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Abstract

In this paper, we study the existence of infinitely many solutions for a class of

fourth-order partially sublinear elliptic problem with Navier boundary value condition
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1 Introduction

Consider the following fourth-order boundary value problem:

{
△u + c△u = g(x,u) in Ω ,

u = △u =  on ∂Ω ,
()

where △ denotes the biharmonic operator, Ω ⊂ R
N (N > ) is a bounded domain with

smooth boundary, g ∈ C(Ω ×R,R), and c < λ is a parameter, where λ is the first eigen-

value of –△ in H
(Ω).

The fourth-order elliptic equations can describe the static form change of beam or the

motion of rigid body, so they are widely applied in physics and engineering. In the s,

Lazer andMckenna (see [, ]) investigated the problem () as g(x,u) = d[(u+)+–]. In [],

they pointed out that this type of nonlinearity furnishes a model to study traveling waves

in suspension bridges. In [], they got k –  solutions when N =  and d > λk(λk – c) (λk is

the sequence of the eigenvalues of –△ in H
(Ω)) by the global bifurcation method. In [],

Micheletti and Pistoia used a variational linking theorem to investigate the existence of

two solutions for a more general nonlinearity g(·,u). In , Micheletti and Saccon (see

[]) obtained two results about the existence of two nontrivial solutions and four non-

trivial solutions by a similar variational approach, depending on the position of a suitable

parameter with respect to the eigenvalues of the linear part.

In recent years, many researchers have used variational approach to investigate the

fourth-order elliptic equations. In [], Pu et al. used the least action principle, the Eke-

land variational principle and the mountain pass theorem to prove the existence andmul-

tiplicity of solutions of () when g(x,u) = a(x)|u|s–u + f (x,u) (a ∈ L∞(Ω), s ∈ (, ) and
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f ∈ C(Ω × R,R)). In [], Hu and Wang obtained the existence of nontrivial solutions to

problem () under suitable assumptions of g(x,u) by a variant version of themountain pass

theorem. In [], we have studied the existence of multiple solutions for problem () by us-

ing the variant fountain theorem without the condition c < λ (λ is the first eigenvalue of

–△ in H
(Ω)). In [], Wang and Shen, under an improved Hardy-Rellich inequality, stud-

ied the existence of multiple and sign-changing solutions for a class of biharmonic equa-

tions in an unbounded domain by the minimax method and linking theorem. In , Liu

and Chen (see []) investigated the existence of ground-state solution and nonexistence

of nontrivial solution for a similar biharmonic equation in [] by using variational meth-

ods, also they explored the phenomenon of concentration of solutions. For other related

results, see [–] and the references therein.

In critical point theory, Clark’s theorem [] asserts the existence of a sequence of neg-

ative critical values tending to  for even coercive functionals. It is constantly and effec-

tively applied to sublinear differential equations with symmetry. In , Wang (see [])

explored a variant of the Clark theorem given by Heinz in [] to investigate a variety of

nonlinear boundary value problems. Then, in , Liu and Wang improved Clark’s the-

orem and gave an extension of Clark’s theorem in []. Their new results gave a more

detailed structure of the set of critical points near the origin and are powerful in applica-

tions. In this paper, inspired by [], we will use the new result of Liu and Wang in [] to

investigate the existence of infinitely many solutions for partially sublinear problems ().

Our main result is the following theorem.

Theorem  Assume that there exists a constant δ >  such that g ∈ C(Ω × [–δ, δ],R) is

odd and bounded. The primitive G(x,u) :=
∫ u


g(x, s)ds of the nonlinearity g satisfies

lim inf
|u|→

G(x,u)

|u|
= ∞ uniformly for x ∈ Ω . ()

Then problem () possesses infinitely many solutions uk such that ‖uk‖∞ →  as k → ∞,

where ‖ · ‖∞ is the usual norm of L∞ ≡ L∞(Ω).

Remark The advantage of this theorem is that it not only obtained the existence of infinite

solutions, but it also pointed out their positions.

2 Preliminaries

Let E =H(Ω)∩H
(Ω) be the Hilbert space equipped with the inner product

(u, v)E =

∫

Ω

(
△u△v – c〈∇u,∇v〉

)
dx

and the norm

‖u‖ = (u,u)


E .

A weak solution of problem () is a u ∈ E such that

∫

Ω

(
△u△v – c〈∇u,∇v〉

)
dx –

∫

Ω

g(x,u)vdx = 
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for any v ∈ E. Here and in the sequel, 〈·, ·〉 always denotes the standard inner product

in R
N .

Let � : E → R be the functional defined by

�(u) =




∫

Ω

(
|△u| – c|∇u|

)
dx –

∫

Ω

G(x,u)dx

=



‖u‖ –

∫

Ω

G(x,u)dx. ()

It is well known that a critical point of the functional� in E corresponds to aweak solution

of problem ().

Direct computation shows that

�′(u)v = (u, v)E –

∫

Ω

g(x,u)vdx ()

for all u, v ∈ E. It is well known that �′ : E → E is compact.

Denote by ‖ · ‖p the usual norm of Lp ≡ Lp(Ω) as

‖u‖p =

(∫

Ω

|u|p dx

) 
p

, for u ∈ Lp,  ≤ p < +∞.

Lemma  The norm ‖u‖ is equivalent to the norm ‖△u‖ in E.

Proof This result can be found in [] (Lemma .), so we omit the proof here. �

Then by Lemma  and Sobolev embedding theorem, there exists a τp >  such that

‖u‖p ≤ τp‖u‖, ∀u ∈ E, ()

for all  ≤ p ≤ N
N–

.

Let λi (i = , , . . .) be the eigenvalues of –△ in H
(Ω). Then the eigenvalue problem

{
△u + c△u = μu in Ω ,

u = △u =  on ∂Ω ,

has infinitely many eigenvalues μi = λi(λi – c), i = , , . . . .

Define a selfadjoint linear operator A : L → L by

(A u, v) =

∫

Ω

(
△u△v – c〈∇u,∇v〉

)
dx ()

with domain D(A ) = E. Here, (·, ·) denotes the inner product in L. Then the sequence of

eigenvalues of A is just {μi} (i = , , . . .). Denote the corresponding system of eigenfunc-

tions by {en}, it forms an orthogonal basis in L.

Denote

n– = ♯{i | μi < }, n = ♯{i | μi = }, n = n– + n. ()
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Here, ♯{·} denotes the cardinality of a set and n can be . Let

L– = span{e, . . . , en–}, L = span{en–+, . . . , en}, L+ =
(
L– ⊕ L

)⊥
= span{en+, . . .}.

Decompose L as

L = L– ⊕ L ⊕ L+.

Then E also possesses the orthogonal decomposition

E = E– ⊕ E ⊕ E+ ()

with

E– = L–, E = L and E+ = E ∩ L+ = span{en+, . . .}. ()

To prove our main result, Theorem , we give the improved Clark theorem in [].

Theorem  (See [], Theorem .) Let X be a Banach space, � ∈ C(X,R). Assume �

satisfies the (PS) condition, is even and bounded from below, and �() = . If for any k ∈N,

there exists a k-dimensional subspace Xk of X and ρk >  such that supXk∩Sρk
� < , where

Sρ = {u ∈ X | ‖u‖ = ρ}, then at least one of the following conclusions holds.

(i) There exists a sequence of critical points {uk} satisfying �(uk) <  for all k and

‖uk‖ →  as k → ∞.

(ii) There exists r >  such that for any  < a < r there exists a critical point u such that

‖u‖ = a and �(u) = .

In order to apply this theorem to prove our main result, we set our working space E =

H(Ω)∩H
(Ω) as the space X in Theorem .

3 Proof of Theorem 1

Now we prove our main result, Theorem .

Proof of Theorem  Choose ĝ ∈ C(Ω ×R,R) so that ĝ is odd in u ∈ R,

ĝ(x,u) =

⎧
⎪⎨
⎪⎩

g(x,u), x ∈ Ω , |u| ≤ δ/,

odd, x ∈ Ω , δ/ < |u| ≤ δ,

, x ∈ Ω , |u| > δ.

()

Since g is bounded, together with (), we see that there exists a constant c such that

∣∣̂g(x,u)
∣∣ ≤ c for all x ∈ Ω and u ∈R. ()

Here and in the sequel, we denote ci >  (i = , , . . .) for different positive constants.

In order to obtain solutions of (), we study the system

{
△u + c△u = ĝ(x,u) in Ω ,

u = △u =  on ∂Ω ,
()
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with the functional defined by

�̂(u) =




∫

Ω

(
|△u| – c|∇u|

)
dx –

∫

Ω

Ĝ(x,u)dx =



‖u‖ –

∫

Ω

Ĝ(x,u)dx, ()

for all u ∈ E. Here, Ĝ(x,u) :=
∫ u


ĝ(x, s)ds is the primitive of the nonlinearity ĝ . It is easy to

find that �̂ ∈ C(E,R), �̂() =  and �̂ is even. In view of the boundedness of Ĝ(x,u), �̂ is

bounded from below.

At the same time

�̂′(u)v = (u, v)E –

∫

Ω

ĝ(x,u)vdx ()

for all u, v ∈ E. It is well known that �̂′ : E → E is compact.

Now the proof of conclusion of Theorem  is divided into three steps.

Step . �̂ satisfies the (PS) condition.

We assume the sequence {un} ⊂ E satisfies the requirement that {�̂(un)} is bounded and

�̂′(un) →  as n→ ∞. Nowwe claim that the sequence {un} is bounded in E and possesses

a strong convergent subsequence.

First, we claim that {un} is bounded in E. By (), we set un = u–n +u

n +u

+
n ∈ E– ⊕E ⊕E+.

Considering �̂′(un) →  as n→ ∞, we have ‖�̂′(un)‖ <  as n is large enough. Then

∣∣�̂′(un)u
+
n

∣∣ ≤
∥∥�̂′(un)

∥∥∥∥u+n
∥∥ <

∥∥u+n
∥∥. ()

By (), (), (), (), and (), we have

∥∥u+n
∥∥ >

∣∣�̂′(un)u
+
n

∣∣

=
(
un,u

+
n

)
E
–

∫

Ω

ĝ(x,un)u
+
n dx

≥
(
u+n ,u

+
n

)
E
–

∫

Ω

∣∣̂g(x,un)
∣∣∣∣u+n

∣∣dx

≥
∥∥u+n

∥∥
– c

∥∥u+n
∥∥


≥
∥∥u+n

∥∥
– c

∥∥u+n
∥∥. ()

From (), we learn that {u+n} is bounded in E. Similarly, we see that {u–n} is bounded in E,

too.

Now we consider {un}. By the assumption that {�̂(un)} is bounded, there exists a con-

stant K >  such that |�̂(un)| ≤ K . Thus, by (), we have

K ≥



‖un‖

 –

∫

Ω

∣∣Ĝ(x,un)
∣∣dx

≥




(∥∥u–n
∥∥

+
∥∥un

∥∥
+

∥∥u+n
∥∥)

–

∫

Ω

∣∣Ĝ(x,un)
∣∣dx

≥




∥∥un
∥∥

–

∫

Ω

∣∣Ĝ(x,un) – Ĝ
(
x,un

)∣∣dx –
∫

Ω

∣∣Ĝ
(
x,un

)∣∣dx. ()
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Here,

∣∣Ĝ(x,un) – Ĝ
(
x,un

)∣∣ =
∣∣̂g(x, ξ)

∣∣∣∣(u+n + u–n
)∣∣,

≤
∣∣̂g(x, ξ)

∣∣∣∣u+n
∣∣ +

∣∣̂g(x, ξ)
∣∣∣∣u–n

∣∣, ξ is between un and un, ()

and

∣∣Ĝ
(
x,un

)∣∣ =
∣∣∣∣
∫ un



ĝ(x, s)ds

∣∣∣∣ =
∣∣̂g(x, ξ)

∣∣∣∣un
∣∣, ξ is between  and un. ()

By (), (), ()-(), together with the boundedness of {u+n} and {u–n}, we have

K ≥




∥∥un
∥∥

–

∫

Ω

(∣∣̂g(x, ξ)
∣∣∣∣u+n

∣∣ +
∣∣̂g(x, ξ)

∣∣∣∣u–n
∣∣)dx –

∫

Ω

∣∣̂g(x, ξ)
∣∣∣∣un

∣∣dx

≥




∥∥un
∥∥

– c
(∥∥u+n

∥∥

+

∥∥u–n
∥∥


)
– c

∥∥un
∥∥


≥




∥∥un
∥∥

– c – c
∥∥un

∥∥. ()

From (), we can see that {un} is bounded in E. Thus, {un} is bounded in E.

Second, we claim that {un} possesses a strong convergent subsequence in E.

Now, define an operator T : E → E as

(Tu, v)E =

∫

Ω

ĝ(x,u)vdx.

It is obvious that T is a compact operator. Then () changes into

�̂′(u)v = (u, v)E – (Tu, v)E = (u – Tu, v)E .

So, �̂′(u) = u – Tu. Set u = un, we have

�̂′(un) = un – Tun. ()

Considering the boundedness of {un} and the compactness of the operator T , {Tun} has

a strong convergent subsequence. Combining �̂′(un) →  as n → ∞, we see that {un}

possesses a strong convergent subsequence in E.

Step . Construction of space Xk ∩ Sρk
and proof of supXk∩Sρk

� < .

In view of (), we learn that for anyM >  there exists a constant β >  such that

Ĝ(x,u)

|u|
>M, |u| < β , uniformly for x ∈ Ω . ()

For any k ∈N, we choose k-dimensional subspace of E as Xk (e.g. the subspace spanned

by eigenfunctions {en}). By the equivalence of any two norms on finite-dimensional

space Xk , we can choose a sufficient small constant ρk >  such that, for any u ∈ Xk ,

‖u‖∞ < β , as ‖u‖ = ρk uniformly for x ∈ Ω . That is for any u ∈ Xk ,

|u| < β , as ‖u‖ = ρk uniformly for x ∈ Ω . ()
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Now we can construct the space Xk ∩ Sρk
where Sρk

= {u ∈ X | ‖u‖ = ρk}. For any u ∈

Xk ∩ Sρk
, by the equivalence of any two norms on finite-dimensional space Xk , together

with () and (), we have

�̂(u) =



‖u‖ –

∫

Ω

Ĝ(x,u)

|u|
|u| dx

<



‖u‖ –M‖u‖

≤



‖u‖ –Mc‖u‖. ()

For anyM large enough, we can choose a sufficiently small ρk such that �̂(u) < . Thus,

sup
Xk∩Sρk

�̂ < . ()

Now we appeal to Theorem  to obtain infinitely many solutions uk for () such that

‖uk‖ →  as k → ∞.

Step . Solutions of () are solutions of ().

By virtue of the boundedness of ĝ(x,u), we have the solutions of () uk ∈ W ,q(Ω) for

any q ∈ [, +∞). Then we have

uk ∈ W ,q(Ω)∩H
(Ω) →֒ C,α(Ω)⊂ C(Ω) ()

(the embedding theorem is given in [], Theorem .).

Since ‖uk‖ → , then ‖uk‖∞ → . When k is large enough, there exists a constant δ > 

such that |uk(x)| < δ/. Then g(x,uk(x)) = ĝ(x,uk(x)). Therefore, uk are the solutions of ()

with k sufficiently large and ‖uk‖∞ →  as k → ∞. �
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