
INFINITE TYPES FOR DISTRIBUTED

OBJECT INTERFACES
Elie Najrnl, Abdelkrirn Nirnour1 and Jean-Bernard Stefani2

Abstract:

1 Ecole Nationale Superieure des Telecomunications

[Elie.Najm, Abdelkrim.Nimour]@enstfr

2 France Telecom-CNET

jeanbernard.stefani@cneUrancetelecom.fr

In a previous work [12] we presented COB, an object calculus which features

objects with dynamically changing service offers. We also defined a type sys

tem for interfaces and a typing discipline that guarantees that no object may

experience an unexpected service request at run-time. In the present paper, we

extend our type system such that it describes "infinite state" types. We define

equivalence and sUbtyping relations over those types based on bisimulation and

simulation relations. We also define an algorithm to decide the equivalence or

the subtyping relation of two types.

The type system is applied to OL, a new calculus that uses the interface

"states" in the behavior of the objects. As in COB, in OL there is a distinction
between private and public interfaces. A private interface can have at most

one client at a time whereas a public interface can be known by more that one

client. Private interfaces can thus propose a non-uniform service offer (the set

available services may change during the computation). OL extends the results

of COB to infinite types: in spite of non-uniform service offers, in a well-typed

P. Ciancarini et al. (eds.), Formal Methods for Open Object-Based Distributed Systems

© Springer Science+Business Media New York 1999

354

configuration, there may not occur any "service not understood" error at run

time.

INTRODUCTION

behavior types

Usually type systems for objects or for object interfaces are satisfied by defining

the signatures of methods that an object may accept. In [12], we defined a type

system where one can define ordering constraints on the messages (methods)

that can be handled by an object. For example the behavior type of a one place

buffer interface can be written like this:

OneBuffer = put (...); Full

Full = get(···); OneBuffer

Interfaces of this type expect to receive repeatedly put messages followed by

get messages. To define a two place buffer, one must introduce an intermediate

state where both put and get messages are allowable:

TwoBuffer = put(···);Intermediate

Intermediate = +
put(···); Full

get(···); TwoBuffer

Full = get (...); Intermediate

The definition of the type of a larger buffer may be very complex because of the
multiplication of states. A simple way to avoid this complexity is to introduce

a counter in the buffer:

TwoBuffer[n] = +
[n < 2] put(···); TwoBuffer[n + 1]

[n > 0] get(···); TwoBuffer[n - 1]

The parameter n represents the difference between the number of put and

get messages. Actually, this is the definition of an infinite family of buffers,

TwoBuffer[O], TwoBuffer[l], The empty two place buffer being TwoBuffer[O].

The put messages are possible only if n < 2; Le., less than two elements in the
buffer, while get messages are possible only if n > 0; i.e., the buffer is not

empty. With this representation it is very easy to define the type of a larger

buffer. The put messages have to be guarded with the maximum number of

elements allowed in the buffer: [n < max] put(···); Buffer[n+ 1]. The principal

novelty of this representation of behavior types comparing to the one presented

in [12] is that it is possible to describe types with unbounded number of states:

put(···); Buffer[n + 1]
Buffer[n] = +

[n > 0] get(···); Buffer[n -1]

355

The above definition is the behavior type of an unbounded buffer. There is no

restriction on the number of elements it can hold. The only constraint is that

the number of put's must be greater or equal to the number of get's.
The aim of this type system is to provide a way to record the history of

the usage of an interface. Typically, we want to be able to count the messages

handled by an interface and compare them. So in our type system after receiv

ing a message the type state may be incremented or decremented by a certain

positive integer value (counting) and the receiving of a message can be guarded

by a predicate of the form: n < cor n > c where c is a positive integer constant

(comparison).
This type system allows to define relations between more than two messages.

Suppose that we have a special buffer with two put operations. Of course, we

want the total number of put's to be greater or equal to the number of get's:

+
Buffer[n] =

Putl(···)jBuffer[n + 1]

put2(···);Buffer[n + 1]

[n> 0] get(···)j Buffer[n - 1]
+

The calculus

We define OL, a calculus that describes configurations of objects running in

parallel and communicating with each other by exchanging messages. The

syntax of the language is given by the grammar of table 1. In this syntax, the

I .. -
Del .. -

Guard .. -
Recep .. -

B .. -

u:T

A[i] = B

u.n > c I u.n < c

?u([Guard1]ml (jl) = Bl ,··· ,[Guardn]mn(jn) = Bn}

o
!u.m(pil) > B

L~=l Recepi

A[Pii]

create A [Pil] > B

if Guard then Bl else B2

a .. - B I Gla I new u:p.x[a] in a

Table 1 Syntax of OL

terminal T denotes an interface type. An interface type is a pair consisting
of a mode (public or private) and a behavior type. A private interface can

be known, i.e., its client role held, by only one client at any time whereas
a public interface can have multiple clients. As a public interface must be

356

able to offer services to multiple clients, its service offer has to be uniform;

Le., the set of services available at a public interface does not change during

the computation. In contrast, the services available at a private interface can

change dynamically depending on the protocol of interaction between the two

partners. The mode (noted p,) also determines the kind of interaction on this

interface. The communication on a private interface is by rendez-vous. The

invocation of a public interface creates a message that will be absorbed by its

destination interface in a subsequent step. These two modes of interaction are

inspired by the interaction modes of the ODP computational model (see [13]

for a formal definition of this model). In this model, communication between

objects is possible only if their interfaces are bound. There are two forms of

bindings: implicit and explicit. Using an "implicit binding", an object only has

to know the reference of one of the interfaces of a server. A service invocation

then corresponds to a message creation that has to be transported by the system

infrastructure to its destination. The public interfaces are intended to model

this form of interaction. The second form of binding in ODP is the "explicit

binding". In this case, the two objects, 0 1 and O2 , wanting to communicate

have to create a binding object. This binding object is distributed; i.e., one

of its interfaces will be co-located with the object 0 1 and another one co

located with the object O2 • The invocation of a service of O2 by 0 1 is dealt

with as follows: 0 1 sends the invocation message to the binding object's co

located interface and then the binding object delivers the message to O2 via

the O2 co-located interface. The interaction between 0 1 , O2 and the binding

object are synchronous. This is possible because interfaces are co-located and

private (the interfaces of the binding object have been created especially for the

communication between 0 1 and O2). The "explicit binding" form of interaction

of ODP corresponds to the interaction mode of private interfaces.

We briefly introduce the main features of our calculus using the following

stack example:

Stack[self: private ?Buffer[n], top: private !TCellJ=

?selfUself.n>O]get(r1: T1)= new r2: T2 in

!top.read(!r2) >

?r2[ret(e: T, next: TCell)= !r1.ret(!e) >

Stack[?self, !next]

I
put(e: T)= new cell: private TCell in

create Cell[?cell, !top, !e] >

Stack[?self, !cell]

Cell [self: private ?TCell, next: private !TCell , e: T]=

?self[read(r: T2)= !r.ret(!e, !next) > 0]

The first object, Stack, has the server role (ability to receive messages) ofthe

private interface self. Its behavior is specified by its parametric behavior type,

Buffer[nJ introduced in the preceeding section. All the put and get services'

357

invocations will arrive on this interface. Stack also has the client role (ability

to emit messages) of the private interface top of type TCell (interfaces of type

TCell can only perform once one read action). The behavior of Stack is to wait

for a put or a get message. This behavior is non-uniform in the sense that the

get service is guarded with a predicate and thus is not always available. The

guard of the get service ensures that the behavior type state (n) is not null

which means that the stack is not empty.

get service. the argument rl is a reference to the interface where to return the

top ofthe stack. The client role ofthe newly created interface is sent to top as

an argument of read. Stack then waits on this interface for e the element on

the top the stack and next the reference (client role) ofthe Cell containing the

next element. Stack sends e along rl and then returns to it initial state with

an updated value of its top.

put service. Stack simply creates a new Cell with top as successor and then

returns to its initial state with the new cell as the value of top.

This piece of code is very similar to what would have been the coding of

a stack in ADA, for example. The advantage of the OL approach is that

the "synchronization constraints" are encapsulated in the behavior type. The

typing system then ensures that the user (programmer) has checked that the

stack accepts get action only if the behavior type parameter is greater than o.
In languages like ADA, this is the responsibility of the programmer.

BEHAVIOR TYPES

A parametric behavior type is a quadruplet (E, x, n, r), noted E t> rx[n], where

n is the parameter of the type, r is the set of capabilities of the behavior type:

r C {l,?p. The environment E is a set of equations of the form xi[n] = ei.

Each Xi is a behavior type variable that appears once and only once in the

left-hand side of an equation. Each ei is an expression defined by the following

syntax:

n

e ::= L[predi]mi(Pixi[ai]); xali]
i=l

where:

• each mi is a method name. We consider only deterministic behavior_types

i.e. i "I- j =} mi "I- mj

• each Xi is a list of behavior type variables describing the behavior of the

method arguments

• each Pi is the role, client (1), server (?) or both (l?)

1 Note that the set of capabilities may be empty whereas a role cannot

358

• each ai is a positive integer constant

• each predi is a predicate of the form pred(n) = n < c or pred(n) = n > c
where c is a positive integer constant

• each Ii is a function of the form: f(n) = n + cor f(n) = n - c where c
is a positive constant.

Notation. we will write (x[nJ -+ [pred]m(px [a]) j xl[j]) E E to mean that the

environment E contains the equation:

x[n] = [pred]m(px[a])jx/[f] + L~tlpredi]mi(pixi[ai])jx~[Ii]

Behavior type action

Since we want to deal with non-uniform service availability, we have to specify

how types evolve. We consider here only instantiated behavior types, ranged

over by the meta-variable X. A type evolves by performing a type action.

A type action is a method signature annotated with a role: pm(XI' ... ,Xn).
After performing an action a type evolves to another type as shown in the

following rule:

(x[nJ -+ [pred]m(pixi [al]'·· . ,PnXn[an])i y[f]) E E
pred(b) = TRUE

....:....-...:...;:..----------------- with per
E I> rx[b] pm(El>p,X,[a,] ,EI>Pnxn[an]\ E I> ry[f(b)]

Which informally readsj If there is an equation containing a method m in the

parametric behavior type definition and if the predicate is evaluated to TRUE

for a value b then the instantiation of this behavior type with the value b can

perform an m action. Let us, for example, consider how the type of an empty

unbounded buffer can evolve .2

?putO
?Buffer[O] ~?Buffer[l]

?Buffer[OJ can perform a put action and then evolves to ?Buffer[l].

Behavior type equivalence

To define the equivalence of two behavior types we use the well known bisimu

lation relation (see [9]).

Definition 1 (Bisimulation)

A binary relation (3 over behavior types is a bisimulation if (Xll X 2) E (3 implies:

.) X pm(Y,) XI X pm(Y2) XI d (XI X') (3 d (y;- y;-) (3
1 1 -'---'---'+ I=} 2 -'---'---'+ 2 an I , 2 E an I , 2 E

2 Usually, we consider, without loss of generality, that all the type equations are defined in

the same environment E. So, the behavior type E I> rx[n] is written rx[n].

359

Definition 2 (Type equivalence)

Two types Xl, X2 are equivalent, noted Xl '" X 2 , iff (Xl, X 2) E (3 for some

bisimulation relation B.

Behavior subtypes

Two behavior types Xl and X 2 are in a subtyping relation if:

server case: all receiving actions that Xl can perform can be performed by

X2 too

client case: all sending actions that X 2 can perform can be performed by Xl

too

Definition 3 (Subtyping relation)

A binary relation R over behavior types is a subtyping relation if (Xl, X 2) E R
implies:

1·) X ?m(l\) X' X ?m(Y2) X' d (X' X') 'D d (Y;- y;-) 'D I ---'---'-+ I::::} 2 ---'---'-+ 2 an 1 , 2 E 1'- an 1 , 2 E 1'-

Let us consider the following example where u is a client interface and v a

server interface:

The interface w instantiates both u and v so X is a subtype of both XI and X 2 •

A d· d fi .. .) X lmO X'· 1· X lmO X' ..) X ?mO X' ccor mg to our e mtlOn: 1 1 ---"-+ 1 Imp les· ---"-+ ; 11 ---"-7

implies X 2 ?mO) X~. We are then sure that all the services invoked by BI will

be available in B2 •

Definition 4 (Subtyping)

A behavior type Xl is a subtype of a behavior type X 2 , noted Xl :::; X 2 , if

(X I ,X2) E R for some subtyping relation R.

Deciding behavior type equivalence

As we have seen before, to prove the equivalence of two types Xl and X 2 we

must exhibit a bisimulation relation (3 such that (Xl, X 2) E (3.

Definition 5 (Bisimulation construction (I))

• (init)

360

• for all (XI ,X2) E flk

- (XI, X 2) E (3k+1

(small step)

X pm(l\) X' 'fX pm(Y2) XI h (X' X') fl (y;- ~;;.) - case I -'---'--'+ I: 1 2 ~ 2 t en I' 2 E n+1 and I, J. 2 E
fln+1 else Fail

X pm(Y2) X' 'f X pm(Y1) X' h (X' X') fl d (Y;- ~;;.) - case 2 -'---'--'+ 2: 1 I -'---'--'+ 1 t en 1, 2 E n+l an 1, J. 2 E
fln+1 else Fail

(success)

Property. The fixed-point relation constructed using the rules of the Bisimu

lation construction (I) is a bisimulation relation over behavior types.

This property is due to the fact that the rules of the relation construction

(Definition 5) are directly inspired by the bisimulation definition.

Let us consider the following example:

Bl[n] =
[n > 0] getO; Bl[n - 1]

+ putO; Bl[n + 1]
B2[n] = [n > 0] getO; B2[n - 2]

+ putO;B2[n + 21

If we want to check the equivalence between !Bl[O] and !B2[0] we have to

start from a relation flo = {(!Bl[O], !B2[O])}. Since both !Bl[O] and !B2[O] can

perform a put action, we have fll = {(!Bl[O], !B2[O]), (!Bl[l], !B 2 [2]) }. It is

easy to see that it is not possible to reach a fixed-point (in a finite number of

steps) because both types can always perform a put action and then evolve to

new behavior types with a greater parameter. So fl2 = fll U {(!Bl[2], !B2[4l)},

fl3 = fl2 U {(!Bl[3],!B2[6])} and so on. A simple way to avoid this kind of

infinite sequence is to add all the elements of the infinite sequence in one step.

To achieve this goal, we add to definition of the bisimulation construction (I)

another rule called: big step.

Definition 6 (Bisimulation construction (II))

The bisimulation construction (II) is defined with the rules of the definition of

bisimulation construction (I) and with the following one:

• for all (EI I> rXI [all, E2 I> rX2 [a2]) E flk

if (XI [n] "'"* [n > a~]m(plx~ [n + CIl) E El and

(x2[n] "'"* [n > a~]m(plx~[n + C2]) E E2 and

al > a~ and a2 > a~

(big step)

Let us apply this last rule to our preceeding example. We have flo = {(!Bl[O], !B2[O])}.

Both types have the same set of capabilities {!}. Both corresponding paramet-

ric types can perform a put action for every value of their parameter greater

361

than O. So f3I = f30 U {(!BI[1 x n + 0], !B2[2 x n + 0]) for n > O}. It is easy
to see that the relation BI = {(!BI[n], !B2[2n]) for n ~ O} is a fixed-point and

thus a bisimulation relation.

Remark. what we are saying here is that the sequence /30, f3t. •. • ,f3n, where

f3n is a fixed-point, is finite. Of course, each of the f3i is possibly infinite. For a

full mechanization of the bisimulation construction, one will have to deal with

operations on infinite sets. It is easy to have a finite representation of sets

obtained by our construction rules since all the constraints on states are linear.

This method can be applied similarly to the subtyping relation construction.

STATIC SEMANTICS

Definitions and notations

In order to facilitate the expression of the typing rules, we introduce the no

tion of constrained behavior types. A constrained behavior type is a special

form of parametric behavior types noted E I> px[inf sup[where inf and sup are

the parameter bounds: inf::; n < sup, n representing the parameter of the
(constrained) behavior type, inf EN and sup E Nu {co}.

Remark. Note that parametric behavior types and (instantiated) behavior

type are special cases of constraint types: E I> px[a a + l[is the behavior type

E I> px[a] and E I> px[O co[is the parametric behavior type E I> px[n]
A constrained behavior type can perform an action If its corresponding be

havior type can perform this action for all the values between inf and sup.

(x[n] -t [pred]m(Plxdal],'" ,PnXn[an])j y[f]) E E
n E [inf sup[:::} pred(n) = TRUE ____ -'-_-=-..o..,----'=--:~~ ___,.-________ with per

E [. f [pm(EI>Plzl[a1]"" .Ei>p"z .. [a,,]) E [f(' f) ()[
I> rx In sup) I> ry In sup

For example ?Buffer[O co[cannot perform a get action whereas ?Buffer[l co[
does.

The restriction of a constrained behavior type by a guard is defined by the

following equations and is undefined otherwise:

rx[inf sup[\[n > c] = rx[c sup[if c < sup

rx[inf sup[\[n < c] = rx[inf c[if c > inf

We define also possible(X) as the set of all the method names that can be
performed by any restriction of X.

possible(rx[inf sup[) = {m E M eth, 3a E [inf sup[, pEr X, X"lrx[a] pm(X\

X'}

362

An interface type is then a pair noted p,X where p, is the interface mode and

X its constrained behavior type. The meta-variable T will range over interlace

types. A typing context r is a list of bindings of the form: u: T or u: (1').
The set of interlace names appearing in a context r is called its domain, noted:

Dom(r). The context extension, noted r,u:T, is defined such that r,u:T I

u: T. The static semantics is given using the following judgments:

judgment

r I- u:T

r I- u:(1')

rl-B
rl-C

meaning

in the context r the interlace u has type T

in the context r the object A has type (1')

in the context r the behavior B is well typed

in the context r the configuration C is well typed

In order to check the non-duplication of server roles and private client roles,

we define a partial function, noted Tl EB T2 over interface types such that a

non-duplicable role cannot be present in both Tl and T2.

Definition 7 (Interface type addition)

The interface type addition is defined by the following equations and is unde
fined otherwise:

(public rlx[infsupD

EB = public (rl U r2)x[infsup[if? f/:. (rl n r2)

(public r2x[infsupD

(private rl x[inf supD

EB = private (rl U r2)x[inf sup[if (rl n r2) = 0
(private r2x[inf supD

We extend EB to contexts as follows: (r, u:T1) EB (u:T2) denotes the context
r, u : (Tl EB T2). We will write r, u : p,rx[inf sup[EBr'u as a short hand for

r,u:p,rx[inf sup[EBp,r'x[inf sup[.

Definition 8 (Subtyping over interface types)

An interface type p,rx[inf sup[is a subtype of an interface type p,'r'x'[in/' sup'[

if p, = p,' and

• if inf = sup + 1 then in/, = sup' + 1 and rx[inf] :j rx[in/,]

• if inf = 0 and sup = 00 then in/' = 0, sup' = 00, r = r' and x = x'.

Typing rules

The basic idea underlying our typing rules is to guarantee that each object use

the interfaces in a way compatible with their declared behavior type. Our rules
ensure also that there is no duplication of the roles of the private interfaces.

r f- u:J.Lrx[inJ sup[::}? ¢ r

ff-O

363

this rule introduces the notion of receiving obligation. If an object still has the

server role of an interface then it cannot stop.

r,u:T2 f- B

T !m(T) m
1~.J.2

r f- fJ:TI

Tlji'
r EB pfJ defined

fEB pfJ,u:T1 Hu.m(pv) > B

This rule ensures that the type of u allows an m action and that the emitter

cannot use anymore in B the non-duplicable roles it has sent.

In this rule it is important that possibleO = {mI, ... ,mn}. This ensures that

all the messages that can be processed by an interface of type T are handled

by the reception action. The possible function defined on constrained behavior

types is extended to interface types.

r f- Recepl ... r f- Recepn
n

r f- 2: Recepi
i=l

In a multiple interfaces' reception, the typing context is propagated as it is in
all the branches of the choice.

f, u : T \ Guard f- Bl
r, u : T \ ..,Guard f- B2

r, u:T f- if Guardthen Bl else B2

The Guard constraint is propagated in the then branch whereas its negation is
propagated in the else branch

r,u:J.L!?x[O oo[f- B

r f- new u:J.L x[nJ in B

r,u:J.L!?x[a a+l[f-B

r f- new u:/tX[aJ in C

A newly created interface has both roles: client and server. If its type is

parametric then it should be unconstrained (n E [0 oo[).

364

r,A:(T),u:T r- B

r,A:(T) r- A[u:T] = B

For an object declaration, we simply check that the object behavior is well

typed under the assumption that its interfaces has their declared type.

r r- A: (1')

r r- u:T'
1" -j l'

r r- A[pu]

An interface having a subtype of another can replace it in an object instantia

tion.

r r- Br r- A: (1')

r r- u:TI

1" -j l'
rEBpu

r EB pu r- A[pu] > B

This is the same case as the precedent except that here we must be careful

about how B is going to use the interfaces u.

r 1 r- C1

r 2 r- C2

r 1 EB r 2 defined

r 1 EB r 2 r- CdC2

Here again we must be sure that there is no duplication of the roles of a client

interface. We must be sure also that there is only one server for a given interface.

DYNAMIC SEMANTICS

We present the operational semantics of configurations in two steps. We first

define a structural congruence relation and then we give a reduction relation

that specifies how the configurations evolve. To distinguish between the interac

tions on public and private interfaces, the emitting actions on public interfaces

will be noted !! whereas the emitting actions on private interfaces will remain

noted !.

Structural Congruence

Let us briefly define our scoping rules. An interface u if bound in a behavior

B if it appears in an object declaration (A[. .. , u, . ..] = B) or if it appears in

the scope of a new operator (new u in B) otherwise it is free. The notation

C[v/u] denotes the substitution of all the free occurrences of u by v in C.

The equations defining the structural congruence are given in table 2.

RecePl + ReceP2 == ReceP2 + Recepl
(RecePl + ReceP2) + RecePa == ReceP1 + (ReceP2 + ReceP3)

01102 == 02101 , (01102)103 == 011(02103), 010 == 0
new U1 in (new U2 in 0) == new U2 in (new U1 in 0)

(new u in 01)102 == new u in (01102) if u is not free in O2

365

new u in 01 == new v in 02 if Ot[wju] = 02[wjV] for some fresh interface name w

Table 2 Structural Congruence

Reduction Rules

We define now the reduction rules that specify how a configuration can evolve

by making a single and atomic step. Our reduction rules are annotated with

information that will help us maintaining the private interlaces' types during

the computation. The evolution of configurations may generate messages. The

syntax of a message is similar to the syntax of the method invocatiml except

that the message has no continuation. To avoid any ambiguity messages will

be written between brackets: [!u.m(v)].

The reduction relation is defined by the following rules.

The synchronization on a private interface is by rendez-vous:

The invocation of a public interface generates a message ([!u.m(v)]) whose

behavior is to synchronize with this interlace:

!!u.m(v) > B ~ BI[!u.m(v)]

A message is absorbed by the appropriate (public) interface and then vanishes:

?u[m(u:T) > B + Emi(Ui:Ti) > BiJl[!u.m(v)] ~ B[vju]

As the interlace type information are maintained during the computation, the

evaluation of the guard is straightforward:

eval (Guard) = T RU E eval(Guard) = FALSE

if Guard then B1 else B2 ~ B1 if Guardthen B1 else B2 ~ B2

We simply replace the instantiation of the object by the corresponding behavior:

A[u:T] ~l B

A[v] ~ B[vju]

366

The created object runs is parallel with the continuation of the creating behav-
ior:

A[u:T] ~l B

create A[ii] > B' -+ B[iiju]IB'

This rule states that if a sub-configuration can evolve to a new one then the

whole configuration can evolve too:

O u,m 0'
l~ 1

When there is an interaction on a private interface we update its type:

o u,m) 0'

T pm(i'\ T'
---___ ------~-~ with p E {I, ?}

new u:T in 0 -+ new u:T' in 0'

The type of the variable u is not affected by an interaction on an other interface

u:
o v,m) 0'

v m with v =j:. u
new u:T in 0 ~ new u:T in 0'

A non annotated reduction does not affect the new operator:

0-+0'

new u:T in 0 -+ new u:T in 0'

The following rule states that configurations that are equivalent (according to

=) behave equally:

Run-time safety

We obtain for the infinite type system of OL the same results as for the finite

type system of COB [12]. The static and dynamic semantics we have defined

ensure the run-time safety of well-typed OL programs. We consider here only

well-typed closed configurations; i.e., well typed-under in the empty context

(0 f- 0). this means that all the interfaces of the configuration have been

introduced by the new operator and thus both the client and server roles exist

in the configuration.

Theorem 1 (Subject reduction) If r f- 0 and 0 u,m) 0' then there exists a

context r' such that r' I- 0'

The careful use of the roles of the interface and the definition of the EB function

that ensures that the roles of private interfaces are not duplicated ensures that

367

the client and server role of private a interface evolve concomitantly. As the

public interface roles are uniform, the typing is preserved by the reduction

relation.

Theorem 2 (Run-time safety)
A well-typed closed configuration (0 r C) contains no immediate possibility for

communication failure.

This property follows directly from the preceeding theorem as in a well typed

configuration both client and server types of an interface can perform the same

actions.

CONCLUSION AND RELATED WORK

We defined a calculus endowed with a typing system that guarantees a run-time

safety property in well typed object configurations. The type system of OL de

scribes interfaces that may offer non-uniform services. We defined a semantic

of behavior types based on CCS process semantics ([9]). We also defined equiv

alence and subtyping relations based on bisimulation and simulation relations

([9]). Although behavior types can have an infinite number of states we showed

how the bisimilarity (the principle is the same of the simulation relation) of

two behavior types is checked. There is a lot of work done in the field of the

verification of infinite state systems. Our work can be compared to to be the

work of Sergio Yovine ([24]) and Colin Stirling et al. ([19, 20]). In [24], the au

thor provide a mechanisms for verifying modal properties of timed automata.

Timed automata is a typical case of infinite state system verification. Our

types use the same kind of constraints (guards) used for the clocks of timed

automata. The proof method presented in [24]is based on analytic tableau.

In [19], the authors give the proof that "bisimulation equivalence is decidable

for all context-free processes" and in [20] the author does the same for normed

pushdown processes. We did not formally study the expressiveness of our type

system, but it seems that it includes the context free languages. Even more,

our types include non context free types like the unbounded buffer (putngetm

with n > m). We believe that our algorithm for checking bisimilarity is simpler

and more tractable.

Type systems for concurrent object oriented languages is an active research

topic. Many authors have tackled this issue in the realm of the 1f-calculus [11]

and the actors [1] paradigms. Concerning the latter, a wide variety of typing

systems have been proposed that deal with the problem of channel typing.

The simplest one [10] just checks the arity of the channels. This type system

has been extended such that it can handle polymorphism and type inference

[4,23,22] and sUbtyping [15,16]. None ofthese typing systems handle dynamic

service behavior.

The importance of distinguishing public from private interfaces has been

identified by [14], but, without giving it a formal treatment. [14] has also

introduced the concept of non-uniform service availability and has used traces

368

to specify the constraints on the ordering of the messages that can be handled

by a channel (an interface).

A lot of ongoing work is about type systems for parallel/distributed object
languages and calculi (see [21, 17, 8, 2,3, 6]). The work reported in [18] is the

closest .to ours. The authors define types based on graphs and an equivalence

relation based on bisimilarity of types. We believe that unlike the type system

presented in the present paper, the type system defined in [18] is not able

to represent "infinite types" like the unbounded buffer type, for example. In

addition the ability to use parametric interface type and to test their state

in the behavior of OL objects allows us to write very flexible code without

sacrificing the safety.

The technical treatment of the contexts in the static semantic and the re

duction rule of OL have been inspired from [7]. In this version of the 7r-calculus

the authors use the linear capabilities of some special channel to ensure that
they are used (at most) once. We use a similar mechanism to ensure that there

is no duplication of the roles of private interfaces.

References

[1] G. A. Agha, I. A. Mason, S. F. Smith and C. L. Talcott, A Foundation for

Actor Computation, J. Functional Programming 1 (1), 1993.

[2] Gerard Boudol. Typing the use of resources in a concurrent calculus.
ASIAN'97, the Asian Computing Science Conference, Kathmandu, Nepal,

LNCS 1345 (1997) 239-253.

[3] Colal,;o, Pantel, and Salle. A set constraint-based analyses of actors in

proceedings of Second conference on Formal Methods for Object-based

Open Systems, Chapman and Hall, 1997.

[4] Simon J. Gay. A sort inference algorithm for the polyadic 7r-calculus. Twen

tieth ACM Symposium on Principles of Programming Languages, January

1993.

[5] Kohei Honda. Types for Dyadic Interaction. CONCUR'93, LNCS 612,

Springer-Verlag.

[6] Kohei Honda, Vasco T. Vasconcelos and Makoto Kubo. Language prim

itives and type disciplines for structured communication-based program

ming ESOP'98, LNCS 1381, Springer-Verlag.

[7] Naoki Kobayashi, Benjamin C. Pierce, David N. Thrner. Linearity and the

Pi-Calculus. Technical report, Department of Information Science, Univer

sity of Tokyo and Computer Laboratory, University of Cambridge, 1995.

[8] Naoki Kobayashi A Partially Deadlock-free Typed Process Calculus

Twelfth IEEE Symposium on Logic in Computer Science (LICS'97).

[9] Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.

[10] Robin Milner. The polyadic 7r-calculus: a tutorial. Technical Report ECS

LFCS-91-180, Laboratory for Foundations of Computer Science, Depart
ment of Computer Science, University of Edinburgh, UK, October 1991.

369

[11] Robin Milner, Joachim Parrow, David Walker. A calculus of mobile pro
cesses (Part I and Part II). Information and Computation, 100:1-77, 1992.

[12] E. Najm, A. Nimour A Calculus of Object Bindings. in proceedings of
Second conference on Formal Methods for Object-based Open Systems,

Chapman and Hall, 1997.

[13] Elie Najm, Jean-Bernard Stefani. A formal semantics for the ODP com

putational model. Computer Networks and ISDN Systems, Vol 27, 1995.

[14] Oscar Nierstrasz. Regular Types for Active Objects. Object-Oriented Soft

ware Composition. O. Oscar Nierstrasz, D.Tsichitzis (Ed.), Prentice Hall,

1995

[15] Benjamin C. Pierce, David Sangiorgi. Typing and subtyping for mobile
process. Mathematical Structures in Computer Science, 1995.

[16] Benjamin C. Pierce, David N. Turner. PICT Language Definition. Avail

able electronically, 1995.

[17] Franz Puntigam. Types for active objects based on Trace Semantics.

FMOODS'96, Chapmann and Hall.

[18] Antsnio Ravara, Vasco T. Vasconcelos. Behavioural Types for a Calculus
of Concurrent Objects. Euro-Par'97, LNCS. Springer-Verlag, 1997.

[19] Soren Christensen, Hans Hiittel and Colin Stirling, Bisimulation Equiva

lence is Decidable for all Context-Free Processes LFCS report ECS-LFCS-
92-218, Laboratory for Foundations of Computer Science, Department of

Computer Science, University of Edinburgh, UK.

[20] Colin Stirling. Decidability of Bisimulation Equivalence for Normed Push
down Processes LFCS report LFCS report ECS-LFCS-97-352, Laboratory

for Foundations of Computer Science, Department of Computer Science,

University of Edinburgh, UK.

[21] Kaku Takeuchi, Kohei Honda, Makoto Kubo. An Interaction-based Lan
guage and its Typing System. PARLE'94, LNCS 818, Sringer-Verlag.

[22] David N. Turner. The 7r-calculus: Types, polymorphism and implementa

tion. Ph.D. Thesis, LFCS, University of Edinburgh, 1995.

[23] Vasco T. Vasconcelos, Kohei Honda. Principal typing schemes in a polyadic
7r-calculus. CONCUR'93, July 1993.

[24] Sergio Yovine. Methodes et Outils pour la Verification Symbolique de Sys

temes Temporises. Ph. D thesis, IMAG Grenoble-France, March 1992.

