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Abstract. Using the critical point theory and the method of lower and upper solutions,
we present a new approach to obtain the existence of solutions to a p-Laplacian impul-
sive problem. As applications, we get unbounded sequences of solutions and sequences of
arbitrarily small positive solutions of the p-Laplacian impulsive problem.
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1. Introduction

The p-Laplacian operator appears in many research areas. For instance, in the

study of torsional creep (elastic for p = 2, plastic as p → ∞), flow through porous

media (p = 3/2) or glacial sliding (p ∈ (1, 4/3]), see [2]. The existence of multiple

solutions of the p-Laplacian problem was considered in many papers, see for exam-

ple [1], [3], [5], [6] and the references therein. Most of them treated the problem

under conditions on f which imply some sort of oscillations between a sublinear and

a superlinear behaviour.

In [3], a contribution was made for the case when pF (x, s)/|s|p interacts asymptot-

ically with the first eigenvalue. In [5], the existence of at least one solution was ob-

tained when the nonlinearity pF (x, s)/|s|p stays asymptotically between the first two

eigenvalues of the p-Laplacian operator. More recently, the authors of [6] obtained

the existence of multiple nontrivial solutions for the case lim
s→∞

pF (x, s)/|s|p < λ1.

Motivated by the above works, in this paper we consider a p-Laplacian problem

(Φp(u
′))′ + f(t, u) = 0, t ∈ (0, 1) \ {t1, . . . , tm},(1.1)

u′(0) − µ0u(0) = 0, u′(1) + µ1u(1) = 0,(1.2)
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with an impulsive condition

(1.3) ∆Φp(u
′(tk)) − σku(tk) = 0, k ∈ {1, 2, . . . , m},

where p > 1, 0 = t0 < t1 < t2 < . . . < tm < tm+1 = 1 are fixed points, Φp(s) =

|s|p−2s, ∆Φp(u
′(tk)) = Φp(u

′(t+k )) − Φp(u
′(t−k )), f : [0, 1] × R → R is a continuous

function, µ0 > 0, µ1 > 0, σk > 0, k = 1, 2, . . . , m.

Define the functional ϕ : W 1,p(0, 1) → R by

(1.4) ϕ(u) =

∫ 1

0

[ |u′|p

p
− F (t, u)

]

dt +
m

∑

k=1

|σku(tk)|2

2
+

|µ0u(0)|p

p
+

|µ1u(1)|p

p
,

where F (t, u) =
∫ u

0 f(t, s) ds andW 1,p(0, 1) is the usual Sobolev space endowed with

the norm ‖u‖ =
(∫ 1

0
(|u(t)|p + |u′(t)|p) dt

)1/p
.

We say that u ∈ W 1,p(0, 1) is a solution of BVP (1.1)–(1.3) if it satisfies (1.1)–(1.2)

and for every k = 0, 1, . . . , m, uj = u|(tj ,tj+1) is such that uj ∈ W 2,p(tj , tj+1). For

k = 1, 2, . . . , m, the limits u′(t+k ), u′(t−k ) exist, u′(t−k ) = u′(tk) and (1.3) holds.

Definition 1.1. A function α ∈ W 1,p(0, 1) is called a lower solution of (1.1)–

(1.3) if it satisfies

(Φp(α
′(t)))′ + f(t, α(t)) > 0, t ∈ (0, 1) \ {t1, . . . , tm},

∆Φp(α
′(tk)) − σkα(tk) > 0, k ∈ {1, 2, . . . , m},

α′(0) − µ0α(0) > 0, α′(1) + µ1α(1) 6 0.

A function β ∈ W 1,p(0, 1) is called an upper solution of (1.1)–(1.3) if it satisfies the

reversed inequalities.

Combining the lower and upper solutions and the critical point theory, we prove

in Theorem 2.1 that for the impulsive problem (1.1)–(1.3) between the well-ordered

lower and upper solutions, the related functional has a minimum u. Furthermore,

u is a solution of (1.1)–(1.3).

As applications of Theorem 2.1, in Section 3 we prove that problem (1.1)–

(1.3) has two unbounded sequences of solutions, which are respectively character-

ized as local minimizers of ϕ, assuming that −∞ < lim inf
u→±∞

F (t, u)/|u|p 6 0 and

lim sup
u→±∞

F (t, u)/|u|p = ∞, uniformly in t ∈ [0, 1]. We also prove in Section 4 that

problem (1.1)–(1.3) has a sequence of arbitrarily small positive solutions, assuming

that lim inf
u→0+

F (t, u)/|u|p = 0 and lim sup
u→0+

F (t, u)/|u|p = ∞, uniformly in t ∈ [0, 1].
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2. Main results

Theorem 2.1. Let α, β be lower and upper solutions of (1.1)–(1.3) with α 6 β on

[0, 1] and assume f : [0, 1] ×R → R is a continuous function. Then the functional ϕ

defined by (1.4) has a minimum on [α, β], i.e. there exists u with α 6 u 6 β on [0, 1]

such that

ϕ(u) = min{ϕ(v) : v ∈ W 1,p(0, 1), α 6 v 6 β}.

Furthermore, u is a solution of BVP (1.1)–(1.3).

P r o o f. Let us consider the modified problem

(Φp(u
′))′ + f(t, q(t, u)) = 0, t ∈ (0, 1) \ {t1, . . . , tm},(2.1)

u′(0) − µ0u(0) = 0, u′(1) + µ1u(1) = 0,(2.2)

∆Φp(u
′(tk)) − σku(tk) = 0, k ∈ {1, 2, . . . , m},(2.3)

where q(t, u) = max{α(t), min{u, β(t)}}.

Define the functional ϕ̄ : W 1,p(0, 1) → R by

(2.4) ϕ̄(u) =

∫ 1

0

[ |u′|p

p
− F (t, u)

]

dt +

m
∑

k=1

|σku(tk)|2

2
+

|µ0u(0)|p

p
+

|µ1u(1)|p

p
,

where F (t, u) =
∫ u

0 f(t, q(t, s)) ds.

We can see that ϕ̄ is coercive and weakly lower semicontinuous, hence it can

achieve a minimum u ∈ W 1,p(0, 1).

We shall complete the proof in two steps.

Step 1. The critical point u of ϕ̄ is a solution of (2.1)–(2.3).

For each v ∈ W 1,p(0, 1) we have

0 =

∫ 1

0

[Φp(u
′)v′ − f(t, q(t, u))v] dt +

m
∑

k=1

σku(tk)v(tk)(2.5)

+ Φp(µ0u(0))v(0) + Φp(µ1u(1))v(1).

When v ∈ W 1,p
0 (0, 1), we have

0 =

∫ 1

0

[Φp(u
′)v′ − f(t, q(t, u))v] dt +

m
∑

k=1

σku(tk)v(tk).

For k ∈ {1, 2, . . . , m}, select v ∈ W 1,p
0 (0, 1)with v(t) = 0 for every t ∈ [0, tk]∪[tk+1, 1].

Then

0 =

∫ tk+1

tk

[Φp(u
′)v′ − f(t, q(t, u))v] dt.
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So u satisfies

(Φp(u
′))′ + f(t, q(t, u)) = 0, t ∈ (tk, tk+1).

Hence, u satisfies (2.1).

Now multiplying by v ∈ W 1,p
0 (0, 1) and integrating between 0 and 1, we have

m
∑

k=1

∆Φp(u
′(tk))v(tk) =

m
∑

k=1

σku(tk)v(tk).

Therefore, ∆Φp(u
′(tk)) = σku(tk) for every k ∈ {1, 2, . . . , m}.

Applying integration by parts to (2.1), since u satisfies (2.1) and (2.3), we get

(2.6) [−Φp(u
′(0)) + Φp(µ0u(0))]v(0) + [Φp(u

′(1)) + Φp(µ1u(1))]v(1) = 0.

Next we prove that u satisfies (2.2). Without loss of generality, we assume u′(0) −

µ0u(0) > 0, then let v(t) = 1 − t ∈ C∞
0 and we get the contradiction

0 = −Φp(u
′(0)) + Φp(µ0u(0)) > 0.

So u′(0) − µ0u(0) = 0. In a similar way we get u′(1) + µ1u(1) = 0.

Thus u is a solution of (2.1)–(2.3).

Step 2. The function u is also a solution of (1.1)–(1.3). It is enough to prove

α 6 u 6 β on [0, 1].

Defining (u − β)+ := max{u − β, 0} and integrating by parts, we have

0 6

∫ 1

0

[(Φp(u
′) − Φp(β

′))′ − (f(t, q(t, u)) − f(t, β))](u − β)+ dt

=
m

∑

k=0

∫ tk+1

tk

[(Φp(u
′) − Φp(β

′))′ − (f(t, q(t, u)) − f(t, β))](u − β)+ dt

= −

m
∑

k=1

[∆Φp(u
′(tk)) − ∆Φp(β

′(tk))](u(tk) − β(tk))+

+ [Φp(u
′(1)) − Φp(β

′(1))](u(1) − β(1))+

− [Φp(u
′(0)) − Φp(β

′(0))](u(0) − β(0))+

−

∫

[0,1]+
[Φp(u

′) − Φp(β
′)](u′ − β′) dt,

where [0, 1]+ = {t ∈ [0, 1] : u(t) − β(t) > 0}.

From the monotonicity of Φp we obtain

−

∫

[0,1]+
[Φp(u

′) − Φp(β
′)](u′ − β′) dt 6 0.
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If u(0) − β(0) 6 0, we have

[Φp(u
′(0)) − Φp(β

′(0))](u(0) − β(0))+ = 0.

If u(0) − β(0) > 0, the definition of upper solutions of (1.1)–(1.3) implies

u′(0) − β′(0) > µ0(u(0) − β(0)) > 0.

Then we have Φp(u
′(0)) − Φp(β

′(0)) > 0 and

−[Φp(u
′(0)) − Φp(β

′(0))](u(0) − β(0))+ 6 0.

In a similiar way, we can prove that

[Φp(u
′(1)) − Φp(β

′(1))](u(1) − β(1))+ 6 0.

Thus we have

0 6

∫ 1

0

[(Φp(u
′) − Φp(β

′))′ − (f(t, q(t, u)) − f(t, β))](u − β)+ dt

6 −

m
∑

k=1

[∆Φp(u
′(tk)) − ∆Φp(β

′(tk))](u(tk) − β(tk))+

6 −

m
∑

k=1

σk(u(tk) − β(tk))2 6 0.

Thus u(t) 6 β(t), t ∈ [0, 1]. In a similar way we can prove u(t) > α(t), t ∈ [0, 1].

Hence, u is a solution of (1.1)–(1.3).

Notice that the function ϕ̄(u)−ϕ(u) is constant on {u ∈ W 1,p(0, 1): α 6 u 6 β}.

Consequently, both the functions ϕ̄ and ϕ have the same minimum point between α

and β so that the theorem follows. �

3. Unbounded solutions

Theorem 3.1. Let f : [0, 1] × R → R be a continuous function. Assume that

(A1) inf
(t,u)∈[0,1]×[0,∞)

f(t, u) > −∞, sup
(t,u)∈[0,1]×(−∞,0]

f(t, u) < ∞,

(A2) −∞ < lim inf
u→±∞

F (t, u)/|u|p 6 0, lim sup
u→±∞

F (t, u)/|u|p = ∞, uniformly in

[0, 1].
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Then the impulsive problem (1.1)–(1.3) has two infinite sequences of solutions {un}

and {vn} satisfying

. . . 6 vn+1 6 vn 6 . . . 6 v1 6 u1 6 . . . 6 un 6 un+1 6 . . .

and

lim
n→∞

max
t∈[0,1]

un(t) = ∞, lim
n→∞

min
t∈[0,1]

vn(t) = −∞.

P r o o f. We will complete the proof in five steps.

Step 1. For every M > 0 there exists β, an upper solution of BVP (1.1)–(1.3),

with β > M on [0, 1].

By (A1) there exists K > 0 such that

(3.1) f(t, u) + K > 0 on [0, 1] × [0,∞)

and

(3.2) F (t, u) + Ku > 0 on [0, 1] × [0,∞).

Given M > 0 and a fixed 0 < ε < min{µ1/2, 1/2}, select d > 0 such that

(3.3)
F (t, d)

dp
+

K

dp−1
6

p − 1

p
εp and εd > M.

We define β to be a solution of the problem

(3.4) (Φp(u
′))′ + f(t, u) + K = 0, u(0) = d, u′(0) = 0.

Assume that there exists t0 ∈ (0, 1] such that β(t) > d/2 on [0, t0) and β(t0) = d/2.

From (3.1) and (3.2) we know that β′(t) 6 0 and F (t, β(t)) + Kβ(t) > 0 on [0, t0].

From the conservation of energy for (3.4) we obtain

p − 1

p
|β′(t)|p 6

p − 1

p
|β′(t)|p + F (t, β(t)) + Kβ(t)

= F (t, d) + Kd 6
p − 1

p
(εd)p,

i.e.

0 6 −β′(t) 6 εd.

It follows that for any t ∈ [0, t0],

d − β(t) 6 εdt0 6 εd,
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which leads to the contradiction β(t0) > (1 − ε)d > d/2. Then for t ∈ [0, 1] we have

β(t) > d/2 > M and β′(t) > −εd. So we can see that

β′(0) + µ0β(0) > 0

and

β′(1) + µ1β(1) > −εd + µ1
d

2
> 0.

Hence, the conclusion follows.

Step 2. For every M > 0 there exists α, a lower solution of BVP (1.1)–(1.3), with

α 6 −M on [0, 1].

By (A1) there exists L > 0 such that

(3.5) f(t, u) − L 6 0 on [0, 1] × (−∞, 0]

and

(3.6) F (t, u) − Lu > 0 on [0, 1]× (−∞, 0].

Given M > 0 and a fixed 0 < δ < min{µ1/2, 1/2}, select d > 0 such that

(3.7)
F (t,−d)

dp
+

L

dp−1
6

p − 1

p
δp and δd > M.

We define β to be a solution of the problem

(3.8) (Φp(u
′))′ + f(t, u) − L = 0, u(0) = −d, u′(0) = 0.

Assume that there exists t0 ∈ (0, 1] such that α(t) < −d/2 on [0, t0) and β(t0) =

−d/2. From (3.5) and (3.6) we know that α′(t) > 0 and F (t, α(t)) − Lα(t) > 0 on

[0, t0]. From the conservation of energy for (3.4) we obtain

p − 1

p
|α′(t)|p 6

p − 1

p
|α′(t)|p + F (t, α(t)) − Lα(t)

= F (t,−d) + Ld 6
p − 1

p
(δd)p,

i.e.

0 6 α′(t) 6 δd.

It follows that for any t ∈ [0, t0],

α(t) + d 6 δdt0 6 δd,

411



which leads to the contradiction α(t0) 6 (δ − 1)d < −d/2. Then for t ∈ [0, 1] we

have α(t) < −d/2 < −M and α′(t) 6 δd. So we can see that

α′(0) + µ0α(0) 6 0

and

α′(1) + µ1α(1) 6 δd − µ1
d

2
< 0.

Hence, the conclusion follows.

Step 3. There exists a sequence of positive real numbers {sn} with sn → ∞ such

that ϕ(sn) → −∞, where ϕ is defined by (1.4).

Choose a sequence {sn} of positive real numbers with

sn → ∞ and min
t∈[0,1]

F (t, sn)

|sn|p
→ ∞.

We have

ϕ(sn) = −

∫ 1

0

F (t, sn) dt +
m

∑

k=1

|σksn|
2

2
+

|µ0sn|
p

p
+

|µ1sn|
p

p

6 − min
t∈[0,1]

F (t, sn) + |sn|
2

m
∑

k=1

|σk|
2

2
+ |sn|

p |µ0|
p + |µ1|

p

p
.

It follows that ϕ(sn) → −∞.

Step 4. There exists a sequence of negative real numbers {tn} with tn → −∞ such

that ϕ(tn) → −∞.

Choose a sequence {tn} of positive real numbers with

tn → −∞ and min
t∈[0,1]

F (t, tn)

|tn|p
→ ∞.

We have

ϕ(tn) = −

∫ 1

0

F (t, tn) dt +

m
∑

k=1

|σktn|
2

2
+

|µ0tn|
p

p
+

|µ1tn|
p

p

6 − min
t∈[0,1]

F (t, tn) + |tn|
2

m
∑

k=1

|σk|
2

2
+ |tn|

p |µ0|
p + |µ1|

p

p
.

It follows that ϕ(tn) → −∞.

Step 5. By Step 1 and Step 2, there exist lower and upper solutions α1, β1 of (1.1)–

(1.3) with α1 6 β1. Hence, from Theorem 2.1 we can get a solution u1 of (1.1)–(1.3)

such that α1 6 u1 6 β1.
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From Step 3 we have s1 such that s1 > u1 and ϕ(s1) < ϕ(u1). Moreover, Step 1

provides the existence of an upper solution β2 with u1 6 s1 6 β2. From Theorem 2.1

we have a solution u2 of (1.1)–(1.3) satisfying

u1 6 u2 6 β2

and

ϕ(u2) = min
v∈W 1,p(0,1), u16v6β2

ϕ(v) 6 ϕ(s1) < ϕ(u1).

It follows that u1 6= u2.

Iterating this argument, we obtain

un 6 un+1 6 βn+1 and ϕ(un+1) 6 ϕ(sn) < ϕ(un).

From ϕ(sn) → −∞ we have ϕ(un) → −∞. It follows that

lim
n→∞

max
t∈[0,1]

un(t) = ∞.

Reproducing it in the negative part, we prove the result. �

In a similar way we can get the following results.

Corollary 3.1. Let f : [0, 1]× R → R be a continuous function. Assume that

(B1) inf
(t,u)∈[0,1]×[0,∞)

f(t, u) > −∞ and f(t, 0) > 0 ∀ t ∈ [0, 1],

(B2) −∞ < lim inf
u→∞

F (t, u)/|u|p 6 0 and lim sup
u→∞

F (t, u)/|u|p = ∞, uniformly in

t ∈ [0, 1].

Then the impulsive problem (1.1)–(1.3) has an infinite sequence of nonnegative so-

lutions {un} satisfying

0 6 u1 6 . . . 6 un 6 un+1 6 . . .

and

lim
n→∞

max
t∈[0,1]

un(t) = ∞.

Corollary 3.2. Let f : [0, 1]× R → R be a continuous function. Assume that

(C1) inf
(t,u)∈[0,1]×[−∞,0)

f(t, u) < ∞ and f(t, 0) 6 0 ∀ t ∈ [0, 1],

(C2) −∞ < lim inf
u→−∞

F (t, u)/|u|p 6 0 and lim sup
u→−∞

F (t, u)/|u|p = ∞, uniformly in

[0, 1].
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Then the impulsive problem (1.1)–(1.3) has an infinite sequence of nonpositive solu-

tions {vn} satisfying

. . . 6 vn+1 6 vn 6 . . . 6 v1 6 0

and

lim
n→∞

min
t∈[0,1]

vn(t) = −∞.

4. Arbitrarily small solutions

Theorem 4.1. Let f : [0, 1]× [0,∞) → R be a continuous function. Assume that

(4.1) lim inf
u→0+

F (t, u)

|u|p
= 0, lim sup

u→0+

F (t, u)

|u|p
= ∞, uniformly in [0, 1].

If one of the conditions

(D1) inf{u > 0: max
t∈[0,1]

f(t, u) 6 0} = 0,

(D2) There exists δ > 0 such that

f(t, u) > 0 on [0, 1]× [0, δ]

holds, then the impulsive problem (1.1)–(1.3) has an infinite decreasing sequence of

positive solutions {un} satisfying

lim
n→∞

max
t∈[0,1]

un(t) = 0.

P r o o f. We will complete the proof in four steps.

Step 1. There exist upper solutions {βn} of BVP (1.1)–(1.3) with

(4.2) min
t∈[0,1]

βn(t) > 0 and max
t∈[0,1]

βn(t) → 0.

If (D1) holds, then there exists a sequence {βn} of upper solutions satisfying (4.2).

If (D2) holds, then we have

(4.3) F (t, u) > 0 on [0, 1] × (0, δ].

By virtue of (4.1), we can select a decreasing sequence {dn} ⊂ (0, 1
2δ) such that

(4.4)
F (t, dn)

dp
n

<
p − 1

p

1

3p
, uniformly in t ∈ [0, 1] and dn → 0.
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We define βn to be a sequence of solutions of the problem

(4.5) (Φp(u
′))′ + f(t, u) = 0, u(0) = dn, u′(0) = 0.

Next we prove that 1
2dn < βn 6 dn on [0, 1].

From (D2), it is obvious that βn 6 dn on [0, 1]. Assume that there exists t0 ∈ (0, 1]

such that 1
2dn < β(t) 6 dn on [0, t0) and β(t0) = 1

2dn. From (D1) and (4.1), we

know that β′(t) 6 0 and F (t, β(t)) > 0 on [0, t0]. From the conservation of energy

for (3.4) we obtain

p − 1

p
|β′

n(t)|p 6
p − 1

p
|β′

n(t)|p + F (t, βn(t))

= F (t, dn) 6
p − 1

p

(1

3
dn

)p

,

i.e.

0 6 −β′
n(t) 6

1

3
dn.

It follows that for any t ∈ [0, t0],

dn − βn(t) 6
1

3
dnt0 6

1

3
dn,

which leads to the contradiction β(t0) > 2
3dn > 1

2dn. Hence, the conclusion follows.

Step 2. From lim inf
u→0+

F (t, u)/|u|p = 0, uniformly in t ∈ [0, 1], we have f(t, 0) = 0

for t ∈ [0, 1]. Hence, the function 0 is a lower solution of problem (1.1)–(1.3).

Step 3. There exists a sequence of positive real numbers {sn} with sn → 0+ such

that ϕ(sn) < 0, where ϕ is defined by (1.4). Choose a sequence {sn} of positive real

numbers with

sn → 0+ and min
t∈[0,1]

F (t, sn)

|sn|p
→ ∞.

We have

ϕ(sn) = −

∫ 1

0

F (t, sn) dt +

m
∑

k=1

|σksn|
2

2
+

|µ0sn|
p

p
+

|µ1sn|
p

p

6 − min
t∈[0,1]

F (t, sn) + |sn|
2

m
∑

k=1

|σk|
2

2
+ |sn|

p |µ0|
p + |µ1|

p

p
.

It follows that ϕ(sn) < 0.

Step 4. By Step 1 and Step 2, there exist upper solutions β1 of (1.1)–(1.3) with

β1 > 0. Hence, from Theorem 2.1 we get a solution u1 of (1.1)–(1.3) such that

0 6 u1 6 β1.
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From Step 3 we get s1 such that 0 6 s1 6 min
t∈[0,1]

β1 and ϕ(s1) < 0. According

to Theorem 2.1 we have

ϕ(u1) = min
v∈W 1,p(0,1), 06v6β1

ϕ(v) 6 ϕ(s1) < 0.

Thus, u1 6≡ 0 and it is a positive solution of (1.1)–(1.3) satisfying max
t∈[0,1]

u1(t) 6 d1.

Moreover, Step 1 provides the existence of an upper solution β2 with max
t∈[0,1]

β2 <

max
t∈[0,1]

u1. From Theorem 2.1 we have a solution u2 of (1.1)–(1.3) satisfying 0 6 u2 6

β2 and u1 6= u2.

From Step 3 we can get s2 such that 0 6 s2 6 min
t∈[0,1]

β2 and ϕ(s2) < 0. From

Theorem 2.1 we have

ϕ(u2) = min
v∈W 1,p(0,1), 06v6β2

ϕ(v) 6 ϕ(s2) < 0.

Hence, u2 6≡ 0 and it is a positive solution of (1.1)–(1.3) satisfying max
t∈[0,1]

u2(t) 6 d2.

Iterating this argument, we build a sequence of distinct positive solutions {un}

satisfying lim
n→∞

max
t∈[0,1]

un(t) = 0. �

5. Examples

E x am p l e 5.1. Consider the problem

(Φp(u
′))′ + f(u) = 0,(5.1)

u′(0) − µ0u(0) = 0, u′(1) + µ1u(1) = 0,(5.2)

∆Φp(u
′(tk)) − σku(tk) = 0, k ∈ {1, 2, . . . , m},(5.3)

where p > 1, µ0 > 0, µ1 > 0, σk > 0, k = 1, 2, . . . , m. The continuous function

f : R → R is defined by

(5.4) f(u) =























d

du

{

(|u| + λ)p log(log(|u| + λ)) sin2(log(log(log(|u| + λ))))

+
p(|u| + λ)p

log(|u| + λ)

}

+ sgn(u)pλp−1 1 − p logλ

(log λ)2
, u 6= 0,

0, u = 0

with λ = ee. Then it is easy to prove that

inf
u∈[0,∞)

f(u) > −∞, sup
u∈(−∞,0]

f(u) < ∞,

lim inf
u→±∞

∫ u

0
f(s) ds

|u|p
= 0, lim sup

u→±∞

∫ u

0
f(s) ds

|u|p
= ∞.
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Thus by Theorem 3.1, problem (5.1)–(5.3) has two infinite sequences of solu-

tions {un} and {vn}, satisfying

. . . 6 vn+1 6 vn 6 . . . 6 v1 6 u1 6 . . . 6 un 6 un+1 6 . . .

and

lim
n→∞

max
t∈[0,1]

un(t) = ∞, lim
n→∞

min
t∈[0,1]

vn(t) = −∞.

E x am p l e 5.2. Consider the problem

(Φp(u
′))′ + g(u) = 0,(5.5)

u′(0) − µ0u(0) = 0, u′(1) + µ1u(1) = 0,(5.6)

∆Φp(u
′(tk)) − σku(tk) = 0, k ∈ {1, 2, . . . , m},(5.7)

where p > 1, µ0 > 0, µ1 > 0, σk > 0, k = 1, 2, . . . , m. The continuous function

g : [0,∞) → R is defined by

(5.8) g(u) =







d

du

{(

up log log
1

u

)

sin2
(

log log log
1

u

)

+
pup

log 1/u

}

, u > 0,

0, u = 0.

Then it is easy to prove that

lim inf
u→0+

∫ u

0
g(s) ds

up
= 0, lim sup

u→0+

∫ u

0
g(s) ds

up
= ∞

and

inf{u > 0: g(u) 6 0} = 0.

Thus by Theorem 4.1, problem (5.5)–(5.7) has an infinite decreasing sequence of

positive solutions {un} satisfying

lim
n→∞

max
t∈[0,1]

un(t) = 0.
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[3] D.G. Costa, C.A. Magalhães: Existence results for perturbations of the p-Laplacian.
Nonlinear Anal., Theory Methods Appl. 24 (1995), 409–418.

[4] C. De Coster, P. Habets: Two-point Boundary Value Problems. Lower and Upper So-
lutions. Elsevier, Amsterdam, 2006.

[5] A.R. El Amrouss, M. Moussaoui: Minimax principle for critical point theory in ap-
plications to quasilinear boundary value problems. Electron. J. Differ. Equ. 18 (2000),
1–9.

[6] Y. Guo, J. Liu: Solutions of p-sublinear p-Laplacian equation via Morse theory. J. Lond.
Math. Soc. 72 (2005), 632–644.

[7] J. J. Nieto, D. O’Regan: Variational approach to impulsive differential equation. Non-
linear Anal., Real World Appl. 10 (2009), 680–690.

[8] P. Omari, F. Zanolin: An elliptic problem with arbitrarily small positive solutions.
Electron. J. Differ. Equ., Conf. 05 (2000), 301–308.

Authors’ addresses: L. Wang (corresponding author), Department of Mathematics, Bei-
jing Institute of Technology, Beijing 100081, P.R.China, and Department of Mathematics,
Beihua University, Ji’lin 132013, P.R China, e-mail: wlb math@yahoo.cn; W. Ge, Depart-
ment of Mathematics, Beijing Institute of Technology, Beijing 100081, P.R.China, e-mail:
gew@bit.edu.cn; M. Pei, Department of Mathematics, Beihua University, Ji’lin 132013,
P.R.China, e-mail: pmh@beihua.edu.cn.

418


