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INFINITELY DIVISIBLE CENTRAL PROBABILITY MEASURES ON
COMPACT LIE GROUPS—REGULARITY, SEMIGROUPS AND

TRANSITION KERNELS
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We introduce a class of central symmetric infinitely divisible probabil-
ity measures on compact Lie groups by lifting the characteristic exponent
from the real line via the Casimir operator. The class includes Gauss, Laplace
and stable-type measures. We find conditions for such a measure to have a
smooth density and give examples. The Hunt semigroup and generator of
convolution semigroups of measures are represented as pseudo-differential
operators. For sufficiently regular convolution semigroups, the transition ker-
nel has a tractable Fourier expansion and the density at the neutral element
may be expressed as the trace of the Hunt semigroup. We compute the short
time asymptotics of the density at the neutral element for the Cauchy distribu-
tion on the d-torus, on SU(2) and on SO(3), where we find markedly different
behaviour than is the case for the usual heat kernel.

1. Introduction. The heat kernel on a compact Riemannian manifold has
been the subject of extensive investigations by analysts, geometers and proba-
bilists. One reason for this is that its small and large time asymptotic expansions
contain important topological and geometric information (see, e.g., [32]). Another
reason is that it is the transition density of manifold-valued Brownian motion
which is a stochastic process of intrinsic interest (see, e.g., [10]). If the manifold
is a Lie group, then the heat kernel is naturally related to Dedekind’s eta function
via Macdonald’s identities (see [12]). In this paper, we will mainly be concerned
with compact Lie groups. In this case, the heat kernel is naturally associated to a
vaguely (or equivalently, weakly) continuous convolution semigroup of probability
measures which we’ll refer to as the “heat semigroup” in the sequel.

The study of the entire class of such convolution semigroups has had a long
development (see, e.g., [5, 19, 20]). From a probabilistic point of view, they cor-
respond to Lévy processes, that is, stochastic processes with stationary and inde-
pendent increments. Compared to Brownian motion which has continuous sample
paths (with probability one), the paths of the generic Lévy process are only right
continuous and have jump discontinuities of arbitrary size occurring at random
times.
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The purpose of this paper is to study a class of convolution semigroups which
on the one hand, are sufficiently close in structure to the heat semigroup to enable
us to do some interesting analysis and on the other hand, are sufficiently broad as
to display all the interesting features that one finds with a generic Lévy process.
The first observation is that measures comprising the heat semigroup are central
and so we focus on this class. It is worth pointing out that that central measures
as a class have also received some attention from analysts (see, e.g., [16, 31]).
Second, we remark that if (μt , t ≥ 0) is the heat semigroup then its noncom-
mutative Fourier transform (see [17, 36] for background on this concept) takes
the form μ̂t (π) = e−(t/2)κπ Iπ at the irreducible representation π where −κπIπ is
the Casimir operator. But u → u2/2 is the negative-definite function on the real
line associated with the standard Gaussian measure. The generalization that we
make here is to consider a class of semigroups that are given by the prescription

μ̂t (π) = e−tη(κ
1/2
π )Iπ where η is a symmetric negative definite function. Other ex-

amples of measures subsumed within this class include the Laplace distribution
on a Lie group, which has been untilized in recent statistical work on the prob-
lem of deconvolution (see, e.g., [24, 26]) and analogues of stable laws. Indeed
any semigroup of probability measures that is obtained by subordinating the heat
semigroup belongs to this class. We study these measures both from the static per-
spective, where the emphasis is on a single infinitely divisible measure, and the
dynamic perspective where we focus on an entire semigroup.

The organization of this paper is as follows. In Section 2, we study central prob-
ability measures, introduce our main class and examine some examples. In Sec-
tion 3, we use Sobolev spaces to find conditions on our induced measures which
enable them to have a smooth density. In Section 4, we turn our attention to convo-
lution semigroups and the associated semigroup of operators (the Hunt semigroup)
on the L2 space of normalized Haar measure. When G is a Euclidean space, it is
known (see [22], Chapter 3 of [4]) that these operators, and their generators, can
be realized as pseudo-differential operators. Using Peter–Weyl theory, Ruzhansky
and Turunen [33] have developed an intrinsic theory of pseudo-differential oper-
ators on compact groups. We adapt this theory to our needs and show that the
Hunt semigroup and its generator are pseudo-differential operators in the sense of
Ruzhansky and Turunen. This part of the work is carried out in full generality. In
the case of our induced class, we show that the generator has the same Sobolev
regularity as the Laplacian. Although these results have an analytic flavor, they are
important for probabilists as they indicate a route to investigate general classes of
Feller–Markov processes on compact Lie groups using the symbol of the genera-
tor as the key tool (see [23] for an account of this theory in the case where G is
Euclidean space).

In Section 5, we investigate the transition kernel for convolution semigroups
of central measures. We remark that the first investigation of densities for such
measures (under a hypo-ellipticity condition that we do not require here) were
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made by Liao in [28] (see also Theorem 4.4 in [29], page 96). A necessary and
sufficient condition for the semigroup to be trace-class for any positive time is
that the corresponding probability measure has a square-integrable density [5]. We
compute the trace in both the main L2-space and the subspace of central functions.
In the former case, the coordinate functions form a complete set of eigenvectors
for the Hunt semigroup. Comparing the traces in these two spaces, leads to an
interesting inequality for transition kernels which appears to be new even in the
heat kernel case. Finally, in Section 6, we study the small time asymptotics of the
transition kernel in the case of the Cauchy distribution on the d-torus, on SU(2)

and on SO(3) and show that it blows up much faster than the heat kernel.

2. Infinite divisibility of central measures. Let G be a compact group with
neutral element e and let M(G) be the set of all probability measures defined on
(G, B(G)) where B(G) is the Borel σ -algebra of G. We say that μ ∈ M(G) is cen-
tral (or conjugate-invariant) if μ(σAσ−1) = μ(A) for all σ ∈ G,A ∈ B(G) and μ

is said to be symmetric if μ(A−1) = μ(A) for all A ∈ B(G). Let Mc(G) (Ms(G))
be the subsets of M(G) comprising central (symmetric) measures (resp.) and de-
fine Mc,s(G) := Mc(G) ∩ Ms(G). Normalized Haar measure on G will always
be denoted dσ when integrating functions of σ ∈ G.

Let Ĝ be the set of all equivalence classes of irreducible representations of G.
We will, without further comment, frequently identify equivalence classes with a
particular representative element when there is no loss of generality. The trivial
representation will always be denoted by δ. Each π ∈ Ĝ acts as a dπ × dπ unitary
matrix on a complex linear space Vπ having dimension dπ . We define the Fourier
transform of each μ ∈ M(G) to be the Bochner integral

μ̂(π) =
∫
G

π(σ)μ(dσ),

where π ∈ Ĝ. We will frequently use the well-known and easily verified fact that

μ̂ ∗ ν(π) = μ̂(π)ν̂(π)

for all μ,ν ∈ M(G),π ∈ Ĝ, where ∗ denotes convolution of measures.
Suppose we are given μ ∈ M(G). It is shown in [34] that μ ∈ Mc(G) if and

only if for each π ∈ Ĝ there exists cπ ∈ C such that

μ̂(π) = cπIπ ,(2.1)

where Iπ is the identity matrix acting on Vπ . Indeed this is a straightforward con-
sequence of Schur’s lemma. Moreover, one has the formula

cπ = 1

dπ

∫
G

χπ(σ )μ(dσ),(2.2)

where χπ(·) := tr(π(·)) is the group character.
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It is well known (and easily verified) that μ ∈ Ms(G) if and only of μ̂(π) is
self-adjoint for all π ∈ Ĝ. Consequently, μ ∈ Mcs(G) if and only if μ̂(π) = cπIπ

with cπ ∈ R for all π ∈ Ĝ.
A probability measure μ is infinitely divisible if for each n ∈ N there exists

νn ∈ M(G) such that ν∗n
n = μ. In this case, we write μ1/n := νn.

PROPOSITION 2.1. If G is a compact Lie group and μ ∈ Mcs(G) is infinitely
divisible, then for each π ∈ Ĝ there exists απ ≤ 0 such that μ̂(π) = eαπ Iπ .

PROOF. By the results on pages 220–221 of [19], μ may be embedded as
μ1 into a vaguely continuous convolution semigroup of probability measures
(μt , t ≥ 0) where μ0 is normalized Haar measure on a closed subgroup H of G.
It follows (see [2, 30]) that for each π ∈ Ĝ, (μ̂t (π), t ≥ 0) is a strongly con-
tinuous contraction semigroup of matrices acting on Vπ and so we may write
μ̂t (π) = μ̂0(π)etAπ for all t ≥ 0 where Aπ is a dπ × dπ matrix. Now since
μ1 ∈ Mcs(G), there exists λπ ∈ R such that

μ̂1(π) = μ̂0(π)eAπ = λπIπ . . . .(*)

If λπ = 0, the required result holds with απ = −∞ so assume that λπ 	= 0. Since
μ1 = μ1 ∗ μ0, we have

μ̂0(π)eAπ μ̂0(π) = λπIπ .

On the other hand, post-multiplying both sides of (*) by μ̂0(π) yields

μ̂0(π)eAπ μ̂0(π) = λπμ̂0(π).

It follows that μ̂0(π) = Iπ and hence H = {e}. We then have Aπ = απIπ where
απ ∈ R and λπ = eαπ . But μ̂1(π) is a contraction on Vπ and hence απ ≤ 0. �

EXAMPLE (The compound Poisson distribution). Consider the probability
measure μλ,γ where γ is a given probability measure on G and λ > 0. This is
defined by

μλ,γ := e−λ
∞∑

n=0

λn

n! γ
∗n.

It is well known (see, e.g., [34]) that for all π ∈ Ĝ,

μ̂λ,γ (π) = exp
{
λ
(
γ̂ (π) − Iπ

)}
.

PROPOSITION 2.2.

(1) The measure μλ,γ is central if and only if γ is.
(2) The measure μλ,γ is symmetric if and only if γ is.
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PROOF.

(1) The if part is straightforward and is established in Proposition 4 of [34].
Conversely, if μλ,γ is central then for all g ∈ G,π ∈ Ĝ

π(g)μ̂λ,γ (π)π(g−1) = μ̂λ,γ (π),

and so

μ̂λ,γ (π) = exp
{
λ
(
π(g)γ̂ (π)π(g−1) − Iπ

)}
.

Now by uniqueness of Fourier transforms and injectivity of the exponential map
on matrices, we have

π(g)γ̂ (π)π(g−1) = γ̂ (π)

for all g ∈ G,π ∈ Ĝ and the result follows.
(2) This result is proved similarly using the fact that a probability measure is

symmetric if and only if its Fourier transform comprises self-adjoint matrices. �

It follows that a central probability measure μ is a compound Poisson distrib-
ution if and only if there exists λ > 0 and a central probability measure γ with
γ̂ (π) = bπIπ for all π ∈ Ĝ such that

μ̂(π) = exp{λ(bπ − 1)Iπ }.(2.3)

We now introduce a class of central symmetric measures which are key to this
paper. For this part, we assume that G is a compact Lie group. Let ρ be a symmetric
infinitely divisible probability measure on R. Then we have the Lévy–Khintchine
formula ∫

R
eiuxρ(dx) = e−η(u),

where

η(u) = 1

2
σ 2u2 +

∫
R−{0}

(
1 − cos(uy)

)
ν(dy),(2.4)

where σ ≥ 0 and ν is a symmetric Lévy measure on R − {0}, that is, a σ -finite
Borel symmetric measure for which

∫
R−{0} min{1, |x|2}ν(dx) < ∞ (see, e.g., [6]).

For each π ∈ Ĝ, let Kπ be the Casimir operator acting in Vπ . Then Kπ =
−κπIπ where κπ ≥ 0 with κπ = 0 if and only if π = δ. If μ is a probability mea-
sure on G for which

μ̂(π) = e−η(κ
1/2
π )Iπ ,(2.5)

we say that μ is a central symmetric probability measure on G induced by an
infinitely divisible probability measure on R and we write μ ∈ CIDR(G).
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The following two examples have been applied to statistical inference on groups
(see, e.g., [24, 26]).

EXAMPLE 1 (Gaussian measure). Here we take ν = 0 and so cπ = exp{−1
2 ×

σ 2κπ }. Gaussian measure is embeddable into the Brownian motion or heat semi-
group of measures for which μ̂t (π) = exp{− t

2σ 2κπ } for t ≥ 0 which has been
extensively studied by both analysts and probabilists.

EXAMPLE 2 (The Laplace distribution on G). Here we take σ = 0, ν(dx) =
exp{−|x|/β}

|x| dx (with β > 0) and cπ = (1 +β2κπ)−1 (see [35], page 98 for a discus-
sion of the underlying distribution on R).

Now consider a central symmetric compound Poisson distribution μλ,γ . We
consider conditions under which μλ,γ ∈ CIDR(G). First, take σ = 0 and ν to be a
finite symmetric measure in (2.4) and rewrite

η(u) = λ

∫
R−{0}

(
1 − cos(uy)

)
ν̃(dy),

where λ := ν(R − {0}) and ν̃(·) := 1
λ
ν(·). For μλ,γ ∈ CIDR(G) with this value

of λ, we require that bπ = g(κ
1/2
π ) in (2.3) where g(u) = ∫

R cos(ux)ν̃(dx). For
example, if we take ν to be a constant multiple of a centred Gaussian measure
with variance σ 2 on R then bπ = exp{−1

2σ 2κπ }.
We now consider an important subclass of measures in CIDR(G). Let (ρ

f
t , t ≥

0) be the law of a subordinator with associated Bernstein function f : (0,∞) →
[0,∞) so that (ρ

f
t , t ≥ 0) is a vaguely continuous convolution semigroup of prob-

ability measures on [0,∞) and for each t ≥ 0, u > 0,∫ ∞
0

e−usρ
f
t (ds) = e−tf (u),(2.6)

and f has the generic form

f (u) = au +
∫
(0,∞)

(1 − e−uy)λ(dy),

where a ≥ 0 and
∫
(0,∞) min{1, y}λ(dy) < ∞ (see, e.g., [35], Section 30 and [4],

Section 1.3.2 for details). It is straightforward to verify that if (μt , t ≥ 0) is a
vaguely continuous convolution semigroups of measures on G and (ρ

f
t , t ≥ 0)

is a subordinator as above then we get another vaguely continuous convolution
semigroups of measures on G which we denote (μ

f
t , t ≥ 0) via the vague integral

μ
f
t (A) =

∫ ∞
0

μs(A)ρ
f
t (ds)
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for A ∈ B(G). Now let (μt , t ≥ 0) be the Brownian motion semigroup with σ =√
2. Then for each π ∈ Ĝ, t ≥ 0 we have

μ̂
f
t (π) =

∫ ∞
0

∫
G

π(σ)μs(dσ)ρ
f
t (ds)

=
(∫ ∞

0
e−sκπ ρ

f
t (ds)

)
Iπ

= e−tf (κπ )Iπ ,

and so μ
f
1 ∈ CIDR(G) with η(κ

1/2
π ) = f (κπ).

Note that the Laplace distribution (as described above) is obtained in this way
with f (u) = log(1 + β2u). It is worth pointing out that it also arises as β−2V β−2

where for c > 0,V c is the potential measure of the Brownian motion semigroup
defined by the vague integral V c(·) = ∫ ∞

0 e−ctμt (·) dt (see [35], pages 203–205
for the case in Rd ).

Other examples of measures in CIDR(G) which are obtained by subordina-
tion include stable-type distributions where σ = 0 in (2.4) and ν(dx) = bα

|x|1+α dx

where b > 0 and 0 < α < 2. In this case, we have f (u) = bαuα/2 and cπ =
exp{−bακ

α/2
π }. We may also consider the relativistic Schrödinger distribution for

m > 0 where f (u) = √
u + m2 − m and cπ = e−(

√
m2+κπ−m). It again has σ = 0

in (2.4). The precise form of ν is complicated and as we do not require it here we
refer the reader to [21].

It is an interesting problem to determine the class of all η in (2.4) which give
rise to a probability measure on G of the form (2.5).

3. Regularity of densities. In this section we will assume that G is a compact
semi-simple Lie group having Lie algebra g. We say that μ ∈ M(G) has a den-
sity k ∈ L1(G,R) if μ is absolutely continuous with respect to normalized Haar
measure on G. We then define k to be the Radon–Nikodým derivative dμ

dσ
.

If a density k exists for μ ∈ Mc(G) with μ̂(π) = cπIπ and k ∈ L2(G,R) then
it has the form

k(σ ) = ∑
π∈Ĝ

dπcπχπ(σ )(3.1)

for almost all σ ∈ G (see equation (3.4) in [3]).
Before we investigate densities in greater detail, we need some preliminaries.

3.1. Dominant weights. Fix a maximal torus T in G. Let T be its Lie algebra
and T∗ be the dual vector space to T. Let P be the lattice of weights in T∗ and
D ⊂ T∗ be the dominant chamber. The celebrated theorem of the highest weight
asserts that there is a one-to-one correspondence between elements of Ĝ and the
highest weights which are precisely the members of P ∩ D. For details, see, for
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example, Chapters 8 and 9 in [14]. In the following, the inner product 〈·, ·〉 and
norm | · | on T∗ are that induced by the Killing form via duality.

Let λπ be the dominant weight for the representation π . Then we know from
Sugira [37] [page 39, equation (1.17)] that

dπ ≤ N |λπ |m,(3.2)

where N is a universal constant and

m = 1
2

(
dim(G) − r

)
,(3.3)

where r is the rank of G, that is, the dimension of any maximal torus. It is also
well known that (see, e.g., [37], Lemma 1.1 or [25], Proposition 5.28)

κπ = |λπ + ρ|2 − |ρ|2 = 〈λπ,λπ + 2ρ〉,(3.4)

where ρ is half the sum of positive roots. It follows easily that

|λπ |2 ≤ κπ ≤ |λπ |2 + 2|λπ ||ρ| ≤ C(1 + |λπ |2),(3.5)

where C > 1 is a constant.
We also need the fact (which is implicit in the proof of Lemma 1.3 in [37]) that

there exists C1,C2 > 0 such that for all λ ∈ P ∩ D, there exists n = (n1, . . . , nr) ∈
Zr such that

C1‖n‖ ≤ |λ| ≤ C2‖n‖,(3.6)

where ‖n‖2 := n2
1 + · · · + n2

r .
The final result we need from Sugiura [37] is Lemma 1.3 therein that

ζ(s) := ∑
λ∈P∩D−{0}

〈λ,λ〉−s(3.7)

converges if 2s > r .

3.2. Sobolev spaces. Let {X1, . . . ,Xd} be a basis for the Lie algebra g of left-
invariant vector fields. We define the Sobolev space Hp(G) by the prescription

Hp(G) := {f ∈ L2(G);Xi1 · · ·Xikf ∈ L2(G);1 ≤ k ≤ p, i1, . . . , ik = 1, . . . , d}.
It is a complex separable Hilbert space with associated norm

‖|f ‖|2p = ‖f ‖2 + ∑
i1,...,ik

‖Xi1 · · ·Xikf ‖2.

It is not difficult to show that an equivalent norm is given by

‖|f ‖|2p = ∑
π∈Ĝ

dπ (1 + κπ)p tr(f̂ (π)f̂ (π)∗),(3.8)
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where f̂ (π) := ∫
G π(σ−1)f (σ ) dσ is the Fourier transform1 (and we are abusing

notation by using ‖| · ‖| in each case).
As is pointed out in [33], Section 10.3.1, Hp(G) coincides with the usual

Sobolev space on a manifold constructed using partitions of unity. So in partic-
ular, the Sobolev embedding theorem extends to this context and hence

C∞(G) ⊇ ⋂
k∈N

Hk(G).

3.3. A regularity result. We summarize the results we need on regularity in
the following.

PROPOSITION 3.1. Let μ ∈ Mc(G) with μ̂(π) = cπIπ for all π ∈ Ĝ.

(1) The measure μ has a square-integrable density if and only if∑
π∈Ĝ

d2
π |cπ |2 < ∞.(3.9)

(2) The measure μ has a continuous density if∑
π∈Ĝ

d2
π |cπ | < ∞.(3.10)

(3) The measure μ has a Ck density if∑
π∈Ĝ

d2
π(1 + κπ)p|cπ |2 < ∞,(3.11)

where p > k + d
2 .

PROOF. (1) follows from Theorem 3.1 in [3] and (2) from Proposition 6.6.1
in [11]. (3) is a straightforward consequence of the Sobolev embedding theorem.

�

3.4. Examples. Now we consider different families of measures and apply

Proposition 3.1. In all cases, we take μ ∈ CIDR(G) so that cπ = e−η(κ
1/2
π ).

3.4.1. The case where there is a nontrivial Gaussian component. We say that
μ has a nontrivial Gaussian component if η is such that σ > 0 in (2.4). We can
obtain many examples of such measures by defining μ = μ1 ∗ μ2 where μ1 is
Gaussian and μ2 is of compound Poisson type or is obtained by subordination as
in Section 2. We show that μ has a C∞-density for all σ > 0. To prove this, we

1Note that we are here using the analyst’s convention for Fourier transforms of functions which,
as usual, is not quite consistent with the probabilist’s convention for Fourier transforms of measures.



INFINITELY DIVISIBLE CENTRAL PROBABILITY MEASURES 2483

use (3.11), (3.2), (3.5) and (3.6) and the fact that η(u) ≥ 1
2σ 2u2 for all u ∈ R to see

that for all k ∈ N∑
π∈Ĝ

d2
π(1 + κπ)kc2

π ≤ ∑
π∈Ĝ

d2
π(1 + κπ)k exp{−σ 2κπ }

≤ M
∑

λ∈P∩D

|λ|2m(1 + |λ|2)k exp{−σ 2|λ|2}

≤ K1
∑
n∈Zr

‖n‖2m(1 + ‖n‖2)k exp{−K2‖n‖2}

= K1

∞∑
j=0

a(j)jm(1 + j)k exp{−K2j}

≤ K1

∞∑
j=0

jm(
2
√

j + 1
)r

(1 + j)k exp{−K2j} < ∞,

where M,K1,K2 > 0, a(j) := #{n ∈ Zr; ‖n‖2 = j} and we use the fact that
a(j) ≤ (2

√
j + 1)r for all j ∈ N.2

3.4.2. Stable-type densities. Take cπ = exp{−bακ
α/2
π } with 0 < α < 2. Again

we show that the densities are C∞. Indeed arguing as above we have∑
π∈Ĝ

d2
π(1 + κπ)kc2

π ≤ M
∑

λ∈P∩D

|λ|2m(1 + |λ|2)k exp{−2bα|λ|α}

≤ K3

∞∑
j=0

jm(
2
√

j + 1
)r

(1 + j)k exp{−K4j
α/2},

where K3,K4 > 0. To see that the series converges, it is sufficient to show that∑∞
n=1 nκe−nβ

converges for all κ ≥ 0 where 0 < β < 1. This follows by compari-

son with
∑∞

n=1
1
n2 since limn→∞ nκ+2e−nβ = limx→∞ x(κ+2)/βe−x = 0.

3.4.3. Relativistic Schrödinger density. Here we have∑
π∈Ĝ

d2
π(1 + κπ)kc2

π ≤ e2m
∑

λ∈P∩D

|λ|2m
∣∣1 + |λ|2∣∣ke−2

√
m2+|λ|2

≤ e2m
∑

λ∈P∩D

|λ|2m
∣∣1 + |λ|2∣∣ke−2|λ| < ∞,

so by the result of Section 3.4.2 (with α = 1) this case also yields a C∞ density.

2Of course in the pure Gaussian case, smoothness of the density is well known and can be proved
using pde techniques.
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3.4.4. Laplace density. In this case, we take cπ = (1 + β2κπ)−1. We restrict
ourselves to seeking an L2-density. Applying (3.9), we use (3.2), (3.5) and (3.7) to
obtain ∑

π∈Ĝ−{δ}

d2
π

(1 + β2κπ)2 ≤ N

β2

∑
λ∈P∩D−{0}

|λ|2m

|λ|4 = N

β2 ζ(2 − m),

where N > 0.
By Sugiura’s convergence result for ζ(s), we see that a sufficient condition for

convergence is m < 2 − r
2 . Hence by (3.3), dim(G) ∈ {1,2,3}. So for example, the

Laplace distribution has a square-integrable density on the groups SO(3),SU(2)

and Sp(1), each of which has dimension 3 and rank 1.

4. Pseudo-differential operator representations. In this section, G is an ar-
bitrary compact group. Let (μt , t ≥ 0) be a vaguely continuous convolution semi-
group of probability measures on G wherein μ0 = δe. It then follows that μt is
infinitely divisible for each t ≥ 0. We let (Tt , t ≥ 0) be the associated C0 semi-
group on C(G) (Hunt semigroup) defined by

Ttf (σ ) =
∫
G

f (στ)μt (dτ)

for all t ≥ 0. Necessary and sufficient conditions for a densely defined linear op-
erator to extend to the infinitesimal generator of (Tt , t ≥ 0) were found by Hunt
[20] (see [29] for a modern treatment) in the case of a Lie group and generalized
by Born [9] to locally compact groups.

(Tt , t ≥ 0) extends to a positivity-preserving contraction semigroup on
L2(G) := L2(G,C) and from now on we will always work with this extended
action. Our aim in this section is to represent the semigroup and its generator as
pseudo-differential operators using Peter–Weyl theory (cf. [33]). If A ∈ Mn(C),
we define its Hilbert–Schmidt norm by ‖A‖hs := tr(AA∗)1/2.

The celebrated Peter–Weyl theorem asserts that f ∈ L2(G) has the associated
Fourier series

∑
π∈Ĝ dπ tr(f̂ (π)π) and we will make frequent use of Plancherel’s

theorem in this context which tells us that

‖f ‖2 = ∑
π∈Ĝ

dπ‖f̂ (π)‖2
hs.

We also need the corresponding Parseval identity:

〈f,g〉 = ∑
π∈Ĝ

dπ tr(f̂ (π)ĝ(π)∗)

for f,g ∈ L2(G).
We say that a densely defined linear operator S on L2(G) has a (simple) pseudo-

differential operator representation if for each π ∈ Ĝ there exists a dπ ×dπ matrix
σS(π) such that

Ŝf (π) = σS(π)f̂ (π)
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for all f ∈ Dom(S) and all π ∈ Ĝ.
We call σS the symbol of the operator S. The word “simple” is included as we

do not require the symbol be a function defined on G × Ĝ as in [33]. Indeed such
a more complicated class of symbols will be associated with representations of
more general Feller–Markov semigroups (see [23] for the case where G is the real
numbers).

THEOREM 4.1. For each t ≥ 0, Tt is a pseudo-differential operator with sym-
bol μ̂t (π) at π ∈ Ĝ.

PROOF. For each ρ ∈ G let Rρ denote right translation so that Rρf (σ) =
f (σρ) for each f ∈ L2(G),σ ∈ G. We will need the fact that R̂ρf (π) =
π(ρ)f̂ (π) for each π ∈ Ĝ.

By Fubini’s theorem and the Parseval identity,

‖Ttf ‖2 =
∫
G

∫
G

∫
G

f (στ)f (σρ)μt(dτ)μt (dρ)dσ

=
∫
G

∫
G

∫
G

Rτf (σ )Rρf (σ )dσμt(dτ)μt(dρ)

=
∫
G

∫
G

∑
π∈Ĝ

dπ tr(π(τ )f̂ (π)f̂ (π)∗π(ρ)∗)μt (dτ)μt(dρ).

We can use Fubini’s theorem to interchange summation and integration since
by the contraction property of Tt ,∫

G

∫
G

∑
π∈Ĝ

dπ tr(π(τ )f̂ (π)f̂ (π)∗π(ρ)∗)μt (dτ)μt (dρ) ≤ ‖f ‖2.

Hence, we have

‖Ttf ‖2 = ∑
π∈Ĝ

dπ tr
(∫

G
π(τ)μt (dτ)f̂ (π)f̂ (π)∗

∫
G

π(ρ)∗μt(dρ)

)

= ∑
π∈Ĝ

dπ‖μ̂t (π)f̂ (π)‖2
hs,

and the result follows. �

Let A be the infinitesimal generator of (Tt , t ≥ 0). We here use the fact that
for each t ≥ 0, π ∈ Ĝ, μ̂t (π) = et Lπ where Lπ is a dπ × dπ matrix (see [2, 18,
30] where an explicit “Lévy–Khintchine type” representation of Lπ can be found
when G is a Lie group).

THEOREM 4.2. A is a pseudo-differential operator with symbol Lπ at π ∈ Ĝ.
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PROOF. For each f ∈ Dom(A), g ∈ L2(G), we have by Parseval’s identity
and Theorem 4.1

〈Af,g〉 = lim
t→0

∑
π∈Ĝ

dπ tr
(

(μ̂t (π) − Iπ)

t
f̂ (π)ĝ(π)∗

)

= lim
t→0

∑
π∈Ĝ

dπ tr
(

(et Lπ − Iπ)

t
f̂ (π)ĝ(π)∗

)
.

Now fix π ′ ∈ Ĝ and let g ∈ Mπ ′ where Mπ ′ is the subspace of L2(G) gener-
ated by mappings of the form σ → 〈π ′(σ )u, v〉 for u, v ∈ Vπ ′ . It follows from the
Peter–Weyl theorem that ĝ(π) = 0 if π 	= π ′ and so

〈Af,g〉 = dπ ′ lim
t→0

tr
(

(et Lπ ′ − Iπ ′)

t
f̂ (π ′)ĝ(π ′)∗

)

= dπ ′ tr(Lπ ′ f̂ (π ′)ĝ(π ′)∗)
= ∑

π∈Ĝ

dπ tr(Lπ f̂ (π)ĝ(π)∗).

The required result follows from the Parseval identity since (by the Peter–Weyl
theorem) L2(G) is the closure of

⊕
π∈Ĝ Mπ (see, e.g., [11], page 108). �

For completeness, we will also give the pseudo-differential operator represen-
tation of the resolvent Rλ := (λI − A)−1 for λ > 0.

PROPOSITION 4.1. For each λ > 0,Rλ is a pseudo-differential operator hav-
ing symbol (λIπ − Lπ)−1 at π ∈ Ĝ.

PROOF. First, note that (λIπ − Lπ)−1 always exists since the eigenvalues of
the matrix Lπ have nonpositive real parts. We use the fact that for all λ > 0,Rλ =∫ ∞

0 e−λtTt dt . Then for all f,g ∈ L2(G), by Theorem 4.1

〈Rλf,g〉 = ∑
π∈Ĝ

dπ

∫ ∞
0

e−λt tr(et Lπ f̂ (π)ĝ(π)∗) dt.

The result follows from Fubini’s theorem using the estimate∑
π∈Ĝ

dπ

∫ ∞
0

e−λt | tr(et Lπ f̂ (π)ĝ(π)∗)|dt ≤ 1

λ
‖f ‖‖g‖,

which is obtained by routine computations. �

Now we assume that μ1 ∈ CIDR(G). It follows that μt ∈ CIDR(G) for all t ≥ 0

and that μ̂t (π) = e−tη(κ
1/2
π )Iπ for each π ∈ Ĝ for some negative definite function

η and A has symbol whose value at π ∈ Ĝ is −η(κ
1/2
π )Iπ .



INFINITELY DIVISIBLE CENTRAL PROBABILITY MEASURES 2487

THEOREM 4.3. If G is a compact Lie group and μ1 ∈ CIDR(G) then for all
p ≥ 2, Hp(G) ⊆ Dom(A) and A is a bounded linear operator from Hp(G) to
Hp−2(G).

PROOF (Cf. [33], Theorem 10.81, pages 571–572). We will make use of the
fact that there exists K > 0 such that |η(u)| ≤ K(1 + |u|2) for all u ∈ R (see, e.g.,
[4], page 31). By Theorem 4.2 and (3.8) for each f ∈ Hp(G)

‖|Af ‖|2p−2 = ∑
π∈Ĝ

dπ (1 + κπ)p−2‖Lπ f̂ (π)‖2
hs

= ∑
π∈Ĝ

dπ (1 + κπ)p−2|η(κ1/2
π )|2‖f̂ (π)‖2

hs

≤ K
∑
π∈Ĝ

dπ (1 + κπ)p‖f̂ (π)‖2
hs

= K‖|f ‖|2p.

In particular, it follows that ‖Af ‖2 < ∞ and so f ∈ Dom(A). �

5. Transition densities for convolution semigroups. In this section, we con-
tinue to work with the Hunt semigroup (Tt , t ≥ 0) acting on the space L2(G) that
is associated to the convolution semigroup of measures (μt , t ≥ 0) on a compact
group G. Let L2

c(G) := {f ∈ L2(G),f (gσg−1) = f (σ) for all σ,g ∈ G}. It is
well known that {χπ,π ∈ Ĝ} is a complete orthonormal basis for L2

c(G) (see, e.g.,
[11], Proposition 6.5.3, page 117).

PROPOSITION 5.1. If μt ∈ Mc(G) for some t ≥ 0, then Tt (L
2
c(G)) ⊆ L2

c(G).

PROOF. For all σ,g ∈ G,f ∈ L2
c(G), we have

Ttf (gσg−1) =
∫
G

f (gσg−1τ)μt(dτ)

=
∫
G

f (gσg−1τ)μt(dg−1τg)

=
∫
G

f (gστg−1)μt (dτ)

= Ttf (σ ). �

Now suppose that μt ∈ Mcs(G) for all t ≥ 0. This implies in particular that
(Tt , t ≥ 0) is self-adjoint in L2(G) and hence in L2

c(G) (see [5, 27]). By Propo-
sition 2.1, we also have that there exists απ ≤ 0 for each π ∈ Ĝ such that
μ̂t (π) = etαπ Iπ .
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THEOREM 5.1. If μt ∈ Mcs(G) for all t ≥ 0, then {χπ,π ∈ Ĝ} is a complete
set of eigenvectors for the action of Tt on L2

c(G) and

Ttχπ = etαπ χπ(5.1)

for all π ∈ Ĝ, t ≥ 0.

PROOF. For all σ ∈ G, t ≥ 0,

Ttχπ(σ ) =
∫
G

χπ(στ)μt(dτ)

=
∫
G

tr(π(σ )π(τ))μt (dτ)

= tr
(
π(σ)

∫
G

π(τ)μt (dτ)

)

= etαπ χπ(σ ). �

It is shown in [5] that Tt is trace-class for t > 0 if and only if μt has a square-
integrable density. In this case, we have

tr(Tt ) = ∑
π∈Ĝ

etαπ(5.2)

for t > 0, where tr denote the trace in the Hilbert space L2
c(G).

From now on, we assume that for t > 0,μt ∈ Mcs(G) has a density kt ∈
L2

c(G,R). We define the transition density ht ∈ L2(G × G,R) by

ht (σ, τ ) := kt (σ
−1τ)

for each t > 0, σ, τ ∈ G. Indeed ht is precisely the transition probability density at
time t of a G-valued Lévy process whose law at time t is kt .

Note that for each σ ∈ G,(t, ρ) → ht (σ, ρ) satisfies the backward equation (in
the distributional sense)

∂ht

∂t
(σ, ρ) = Aht (σ, ρ),

with ht (σ, ρ) → δσ (ρ) as t → 0. For example, if (μt , t ≥ 0) is the Brownian mo-
tion semigroup which is characterized by μ̂t (π) = e−(t/2)κπ Iπ for each π ∈ Ĝ,
then ht is the well-known heat kernel and for this reason we will sometimes refer
to our more general ht as the transition kernel.

THEOREM 5.2. For each t > 0:

(1) ∫
G

ht(g
−1σ,ρg−1) dg = ∑

π∈Ĝ

etαπ χπ(σ )χπ(ρ)(5.3)

for all σ,ρ ∈ G.
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(2)

tr(Tt ) =
∫
G

∫
G

kt (ρ
−1gρg−1) dg dρ.(5.4)

PROOF.

(1) By (3.1)

ht (σ, ρ) = kt (σ
−1ρ) = ∑

π∈Ĝ

dπetαπ χπ(σ−1ρ),(5.5)

and so ∫
G

ht(g
−1σ,ρg−1) dg = ∑

π∈Ĝ

dπetαπ

∫
G

χπ(σ−1gρg−1) dg

= ∑
π∈Ĝ

etαπ χπ(σ )χπ(ρ),

by Proposition 6.5.2 in [11] (page 116). The interchange of integral and sum is
justified by Fubini’s theorem since

∑
π∈Ĝ

dπetαπ

∫
G

|χπ(σ−1gρg−1)|dg ≤ ∑
π∈Ĝ

d2
πetαπ < ∞

by (3.9) since kt ∈ L2(G) for each t > 0. Here, we have used the crude estimate
supσ∈G |χπ(σ )| ≤ dπ .

(2) Put ρ = σ in (5.3) and then integrate both sides with respect to σ using
the fact that

∫
G |χπ(σ )|2 dσ = 1. The result then follows from (5.2). Note that

the interchange of integral and summation is justified by Fubini’s theorem using a
similar argument to that presented in (1). �

COROLLARY 5.1. If kt is continuous for each t > 0,

kt (e) = ∑
π∈Ĝ

d2
πetαπ .(5.6)

PROOF. Put σ = ρ in (5.5) [or argue directly from (3.1)]. �

We now work in the Hilbert space L2(G) and we use Tr to denote the trace in
this Hilbert space. By the Peter–Weyl theorem, {d1/2

π πij ,1 ≤ i, j ≤ dπ ,π ∈ Ĝ} is a
complete orthonormal basis for L2(G) where πij denotes the coordinate function
πij (σ ) := π(σ)ij , for each σ ∈ G.

The following two results are well known for the heat kernel (see, e.g., Chap-
ter 12 of [14]). Here we extend them to more general Hunt semigroups.
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THEOREM 5.3.

(1) For each t ≥ 0, the set {πij ,1 ≤ i, j ≤ dπ ,π ∈ Ĝ} is a complete orthogonal
set of eigenvectors for Tt and

Ttπij = etαπ πij(5.7)

for each 1 ≤ i, j ≤ dπ ,π ∈ Ĝ.

(2) If kt is continuous for each t > 0,

kt (e) = Tr(Tt ).(5.8)

PROOF.

(1) For all σ ∈ G

Ttπij (σ ) =
∫
G

πij (στ)μt (dτ)

=
dπ∑

k=1

πik(σ )

∫
G

πkj (τ )μt (dτ)

=
dπ∑

k=1

πik(σ )μ̂t (π)kj

= etαπ πij (σ ).

(2) Since each eigenvalue etαπ has multiplicity d2
π on the closed subspace of

L2(G) spanned by {πij ,1 ≤ i, j ≤ dπ } it is clear that

Tr(Tt ) = ∑
π∈Ĝ

d2
πetαπ ,

and the result follows from (5.6). �

The next result can be deduced directly from (3.1). We give a direct proof to
make the paper more self-contained. Note that results of this type are well known
for Markov processes taking values in compact metric spaces and having suitably
square-integrable transition probabilities (see Theorem 6.4 in [15]).

THEOREM 5.4. If kt is continuous for each t > 0,

ht (σ, ρ) = ∑
π∈Ĝ

dπ∑
i,j=1

dπetαπ πij (σ )πij (ρ)(5.9)

for all σ,ρ ∈ G.
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PROOF. For each σ ∈ G let Lσ denote left translation so that Lσf (ρ) =
f (σ−1ρ) for each f ∈ L2(G),ρ ∈ G. By Fourier expansion and using (5.7),

Lσkt = ∑
π∈Ĝ

dπ∑
i,j=1

dπ 〈Lσkt ,πij 〉πij

= ∑
π∈Ĝ

dπ∑
i,j=1

dπ

(∫
G

kt (σ
−1τ)πij (τ ) dτ

)
πij

= ∑
π∈Ĝ

dπ∑
i,j=1

dπ

(∫
G

kt (τ )πij (στ) dτ

)
πij

= ∑
π∈Ĝ

dπ∑
i,j=1

dπTtπij (σ )πij

= ∑
π∈Ĝ

dπ∑
i,j=1

dπetαπ πij (σ )πij .

Since supσ,ρ∈G |∑dπ

i,j=1 πij (σ )πij (ρ)| = supσ,ρ∈G | tr(π(σ−1ρ)| ≤ dπ , we de-
duce uniform convergence of the series from (3.9) and so for all ρ ∈ G

ht(σ,ρ) = Lσkt (ρ) = ∑
π∈Ĝ

dπ∑
i,j=1

dπetαπ πij (σ )πij (ρ).
�

COROLLARY 5.2. If kt is continuous for each t > 0,

kt (e) ≥
∫
G

∫
G

kt (ρ
−1gρg−1) dg dρ

with equality if and only if G is Abelian.

PROOF. The inequality follows from (5.2), (5.4), (5.6) and (5.8). If G is
Abelian, then equality is obvious. If G is non-Abelian, we must have dπ > 1 for at
least one π ∈ Ĝ and then it is clear that strict inequality holds. �

6. Small time asymptotics of densities. Assume that G is a compact semi-
simple Lie group. We would like to obtain an asymptotic expansion for kt (e) as
t → 0. We assume that μt ∈ CIDR(G) for each t ≥ 0. In this case, if kt is continu-
ous for t > 0, we may follow the arguments on page 106 of [14] to obtain

kt (e) = Tr(Tt ) = ∑
λ∈P∩D

d2
λ+ρ exp

{−tη
(
(|λ + ρ|2 − |ρ|2)1/2)}

= ∑
λ∈P∩D

d2
λ exp

{−tη
(
(|λ|2 − |ρ|2)1/2)}

(6.1)
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= 1

|W |
∑
λ∈P

d2
λ exp

{−tη
(
(|λ|2 − |ρ|2)1/2)}

,

where dλ denotes the dimension of the representation space with highest weight λ

and |W | is the order of the Weyl group of G.

When η(u) = |u|2
2 , kt is the density generating the heat kernel and it is known

that as t → 0,

kt (e) ∼ Ct−(dim(G))/2et |ρ|2(6.2)

(see, e.g., [14], page 109), where C > 0.
We will examine the case where η is the characteristic exponent of a symmetric

Cauchy distribution so that η(u) = σ |u| for all u ∈ R, where σ > 0.

EXAMPLE 1. G = �d where � := R/Z. In this case Ĝ = Zd , each dπ = 1
and for each π = n ∈ Zd, κπ = 4π2|n|2 where n2 = n2

1 + · · · + n2
d for n =

(n1, . . . , nd). The equation (6.1) then takes the form

kt (e) = ∑
n∈Zd

e−2πtσ |n|.

When d = 1, we easily calculate

kt (e) = 1 + 2
∞∑

n=1

e−2πtσn

= coth(πσ t) ∼ 1

πσ t
as t → 0.

When d > 1, we apply the Poisson summation formula to obtain

kt (e) = �((d + 1)/2)

π(d+1)/2

∑
m∈Zd

σ t

(σ 2t2 + |m|2)(d+1)/2

∼ �((d + 1)/2)

σ dπ(d+1)/2

1

td
as t → 0.

EXAMPLE 2. G = SU(2). In this case, Ĝ ∼= Z+ with dn = n + 1 and for each
n ∈ Z+, κn = n(n + 2). Hence,

kt (e) =
∞∑

n=0

(n + 1)2e−tσ
√

n(n+2)

=
∞∑

n=0

(n + 1)2e−tσ
√

(n+1)2−1

=
∞∑

m=1

m2e−tσ
√

m2−1.
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From this, we get the easy estimate

e−tσ
∞∑

m=1

m2e−tσm ≤ kt (e) ≤ etσ
∞∑

m=1

m2e−tσm.(6.3)

Now define g(t) := ∑∞
m=1 e−tσm for t ∈ (0,∞). The function g is C∞ and we

have
∞∑

m=1

m2e−tσm = 1

σ 2

d2

dt2 g(t)

= 1

σ 2

d2

dt2

(
e−tσ

1 − e−tσ

)

= e−tσ

(1 − e−tσ )2 coth
(

σ t

2

)
,

and hence we conclude that

kt (e) ∼ 2

σ 3t3 as t → 0.

This should be compared with the usual heat kernel where the following very
precise asymptotic expansion is known (see [13], Proposition 2.3, page 662):

kt (e) ∼ 32
√

2π2(4πσ t)−3/2e(σ t)/8,

so the leading term has the slower decay

kt (e) ∼ 32
√

2π2(4πσ)−3/2t−3/2.

It is not difficult to verify that the relativistic Schrödinger semigroup on SU(2)

with mass parameter m, for which η(u) = (m2 +u2)1/2 −m for u ∈ R, has exactly
the same short time asymptotics as the Cauchy semigroup.

EXAMPLE 3. G = S0(3). Here we have Ĝ ∼= Z+ with dn = 2n + 1 and for
each n ∈ Z+, κn = n(n + 1). So we obtain

kt (e) =
∞∑

n=0

(2n + 1)2e−tσ
√

n(n+1)

= ∑
m odd

m2e−t(σ/2)
√

m2−1 as t → 0.

Using the results obtained in Example 2, we find that

kt (e) ∼ 8

σ 3t3 as t → 0.

Based on these calculations, we conjecture that kt (e) ∼ Ct−d for the Cauchy
process on an arbitrary compact semisimple Lie group of dimension d . It is also
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tempting to further conjecture that if kt is associated to an arbitrary α-stable
process so that η(u) = |u|α where 0 < α ≤ 2, then kt (e) ∼ Ct−d/α as t → 0. This
is consistent with the known behavior of densities of symmetric stable processes in
Euclidean space (see, e.g., [8]) where it essentially follows by scaling arguments.
We remind the reader that this technology is not available on compact groups (see,
e.g., Theorem 2.2. in [1], page 117).

Now let N(λ) denote the number of eigenvalues of −A that do not exceed λ

and note that for all t > 0,

Tr(Tt ) =
∫ ∞

0
e−tλ dN(λ).

If the above conjecture holds then by Karamata’s Tauberian theorem we have

N(λ) ∼ Cλd/α

�(1 + d
α
)

as λ → ∞

(cf. Theorem 2.3 in [7]).
So far we know that this eigenvalue asymptotics is valid when α = 2, and when

α = 1 with G = �d,G = SU(2) and G = SO(3).
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