Bisimulation construction (I)) 

• (init) 
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• for all (XI ,X2) E flk 

- (XI, X 2 ) E (3k+1 

(small step) 

X pm(l\) X' 'fX pm(Y2) XI h (X' X') fl (y;- ~;;.) - case I -'---'--'+ I: 1 2 ~ 2 t en I' 2 E n+1 and I, J. 2 E 
fln+1 else Fail 

X pm(Y2) X' 'f X pm(Y1 ) X' h (X' X') fl d (Y;- ~;;.) - case 2 -'---'--'+ 2: 1 I -'---'--'+ 1 t en 1, 2 E n+l an 1, J. 2 E 
fln+1 else Fail 

(success) 

Property. The fixed-point relation constructed using the rules of the Bisimu

lation construction (I) is a bisimulation relation over behavior types. 

This property is due to the fact that the rules of the relation construction 

(Definition 5) are directly inspired by the bisimulation definition. 

Let us consider the following example: 

Bl[n] = 
[n > 0] getO; Bl[n - 1] 

+ putO; Bl[n + 1] 
B2[n] = [n > 0] getO; B2[n - 2] 

+ putO;B2[n + 21 

If we want to check the equivalence between !Bl[O] and !B2[0] we have to 

start from a relation flo = {(!Bl[O], !B2[O])}. Since both !Bl[O] and !B2[O] can 

perform a put action, we have fll = {(!Bl[O], !B2[O]), (!Bl[l], !B 2 [2]) }. It is 

easy to see that it is not possible to reach a fixed-point (in a finite number of 

steps) because both types can always perform a put action and then evolve to 

new behavior types with a greater parameter. So fl2 = fll U {(!Bl[2], !B2[4l)}, 

fl3 = fl2 U {(!Bl[3],!B2[6])} and so on. A simple way to avoid this kind of 

infinite sequence is to add all the elements of the infinite sequence in one step. 

To achieve this goal, we add to definition of the bisimulation construction (I) 

another rule called: big step. 

Definition 6 (Bisimulation construction (II)) 

The bisimulation construction (II) is defined with the rules of the definition of 

bisimulation construction (I) and with the following one: 

• for all (EI I> rXI [all, E2 I> rX2 [a2]) E flk 

if (XI [n] "'"* [n > a~]m(plx~ [n + CIl) E El and 

(x2[n] "'"* [n > a~]m(plx~[n + C2]) E E2 and 

al > a~ and a2 > a~ 

(big step) 

Let us apply this last rule to our preceeding example. We have flo = {(!Bl[O], !B2[O])}. 

Both types have the same set of capabilities {!}. Both corresponding paramet-

ric types can perform a put action for every value of their parameter greater 
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than O. So f3I = f30 U {(!BI[1 x n + 0], !B2[2 x n + 0]) for n > O}. It is easy 
to see that the relation BI = {(!BI[n], !B2[2n]) for n ~ O} is a fixed-point and 

thus a bisimulation relation. 

Remark. what we are saying here is that the sequence /30, f3t. •. • ,f3n, where 

f3n is a fixed-point, is finite. Of course, each of the f3i is possibly infinite. For a 

full mechanization of the bisimulation construction, one will have to deal with 

operations on infinite sets. It is easy to have a finite representation of sets 

obtained by our construction rules since all the constraints on states are linear. 

This method can be applied similarly to the subtyping relation construction. 

STATIC SEMANTICS 

Definitions and notations 

In order to facilitate the expression of the typing rules, we introduce the no

tion of constrained behavior types. A constrained behavior type is a special 

form of parametric behavior types noted E I> px[inf sup[ where inf and sup are 

the parameter bounds: inf::; n < sup, n representing the parameter of the 
(constrained) behavior type, inf EN and sup E Nu {co}. 

Remark. Note that parametric behavior types and (instantiated) behavior 

type are special cases of constraint types: E I> px[a a + l[ is the behavior type 

E I> px[a] and E I> px[O co[ is the parametric behavior type E I> px[n] 
A constrained behavior type can perform an action If its corresponding be

havior type can perform this action for all the values between inf and sup. 

(x[n] -t [pred]m(Plxdal],'" ,PnXn[an])j y[f]) E E 
n E [inf sup[ :::} pred(n) = TRUE ____ -'-_-=-..o..,----'=--:~~ ___ ....,.-________ with per 

E [. f [pm(EI>Plzl[a1]"" .Ei>p"z .. [a,,]) E [f(' f) ( )[ 
I> rx In sup ) I> ry In sup 

For example ?Buffer[O co[ cannot perform a get action whereas ?Buffer[l co[ 
does. 

The restriction of a constrained behavior type by a guard is defined by the 

following equations and is undefined otherwise: 

rx[inf sup[\[n > c] = rx[c sup[ if c < sup 

rx[inf sup[\[n < c] = rx[inf c[ if c > inf 

We define also possible(X) as the set of all the method names that can be 
performed by any restriction of X. 

possible(rx[inf sup[) = {m E M eth, 3a E [inf sup[, pEr X, X"lrx[a] pm(X\ 

X'} 
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An interface type is then a pair noted p,X where p, is the interface mode and 

X its constrained behavior type. The meta-variable T will range over interlace 

types. A typing context r is a list of bindings of the form: u: T or u: (1'). 
The set of interlace names appearing in a context r is called its domain, noted: 

Dom(r). The context extension, noted r,u:T, is defined such that r,u:T I

u: T. The static semantics is given using the following judgments: 

judgment 

r I- u:T 

r I- u:(1') 

rl-B 
rl-C 

meaning 

in the context r the interlace u has type T 

in the context r the object A has type (1') 

in the context r the behavior B is well typed 

in the context r the configuration C is well typed 

In order to check the non-duplication of server roles and private client roles, 

we define a partial function, noted Tl EB T2 over interface types such that a 

non-duplicable role cannot be present in both Tl and T2. 

Definition 7 (Interface type addition) 

The interface type addition is defined by the following equations and is unde
fined otherwise: 

(public rlx[infsupD 

EB = public (rl U r2)x[infsup[ if? f/:. (rl n r2) 

(public r2x[infsupD 

(private rl x[inf supD 

EB = private (rl U r2)x[inf sup[ if (rl n r2) = 0 
(private r2x[inf supD 

We extend EB to contexts as follows: (r, u:T1 ) EB (u:T2) denotes the context 
r, u : (Tl EB T2). We will write r, u : p,rx[inf sup[EBr'u as a short hand for 

r,u:p,rx[inf sup[EBp,r'x[inf sup[. 

Definition 8 (Subtyping over interface types) 

An interface type p,rx[inf sup[ is a subtype of an interface type p,'r'x'[in/' sup'[ 

if p, = p,' and 

• if inf = sup + 1 then in/, = sup' + 1 and rx[inf] :j rx[in/,] 

• if inf = 0 and sup = 00 then in/' = 0, sup' = 00, r = r' and x = x'. 

Typing rules 

The basic idea underlying our typing rules is to guarantee that each object use 

the interfaces in a way compatible with their declared behavior type. Our rules 
ensure also that there is no duplication of the roles of the private interfaces. 



r f- u:J.Lrx[inJ sup[::}? ¢ r 

ff-O 
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this rule introduces the notion of receiving obligation. If an object still has the 

server role of an interface then it cannot stop. 

r,u:T2 f- B 

T !m(T) m 
1~.J.2 

r f- fJ:TI 

Tlji' 
r EB pfJ defined 

fEB pfJ,u:T1 Hu.m(pv) > B 

This rule ensures that the type of u allows an m action and that the emitter 

cannot use anymore in B the non-duplicable roles it has sent. 

In this rule it is important that possibleO = {mI, ... ,mn}. This ensures that 

all the messages that can be processed by an interface of type T are handled 

by the reception action. The possible function defined on constrained behavior 

types is extended to interface types. 

r f- Recepl ... r f- Recepn 
n 

r f- 2: Recepi 
i=l 

In a multiple interfaces' reception, the typing context is propagated as it is in 
all the branches of the choice. 

f, u : T \ Guard f- Bl 
r, u : T \ ..,Guard f- B2 

r, u:T f- if Guardthen Bl else B2 

The Guard constraint is propagated in the then branch whereas its negation is 
propagated in the else branch 

r,u:J.L!?x[O oo[f- B 

r f- new u:J.L x[nJ in B 

r,u:J.L!?x[a a+l[f-B 

r f- new u:/tX[aJ in C 

A newly created interface has both roles: client and server. If its type is 

parametric then it should be unconstrained (n E [0 oo[). 
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r,A:(T),u:T r- B 

r,A:(T) r- A[u:T] = B 

For an object declaration, we simply check that the object behavior is well

typed under the assumption that its interfaces has their declared type. 

r r- A: (1') 

r r- u:T' 
1" -j l' 

r r- A[pu] 

An interface having a subtype of another can replace it in an object instantia

tion. 

r r- Br r- A: (1') 

r r- u:TI 

1" -j l' 
rEBpu 

r EB pu r- A[pu] > B 

This is the same case as the precedent except that here we must be careful 

about how B is going to use the interfaces u. 

r 1 r- C1 

r 2 r- C2 

r 1 EB r 2 defined 

r 1 EB r 2 r- CdC2 

Here again we must be sure that there is no duplication of the roles of a client 

interface. We must be sure also that there is only one server for a given interface. 

DYNAMIC SEMANTICS 

We present the operational semantics of configurations in two steps. We first 

define a structural congruence relation and then we give a reduction relation 

that specifies how the configurations evolve. To distinguish between the interac

tions on public and private interfaces, the emitting actions on public interfaces 

will be noted !! whereas the emitting actions on private interfaces will remain 

noted !. 

Structural Congruence 

Let us briefly define our scoping rules. An interface u if bound in a behavior 

B if it appears in an object declaration (A[ . .. , u, . .. ] = B) or if it appears in 

the scope of a new operator (new u in B) otherwise it is free. The notation 

C[v/u] denotes the substitution of all the free occurrences of u by v in C. 

The equations defining the structural congruence are given in table 2. 



RecePl + ReceP2 == ReceP2 + Recepl 
(RecePl + ReceP2) + RecePa == ReceP1 + (ReceP2 + ReceP3) 

01102 == 02101 , (01102)103 == 011(02103), 010 == 0 
new U1 in (new U2 in 0) == new U2 in (new U1 in 0) 

(new u in 01)102 == new u in (01102) if u is not free in O2 
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new u in 01 == new v in 02 if Ot[wju] = 02[wjV] for some fresh interface name w 

Table 2 Structural Congruence 

Reduction Rules 

We define now the reduction rules that specify how a configuration can evolve 

by making a single and atomic step. Our reduction rules are annotated with 

information that will help us maintaining the private interlaces' types during 

the computation. The evolution of configurations may generate messages. The 

syntax of a message is similar to the syntax of the method invocatiml except 

that the message has no continuation. To avoid any ambiguity messages will 

be written between brackets: [!u.m(v)]. 

The reduction relation is defined by the following rules. 

The synchronization on a private interface is by rendez-vous: 

The invocation of a public interface generates a message ([!u.m(v)]) whose 

behavior is to synchronize with this interlace: 

!!u.m(v) > B ~ BI[!u.m(v)] 

A message is absorbed by the appropriate (public) interface and then vanishes: 

?u[m(u:T) > B + Emi(Ui:Ti) > BiJl[!u.m(v)] ~ B[vju] 

As the interlace type information are maintained during the computation, the 

evaluation of the guard is straightforward: 

eval (Guard) = T RU E eval(Guard) = FALSE 

if Guard then B1 else B2 ~ B1 if Guardthen B1 else B2 ~ B2 

We simply replace the instantiation of the object by the corresponding behavior: 

A[u:T] ~l B 

A[v] ~ B[vju] 
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The created object runs is parallel with the continuation of the creating behav-
ior: 

A[u:T] ~l B 

create A[ii] > B' -+ B[iiju]IB' 

This rule states that if a sub-configuration can evolve to a new one then the 

whole configuration can evolve too: 

O u,m 0' 
l~ 1 

When there is an interaction on a private interface we update its type: 

o u,m) 0' 

T pm(i'\ T' 
---___ ------~-~ with p E {I, ?} 

new u:T in 0 -+ new u:T' in 0' 

The type of the variable u is not affected by an interaction on an other interface 

u: 
o v,m) 0' 

v m with v =j:. u 
new u:T in 0 ~ new u:T in 0' 

A non annotated reduction does not affect the new operator: 

0-+0' 

new u:T in 0 -+ new u:T in 0' 

The following rule states that configurations that are equivalent (according to 

=) behave equally: 

Run-time safety 

We obtain for the infinite type system of OL the same results as for the finite 

type system of COB [12]. The static and dynamic semantics we have defined 

ensure the run-time safety of well-typed OL programs. We consider here only 

well-typed closed configurations; i.e., well typed-under in the empty context 

(0 f- 0). this means that all the interfaces of the configuration have been 

introduced by the new operator and thus both the client and server roles exist 

in the configuration. 

Theorem 1 (Subject reduction) If r f- 0 and 0 u,m) 0' then there exists a 

context r' such that r' I- 0' 

The careful use of the roles of the interface and the definition of the EB function 

that ensures that the roles of private interfaces are not duplicated ensures that 
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the client and server role of private a interface evolve concomitantly. As the 

public interface roles are uniform, the typing is preserved by the reduction 

relation. 

Theorem 2 (Run-time safety) 
A well-typed closed configuration (0 r C) contains no immediate possibility for 

communication failure. 

This property follows directly from the preceeding theorem as in a well typed 

configuration both client and server types of an interface can perform the same 

actions. 

CONCLUSION AND RELATED WORK 

We defined a calculus endowed with a typing system that guarantees a run-time 

safety property in well typed object configurations. The type system of OL de

scribes interfaces that may offer non-uniform services. We defined a semantic 

of behavior types based on CCS process semantics ([9]). We also defined equiv

alence and subtyping relations based on bisimulation and simulation relations 

([9]). Although behavior types can have an infinite number of states we showed 

how the bisimilarity (the principle is the same of the simulation relation) of 

two behavior types is checked. There is a lot of work done in the field of the 

verification of infinite state systems. Our work can be compared to to be the 

work of Sergio Yovine ([24]) and Colin Stirling et al. ([19, 20]). In [24], the au

thor provide a mechanisms for verifying modal properties of timed automata. 

Timed automata is a typical case of infinite state system verification. Our 

types use the same kind of constraints (guards) used for the clocks of timed 

automata. The proof method presented in [24]is based on analytic tableau. 

In [19], the authors give the proof that "bisimulation equivalence is decidable 

for all context-free processes" and in [20] the author does the same for normed 

pushdown processes. We did not formally study the expressiveness of our type 

system, but it seems that it includes the context free languages. Even more, 

our types include non context free types like the unbounded buffer (putngetm 

with n > m). We believe that our algorithm for checking bisimilarity is simpler 

and more tractable. 

Type systems for concurrent object oriented languages is an active research 

topic. Many authors have tackled this issue in the realm of the 1f-calculus [11] 

and the actors [1] paradigms. Concerning the latter, a wide variety of typing 

systems have been proposed that deal with the problem of channel typing. 

The simplest one [10] just checks the arity of the channels. This type system 

has been extended such that it can handle polymorphism and type inference 

[4,23,22] and sUbtyping [15,16]. None ofthese typing systems handle dynamic 

service behavior. 

The importance of distinguishing public from private interfaces has been 

identified by [14], but, without giving it a formal treatment. [14] has also 

introduced the concept of non-uniform service availability and has used traces 
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to specify the constraints on the ordering of the messages that can be handled 

by a channel (an interface). 

A lot of ongoing work is about type systems for parallel/distributed object 
languages and calculi (see [21, 17, 8, 2,3, 6]). The work reported in [18] is the 

closest .to ours. The authors define types based on graphs and an equivalence 

relation based on bisimilarity of types. We believe that unlike the type system 

presented in the present paper, the type system defined in [18] is not able 

to represent "infinite types" like the unbounded buffer type, for example. In 

addition the ability to use parametric interface type and to test their state 

in the behavior of OL objects allows us to write very flexible code without 

sacrificing the safety. 

The technical treatment of the contexts in the static semantic and the re

duction rule of OL have been inspired from [7]. In this version of the 7r-calculus 

the authors use the linear capabilities of some special channel to ensure that 
they are used (at most) once. We use a similar mechanism to ensure that there 

is no duplication of the roles of private interfaces. 
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