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Infinite Variation Tempered Stable Ornstein-Uhlenbeck
Processes with Discrete Observations

REIICHIRO KAWAI∗AND HIROKI MASUDA†

Abstract

We investigate transition law between consecutive observations of Ornstein-Uhlenbeck pro-
cesses of infinite variation with tempered stable stationary distribution. Thanks to the Markov
autoregressive structure, the transition law can be written in the exact sense as a convolution
of three random components; a compound Poisson distribution and two independent tempered
stable distributions, one with stability index in (0,1) and the other with index in (1,2). We dis-
cuss simulation techniques for those three random elements. With the exact transition law and
proposed simulation techniques, sample paths simulation proves significantly more efficient,
relative to the known approximative technique based on infinite shot noise series representation
of tempered stable Lévy processes.

Keywords: acceptance-rejection sampling, Lévy process, Ornstein-Uhlenbeck processes, self-
decomposability, transition law, tempered stable process.
2010 Mathematics Subject Classification: 60J75, 62E15, 65C10, 68U20.

1 Introduction

The class of non-Gaussian Ornstein-Uhlenbeck (OU, in short) processes is closely related to
the selfdecomposability of the infinitely divisible distribution. Several interesting properties are
known, such as the explicit relation between Lévy measures of the stationary distribution and the
underlying Lévy process and the representation of entire trajectory based on shot noise series rep-
resentation of Lévy processes, to mention just a few. (For details, see Section 17 of Sato [14],
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Masuda [10] and references therein.) Also, due to the growing practical interest, many authors
have proposed statistical inference methods for non-Gaussian OU processes. (See, for example,
Brockwell et al. [4], Jongbloed et al. [8] and Sun and Zhang [15].)

In the class of non-Gaussian OU processes, the class of tempered stable OU (TS-OU, in short)
process of finite variation has been of particular interest from both theoretical and practical points
of view. In terms of mathematical tractability, the transition law between consecutive observations
can be written in the exact sense as a convolution of one compound Poisson and one tempered
stable distributions. It is known that exact, yet simple, simulation methods are available for both
random elements. The particular setting of inverse-Gaussian OU processes was studied in Zhang
and Zhang [17], while the general setting in [9]. Also, it was shown in Zhang and Zhang [18] that
the transition law is selfdecomposable when the stability index is no less than 1/2. In practice, due
to its distributional flexibility and the positivity of sample paths, they have been used in financial
economics and mathematical finance (for example, Barndorff-Nielsen and Shephard [2] and Benth
et al. [3]).

In this paper, we study the class of TS-OU processes of infinite variation, that is, OU processes
with a tempered stable stationary distribution with stability index in (1,2). This can be thought of
as a natural alternative of finite variation TS-OU processes, while the extension is not straightfor-
ward. In fact, the structure of transition law turns out to be significantly different, in the sense that
for example, the transition law is a convolution of two independent tempered stable and one com-
pound Poisson components. Also, the support of sample paths is necessarily the whole real line,
while only the positive half line in the finite variation setting if no negative jumps exist. We will
here only dealt with a unilateral setting with no negative jumps. Nevertheless, the bilateral setting
is also within our scope as it can be treated simply by superpositioning another similar convolu-
tion of three independent random components. In addition, the bilateral framework can produce
more distributional flexibility through combinations of positive and negative jump components in
terms of, for example, stability index and even finite and infinite variations. They may widen the
applicability of OU processes in a variety of fields.

The rest of this paper is organized as follows. Section 2 summarizes background material
on stable and tempered stable distributions and on OU processes with tempered stable stationary
distribution. In Section 3, we derive the transition law in closed form, consisting of three random
components; a compound Poisson distribution and two independent tempered stable distributions,
one with stability index α ∈ (1,2), while the other with index α − 1 ∈ (0,1). In Section 4, we
discuss simulation methods for the three random elements, all of which are based on acceptance-
rejection sampling techniques. We also provide numerical results to illustrate the effectiveness of
our exact transition law and proposed simulation techniques in sample paths generation, relative to
the existing approximative method with infinite shot noise series representation of tempered stable
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Lévy processes. Finally, Section 5 concludes.

2 Preliminaries

Let us begin this preliminary section with the notations which will be used throughout the paper.
We denote by R the one dimensional Euclidean space with the norm | · | and R+ := (0,+∞). Let
N be the collection of positive integers with N0 := N∪{0}. We denote by L= the identity in law.
We denote by Γ(a,b) the gamma distribution with density ba/Γ(a)za−1e−bz. We write fL(z) for a
probability density function of a distribution L. (For example, fΓ(a,b)(z) = ba/Γ(a)za−1e−bz.) We
fix (Ω,F ,P) as our underlying probability space. Finally, note that Γ(−s) < 0 for s ∈ (0,1), while
Γ(−s) > 0 for s ∈ (1,2).

2.1 Spectrally Positive Stable Processes

Let {L(s)
t : t ≥ 0} be a totally positively skewed stable (Lévy) process satisfying

E
[

eiyL(s)
t

]
= exp

[
taΓ(−α)cos

(πα
2

)
|y|α

(
1− i tan

πα
2

sgn(y)
)]

=

exp
[
t
∫
R+

(
eiyz−1

) a
zα+1 dz

]
, if α ∈ (0,1),

exp
[
t
∫
R+

(
eiyz−1− iyz

) a
zα+1 dz

]
, if α ∈ (1,2),

(2.1)

with some a > 0. Throughout this paper, we exclude the case α = 1. We write S(α,a) := L (L(s)
1 ).

The C+∞-density of the distribution S(α,a) is given in the form of convergent power series

fS(α,b)(x) =


(−aΓ(−α))−1/α

π ∑+∞
k=1(−1)k−1 sin(πkα)Γ(kα+1)

k!

(
x

(−aΓ(−α))1/α

)−kα−1
, if α ∈ (0,1),

(aΓ(−α))−1/α

π ∑+∞
k=1 sin

(
πk 1−α

α
) Γ(k/α+1)

k!

(
− x

(aΓ(−α))1/α

)k−1
, if α ∈ (1,2).

(2.2)
Note that the above density is defined on R+ if α ∈ (0,1), while on R if α ∈ (1,2). It holds that for
each t > 0, L (L(s)

t ) = S(α, ta), and by the scaling property, L (t−1/αL(s)
t ) = S(α,a). Note that the

distribution S(α, ta) has density t−1/α fS(α,a)(t−1/αx). The distribution S(α,a) can be simulated in
the exact sense through the well known representation, due to Chambers et al. [5],

S(α,a) L= (−aΓ(−α)cos(πα/2))1/α sin(αV +θ)
(cosV cosθ)1/α

(
cos((1−α)V −θ)

E

) 1−α
α

, (2.3)

where θ := arctan(tan(πα/2)), V is a uniform random variable on (−π/2,π/2) and E is a standard
exponential random variable independent of V . See Zolotarev [19] for more details on the stable
distribution.
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2.2 Spectrally Positive Tempered Stable Processes

Let {L(ts)
t : t ≥ 0} be a centered and totally positively skewed tempered stable (Lévy) process

satisfying

E
[

eiyL(ts)
t

]
= exp

[
t
∫

R+

(
eiyz−1− iyz

)
a

e−bz

zα+1 dz
]

= exp
[
taΓ(−α)

(
(b− iy)α −bα + iyαbα−1)] .

Note that as indicated by “centered”, the tempered stable process here is centered even in the case
α ∈ (0,1), unlike in the case of the stable process characterized by (2.1). As a matter of course,
when α ∈ (0,1), by adding back the centering term as L(ts)

t + tΓ(1−α)abα−1, we can recover the
associated tempered stable subordinator. Throughout the paper, we will use the notations

T S(α,a,b) := L (L(ts)
1 ), (2.4)

and
T S′(α,a,b) := L (L(ts)

1 +Γ(1−α)abα−1). (2.5)

It is known that

e−bz

E
[
e−bL(s)

1

] fS(α,a)(z) = e−bz−aΓ(−α)bα
fS(α ,a)(z) = fT S′(α,a,b)(z). (2.6)

The class of tempered stable distributions was first proposed by Tweedie [16]. Several featuring
properties of tempered stable distributions and processes were revealed by Rosiński [13], such as
a stable-like behavior over short intervals, the absolute continuity with respect to its short-range
limiting stable process, an aggregational Gaussianity and an infinite shot noise series representation
in closed form

{
L(ts)

t : t ∈ [0,T ]
}

L=

{
+∞

∑
k=1

[[(
αΓk

Ta

)−1/α
∧

VkU
1/α
k

b

]
1[0,t](Tk)−

t
T

(
αk
Ta

)−1/α
1(1,2)(α)

]

+
t
T

(
Ta
α

)1/α
ζ (1/α)1(1,2)(α)− tΓ(1−α)abα−1 : t ∈ [0,T ]

}
, (2.7)

where {Γk}k∈N are arrival times of a standard Poisson process, {Tk}k∈N is a sequence of iid uniform
random variables on [0,T ], {Vk}k∈N is a sequence of iid standard exponential random variables and
{Uk}k∈N is a sequence of iid uniform random variables on [0,1]. All those random sequences are
mutually independent. Note that the kernel of series representation is not unique. In fact, there are
a different series representation derived in Imai and Kawai [7] through the thinning and rejection
methods and yet another representation numerically through the inverse Lévy measure method.
(For details about the methods, see Rosiński [12].)
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2.3 Ornstein-Uhlenbeck Processes with Tempered Stable Stationary Distri-
bution

Consider the stochastic process {Xt : t ≥ 0} defined in form of stochastic differential equation

dXt = λ (µ−Xt)dt +dZλ t , (2.8)

where λ > 0, µ ∈ R and {Zt : t ≥ 0} is a Lévy process (not necessarily a subordinator), or in
canonical form

Xt = e−λ tX0 + µ
(

1− e−λ t
)

+
∫ t

0
e−λ (t−s)dZλ s. (2.9)

Processes of this type are often called non-Gaussian OU processes, or Lévy-driven OU processes.
With {Zt : t ≥ 0} being a subordinator, they have been used, for example, to model the squared
volatility in a stochastic volatility model of Barndorff-Nielsen and Shephard [2], due to the non-
negativity of sample paths.

In this paper, we consider the class of OU processes (2.8) where its invariant law L (limt↑+∞ Xt)
is T S(α,a,b) ∗ δµ with α ∈ (1,2), where ∗ denotes the convolution and δµ is the degenerate
distribution at µ . The invariant law is clearly self-decomposable and has Lévy density

u(z) = a
e−bz

zα+1 , z ∈ R+. (2.10)

In fact, since the law has finite moments of every order due to the exponential tempering in (2.10),
it follows that regardless of the choice of the parameter λ > 0, there exists an ergodic Lévy-driven
OU process having T S(α,a,b) ∗ δµ as its invariant law. (We refer the reader to Masuda [10] and
the references therein for details about Lévy-driven OU processes.) In particular, OU process with
inverse Gaussian invariant law (α = 1/2) was applied in Benth [3] to stochastic volatility modeling
of [2] for volatility and variance swap valuations.

Let w(z) be the Lévy density of the marginal Z1 of the background driving Lévy process. Since
u(z) is differentiable, the Lévy densities w(z) and u(z) are related by

w(z) =−u(z)− z
∂
∂ z

u(z) = aα
e−bz

zα+1 +ab
e−bz

z(α−1)+1
. (2.11)

Therefore, on the one hand, if α ∈ (0,1), then the underlying process {Zt : t ≥ 0} is the su-
perposition of a tempered stable process with T S′(α,aα,b) and a compound Poisson process with
Lévy density abz−αe−bz. Sample paths can be written in the exact sense, using the infinite shot

5



noise series representation (2.7) as

{Xt : t ∈ [0,T ]} L=

{
e−λ tX0 + µ

(
1− e−λ t

)
+

+∞

∑
k=1

e−λ (t−Tk)

[(
Γk

aT

)−1/α
∧

VkU
1/α
k

b

]
1[0,t] (Tk)

+
+∞

∑
k=1

eΓ̃k−λ tGk1[0,λ t]

(
Γ̃k

)
: t ∈ [0,T ]

}
, (2.12)

where {Γ̃k}k∈N are arrival times of a standard Poisson process, independent of {Γk}k∈N, with
intensity Γ(1−α)abα(=

∫
R+

abz−αe−bzdz), and {Gk}k∈N is a sequence of iid random variables
with gamma distribution Γ(1−α, b).

On the other hand, if α ∈ (1,2), then the equation (2.11) implies that the underlying process
{Zt : t ≥ 0} is a superposition of two independent tempered stable processes with T S(α,aα,b) and
T S(α−1,ab,b). Sample paths can also be written in the exact sense with infinite shot noise series
representation (2.7). This is however not very sensible, at least for the following three reasons; (i)
there are too many random sequences to be generated, (ii) the series representation for T S(α,aα,b)
contains intricate centering terms as seen in (2.7), and (iii) the issue of truncation error has to be
addressed for two infinite shot noise series.

3 Transition Law of Tempered Stable Ornstein-Uhlenbeck Pro-
cesses of Infinite Variation

In this section, we derive the transition law between consecutive observations of discrete time
skeleton

X0, X∆, X2∆, · · · ,

of infinite variation TS-OU processes (2.8), with a fixed time stepsize ∆ > 0. (In principle, the
stepsize does not need to be equidistant and can be set different positive values for different steps.)
The difference from the finite variation setting [18, 9] lies in the integrability of Lévy density of
the transition law around the origin. As a consequence, the Lévy density has to be decomposed
twice to extract all infinite activity part, while only once in the finite variation case. For better
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presentation, we will use the following notations

w1,∆(z) :=
(

1− e−αλ∆
) a

zα+1 e−bz,

w2,∆(z) := e−αλ∆ a
zα+1

(
e−bz− e−beλ∆z

)
,

w21,∆(z) := e−αλ∆
(

eλ∆−1
) ab

z(α−1)+1
e−beλ∆z,

w22,∆(z) := ae−αλ∆ e−bz− e−beλ∆z−b(eλ∆−1)ze−beλ∆z

zα+1 .

Theorem 3.1. Fix ∆ > 0. For each n ∈ N0, it holds that given Xn∆,

X(n+1)∆
L= e−λ∆Xn∆ + µ

(
1− e−λ∆

)
+Y01 +Y02 +

(Nκ∆

∑
k=1

Θk−∆γ

)
, (3.1)

where
γ := abα−1Γ(1−α)

(
e−αλ∆− e−λ∆−

(
e−λ∆− e−2λ∆

)
(1−α)

)
,

and all the random elements are mutually independent and specified as

• Y01 ∼ T S(α,a(1− e−αλ∆),b),
• Y02 ∼ T S(α−1,abe−αλ∆(eλ∆−1),beλ∆),
• Nκ∆ ∼ Pois(κ∆) with κ∆ := abαΓ(−α)(α(1− e−λ∆)+ e−αλ∆−1),
• {Θk}k∈N is a sequence of iid random variables in R+ with common probability density

v1,∆(z) := κ−1
∆ w22,∆(z).

Moreover, the transition law is selfdecomposable.

Proof. By the homogeneous Markovian autoregressive structure of (2.9), it holds that for each
n ∈ N0, given Xn∆,

X(n+1)∆ = e−λ∆Xn∆ + µ
(

1− e−λ∆
)

+
∫ (n+1)∆

n∆
e−λ ((n+1)∆−s)dZλ s

=: e−λ∆Xn∆ + µ
(

1− e−λ∆
)

+ ε∆,n+1

L= e−λ∆Xn∆ + µ
(

1− e−λ∆
)

+
∫ λ∆

0
e−λ∆+sdZs,

where the identity in law holds by the independence and stationarity of increments of the under-
lying Lévy process {Zt : t ≥ 0}. This implies that {ε∆,k}k∈N reduces to a sequence of iid random
variables with common distribution F∆ := L (

∫ λ∆
0 e−λ∆+sdZs). It thus suffices to investigate the

conditional law L (X∆|X0), that is, only of the first increment. Note that by definition, this law is
infinitely divisible.
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Using the Lévy-integral transform, we get the characteristic function of the distribution F∆ as

F̂∆(y) = exp
[∫

R+

(
eiyz−1− iyz

)
w∆(z)dz

]
, (3.2)

where

w∆(z) :=
∫ λ∆

0
esw(esz)ds.

By further computing w∆(z), we get

w∆(z) =
a

zα+1

∫ λ∆

0
(α +besz)e−αse−beszds

=
a

zα+1

∫ λ∆

0

∂
∂ s

(
e−αse−besz

)
ds

=
a

zα+1

(
e−bz− e−αλ∆−beλ∆z

)
= w1,∆(z)+w2,∆(z).

Note that w1,∆ and w2,∆ are positive functions on R+. Clearly, w1,∆ is the smooth Lévy density of
T S(α,(1−e−αλ∆)a,b). Note that w2,∆(z)∼ abe−αλ∆(eλ∆−1)z−α as z ↓ 0. This implies that w2,∆

is not integrable and thus cannot be a Lévy density of compound Poisson components.
Let us further decompose w2,∆ into two parts. We use the identity

e−x− e−y = (y− x)e−y + e−x (y− x)2 H (y− x) , y > x > 0. (3.3)

where H(z) := z−2(1− e−z(1 + z)) is positive, bounded and strictly decreasing on R+ such that
limz↓0 H(z) = 1/2. By applying this identity, we get

w2,∆(z) =e−αλ∆
(

eλ∆−1
) ab

z(α−1)+1
e−beλ∆z

+ab2
(

eλ∆−1
)2

e−αλ∆z(2−α)−1e−bzH
(

b
(

eλ∆−1
)

z
)

=w21,∆(z)+w22,∆(z).

Clearly, w21,∆ is the smooth Lévy density of T S(α−1,abe−αλ∆(eλ∆−1),beλ∆).
Next, observe that∫

R+

w22,∆(z)dz = ae−αλ∆
∫

R+

z−1−α
(

e−bz− e−beλ∆z−b
(

eλ∆−1
)

ze−beλ∆z
)

dz = κ∆.

This shows that w22,∆ serves as a Lévy density of compound Poisson components. To realize the
centering for the compound Poisson distribution due to (3.2), we need to subtract the constant term∫
R+

zw22,∆(z)dz = γ , multiplied by the time stepsize ∆.
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It remains to show the selfdecomposability of the transition law. Define

h∆(z) :=
1
zα

∫ λ∆

0
(a+besz)e−αs−beszds, z ∈ R+,

so that w∆(z) = ah∆(z)/z. This function is obviously non-negative and is decreasing on R+, due to

d
dz

h∆(z) =
∫ λ∆

0
z−1−αe−αs−besz (−(bes)2z2− (2α−1)besz−α2)ds (3.4)

≤− α2

z1+α

∫ λ∆

0
e−αs−beszds < 0.

Hence, Corollary 15.11 of Sato [14] yields the claim. The proof is complete.

Remark 3.2. It is worth noting that the selfdecomposability of the transition law holds for any
α ∈ (1,2) in the infinite variation setting, while in the finite variation case, it holds only for the
stability index of no less than 1/2. This difference occurs due to the term 2α−1 in the integrand
of (3.4), that is, the sign of 2α−1 changes at α = 1/2. (See Zhang and Zhang [18] for the finite
variation case.)

Remark 3.3. It is difficult to provide an efficient simulation method for the distribution induced
by the Lévy density w2,∆. Nevertheless, in the finite variation setting, that is, if α ∈ (0,1), then
w2,∆ is integrable ∫

R+

w2,∆(z)dz =−abαΓ(−α)
(

1− e−αλ∆
)
∈ R+. (3.5)

This shows that w2,∆ acts as the smooth Lévy density of a compound Poisson distribution. More-
over, there is no further need to decompose w2,∆, unlike we did in Theorem 3.1, since the corre-
sponding Poisson distribution can be simulated in the exact sense through an acceptance-rejection
sampling method, which will be presented in Section 4.1.

4 Simulation Methods

It follows from Theorem 3.1 that to simulate sample paths of infinite variation TS-OU processes at
discrete timings, it suffices to simulate three random elements, that is, the tempered stable random
variables Y01 and Y02, and the compound Poisson random variable ∑

Nκ∆
k=1 Θk. In this section, we

discuss simulation methods for those random elements. We begin with relatively straightforward
cases of Y02 and of the compound Poisson ∑

Nκ∆
k=1 Θk.
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4.1 Simulation of Tempered Stable with Stability Index α−1

First, we present an exact simulation method for Y02 ∼ T S(α−1,abe−αλ∆(eλ∆−1),beλ∆), which
is centered. Hence, we will first instead simulate T S′(α−1,abe−αλ∆(eλ∆−1),beλ∆), that is,

Y ′02 := Y02 +Γ(2−α)abα
(

1− e−λ∆
)

,

which takes values solely in R+ and then subtract the added constant term. An efficient and exact
simulation method for the case α − 1 = 0.5, that is the inverse Gaussian, is well known due to
Michael et al. [11]. For the general case of α − 1 ∈ (0,1), the best route would be acceptance-
rejection sampling based on the representation (2.3) of the stable distribution and the likelihood
ratio of the two densities; for each z ∈ R+,

fT S′(α−1,abe−αλ∆(eλ∆−1),beλ∆)(z)

fS(α−1,abe−αλ∆(eλ∆−1))(z)
= e−beλ∆z−Γ(1−α)abα+1(eλ∆−1) ≤ e−Γ(1−α)abα+1(eλ∆−1), (4.1)

where the density functions fS(α,a) and fT S′(α,a,b) are given respectively by (2.2) and (2.6). The
random variable Y02 can then be generated in the exact sense by the following simple acceptance-
rejection sampling algorithm.

Algorithm 1 (Y02 ∼ T S(α−1,abe−αλ∆(eλ∆−1),beλ∆)):
Step 1. Generate U as uniform (0,1) and V as S(α−1,abe−αλ∆(eλ∆−1)) through the
representation (2.3).
Step 2. If U ≤ e−beλ∆V , let Y02←V −Γ(2−α)abα(1− e−λ∆). Otherwise, return to Step 1.

The acceptance rate at Step 2 of Algorithm 1 is given by

p1(∆) := P
(

U ≤ e−beλ∆V
)

= eΓ(1−α)abα+1(eλ∆−1).

Clearly, the algorithm works more efficiently when the acceptance rate p1(∆) at Step 2 is closer to
1. Indeed, this happens when ∆ ↓ 0.

It is, however, more practical to discuss the effectiveness on the work-normalized basis. Since
the simulation of L (Y02) is exact through Algorithm 1, all we need to pay attention to is the
computing time required to generate iid increments from T S(α−1,abe−αλ∆(eλ∆−1),beλ∆) to fill
each sample path. Since we are concerned with sample paths over a finite time horizon, by taking a
smaller time stepsize ∆, the number of increments for each sample path increases in proportion to
1/∆. Next, in Algorithm 1, the number of trials until one acceptance has the geometric distribution
with success probability p1(∆). The average time to get one sample from Algorithm 1 is thus
proportional to 1/p1(∆). Then, we find that as ∆ ↓ 0,

1
∆ · p1(∆)

' 1
∆

,
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which implies that the average computing time related to Y02 for each sample path increases in
proportion to 1/∆ as ∆ ↓ 0.

For more details about related acceptance-rejection sampling methods, see Baeumer and Meer-
schaert [1], Devroye [6] and Kawai and Masuda [9].

4.2 Simulation of Compound Poisson Component

Next, we consider simulation of the compound Poisson component. Generation of the Poisson
random variable Nκ∆ is straightforward and is thus omitted. We concentrate on generation of the
random sequence {Θk}k∈N. Recall that L (Θ1) has a probability density function v1,∆(z) and that
the function H in (3.3) is positive, bounded and strictly decreasing on R+ with limz↓0 H(z) = 1/2.

We can thus show that

v1,∆(z)≤ 1
2κ∆

abα
(

eλ∆−1
)2

e−αλ∆Γ(2−α) fΓ(2−α,b)(z) =: g∆(z), (4.2)

where fΓ(2−α,b)(z) = b2−αΓ(2−α)−1z(2−α)−1e−bz defined on R+. Then, it holds that

v1,∆(z)
g∆(z)

=
2

(eλ∆−1)2b2
e−bz− e−beλ∆z−b(eλ∆−1)ze−beλ∆z

z2 =: v2,∆(z), z ∈ R+.

This suggests the following acceptance-rejection sampling algorithm for generation of the random
variable Θ1.

Algorithm 2 (Θ1 with probability density v1,∆(z))
Step 1: Generate U as uniform (0,1) and V as Γ(2−α,b).
Step 2: If U ≤ v2,∆(V ), let Θ1←V . Otherwise, return to Step 1.

The acceptance rate at Step 2 is given by

p2(∆) := P
(
U ≤ v2,∆(V )

)
=

2
α(α−1)

α(1− e−λ∆)+ e−αλ∆−1
e−αλ∆(eλ∆−1)2 .

We can show that the acceptance rate tends to 1 as ∆ ↓ 0.
Since the simulation of {Θk}k∈N is exact by Algorithm 2 as well, all we need to pay attention

to is the computing time required to generate iid increments from the distribution L (∑
Nκ∆
k=1 Θk) to

fill each sample path. Again, by taking a smaller time stepsize ∆, the number of increments over
a finite time horizon increases in proportion to 1/∆. Next, the average number of implementation
of Algorithm 2 required to generate one sample from the distribution L (∑

Nκ∆
k=1 Θk) is proportional
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to the intensity κ∆ of the Poisson random variable Nκ∆ . The average time to get one sample from
Algorithm 2 is proportional to 1/p2(∆). Therefore, we get

κ∆
∆ · p2(∆)

=
abαΓ(−α)α(α−1)e−αλ∆(eλ∆−1)2

2∆
' ∆,

as ∆ ↓ 0. This implies that the computing time for simulation of L (∑
Nκ∆
k=1 Θk) decreases linearly in

∆, as ∆ ↓ 0.

4.3 Simulation of Tempered Stable with Stability Index α

We have seen that the two distributions L (Y02) and L (∑
Nκ∆
k=1 Θk) can be simulated in the exact

sense through acceptance-rejection sampling. To the best of our knowledge, the exact simulation of
Y01 ∼ T S(α,a(1−e−αλ∆),b) seems impossible in practice. For example, the series representation
(2.7) looks like an exact method, while it is still approximative as soon as a finite truncation is
performed. In this paper, amongst several possible approximative methods, we present a method
proposed by Baeumer and Meerschaert [1], which, we believe, is most suitable for our purpose. Its
procedure is outlined as follows.

Algorithm 3 (Approximation of Y01 ∼ T S(α,a(1− e−αλ∆),b)):
Fix c > 0.
Step 1. Generate U as uniform (0,1) and V as S(α,a(1− e−αλ∆)).
Step 2. If U ≤ e−b(V+c), let Y ′01,c←V . Otherwise, return to Step 1.
Step 3. Return Y01,c← Y ′01,c−Γ(1−α)a(1− e−αλ∆)bα−1.

Note that the random variable Y ′01,c in Step 2 approximates T S′(α,a(1−e−αλ∆),b), while Y01,c

approximates T S(α,a(1− e−αλ∆),b). In fact, the constant shift −Γ(1−α)a(1− e−αλ∆)bα−1 in
Step 3 accounts for the difference between (2.4) and (2.5).

Let us briefly review basic properties of Algorithm 3 derived in [1]. The acceptance rate at
Step 2 of Algorithm 3 is

p3(∆,c) := E
[
e−b(V+c); V >−c

]
+P(V ≤−c) .

Moreover, we have

P(Y ′01,c ≤ z) =
1

p3(∆,c)

(
P(V ≤min(z,−c))+

∫ z

min(z,−c)
e−b(y+c) fS(α,a(1−e−αλ∆))(y)dy

)
,

fL (Y ′01,c)
(z) =

p3(∆,c)−1 fS(α,a(1−e−αλ∆))(z), if z ∈ (−∞,−c],

p3(∆,c)−1e−b(z+c) fS(α,a(1−e−αλ∆))(z), if z ∈ (−c, +∞).
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In view of the expression

fT S′(α ,a(1−e−αλ∆),b)(z) = e−b(z+a(1−e−αλ∆)Γ(−α)bα−1) fS(α ,a(1−e−αλ∆))(z), z ∈ R,

the parameter c in Algorithm 3 acts as a truncation of the entire real line R to the domain on which
the exponential tempering e−bz is performed. To sum up, we get

fL (Y01,c)(z) = fL (Y ′01,c)
(z+Γ(1−α)a(1− e−αλ∆)bα−1), z ∈ R.

It is also proved in Theorem 8 [1] that the density fL (Y01,c) converges in L1(R) to the true den-
sity fT S(α,a(1−e−αλ∆),b) as c ↑ +∞, and consequently the Kolmogorov-Smirnov distance DKS(∆,c)
between two distributions L (Y01,c) and T S(α,a(1− e−αλ∆),b) converges to zero as well. Nev-
ertheless, it is not sensible to simply look for a smaller distribution error by taking c ↑ +∞,
since then the consequent low acceptance rate makes Algorithm 3 extremely inefficient, due to
limc↑+∞ p3(∆,c) = 0 for each ∆ > 0. Meanwhile, it holds that for each c > 0, lim∆↓0 p3(∆,c) = 1.
Hence, we need to address the issue of trade-off between the distribution error and the computing
effort in terms of ∆ and c.

Concerning the computing effort, on the one hand, we wish to find (∆,c) minimizing 1/(∆ ·
p3(∆,c)), just as in the previous two subsections. It should be noted that asymptotic behav-
iors of p3(∆,c) in ∆ and c are difficult to analyze. Next, on the other hand, there exist several
appropriate criteria to measure the distribution error. Natural candidates include L1(R), L2(R)-
distances between densities fL (Y01,c) and fT S(α,a(1−e−αλ∆),b), while the Kolmogorov-Smirnov dis-
tance DKS(∆,c) between the two distributions is certainly valid. However, none of them are
tractable in an explicit manner. Here, for illustrative purpose, let us only present a numerical
result on finding c minimizing

DKS(∆,c)
∆ · p3(∆,c)

,

with some fixed ∆ > 0. Numerical results are presented in Table 1 with a single parameter set
(α,a,b,λ ) = (1.8, 1.0, 1.0, 0.2) and ∆ = 0.1.

It can be observed that the Kolmogorov-Smirnov distance DKS(∆,c) decreases in c, while the
acceptance rate p3(∆,c) must decrease as well. The quantity DKS(∆,c)/(∆ · p3(∆,c)) indicates that
a greater value of c than around 1.4 would not help in total, just as can be seen from the fact that
DKS(∆,c) does not improve any further, while p3(∆,c) still gets worse. We have observed from
numerical experiments that the quantity DKS(∆,c)/(∆ · p3(∆,c)) behaves like a convex function in
c. This observation is difficult to confirm in a rigorous manner, while it matches our intuition. (To
find an optimal truncation point c, we may employ a numerical method, such as the Nelder-Mead
direct search.) We draw in Figure 1 resulting density functions fL (Y01,c) with a few different choices
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c DKS(∆,c) p3(∆,c) DKS(∆,c)
∆·p3(∆,c)

0.0 1.10E-1 0.875 1.26E+0
0.2 8.01E-2 0.799 1.00E+0
0.4 4.74E-2 0.703 6.73E-1
0.6 2.14E-2 0.599 3.56E-1
0.8 7.00E-3 0.499 1.40E-1
1.0 1.63E-3 0.411 3.97E-2
1.2 2.69E-4 0.337 7.98E-3
1.4 4.38E-5 0.276 1.59E-3
1.6 4.38E-5 0.226 1.94E-3

Table 1: Numerical results of distribution error and acceptance rate for different truncation points
c.

of c, together with the true tempered stable density function fT S(α,a(1−e−αλ∆),b). For better compar-
ison, we also provide vertical lines x = −c−Γ(1−α)a(1− e−αλ∆)bα−1. (We need the constant
shift here because the truncation c is performed on the distribution T S′(α,a(1−e−αλ∆),b), rather
than on T S(α,a(1− e−αλ∆),b).) Observe that two densities are sufficiently close when c = 1.4.
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Figure 1: Comparison of two density functions fL (Y01,c) (solid) and fT S(α,a(1−e−αλ∆),b) (dotted)
under (α,a,b,λ ) = (1.8, 1.0, 1.0, 0.2). The horizontal line indicates x = −c− Γ(1−α)a(1−
e−αλ∆)bα−1.

Let us remind again that the Kolmogorov-Smirnov distance is solely one of various candidates
as a measure of distribution error. The best choice of the truncation point c may be different for
different criteria.
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4.4 Sample Paths

We provide in Figure 2 typical sample paths of TS-OU processes of infinite variation with discrete
observations, based on the transition law we have obtained in Theorem 3.1 and the simulation
methods described in Algorithm 1, 2 and 3. The model parameters are set λ = 0.2, µ = 0, a = b = 1
and α = 1.2, 1.5 and 1.8. For simplicity, we set the initial state X0 = 0, that is the mean of the
stationary distribution T S(α,a,b) ∗ δµ . Sample paths are generated over the time interval either
[0, 100] or [0, 200], where the time stepsize is kept ∆ = 0.1 all over in common. This means that
1000 and 2000 recursive increments are needed, respectively, for the intervals [0, 100] and [0, 200].

In our parameter setting, acceptance rates in Algorithm 1 (to generate one sample of Y02) are
0.889, 0.931 and 0.891, respectively, while in Algorithm 2 (to generate one sample of Θ1), accep-
tance rates are, respectively, 0.990, 0.993 and 0.997. In Algorithm 3 (to generate one sample of
Y01), we have chosen the truncation point c = 0.3, 0.6 and 1.4, respectively, for α = 1.2, 1.5 and
1.8, where we have used the criterion DKS(∆,c)/(∆ · p3(∆,c)), as in Section 4.3. With the choice
of truncation point c, acceptance rates in Algorithm 3 are 0.831, 0.588 and 0.276. Even in the case
α = 1.8 with the lowest acceptance rate 0.276 in Algorithm 3, each sample path can be generated
within 0.1 second by Scilab software on a computer with recent regular spec. (The computing time
can easily be reduced by employing a low-level language, such as C.)

5 Concluding Remarks

We have derived exact transition law between consecutive observations of TS-OU processes of
infinite variation as a convolution of three random components; a compound Poisson distribution
and two tempered stable distributions, one with stability index in (0,1) and the other with in-
dex in (1,2). We have adopted acceptance-rejection sampling techniques to simulate exactly the
compound Poisson component and the tempered stable distribution with index in (0,1). For simu-
lation of the tempered stable distribution with index in (1,2), we have presented an approximative
acceptance-rejection sampling method of [1] with discussion on the issue of trade-off between dis-
tribution error and computing time. Sample paths simulation is significantly more efficient with
our explicit transition law and simulation techniques, relative to the known approximative method
based on infinite shot noise series representation of tempered stable Lévy processes.

As mentioned in Section 4.3, we could think of several approximative simulation techniques for
the tempered stable distribution with stability index in (1,2). It would be interesting to investigate
those techniques with a view towards simulation. Also, with the explicit transition density func-
tions of TS-OU processes, it is certainly worthwhile to investigate related statistical issues, such as
the local asymptotic behavior of the likelihood ratio statistics, efficient parameter estimation, and
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so on. These topics will be investigated in subsequent papers.
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Figure 2: Typical sample paths of tempered stable Ornstein-Uhlenbeck processes through exact
simulation algorithm. The horizontal dotted lines indicate X0 = 0(= limt↑+∞ E[Xt ]).
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