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INFINITELY STRETCHED MOONEY SURFACES OF REVOLUTION ARE
UNIFORMLY STRESSED CATENOIDS*

BY

CHIBN-HENG WU

University of Illinois, Chicago

Abstract. Axially and radially stretched Mooney surfaces of revolution are found
to tend to catenoids as the stretching tends to infinity. Moreover, two catenoids are
found to exist for any given set of stretching parameters. A formal two-term asymptotic
solution is obtained explicitly and the stretching of a cylindrical surface is given as an
example.

1. Introduction. Isaacson [1] showed in 1965 that the shape of an inflated arbitrary
Mooney surface of revolution tends to a spherical surface as the inflating pressure tends
to infinity. The radius of the spherical surface as well as a formal two-term asymptotic
solution have recently been obtained by Wu [2], These results follow from the fact that
an infinitely stretched Mooney surface is uniformly stressed and the fact that the
equilibrium configuration of a uniformly stressed closed surface subjected to a constant
normal pressure is spherical.

It is also known that the equilibrium configuration of a uniformly stressed surface
subjected to no surface load is a minimal surface, of which a flat surface is a special case.
The flattening of membranes of revolution by large stretching is of this nature and the
relevant result was obtained by Perng and Wu [3]. The most general minimal surface
of revolution is the catenoid [4]. In fact one of the very few nonlinear membrane problems
that can be solved explicitly deals with the stretching of catenoids [5, p. 162],

The above observations suggest that the equilibrium configuration of an arbitrary
Mooney surface of revolution subjected to radial and axial stretch tends to a catenoid
as the stretching becomes infinitely large. A formal asymptotic analysis presented in
this paper shows that this is indeed the case. Moreover, two asymptotic states exist
for a given set of boundary conditions. The two states, however, are associated with
different potential energy levels. If we assume that nature prefers the state of a lower
energy, then the state with a lower energy may be called the preferred state.

2. Formulation. Let (r, 9, z) be a fixed cylindrical coordinate system and let S
measure the dimensionless arc length along a curve C defined by

c ; r = R(S)^ > 0 < £ < 1, (2.i)
z = Z{S)

* Received April 9, 1973. Supported by U.S. Army Research Office-Durham under Grant ARO-D-31-
124-71-G10.
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characterizing the meridian curve of a membrane of revolution. The functions R and Z
are continuous but may have discontinuous derivatives. The membrane is stretched
axisymetrically so that the deformed shape can be characterized by a meridian curve

c: r = X(S), z = Y(S), (2.2)

satisfying the conditions

X(0) = ae~U2, X(l) = be'in, (2.3)

7(1) - Y(0) = 2e~1/2, (2.4)

where e > 0 is a small parameter. The condition (2.4) determines the curve c to within a
rigid-body displacement along the 2-axis. The constants a and b are positive. We assume
without loss of generality that b > a. (We can always redefine R(S) to satisfy this condi-
tion.) The deformation from (2.1) to (2.2) is the subject of our investigation.

Suppose we denote by A! and A2 , respectively, the principal extension ratios in the
meridian and azimuthal directions; then

A, = dL/dS, A2 = X/R, (2.5, 2.6)

where L = L(S) measures the arc length along the curve c. We assume that the membrane
is made of a Mooney material [5] characterized by a strain-energy function W defined by

W(Aj , A2) = ^Ai2 + A22 + ^2^2) + k(^Ai2A22 + —2 + ~2^ (2.7)

where lc = C2/C\ , the ratio of the two Mooney constants, and W is nondimensionalized
by the quantity CiH, H being the constant thickness of the undeformed membrane.

Based on (2.7), the fundamental equations can be derived. We prefer to use the set
of equations given in [6], These are

Tl = ~ TTAl , T2 = ~ , (2.8, 9)
A2 Ai

X ^ = (T2 - TO H (XT, sin $) = 0, (2.10, 11)*

1 dX * 1 dY ■ * ,0 10
i;ds = C0S*' (2-12-13)

where the subscripts on W denote partial differentiation with respect to the indicated
argument. and T2 are, respectively, the meridian and azimuthal stress resultants.
The function <3? is the angle between the tangent to c and the r-axis. Eqs. (2.5)-(2.13),
together with the conditions (2.3) and (2.4), constitute the complete formulation of the
problem. We repeat, however, that the function F((S) can be determined only to within
an arbitrary constant. Moreover, the origin of L(S) is not specified. The arbitrariness
does not alter the nature of the physical problem but enables us to cast our final result
into a more convenient form.

* (2.11) is the first integral of the original equation and represents the equilibrium condition along
the z-axis.
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Our objective now is to solve the posed problem asymptotically in terms of the
parameter e as e tends to zero. Our analysis will be formal and the order symbol will
refer to the parameter e as e —> 0.

The conditions (2.3) and (2.4) suggest that the functions X and Y arc 0(e~1/2). The
orders of the other quantities follow accordingly. We write

V —1/2 V -I/2,. T -1/2; » -1/2-1X. — c x) Y — € yj J-j — 6 i, Ai — c Xi ,

A2 = e~1/2X2 , T1 = e-1^ , T2 = e-1<2 , $ = 4>-

Eq. (2.7) can now be written as

W(A1 , A2) = €-2w(X1 , X2 , e) (2.15)

where

w(\i , X2 , e) = ZcX/Xj2 + e(X,2 + X22) + e3k(^~2 + + e4 ^ 2^ 2- (2.16)

Because of (2.16), we shall consider all the newly introduced quantities in (2.14) as
functions of S and e and write / = /($, e) where / is a generic symbol. We shall assume
that / is analytic in S and e, and adopt the convenient notation:

dnf . d"/ = jf
dSn~dSn' M") — dt" /(" > v (2.17)

The governing equations (2.5), (2.6) and (2.8-2.13), and the boundary conditions (2.3)
and (2.4) now become

Xt = dl/dS, X2 = x/R, (2.18, 19)

ti = 7- Wx, , t2 = ~ iv^ , (2.20, 21)
A2 Ai

* § = (<2 - U) % , Jg (.t«i sin 4>) = 0, (2.22, 23)

1 dx 1 dy . , /r> „.
X^dS = cos<*>' \1dS=sm4" (2'24'25)

x(0, e) = a, 2(1, e) = b, 2/(1, e) - 1/(0, e) = 2. (2.26)

3. Asymptotic configuration—catenoid. The asymptotic state is an infinitely
stretched state. If we let e = 0 and use the notation (2.17), the system of equations
(2.18)-(2.26) becomcs

X10 = dl0/dS, X20 = x0/R, (3.1, 2)

tl0 = 2/CX10X20 , 120 = 2/cXI0X20 , (3.3, 4)

Xo lis = ^20 - tl0^ Js ' sin ^ = ^3'5' ^

= COS <£0 , r- TV = sin 4>o » (3-7> 8)
Ajo Cl& Ajo Waj

Zo(0) = a, z0(l) = b, y0( 1) - y0(0) = 2. (3.9)
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It follows from (3.3), (3.4) and (3.5) that

< io = <zo = constant. (3.10)

Eq. (3.6) yields

= (3.11)
<10 Sin <t>o

where /0 is as unknown integration constant. Eq. (3.6), together with (3.1), (3.7) and
(3.11), implies

dl0 = -t2-— • (3.12)
f10 Sill <j>o

Eq. (3.8), together with (3.1) and (3.12), implies

dV» = -r^hrd<t>° (3-13)'io sin <p0

which, in turn, yields

y0 = — T^lntan^- (3.14)
t io Z

Note that the boundary condition is not violated by our setting the integration constant
to zero in (3.14). Eqs. (3.11) and (3.14) are the coordinates of a catenary which can also
be written as

x0 = ~ cosh t y0 . (3.15)
tio Jo

Substituting (3.1) and (3.2) into (3.3) and applying (3.12), we get

Is® "s- -(hdd'&k
or, after applying (3.11), (3.13) and (3.15),

Integrating (3.16) yields

(trc
dy0   <io <io  
dS '2k /o >2 <iocosh -r- yo

Jo

(3.16)

<10

k R(S') dS'

= | ^sinh 2 f y0(S). 7o
- sinh j^2 ̂  2/o(0) + f MS) - 7/0(0)] (3.17)Jo

where y0(0) is an unknown integration constant. Since y0(S) must be consistant with
our previous choice (3.14), yo(0) cannot be arbitrary. The function y0(S) is given impli-
citly by (3.17). All the other quantities can be determined by simple substitution. In
particular, (3.12) yields

<o = ~~ sinh — y0 (3.18)
f10 Jo

where the origin of l0 is chosen at the point y0 = 0.
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We must now determine the three constants ti0 , /o and w0(0). Eq. (3.9) requires that

a = y- cosh y- 2/o(0), (3.19)
f10 Jo

b = cosh ̂  (y„(0) + 2), (3.20)
&10 Jo

lf {^)RC = 2^ + | [sinh 2 ^ (j,0(0) + 2) - sinh 2 ^ j/0(0)] (3.21)

where

Rc = f R(S) dS. (3.22)
- 0

Eqs. (3.9), (3.15) and the assumption b > a imply that ?/o(l) = 2/o(0) + 2 > 1. It follows
from (3.19) and (3.20) that

7^2/0(0) = =Fcosh-17^a, (3.23)
Jo Jo

(y„(0) + 2) = +cosh"1 ^ b, (3.24)
Jo Jo

which, in turn, yield

lf = J [ cosh-1 ̂ 6 ± cosh-1 l-f al •
Jo £ L Jo Jo J (3.25)

For given a and b, (3.25) determines the ratio tl0/fo which can then be used to obtain
2/0(0) from (3.23). We note in passing that (3.25) has two roots in general.

Subtracting (3.19) from (3.20) and simplifying yields

^10 / /r*\ 1 -1 \ ^10 bsinh -y (yo(0) + 1) =
/o /o 2 sinh l-f

Jo

Using this relation, we obtain from (3.21)

10
fic = 2i+ (Vf
k t\Q \tlQ/

1+1 tl0 b — a

Jo ■ i ^10smh 7—
Jo .

sinh 2^- (3.26)
Jo

Eqs. (3.25) and (3.26) can now be used to determine /0 and • This completes the formal
determination of the three constants involved. Since the constants cannot be solved
explicitly and solution multiplicity is involved, we give a qualitative discussion of the
solutions in the next section.

4. Non-uniqueness of asymptotic configuration. Before proceeding it is convenient
to introduce the following parameters:

To = tl0/f0 , t10 = (RJk)tl0 , p = a/b < 1, u s= by0 . (4.1)
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The shape of the asymptotically stretched membrane is given by (3.15), which can now
be written as

y0x0 = cosh "YoVo ■ (4.2)

Thus, the number of asymptotic configurations is determined by the number of values
of the catenary parameter y0 satisfying (3.25).

The values of To satisfying (3.25) are determined by the intersections, in the m — To
plane, of the line

To = (1 /b)u (4.3)
and the curve

Q±[p]: To = Q±{u, p) = |(cosh_1 u ± cosh-1 pu), u > 1/p, (4.4)

where the notation is self-explanatory. It can be easily checked that dQ+/du > 0,
dQT/du < 0 for u > 1/p. Moreover, the two branches Q± meet and are tangent to eacli
other at

u = 1/p, To = I cosh"1 (1/p), (4.5)

where dQi/du = ± . It follows that the two branches can be combined into a single
curve Q[p] defined by

Q[p]: u = Q(to , p) (4.6)
where Q consists of the unique inverses of Q± and dQ/dy0 = 0 at To = h cosh-1 1/p.
The quantity p is a parameter and a set of Q[p]-curves is given in Fig. 1.

While Eqs. (4.3) and (4.4) cannot be solved explicitly, the Q[p]-curves supply a full
and clear picture of the nature of the solutions involved. Let To = (l/b*)u be the unique
tangent to the curve Q[p] and let u = u* and To = To* be the point of tangency, then

Q+(u*, p) = cKT
U* du (4.7)

To* = Q*(U*, p), b* = w*/To*. (4.8)

Eq. (4.7) determines u* as a function of p and hence all the starred quantities are functions
of p. For given p and b, there are the following possibilities:

(1) b < b*(p). The present asymptotic analysis does not yield a solution of the
form (4.2).

(2) b = b*(p). There exists a unique catenoid as the asymptotic solution. The catenary
parameter To takes the value To*(p)- Moreover, the catenary satisfies the conditions
2/o(0) < 0, 2/0(l) > 0.

(3) b*(p) < b < 60(p) = (p/2) cosh-1 (1/p). The quantity 60(p) is determined by (4.5).
Two solutions exist. Let To(1) and To<2>, To"' < To<2>, be the two catenary parameters.
The corresponding catenaries satisfy, respectively, the conditions 2/0c 1' (0) < 0,2/0m(l) >
0 and 2/o<2>(0) < 0, y0<2>(l) > 0, where the equality holds only when b = b0(p).

(4) b > bn(p). Two distinct solutions exist. Let ToU) and To<2>, To"' < To<2)> be the
two catenary parameters. The corresponding catenaries satisfy the conditions y0<2)(0) <
0, 2/o<2,( 1) > 0 and y0n>(S) > 0.

This completes the determination of the shape of the asymptotically stretched
membrane.
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V.

Fig. 1.

We must now determine t10 which determines the magnitude of the stress resultants
and is also required in the y0 — S relation (3.17). The quantity t10 is determined by
(3.26). In terms of the parameters (4.1), (3.26) is

2 sinh 2y0 . , 2 u , ,.
T10 = 1 2 + (1 — p) 2 coth 7o (4.9)

To To To

where u satisfies (4.6) and hence is a function of 70 and p. It follows that r10 is a function
of Yo and p. A lengthy but straightforward calculation shows that d2ri0/dy02 > 0 and

drio/dyo = 0 at To = To* (4.10)

A set of tiq(to , p)-curves is also given in Fig. 1. We conclude the above discussion by
outlining the graphic construction of the solution pertinent to Fig. 1. For a given pair
of a and b, the following steps are performed:

(1) Erect a line defined by 70 = (1 /b)u. This line and the curve Q[p] have two inter-
sections in general. Denote the values of To at the intersections by To"' (b, p) and y0(2' (b, p)
where 70ll> < To<2> is assumed.

(2) Determine t10U)(&, p) = r10(7oa>, p) and r10<2)(&, p) = ^^(To'2', p) from the
left portion of Fig. 1.

(3) These values, together with the geometric constant Rc and the material constant
k, yield the constants t10 and f0 by (4.1).

(4) The constant y0{0) is determined from (3.23), i.e.,

2/o(0) = =F— cosh-1 To a for To ^ h cosh-1 -•
To p



280 C. H. WU

Finally, we make an attempt to provide certain physical explanations for the multiple
solutions involved. This is done through an energy consideration. Since only displacement
boundary conditions are specified, the total potential energy is the strain energy stored
in the membrane. Eq. (2.16) implies that

w(\i , X2 , e) ~ fcX10 X20 = t 10 (4.11)

It follows that the total potential energy, which equals to the total initial area 2irRc
multiplied by the constant energy density (4.11), is proportional to rl02. If we assume
that the membrane prefers the state of a lower energy then the configuration corre-
sponding to the smaller one of ti0(1> and r10<2) may be called the preferred state.

5. First-order correction. Differentiating (2.18)-(2.26) with respect to e and then
setting e = 0, we obtain, after using the notation (2.17),

Xn = dU/dS, X2i = Xi/R, (5.1, 2)

tn = 2fc(X10X21 + XnX20) + 2 ^ , (5.3)
^20

t2l = 2fc(X10X21 + X„X2„) + 2 ^ , (5.4)
^10

Xols= {t21 ~ tn) Js ' (5'5)

{x0tw<t>1 cos <t>o + x0tn sin <j>0 + x^o sin <£0) = 0, (5.6)

Xi i dxo , 1 dxi . .
-7^2 jw + r~ jw = -<t>i sin <j>o , (5.7)

A^o CXO ^10 ttO

^ii dyp . 1 dyi (
"\JdS +K,ds = cos0° ' (5-8)

Zi(0) = 0, ^(1) = 0, 2/o(1) - 2/o(0) = 0. (5.9)

Substituting (5.3) and (5.4) into (5.5) and making other appropriate substitutions,
we obtain

dtn/dS = F(S) (5.10)
where

F(S) = |
\2kj x04J
u oV K4 tanh ~ y0 ■ (5.11)

Jo

Integrating (5.10) yields

US) = fn(0) + f F(S') dS' (5.12)
^0

where the constant tn(0) remains to be determined.
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Eqs. (5.2) and (5.3) imply

  _1_ ^ii   ^ ^io   ^io Xi . .
— 2k X20 k X202 \20R' 1 j

Substituting (5.13) into (5.7) and using (3.1), (3.2), (3.3) and (3.8), we obtain

_ dxi J_ dxo , 1_ dxo R dx0 ..
1 dy0 x0 dy0 Xl t10 dy0 11 kx02 dy

Substituting (5.14) into the integrated form of (5.6) and using the zeroth-order solution
repeatedly, we get

2 dx„ dx, r/dxoV ,"1 x02 f (dxX . ,1, fiR (dy0\ 1 R2 fdx0\*"L wJ ~ 'J1- r, LW + 'J'"= "a UsJ _ t wJ
(5.15)

dy0 dy0

or, after applying (3.15) and (3.16),

clzc t
cosh2 yoy0 sinh y0y0 y-1 + -j2 cosh 702/0(sinh2 y0y0 — 1)^1

wy o jo

1 i 4 , /l 1 2 <10 R (<lo\ • 1 2 <10 /r— — cosh 7o2/o<ii = — t cosh ~j~ 2/0 r\T~l smh T~ Vo • (5.16)
cio Jo Jo K V o / Jo

Dividing (5.16) by sinh2 70?/o > we get

i [lis11 ~ vT.(~coth +1 sinh 2to!/" + 5t,!',)'"]

1 rlf f 7?2
= (-coth 7o2/o + I sinh 2702/0 + fy„j/0) - j- coth2 7o2/o - 7o2 y (5.17)

or, after applying (3.16) and (5.10),

dfe 7°y°^i - 7^" (-coth7oyo + I sinh 2y0y0 + fy,0y0)
L sin 7o2/o no7o

+ 7 (z/o   coth 7o2/o) = G(S) d(S (5.18)
Jo \ 7o /_

where

G(<S) = t~~ (-coth7o?/o + i sinh 2y0y0 + %y0y0)F(S) - 27" —'Aw  (5.19)
noTo COSh 7o?/o

Integrating (5.18) yields

x = hi ( 1 I sinh2 y0y0 3 sinh y0y0 \
Uo7o \ cosh y0y0 2 cosh y0y0 2 y°y° cosh2 yt,yj

- t L _ i —J \ + [' Gm dS. + c, (5 20)
Jo V cosh 7o?/o 7o cosh 702/0/ cosh -y02/0 Jo cosh 70?/o

where Ci is an unknown integration constant.
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Eliminating Xn from (5.7) and (5.8), using (5.14) and applying the zeroth-order
solution repeatedly, we get

d\yi + £i sinh y0y0 - (i sinh 2y0y0 +
L hoTo

= H(S) dS (5.21)

where

ff<s) - (i 8i,,h + iy*mS) - a-l'w' (5'22)
Integrating (5.21) yields

t/n = .Ti sinh y0y0 + (1 sinh 2y0y0 + \y0y0) + f H(S') dS' + di (5.23)
^loYo Jo

where dj is an integration constant. Since dt represents only a rigid-body displacement
along the 2-axis, wc conveniently set

di= _hM sinh 2 (0) + iTo?/o(0)]. (5.24)
tioTo

We must now determine the three constants tn(0), /1 and cx in such a way that the
three conditions (5.9) are satisfied. The last of (5.9), together with the first two of (5.9)
and the relation (3.21), yields

tn(0) = {[i sinh 2to2/o(1) + iToyo(1)] [F{S) dS + f H{S) 4- (5-25)

Finally, the first two conditions of (5.9) yield

, , /<„(0) |~1 2 , 9 _  sinh 2y0 
°\tny0 [2 Tl° 0 7o sinh7o?/o(0) sinh7o2/0(1).

+ i + isinh 2w(1) + f. ns) "s

( G<S) "S + L8inh7rf)2sinhW(l) - 2} ' <5 26)

-if +! ™h wo) + ,M"(0>]

ti,
+

Ci

+ f L(0)--L^W/.(0)1 (5.27)
/o L 7o sinh 7o2/o(0) J

The function <2i can be conveniently calculated from (5.5). We have

4fc cosh2 70y0 f, _ /<10V R4
\2fc/ 7o4.

^21 — ^11 "1" Z, D2
To '10 ft

(5.28)

The other quantities can be computed accordingly but are not given here.

6. Stretching of a cylindrical membrane as an example. Consider a cylindrical
membrane characterized by a meridian curve

C: T = = * , 0 < S < 1. (6.1)
3 = Z(,S) = 5 - i
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The membrane is stretched axially and radially so that the meridian curve of the equi-
librium configuration defined by

c: r"X(S) (6.2)
Z = Y(S)

satisfies the conditions

X(0) = X(l) = e'1/22 , sw w (6.3)
7(1) - 7(0) = e~1/22

where e is a small parameter.
In terms of the notation (4.1), we have a = b = 2 and p = 1. Eqs. (3.25) and (3.26)

yield:
7oa) = 0.5890 t10(1) = 7.6328

To = T10 = (6.4)
7o(2) = 2.150 T10(2) = 8.7090

The corresponding asymptotic solutions are:

x(S) = -4sy cosh 7o<">2/(»S), (6.5)
To

S = (n)1 (n,2 {|[sinh 2T0(n)y + sinh 27„(n)] + y0(n)(y + 1)}, (6.6)
Tio To

1.0

0.5

0.5

1.0

r = C X
z = e ,/2 Y

7 = 0.589
r=R (SM
z=Z(S>= s

S^l
MM, I I I I I I I | I | I | | | r

\ 1.0 15 20
r= C/2X

Z— e*Y
70= 2.125

Fig. 2.
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where n = 1, 2 and t'~X x, t/2Y ~ y. The asymptotic stress resultants are

eTl ~ eT2 ~ 2kTl0M, n = 1,2. (6.7)

The two solutions are plotted in Fig. 2.

References

[1] E. Isaacson, The shape of a balloon, Comm. Pure Appl. Math. 18, 163-166 (1965)
[2] C. H. Wu, Spherelike deformations of a balloon, Quart. Appl. Math. 30, 183-194 (1972)
[3] D. Y. P. Perng and C. H. Wu, Flattening of membranes of revolution by large stretching-asymptotic

solution with boundary layer, Quart. Appl. Math. 32, 407-420 (1973)
[4] L. P. Eisenhart, A treatise on the differential geometry of curves and surfaces, Ginn and Company, 1909
[5] A. E. Green and J. E. Adkins, Large elastic deformations, Clarendon Press, Oxford, 1960
[6] C. H. Wu, On certain integrable nonlinear membrane solutions, Quart. Appl. Math. 28, 81-90 (1970)


