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Abstract. An infinitesimal derivative of the Bott class is defined by gen-
eralizing Heitsch’es construction. We prove a formula relating the infinites-
imal derivative to the Schwarzian derivatives, which gives a generalization
of the Maszczyk formula for the Godbillon-Vey class of real codimension-
one foliations. As an application, a residue of infinitesimal derivatives with
respect to the Julia set in the sense of Ghys, Gomez-Mont and Saludes is
introduced.

Introduction

The Bott class is a secondary characteristic class of transversally holomor-
phic foliations defined in a similar manner to the Godbillon-Vey class. It is
significant that the Bott class varies continuously under deformations of folia-
tions. The derivative of the Bott class can be defined if the family is smooth.
Moreover, the derivatives with respect to infinitesimal deformations are also
defined, which we call infinitesimal derivatives in this article. An explicit con-
struction of them was presented by Heitsch [14], [15], where the infinitesimal
derivative of the Bott class was given if normal bundles are trivial. If the
normal bundle is not necessarily trivial, then the derivative of the imaginary
part was given. The real part of the Bott class proves useful in the study of
Fatou-Julia decompositions of foliations [13] as well as of the Futaki invariant
[11], [12]. For this reason, it would be worthwhile if the infinitesimal derivative
of the Bott class is defined without additional assumptions. In this paper, by
modifying Heitsch’es construction, we define the infinitesimal derivatives of
the Bott class in full generality. Some applications concerning the Fatou-Julia
decomposition in the sense of Ghys, Gomez-Mont and Saludes will be also
discussed.

It is shown by Maszczyk [19] that the infinitesimal derivative of the Godbillon-
Vey class of real codimension-one foliation is described in terms of classical
Schwarzian derivative. The formula is easily seen to be valid also for the Bott
class of complex codimension-one foliations. It will be shown that the same is
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also true for higher codimensional cases if we replace the classical Schwarzian
derivative with the projective Schwarzian derivatives. In particular, we show
that the infinitesimal derivatives of the Bott class of transversally complex
projective foliations vanish. It is in analogy with the fact that the imaginary
part of the Bott class is trivial if the foliation is transversally Hermitian or
transversally complex affine. Examples are given in the final section.

The author expresses his gratitude to Professor H. Sato for remarks on the
previous studies on the projective Schwarzians.

1. Relevant definitions

In this paper, manifolds are smooth and without boundary unless otherwise
stated.

Definition 1.1. A foliation F of a manifold M is said to be transversally
holomorphic of complex codimension q if there is an open covering U = {Ui}
of M with the following properties:

1) Each Ui is homeomorphic to Vi×D2q, where Vi is an open subset of Rp
and D2q is an open ball in Cq (p+ 2q = dimM).

2) The foliation restricted to Ui is given by {Vi × {z}}, z ∈ D2q.
3) Under the identification in 1), the transition function ϕji from Ui to Uj

is of the form ϕji(x, z) = (ψji(x, z), γji(z)), where γji is a local biholo-
morphic diffeomorphism.

Such an atlas {U , {ϕji}} is called a foliation atlas. An open covering of M is
adapted if it is simple and gives a refinement of a foliation atlas for F .

Definition 1.2. Let F be a transversally holomorphic foliation. Denote by

E = E(F) the complex subbundle TCM = TM ⊗ C locally spanned by
∂

∂xik

and
∂

∂z̄jk
, where (xk, zk) = (x1

k, · · · , xpk, z1
k, · · · , zqk) are local coordinates as in

Definition 1.1. The complex normal bundle Q(F) of F is by definition TCM/E.
The line bundle KF =

∧qQ(F)∗ is called the canonical bundle, and −KF =∧qQ(F) is the anti-canonical bundle.

Notation 1.3. We denote by I(1)(U) the ideal of C-valued differential forms
Ω∗(U) on U , locally generated by dz1, · · · , dzq. Set I(k)(U) = I(1)(U)k, Ip(k)(U) =

I(k)(U) ∩ Ωp(U), and denote the sheaves generated by these ideals by I(k) and
Ip(k). We set Ip(k,l) = Ip(k)/I

p
(l), namely, an element of Ip(k,l)(U) is a family {ωi},

for which ωi ∈ Ip(k) is defined on an open subset Vi of U , where
⋃
Vi = U , such

that ωj − ωi ∈ Ip(l)(Vi ∩ Vj) if Vi ∩ Vj 6= ∅. Finally, we set I(k,l) =
⊕
p

Ip(k,l).
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Note that I(k) = {0} for k > q. If p < l, then Ip(k,l) = Ip(k) because Ip(l) = {0}.
In what follows, the sheaf of germs of sections of a vector bundle V is also
denoted by V by abuse of notation. Then, E∗ ∼= I1

(0,1).

Notation 1.4. Let S be a presheaf on M and U an open covering of M . The
set of Čech r-cochains with values in S is denoted by Čr(U ;S), or by Čr(S)
if U is obvious. Components of Čech cochains are represented by attaching or
removing indices, e.g., a cochain {ωi} is denoted by ω and vice versa.

Elements of Čr(U ; Ωs) are called Čech-de Rham (r, s)-cochains. Čr(U ; Ωs)
is also denoted by Ar,s(U). If c ∈ Ar,s(U) and c′ ∈ At,u(U), then the product
c∪c′ ∈ Ar+t,s+u(U) is defined by (c∪c′)i0···ir+t = (−1)stci0···ir∧c′ir···ir+t . The Čech
differential and the de Rham differential are denoted by δ and d, respectively.
The Čech-de Rham differential D is defined by D = δ + (−1)rd.

Definition 1.5. Let Č∗(U ;Z) be the Čech complex with coefficients in Z.
Then Čr(U ;Z) ⊂ Ar,0(U). The quotient A∗,∗(U)-module equipped with the
natural differential A∗,∗(U)/Č∗(U ;Z) is called the modified Čech-de Rham
complex.

Let U = {Ui} be an adapted covering. Then −KF is trivial when restricted
to each Ui. Let ei be a trivialization of −KF |Ui and {Jij} a family of non-
zero functions such that ej = eiJij. Noticing that log Jij is well-defined, since
the covering is adapted, we set Θ = (2π

√−1)−1δ log J . It is classical that Θ
represents c1(Q(F)) in Ȟ2(M ;Z). Let ∇i be a Bott connection defined on Ui,
and let θi be its connection form with respect to ei.

Definition 1.6. We set βij = θj−θi−d log Jij and call β = {βij} the difference
cochain of {∇i}.

Note that βij ∈ I(1)(Ui ∩ Uj).

The Bott class is represented in terms of the following cochains in the mod-
ified Čech-de Rham complex:

Definition 1.7. Set

u1(∇, e) =
−1

2π
√−1

(θ + log J), ū1(∇, e) =
1

2π
√−1

(θ + log J),

v1(∇, e) =
−1

2π
√−1

(dθ + β) and v̄1(∇, e) =
1

2π
√−1

(dθ + β).

If ∇ and e are clear, then they will be omitted.

We have Du1 = v1 −Θ and Dū1 = v̄1 −Θ.

Theorem 1.8. [3] Let Bq(F) be the Bott class of F . Then Bq(F) is repre-
sented by the cochain Bq(∇, e) in the modified Čech-de Rham complex defined
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by the formula

Bq(∇, e) = u1 ∪ vq1 + Θ ∪ u1 ∪ vq−1
1 + · · ·+ Θq ∪ u1,

which is independent of the choice of U , local trivializations e of −KF , and the
family of Bott connections ∇.

Definition 1.9. Let {Fs}s∈S be a family of transversally holomorphic folia-
tions, of a fixed codimension, of a fixed manifold. Then {Fs} is said to be a
continuous deformation of F0 if {Fs} is a continuous family as plane fields, and
the transversal holomorphic structures also vary continuously, where 0 ∈ S is
the base point. A smooth family {Fs}s∈S is said to be smooth if it is a smooth
family of plane fields and the transversal holomorphic structures vary smoothly.

Given a smooth family {Fs} of transversally holomorphic foliations, set
−Ks =

∧qQ(Fs). We may assume that there is a family {es,i} of local trivi-
alizations of −Ks such that each es,i is defined on Ui. Let {Js,ij} be functions
such that es,j = es,iJs,ij. Then we may further assume that Js,ij is indepen-
dent of s. We denote Js,ij by Jij. The cocycle Θs = (2π

√−1)−1δ log Js is also
independent of s and denoted by Θ. Choose then a smooth family {∇s} of
local Bott connections and denote by {θs,i} the connection forms of ∇s with
respect to {es,i}. Let {βs,ij} be the difference cochain of ∇s. Then by defini-
tion θs,j − θs,i = d log Jij + βs,ij. Finally, for any cochain ωs, we denote by ω̇s
the partial derivative of ωs with respect to s.

Under these choices of cochains, we have the following

Proposition 1.10. Let u1(s) = u1(∇s, es) and v1(s) = v1(∇s, es), respectively,

and let u̇1(s) =
−1

2π
√−1

θ̇s. Then,
∂Bq(Fs)
∂s

naturally determines an element

of H2q+1(M ;C), which is represented by

q∑

k=0

v1(s)k ∪ u̇1(s) ∪ v1(s)q−k.

Proof. First, note that u̇1(s) is the partial derivative of u1(s) with respect to

s. Set v̇1(s) =
−1

2π
√−1

(dθ̇s + β̇s). Then Du̇1(s) = v̇1(s). Note that we have

∂

∂s
Bq(∇s, es) =

q∑

k=0

Θk ∪ u̇1(s) ∪ v1(s)q−k

+

q−1∑

k=0

q−k−1∑

l=0

Θk ∪ u1(s) ∪ v1(s)l ∪ v̇1(s) ∪ v1(s)q−k−l−1.
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Set ρk =
q−k∑
l=0

Θk−1 ∪ u1(s) ∪ v1(s)l ∪ u̇1(s) ∪ v1(s)q−k−l for k = 1, . . . , q. Then

we have

∂

∂s
Bq(∇s, es) +Dρ1 + · · ·+Dρq =

q∑

k=0

v1(s)k ∪ u̇1(s) ∪ v1(s)q−k.

�

Corollary 1.11. Assume that each ∇s is a global connection. Then
∂Bq(Fs)
∂s

is represented by a global (2q + 1)-form (−2π
√−1)−(q+1)(q + 1)θ̇s ∧ (dθs)

q.

The above representative is the same as the one given by Heitsch [15] when
normal bundles are trivial.

The imaginary part of the Bott class is an element of H2q+1(M ;R). Indeed,
it can be described without using the cocycle Θ as follows.

Theorem 1.12 (cf. [2]). Let ξq(∇, e) be the cocycle in the Čech-de Rham
complex defined by the formula

ξq(∇, e) =
1

2

√−1

q∑

k=0

(
v̄k1 ∪ (u1 − ū1) ∪ vq1 + vk1 ∪ (u1 − ū1) ∪ v̄q1

)
.

Then ξq(∇, e) represents ξq(F) =
√−1(Bq(F)−Bq(F)), which is independent

of the choice of ∇ and e.

Proof. Set αk =
q−k−1∑
r=0

Θk ∪ ū1 ∪ v̄r1 ∪ (u1 − ū1) ∪ vq−k−r−1
1 . Then

q∑

k=0

v̄k1 ∪ (u1 − ū1) ∪ vq1 −D(α0 + · · ·+ αq−1) = Bq(∇, e)−Bq(∇, e).

The claim follows from this equation and its complex conjugate. �
If log J takes values in

√−1R and if β = 0, then ũ1 = u1 − ū1, v1 and
v̄1 are globally well-defined differential forms, and the representative of ξq in
Theorem 1.12 coincides with the standard one.

2. Infinitesimal derivatives of the Bott class

We will introduce the infinitesimal derivative by following Heitsch [14]. In
what follows, tensors are usually represented in the form of matrices and the
multiplications are considered under the usual multiplication laws together
with the tensor or wedge products.

Let {ei = (ei,1, · · · , ei,q)} be a family of local trivializations of Q(F) and
{ωi = t(ω1

i , · · · , ωqi )} its dual. Let Aji be the matrix valued function such that
(ei,1, · · · , ei,q) = (ej,1, · · · , ej,q)Aji, then Ajiωi = ωj. Let ∇ = ({θi}, {βij}) be a

pair of a family of local Bott connection forms and the difference cochain with
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respect to {ei}. That is, θi is the connection form with respect to ei of a Bott
connection ∇i on Ui so that ∇iei = (∇ei,1, · · · ,∇ei,q) = (ei,1, · · · , ei,q)θi, and

β
ij

= A−1
ji dAji + A−1

ji θjAji − θi, where ei,k(θi)
k
l = (θi)

k
l ⊗ ei,k. One has then

dωi + θi ∧ ωi = 0, β
ji

= −AjiβijA
−1
ji and β

ij
∈ I(1)(Uij), where Uij = Ui ∩ Uj.

Definition 2.1. Set Es ⊗ Q(F) =
∧sE∗ ⊗ Q(F). Let U = {Ui} and s ∈

(Es ⊗ Q(F))(U), where U is an open subset of M contained in Ui. Define a
mapping d∇,i : (Es ⊗Q(F))(U)→ (Es+1 ⊗Q(F))(U) by

d∇,i(s) = ei(dϕ+ θi ∧ ϕ),

where ϕ = ωi(s) and ϕ is considered as an s-form by arbitrarily extending it.
We equip {Čt(Es ⊗ Q(F))} with the Čech differential δ and the differential
d∇. The total complex with differential δ + (−1)td∇ is denoted by E∗(Q(F)).

Lemma 2.2. d∇,i is independent of i, and the family {d∇,i} induces a well-
defined mapping d∇ : Es ⊗Q(F)→ Es+1 ⊗Q(F).

Proof. If s is a section of (Es⊗Q(F))(Ui∩Uj), then d∇,j(ejωj(s)) = d∇,i(eiωi(s))+
ei(βij ∧ ωi(s)). The right hand side is equal to d∇,i(eiωi(s)) as a section of

(Es+1 ⊗Q(F))(Ui ∩ Uj) because E∗ ∼= I1
(0,1). �

Definition 2.3. Let H∗(M ; ΘF) be the cohomology of ((Es⊗Q(F))(M), d∇),
and H∗(M ; ΘF) the cohomology of the total complex (E∗(Q(F)), δ+(−1)sd∇).

The first definition is justified by the fact that ((E∗ ⊗ Q(F))(M), d∇) is a
resolution of ΘF if ∇ is a global Bott connection ([9]) and by Lemma 2.2. It
is easy to see that the natural mapping Hp(M ; ΘF)→ Hp(M ; ΘF) is injective
if p = 1. Indeed, an isomorphism between Hp(M ; ΘF) and Hp(M ; ΘF) can
be constructed by using a partition of unity. However, we distinguish them
because a certain difference will occur when defining infinitesimal derivatives
(cf. Definitions 2.16 and 4.11).

Definition 2.4 (cf. [15]). An element µ ofH1(M ; ΘF) is called an infinitesimal

deformation of F . If ({σi}, {sij}) ∈ E1(Q(F)) is a representative of µ, then
the pair ({−σi}, {−sij}) is called the infinitesimal derivative of ω = {ωi}.

Since E∗ ∼= I1
(0,1), an infinitesimal derivative ({−σi}, {−sij}) satisfies the fol-

lowing relations for some gl(q;C)-valued function g
ij

on Uij and some gl(q;C)-

valued 1-form θ′i on Ui:

ei (d(ωi(σi)) + θi ∧ (ωi(σi))) = eiθ
′
i ∧ ωi,(2.5.a)

(σj − σi)− ej
(
d(ωj(sij)) + θjωj(sij)

)
= ejgijωj,(2.5.b)

(δs)ijk = 0,(2.5.c)

where each σi is arbitrarily extended to a Q(F)-valued differential form. Note
that gij = −gji need not hold in general.
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Infinitesimal derivatives of Bott connections can be defined as follows if
µ is represented by an element of Č0(E∗ ⊗ Q(F)). Note that cocycles in

Č0(E∗ ⊗Q(F)) are elements of (E1 ⊗Q(F))(M) closed under d∇.

Definition 2.6. Suppose that µ ∈ H1(M ; ΘF) and let σ = {σi} ∈ Č0(E∗ ⊗
Q(F)) be a representative of µ. Then any pair ∇′ = ({θ′i}, {gij}) satisfying

(2.5.a) and (2.5.b) with s = 0 is called an infinitesimal derivative of the Bott
connection ∇ = ({θi}, {βij}) with respect to σ.

The infinitesimal derivative of the Bott class is defined as follows.

Definition 2.7. Let µ ∈ H1(M ; ΘF) and let σ ∈ (E1 ⊗ Q(F))(M) be a
representative. Set

θ′ = tr θ′, θ = tr θ, β = tr β, g = tr g and u′1 =
−1

2π
√−1

(θ′ + g).

The cohomology class in H2q+1(M ;C) represented by

DσBq(∇,∇′) =

q∑

k=0

vk1 ∪ u′1 ∪ vq−k1

is called the infinitesimal derivative of the Bott class with respect to µ, and is
denoted by DµBq(F).

The independence of the infinitesimal derivatives from the choice of σ, ∇,
∇′ and local trivializations will be shown in Theorems 2.14 and 2.17.

Since the Bott class can be defined in terms of KF alone, it is natural to
expect that so is its infinitesimal derivative. Indeed, it can be done as follows.
Let {ei} be a family of local trivializations of −KF , where ei is defined on
Ui. Let {Jij} be a family of smooth functions such that ej = eiJij. A Bott
connection on Q(F)|Ui naturally induces a connection on −KF |Ui , which is
also called a Bott connection. Then, a family of local Bott connections on
−KF is a pair ({θi}, {βij}) satisfying θj − θi = d log Jij + βij, where θi is the
connection form of a Bott connection on −KF |Ui with respect to ei. Finally,
let {ωi} be the family of local trivializations of KF dual to {ei}.

Recalling that E∗ ∼= I1
(0,1), we introduce the following

Definition 2.8. We denote (E∗ ⊗ Q(F))(U) also by I1
(0,1)(U ;Q(F)), and set

I∗(q−1,q)(U ;−KF) = I∗(q−1,q)(U)⊗ (−KF |U).

Let ϕ ∈ Ip(q−1,q)(Ui ∩Uj;−KF). Then ϕ can be written as ϕ = ϕi⊗ ei on Ui,

where ϕi ∈ Ip(q−1,q)(Ui). Set then d∇,iϕ = ei(dϕi+θi∧ϕi). Since βij ∈ I(1)(Uij),

the identity d∇,jϕ = d∇,iϕ holds. Hence {d∇,i} induces a globally well-defined
map, which is denoted by d∇. One has d∇ ◦ d∇ = 0. Indeed, the identity
d∇(d∇(eiϕi)) = ei(dθi ∧ ϕi) holds on Ui. The equation dθi ∧ ϕi = 0 holds in
Ip(q−1,q)(Ui), since ϕi ∈ Ip(q−1,q)(Ui) and dθi ∈ I(1)(Ui).
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Definition 2.9. Set Kr,s = Čr(Is+q−1
(q−1,q)(U ;−KF)) and equip it with the dif-

ferentials δ and d∇. Let K∗ be the total complex with the differential δ +
(−1)rd∇, and H∗(M ;−KF) the cohomology of K∗. We regard the complex
(I∗+q−1

(q−1,q)(M ;−KF), d∇) as a subcomplex of (K∗, δ + (−1)rd∇), and denote its

cohomology by H∗(M ;−KF).

The natural mapping H1(M ;−KF) → H1(M ;−KF) is injective, and one
can construct an isomorphism by using a partition of unity.

A version of infinitesimal deformations of −KF is defined as follows.

Definition 2.10. An element µ of H1(M ;−KF) is called an infinitesimal
deformation of −KF . If ({σi}, {sij}) ∈ K1 is a representative of µ, then the
cocycle ({−σi}, {−sij}) is called the infinitesimal derivative of ω = {ωi} with
respect to (σ, s).

If ({−σi}, {−sij}) is an infinitesimal derivative, then the following identities
hold:

ei
(
d(ωi(σi)) + θi ∧ (ωi(σi))

)
= eiθ

′
i ∧ ωi,(2.11.a)

(σj − σi)− ej
(
d(ωj(sij)) + θj ∧ ωj(sij)

)
= ejgijωj,(2.11.b)

sjk − sik + sij = 0.(2.11.c)

Suppose that local trivializations and local connections of Q(F) are given.
Then those of −KF are induced in the following way. Let {ei} be a family of
local trivializations of Q(F) and {ei} a family of local trivializations of −KF
defined by ei = ei,1 ∧ · · · ∧ ei,q. We locally trivialize KF by the dual {ωi =
ω1
i ∧ · · · ∧ ωqi} of {ei}. Then {θi = tr θi} is a family of local Bott connection

forms with respect to {ei}. They satisfy the equations dωi + θi ∧ ωi = 0 and
θj − θi = d log Jij + βij, where Jij = detAij and βij = tr β

ij
.

Lemma 2.12. Let µ ∈ H1(M ; ΘF) and let m = ({σi}, {sij}) ∈ E1(U ;Q(F))
be its representative. Set

r0(m)i =

q∑

k=1

ω1
i ∧ · · · ∧ ωk−1

i ∧ ωki (σi) ∧ ωk+1
i ∧ · · · ∧ ωqi ⊗ ei,

r1(m)ij =

q∑

k=1

(−1)k−1ω1
j ∧ · · · ∧ ωk−1

j ∧ ωkj (sij) ∧ ωk+1
j ∧ · · · ∧ ωqj ⊗ ej.

Then r = r0 ⊕ r1 induces isomorphisms r : H1(M ; ΘF) → H1(M ;−KF) and
r : H1(M ; ΘF)→ H1(M ;−KF), where the induced mappings are denoted by r
by abuse of notation. Moreover, if m satisfies (2.5.a), (2.5.b) and (2.5.c), then
r(m) satisfies (2.11.a), (2.11.b) and (2.11.c) with θ′ = tr θ′ and g = tr g.

Proof. It is clear that r(m) ∈ K∗. By (2.5.a), d(ωi(σi)) + θi∧ (ωi(σi)) = θ′i∧ωi
for some gl(q;C)-valued 1-form θ′i. Since θ = tr θ and β = tr β, we have
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dr0(m)i + θi ∧ r0(m)i = (tr θ′)i ∧ ωi ⊗ ei and r0(m)j − r0(m)i = d∇r1(m)ij +
(tr g

ij
)ωj⊗ej. It is easy to see that δr1(m)ijk = 0. Hence r(m) is closed under

δ + (−1)rd∇ and the last part of the lemma follows.
Assume that m is exact. Then σi = ei (dfi + θifi) and sij = ejfj − eifi for

some collection {eifi} of local sections of Q(F). Set ρi =
q∑

k=1

(−1)k−1ω1
i ∧ · · · ∧

ωk−1
i ∧ fki ∧ ωk+1

i ∧ · · · ∧ ωqi ⊗ ei. Then d∇ρi = r0(m)i and ρj − ρi = r1(m)ij.
Conversely, let m = ({σi}, {sij}) be a cocycle in K1. Then (2.11.a), (2.11.b)
and (2.11.c) hold. Let {σki } be a family of 1-forms and {skij} a family of

functions such that ωki ∧ (ωi(σi)) = −σki ∧ ωi and ωkj ∧ ωj(sij) = skijωj. Set

σi =
q∑

k=1

σki ⊗ ei,k and sij =
q∑

k=1

skij ⊗ ej,k. Then (σ, s) is well-defined as an

element of E1(Q(F)) and independent of the choice of {σki } and {skij}. We
have d(ωi(σi) ∧ ωi) = d(ωi(σi)) ∧ ωi + ωi(σi) ∧ θi ∧ ωi and d(ωi(σi) ∧ ωi) =
θi ∧ ωi ∧ (ωi(σi)) + ωi ∧ d(ωi(σi)) = −θi ∧ ωi(σi)∧ ωi − ωi ∧ θi ∧ ωi(σi). Hence
d(ωi(σi)) + θi ∧ ωi(σi) = 0 in I1

(0,1).

On the other hand, (d(ωj(sij)) + θjωj(sij))∧ ωj = −θj ∧ ωj ∧ ωj(sij)− ωj ∧
(−gijωj−θj∧ωj(sij)+ωj(σj)−ωj(σi))+ωj(sij)θj∧ωj+θjωj(sij)∧ωj. It follows
that ej(d(ωj(sij)) + θjωj(sij)) = σj − σi. We also have δs = 0. Therefore,
if we set r′(m) = (σ, s), then r′(m) is closed and it induces a mapping of
the cohomology which is equal to r−1. Finally, the construction shows that
H1(M ; ΘF) is mapped to H1(M ;−KF) under the mapping r. This completes
the proof. �

Infinitesimal derivatives of the Bott class are determined by infinitesimal
deformations of −KF as follows.

Definition 2.13. Let µ ∈ H1(M ;−KF) and σ = {σi} ∈ Iq(q−1,q)(M ;−KF)

a representative of µ. Then any pair ∇′ = ({θ′i}, {gij}) satisfying (2.11.a)
and (2.11.b) is called an infinitesimal derivative of the Bott connection ∇ =
({θi}, {βij}) with respect to σ.

Theorem 2.14. Let µ ∈ H1(M ;−KF) be an infinitesimal deformation and
σ = {σi} ∈ Iq(q−1,q)(M ;−KF) a representative of µ. Let ∇′ = ({θ′i}, {gij}) be

the infinitesimal derivative of ∇ with respect to σ. Set

DσBq(∇,∇′) =

q∑

k=0

vk1 ∪ u′1 ∪ vq−k1 ,

where u′1 =
−1

2π
√−1

(θ′+g). Then DσBq(∇,∇′) represents a class in H2q+1(M ;C),

which is independent of the choice of cochains and connections.

Proof. Note that σ is globally well-defined and that if we define σi as in the
proof of Lemma 2.12, then {σi} induces a globally well-defined element of
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I1
(1)(M ;Q(F)), which we denote by σ. Under these settings, the following

lemma holds.

Lemma 2.15. Let ϕk be (rk, sk)-cochains, where 0 ≤ k ≤ q. Suppose that
(ϕk)i0···irk ∈ I

sk
(1) for any k and any i0, · · · , irk . Write (ϕk)i0···irk =

∑
m

(αk;i0···irk )m∧
ωmi and set 〈ϕk| σi〉i0···irk =

∑
m

(αk;i0···irk )m ∧ σmi . Then 〈ϕk| σi〉 ∧ ωi = −ϕk ∧

ωi(σi) and
q∑

k=0

ϕ0 ∪ · · · ∪ ϕk−1 ∪ 〈ϕk|σi〉 ∪ ϕk+1 ∪ · · · ∪ ϕq = 0. Moreover,

ϕ0 ∪ · · · ∪ ϕk−1 ∪ 〈ϕk| σi〉 ∪ ϕk+1 ∪ · · · ∪ ϕq is independent of i.

Proof of Lemma 2.15. First note that we can obtain 〈ϕk|σi〉 by taking a con-
traction from ϕk ⊗ σi and then a reduction to a differential form. Note also
that the last part of the lemma follows from the assumption s = 0 and the
identity (2.11.a). If ω ∈ I∗(q), then we can also consider the contraction of

ω⊗σi. Let ρ1, · · · , ρn ∈ I∗(q). Then 〈ρ1 ∧ · · · ∧ ρn| σ〉 = 〈ρ1|σi〉 ∧ ρ2 ∧ · · · ∧ ρn +

· · · + ρ1 ∧ · · · ∧ ρn−1 ∧ 〈ρn|σi〉. Under the assumption, ϕ0 ∪ · · · ∪ ϕq = 0, so
that the lemma holds. �

We now return to the proof of the theorem.
Claim 1. DσBq(∇,∇′) is closed.

We have D(DσBq(∇,∇′)) = (−2π
√−1)−(q+1)

q∑
k=0

(dθ+β)k∪D(θ′+g)∪(dθ+

β)q−k sinceD(dθ+β) = 0. We will show that (dθ+β)k∪D(θ′+g)∪(dθ+β)q−k =
−(dθ + β)k ∪ (〈dθ| σ〉 + 〈β|σ〉) ∪ (dθ + β)q−k. Then the claim follows from
Lemma 2.15. We have dθ′i ∧ ωi = dθi ∧ (ωi(σ)) = −〈dθi| σ〉 by (2.11.a). On
the other hand, ejθ

′
j ∧ ωj = eiθ

′
i ∧ ωi + eiβij ∧ (ωi(σ)) + eidgij ∧ ωi by (2.11.a)

and (2.11.b). Then (δθ′ − dg)ij ∧ ωi = βij ∧ (ωi(σ)) = −〈βij| σ〉 ∧ ωi. Finally,
ei(δgijk)ωi = 0 by (2.11.b) and by the assumption s = {sij} = 0.
Claim 2. DσBq(∇,∇′) is independent of the choice of ∇′ once σ is fixed.

Let ({θ̃′i}, {g̃ij}) be another infinitesimal derivative of ∇ with respect to σ.

Then ei(θ̃
′
i−θ′i)∧ωi = 0 and g̃ij = gij. Hence (dθ+β)k∪(θ̃′+ g̃)∪(dθ+β)q−k =

(dθ + β)k ∪ (θ′ + g) ∪ (dθ + β)q−k for each k.
Claim 3. The class [DσBq(∇,∇′)] is independent of the choice of σ.

Let {σ̃i} be another representative of µ and ∇̃′ = ({θ̃′i}, {g̃ij}) an infinites-

imal derivative of ∇ with respect to {σ̃i}. It suffices to show that
q∑

k=0

(dθ +

β)k ∪ (θ̃′ + g̃ − θ′ − g) ∪ (dθ + β)q−k is exact. Set ψ = σ̃ − σ. Then there
is an element τ = {τi} ∈ Iq−1

(q−1,q)(U ;−KF) and a family {hi} of functions on

Ui such that eiωi(ψi) = ei
(
d(ωi(τi)) + θi ∧ (ωi(τi)) + hiωi

)
and τj − τi = 0.

Let τmi , m = 1, . . . , q, be 1-forms such that ωmi ∧ ωi(τi) = −τmi ∧ ωi. Then

ei(θ̃
′
i − θ′i) ∧ ωi = −ei(〈dθi| τ i〉 + dhi) ∧ ωi and ejhjωj − eihiωi = ei(〈βij| τ i〉 +
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(g̃ij − gij)) ∧ ωi. The identity
q∑

k=0

(dθ + β)k ∪ (θ̃′ + g̃ − θ′ − g) ∪ (dθ + β)q−k =

D
(

q∑
k=0

(dθ + β)k ∪ h ∪ (dθ + β)q−k
)

follows from Lemma 2.15.

Claim 4. The class [DσBq(∇,∇′)] is independent of the choice of ∇.

Let ∇̃ = ({ϕi}, {ρij}) be another Bott connection and set ψi = ϕi−θi. Then
ψi ∈ I1

(1)(Ui). Assume that {σi} satisfies (2.11.a), (2.11.b) and (2.11.c). Then

d(ωi(σi))+ϕi∧(ωi(σi)) = ϕ′i∧ωi for some 1-form ϕ′i. Since (2.11.b) for ∇̃ is the
same as (2.11.b) for ∇ because s = {sij} = 0, ({ϕ′i}, {gij}) is an infinitesimal

derivative of ∇̃. If we denote {ψi} by ψ, then Dψ = (dϕ + ρ) − (dθ + β).
Setting ψ′ = ϕ′ − θ′, one has ψi ∧ (ωi(σi)) = ψ′i ∧ ωi. It then follows that

(−2π
√−1)q+1

(
DσBq(∇̃, ∇̃′)−DσBq(∇,∇′)

)
(2.15.b)

=

q∑

k=1

k−1∑

l=0

(dθ + β)l ∪ Dψ ∪ (dϕ+ ρ)k−l−1 ∪ (ϕ′ + g) ∪ (dϕ+ ρ)q−k

+

q∑

k=0

(dθ + β)k ∪ ψ′ ∪ (dϕ+ ρ)q−k

+

q−1∑

k=0

q−k−1∑

l=0

(dθ + β)k ∪ (θ′ + g) ∪ (dθ + β)l ∪ Dψ ∪ (dϕ+ ρ)q−k−l−1.

Since ψ ∈ I1
(1)(U), one has

D((dθ + β)m ∪ (θ′ + g) ∪ (dθ + β)k ∪ ψ ∪ (dϕ+ ρ)l
)

(2.15.c)

=− (dθ + β)m ∪ (〈dθ|σ〉+ β|σ〉) ∪ (dθ + β)k ∪ ψ ∪ (dϕ+ ρ)l

− (dθ + β)m ∪ (θ′ + g) ∪ (dθ + β)k ∪ Dψ ∪ (dϕ+ ρ)l,

and

D(−(dθ + β)m ∪ ψ ∪ (dϕ+ ρ)k ∪ (ϕ′ + g) ∪ (dϕ+ ρ)l
)

(2.15.d)

=− (dθ + β)m ∪ Dψ ∪ (dϕ+ ρ)k ∪ (ϕ′ + g) ∪ (dϕ+ ρ)l

− (dθ + β)m ∪ ψ ∪ (dϕ+ ρ)k ∪ (〈dϕ|σ〉+ 〈ρ|σ〉) ∪ (dϕ+ ρ)l,

where m+k+ l = q−1. Adding (2.15.c) and (2.15.d) to the right hand side of

(2.15.b), varying m, k, l and by using Lemma 2.15, we see that DσBq(∇̃, ∇̃′)−
DσBq(∇,∇′) is exact.
Claim 5. DσBq(∇,∇′) is independent of the choice of the family of local
trivializations {ei}.

We fix σ and ∇ = ({θi}, {βij}), and let {e′i} be another family of local triv-
ializations. Then we may assume that e′i = eiui for some C∗-valued function
ui. Hence ω′i = u−1

i ωi and e′j = uju
−1
i αije

′
i. The connection form of ∇ with
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respect to {e′i} is ({θi + u−1
i dui}, {βij}) so that ({θ′i}, {gij}) is also an infini-

tesimal derivative of ∇. This completes the proof of Claim 5 and the theorem
follows. �

Definition 2.16. If µ ∈ H1(M ;−KF), then we denote by DµBq(F) the co-
homology class in H2q+1(M ;C) represented by DσBq(∇,∇′) in Theorem 2.14.

It follows from Lemma 2.12 and Theorem 2.14 that Definition 2.16 is an
alternative definition of the infinitesimal derivative of the Bott class.

Theorem 2.17. If µ ∈ H1(M ; ΘF), then DµBq(F) = Dr(µ)Bq(F).

It is known that a smooth family of transversally holomorphic foliations
induces an element of H1(M ; ΘF) ∼= H1(M ;−KF) ([14]).

Theorem 2.18. If µ ∈ H1(M ;−KF) is induced by a smooth family {Fs},
then

DµBq(F) =
∂

∂s
Bq(Fs)

∣∣∣∣
s=0

.

Proof. Let θ̇s be the one defined after Definition 1.9 and let θ̇ = θ̇s|s=0. Then

θ̇ is an infinitesimal derivative of θ [15, Theorem 2.23]. Hence Dr(µ)Bq(F) =

∂

∂s
Bq(Fs)

∣∣∣∣
s=0

by Proposition 1.10. �

The infinitesimal derivative of the Bott class constructed above is related
with the previously constructed infinitesimal derivatives as follows.

Theorem 2.19. Let µ ∈ H1(M ; ΘF).

1) If −KF is trivial, then DµBq(F) coincides with the infinitesimal deriv-

ative of the Bott class in [15].
2) Let Dµξq(F) be the infinitesimal derivative of the imaginary part of the

Bott class defined in [15]. Then Dµξq(F) = −2 ImDµBq(F).

Proof. These infinitesimal derivatives are constructed under the assumption
that β = 0 and g = 0. Hence DµBq(F) is represented by a global (2q+1)-form

(−2π
√−1)−(q+1)(q + 1)θ′ ∧ (dθ)q. The claims are now obvious. �

3. Schwarzian Derivatives

In what follows, the natural coordinates of Cq will be denoted by z =
t(z1, · · · , zq) unless otherwise stated.

Definition 3.1 ([18], [22], etc.). Let γ be a biholomorphic local diffeomor-
phism of Cq. Let u = t(u1, · · · , uq) be the natural coordinates of the target
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and set γk = uk ◦ γ. The projective Schwarzian derivative (the Schwarzian
derivatives or the Schwarzians for short) Σγ of γ is given as follows:

Σγ =
∑

k,l,t,s

∂zl

∂uk
∂2γk

∂zt∂zs
∂

∂zl
⊗ dzt ⊗ dzs

+
∑

l,t,s

−1

q + 1

(
∂ log Jγ
∂zt

δl,s
∂

∂zl
⊗ dzt ⊗ dzs +

∂ log Jγ
∂zs

δl,t
∂

∂zl
⊗ dzt ⊗ dzs

)
,

where Dγ denotes the differential of γ, Jγ = detDγ is the Jacobian and δl,t is

the Kronecker delta. If q > 1, then let Σl
t,s be the coefficient of

∂

∂zl
⊗dzt⊗dzs

in Σγ and define a tensor Λγ by the formula

Λγ =
−1

q − 1

q∑

l=1

(
∂Σl

t,s

∂zl
−

q∑
u=1

Σl
t,uΣ

u
s,l

)
dzt ⊗ dzs.

We have

Λγ =
∑
t,s

−1

q + 1

∂2 log Jγ
∂zt∂zs

dzt ⊗ dzs −
∑
t,s

−1

q + 1

∂ log Jγ
∂zt

−1

q + 1

∂ log Jγ
∂zs

dzti ⊗ dzs

−
∑

l,t,s

−1

q + 1

∂ log Jγ
∂zl

∂zl

∂uk
∂2γk

∂zt∂zs
dzt ⊗ dzs.

If q = 1, then Λγ is defined by the above formula because Σγ = 0 and coincides
with the classical Schwarzian derivative. Indeed,

Λγ = −1

2

(
γ′′′

γ′
− 3

2

(
γ′′

γ′

)2
)
dz ⊗ dz

holds, where γ′ =
dγ

dz
, γ′′ =

d2γ

dz2
and γ′′′ =

d3γ

dz3
.

It is classical that γ is a restriction of a projective transformation if and only
if Λγ = 0 if q = 1. If q > 1, then γ is a restriction of a projective transformation
if and only if Σγ = 0. It is also known that Σγ is symmetric and trace-free in

the sense that Σl
t,s = Σl

s,t and
q∑
l=1

Σl
l,s = 0. One of the significant properties

of Σγ is that it is a cocycle, namely, Σγ◦ζ = ζ∗Σγ + Σζ holds for any local
biholomorphic mapping γ and ζ ([20],[21]). On the other hand, Λγ is a kind of
the curvature tensor for Σγ ([10], [20]), but is not a cocycle if q > 1. We refer
to [18], [21], [23], [20], [7] and [22] for more details of the Schwarzians.

In terms of matrix valued differential forms, the above tensors are expressed
as follows.
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Lemma 3.2. Set ∂ log Jγ =

(
∂ log Jγ
∂z1

· · · ∂ log Jγ
∂zq

)
. Then

Σγ =
∂

∂z
⊗Dγ−1 · dDγ ⊗ dz

+

q∑

k=1

−1

q + 1

(
∂

∂zk
⊗ (∂ log Jγ · dz)⊗ dzk +

∂

∂zk
⊗ dzk ⊗ (∂ log Jγ · dz)

)
,

and

Λγ =
−1

q + 1
d∂ log Jγ ⊗ dz − −1

q + 1
∂ log JγDγ

−1 · dDγ ⊗ dz

− −1

q + 1
(∂ log Jγ · dz)⊗ −1

q + 1
(∂ log Jγ · dz).

4. Relation between the infinitesimal derivative of the Bott

class and the Schwarzian derivatives

Let ω = {ωi} be a family of local trivializations of −KF and ∇ a family
of local Bott connections on −KF induced by a family of Bott connections
on Q(F). For each i, let zi = t(z1

i , · · · , zqi ) be the local coordinates in the
transversal direction and {γji} the transition functions in the transversal di-
rection so that zj = γji(zi). Finally let µ be an element of H1(M ;−KF), then
µ can be regarded as an element of H1(M ; ΘF) by Lemma 2.12. Let σ = {σi}
be a representative of µ as an element of H1(M ; ΘF). If V is a vector bundle,

then (
∧lT ∗M) ∧ (T ∗M ⊗ V ) ∧ (

∧q−l−1T ∗M) is identified with
∧qT ∗M ⊗ V .

Definition 4.1. Let V be a vector bundle over M . Sections of V are said
to be foliated if they are locally constant along the leaves and if they are
transversally holomorphic. Let ΓF(V ) be the sheaf of germs of foliated sections
of V . The Čech complex with coefficients in ΓF(V ) is denoted by Č∗F(U ;V ),
and its cohomology group is denoted by Ȟ∗F(M ;V ).

Definition 4.2. Let ϕ be a (r, s)-cochain. For 0 ≤ k ≤ r, define a family
∂(k)ϕ = {(∂(k)ϕ)i0···ir} ofQ(F)∗-valued s-forms on Ui0···ir by setting (∂(k)ϕ)i0i1···ir =
q∑
l=1

∂ϕi0i1···ir
∂zlik

⊗ dzlik , where
∂

∂zlik
hdzl1ik ∧ · · · ∧ dzlsik =

∂h

∂zlik
dzl1ik ∧ · · · ∧ dzlsik for any

function h. Set then ∂̂ =
r∑

k=0

∂(k) : Čr
F(U ;KF)→ Čr

F(U ;KF ⊗Q(F)∗).

Lemma 4.3. The mapping ∂̂ induces a homomorphism on the cohomology and
the induced homomorphism is independent of the choice of the foliation atlas.

The proof is straightforward and omitted. We denote again by this homo-

morphism by ∂̂.
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Definition 4.4. Let [d log J ] be the class in Ȟ1
F(M ;Q(F)∗) represented by

d log J . Set L = −(2π
√−1)−(q+1)∂̂((d log J)q) ∈ Čq

F(U ;KF ⊗ Q(F)∗) and
L(F) = [L] ∈ Ȟq

F(M ;KF ⊗Q(F)∗).

The class [d log J ] is independent of the choice of the foliation atlas.

Definition 4.5. Let X be a vector field on an open set U of Cq and ω a
p-form. Set ιXω = ω( · , · · · , · , X) and define a Q(F)∗-valued p-form 〈ω‖Σγ〉
by the formula 〈ω‖Σγ〉 =

∑
i,t,s

(ι∂iω)Σi
t,s ∧ dzt ⊗ dzs, where ι∂i = ι ∂

∂zi
. If η is a

Q∗(F)-valued p-form and σ =
∑
i

∂

∂zi
⊗σi is a Q(F)-valued 1-form, then define

a (p+ 1)-form 〈η |σ〉 by setting 〈η |σ〉 =
∑
i

(ι∂iη) ∧ σi.

The next lemma is easy.

Lemma 4.6. Let η = {ηi0···iq} ∈ Čq
F(U ;KF⊗Q(F)∗) and (a, b) = ({ai}, {bij}) ∈

E1(Q(F)). Define then an element 〈η |(a, b)〉 of Aq,q+1(U) ⊕ Aq+1,q(U) ⊂
A2q+1(U) by setting 〈η |(a, b)〉i0···iq ,i0···iq+1 =

〈
ηi0···iq | aiq

〉⊕ (−1)q
〈
ηi0···iq | biqiq+1

〉
.

Then 〈 · | · 〉 induces a well-defined pairing

〈 · | · 〉 : Ȟq
F(M ;KF ⊗Q(F)∗)×H1(M ; ΘF)→ H2q+1(M ;C).

Proposition 4.7. If µ ∈ H1(M ;−KF), then DµBq(F) is equal to 〈L(F)|µ〉.
Proof. In this proof, the index ik is denoted by k. Since DµBq(F) is in-
dependent of the choice of connections and representatives, we may choose
ωi = dz1

i ∧ · · · ∧ dzqi and assume that θi = 0, then βij = −d log Jij. Let
{σi} ∈ K1 be a representative of µ and σ = {σi} a representative of µ as an

element of H1(M ; ΘF), where ei =

(
∂

∂z1
i

, · · · , ∂

∂zqi

)
. We may assume that

σk = σ1
k ∧ dz2

k ∧ · · · ∧ dzqk + · · · + dz1
k ∧ · · · ∧ dzq−1

k ∧ σqk by Lemma 2.12.

We set ∆k = det




∂k log J01
...

∂k log Jq−1,q


, then

(
(d log J)k ∪ θ′ ∪ (d log J)q−k

)
0···q =

(−1)
q(q+1)

2 dωk(σk)∆k because c1 ∪ · · · ∪ ck = (−1)
k(k−1)

2 c1 ∧ · · · ∧ ck if each
ci is a (1, 1)-cochain. Let ρ(k) be the (q, q)-cochain given by ρ(k)0···q =

(−1)
q(q−1)

2 〈d log J01∧· · ·∧d log Jq−1,q|σk〉, where 0 ≤ k ≤ q means the k-th index

of 0, · · · , q. Then ρ(k) = (−1)
q(q−1)

2 〈ωk|σk〉∆k = (−1)
q(q−1)

2 ωk(σk)∆k. Hence

(D′′ρ(k))0···q = (−1)
q(q+1)

2 dωk(σk)∆k − 〈(d log J)q |σk〉. On the other hand we
can show that (D′ρ(k))0···q+1 =

(
(d log J)k ∪ g ∪ (d log J)q−k

)
0···q+1

by direct

calculations. Thus DµBq(F) is cohomologous to −(2π
√−1)q+1〈(d log J)q|σ〉.

�

We will need the explicit form of coboundaries in proving Proposition 5.10.
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The cocycle L is calculated as follows.

Lemma 4.8. Let Λ be the foliated Čech 1-cochain valued in Q∗(F) defined by
Λij = Λγij . Then

Li0···iq =
q + 1

(2π
√−1)q+1(q − 1)!

∑

τ∈Sq+1

(sgn τ)((d log J)q−1 ∪ Λ)iτ(0)···iτ(q)
.

Proof. We denote the indices i0, · · · , iq by 0, · · · , q. If we set (
∧
d log J)n···m;q =

d log Jnq∧d log Jn+1,q∧· · ·∧d log Jmq, then d log J01∧d log J12∧· · ·∧d log Jq−1,q =
(
∧
d log J)0···q−1;q. Since ∂(j)hdzi = d∂ih⊗ dzi − hDγ−1

ji dDγji ⊗ dzi,
∂(k)(

∧qd log J)0···q

=

q−1∑

l=0

(
∧
d log J)0···l−1;q ∧ d∂q log Jlq ∧ (

∧
d log J)l+1···q−1;q ⊗ dzq

−
q−1∑

l=0

(
∧
d log J)0···l−1;q ∧ (∂q log JlqDγ

−1
kq dDγkq) ∧ (

∧
d log J)l+1···q−1;q ⊗ dzq.

On the other hand, the following equation holds by Lemma 3.2, namely,

(4.8.a) −
∑

0≤l≤q−1
l 6=k

(
∧
d log J)0···l−1;q ∧ 〈d log Jlq‖Σkq〉 ∧ (

∧
d log J)l+1···q−1;q

− (q + 1)2 (
∧
d log J)0···k−1;q ∧ Λkq ∧ (

∧
d log J)k+1···q−1;q

+ q (
∧
d log J)0···k−1;q ∧ 〈d log Jkq‖Σkq〉 ∧ (

∧
d log J)k+1···q−1;q

= (q + 1)(
∧
d log J)0···k−1;q ∧ d∂q log Jkq ∧ (

∧
d log J)k+1···q−1;q ⊗ dzq

−
q−1∑

l=0

(
∧
d log J)0···l−1;q ∧ (∂q log JlqDγ

−1
kq dDγkq) ∧ (

∧
d log J)l+1···q−1;q ⊗ dzq,

where Σij = Σγij . As we have (q + 1)(Λij − Λik + Λjk) = 〈d log Jkj‖Σij〉, the
left hand side of (4.8.a) is equal to

− (q + 1)

q−1∑

l=0

(
∧
d log J)0···l−1;q ∧ (Λql − Λkl + Λkq) ∧ (

∧
d log J)l+1···q−1;q

+ (q + 1)2 (
∧
d log J)0···k−1;q ∧ Λqk ∧ (

∧
d log J)k+1···q−1;q

=− (q + 1)

q−1∑

l=0

(−1)q−l−1(
∧
d log J)0···l−1,l+1···q−1;q ∧ (Λql − Λkl)

+ (q + 1)(
∧
d log J)0···k−1,q−1,k+1···q−2;k ∧ Λkq

+ (q + 1)2 (−1)q−k−1(
∧
d log J)0···k−1;q ∧ (

∧
d log J)k+1···q−1;q ∧ Λqk.
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Noticing that (
∧
d log J)0···l−1,l+1···q−1;q = −(

∧
d log J)0···k−1,q,k+1,···l−1,l+1···q−1;k

if k 6= l and taking the sum of the above equality with respect to k, we obtain

∂̂(
∧qd log J)0···q = (q + 1)

q∑

k=0

(−1)q−k−1(
∧
d log J)0···k−1,k+1···q−1;q ∧ Λqk

− (q + 1)

q−1∑

l=0

∑

k 6=l
(−1)q−l−1(

∧
d log J)0···k−1,q,k+1···l−1,l+1···q−1;k ∧ Λkl

+ (q + 1)

q−1∑

k=0

(
∧
d log J)0···k−1,q−1,k+1,···q−2;k ∧ Λkq,

from which the lemma follows. �
Definition 4.9. Given µ ∈ H1(M ;−KF) and σ ∈ I1

(0,1)(M ;Q(F)) a repre-

sentative of µ as an element of H1(M ; ΘF), we define a Čech-de Rham (1, 2)-
cochain L(µ) by setting L(µ)ij = 〈Λij|σj〉.

A generalization of the Maszczyk formula [19] for arbitrary transversally
holomorphic foliations now follows from Proposition 4.7 and Lemma 4.8.

Theorem 4.10. If µ ∈ H1(M ;−KF), then DµBq(F) is represented by the
Čech-de Rham (q, q + 1)-cocycle, whose value on Ui0···iq is given by

(q + 1)

(2π
√−1)q+1(q − 1)!

∑

τ∈Sq+1

(sgn τ)((d log J)q−1 ∪ L(µ))iτ(0)···iτ(q)
.

If q = 1, then the infinitesimal derivative of the Bott class is represented by
the Čech-de Rham (1, 2)-cocycle

1

4π2

(
γ′′′

γ′
− 3

2

(
γ′′

γ′

2))
dz ∧ σ,

where σ is a representative of µ.

Note that 〈L(F)|µ〉 is well-defined for any µ ∈ H1(M ;−KF). Hence we can
extend Definitions 2.7 and 2.16 as follows.

Definition 4.11. Let µ ∈ H1(M ;−KF). The infinitesimal derivative of the
Bott class with respect to µ is defined to be 〈L(F)|µ〉.
Definition 4.12. The Bott class of a transversally holomorphic foliation F is
said to be infinitesimally rigid if 〈L(F)|µ〉 = 0 for any µ ∈ H1(M ; ΘF).

Definition 4.13. A transversally holomorphic foliation F is said to be transver-
sally complex projective on U if F admits a structure of a (PSL(q+1;C),CP q)-
foliation on U whose underlying transversal holomorphic structure coincides
with the original one. If U = M , then F is said to be transversally complex
projective. A transversal complex projective structure is also called a transver-
sal projective structure for short. If a transversal complex projective structure
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P is given on an open subset U , then a foliation atlas is said to be adapted to
P if the atlas gives the structure P on U .

By Lemma 4.8, L(F) is the obstruction for F to admit a transversal pro-
jective structure if q = 1. If q > 1, it remains true that L(F) vanishes if F
admits a transversal projective structure. However, it will be an obstruction
for existence of certain reduced structures because Λ is a kind of the curvature
tensor of the Schwarzian derivative Σ.

It is well-known that if a foliation admits a first-order transversal geometric
structure such as Hermitian metrics or complex affine structures, then the
imaginary part of the Bott class vanishes. There is an infinitesimal version of
this fact involving complex projective structures, which are of second order.

Theorem 4.14. The Bott class of transversally projective foliations is in-
finitesimally rigid.

Indeed, the Bott class is infinitesimally rigid if L(F) = 0. Note that there are
transversally projective foliations with non-trivial Bott classes (Example 7.2,
see also [5]). On the other hand, it is classical that the Bott class admits con-
tinuous deformations ([8], see also Example 7.1). Note also that the imaginary
part of Theorem 4.14 follows from [6].

Remark 4.15. There is an obvious analogue of above constructions for the
Godbillon-Vey class of real foliations, and the infinitesimal derivative of the
Godbillon-Vey class is represented in terms of the Schwarzians. The codimension-
one case is exactly the Maszczyk formula [19]. Theorem 4.14 for real foliations
and the Godbillon-Vey class is highly non-trivial, because it is well-known that
the Godbillon-Vey class admits continuous deformations (cf. [16]).

In contrast to real foliations, the Godbillon-Vey class of transversally holo-
morphic foliations is known to be infinitesimally rigid [5]. The proof of Theo-
rem 4.10 is independent of results in [5] and we have another proof the rigidity
as follows.

Corollary 4.16. The Godbillon-Vey class of transversally holomorphic folia-
tions is rigid under both actual and infinitesimal deformations, where infini-
tesimal deformations and actual deformations mean elements of H1(M ;−KF)
and smooth deformations as in Definition 1.9, respectively.

Proof. We give a proof of the rigidity under infinitesimal deformations, from
which the rigidity under actual deformations easily follows. Let c1(F) be
the first Chern class of Q(F) and GV2q(F) the Godbillon-Vey class of F .
It is known that GV2q(F) = c

√−1ξq(F)c1(F)q, where c is a non-zero real
constant [1, Theorem A]. We denote by DµGV2q(F) the infinitesimal derivative
of GV2q(F) with respect to µ (see [15]), where µ ∈ H1(M ;−KF). Since c1(F)
is rigid under deformations, we have DµGV2q(F) = c

√−1(Dµξq)c1(F)q =
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−c(DµBq(F)−DµBq(F))c1(F)q by Theorem 2.19. By Theorem 4.10, DµBq(F)
is represented by a Čech-de Rham (q, q + 1)-cocycle whose value on Ui0···iq
belongs to I(q)(Ui0···iq) (see Notation 1.3). On the other hand, it is well-known
that c1(F) is represented by an element of I(1)(M) (cf. [8]). It follows that
DµBq(F)c1(F)q is trivial as a cohomology class. Since c1(F) is a real class,

DµBq(F)c1(F)q is also trivial. �

5. Localization

Definition 5.1. Let U = {Ui}i∈I be an open covering of M and ω = {ωi0,··· ,ip}
a Čech-de Rham (r, s)-cochain. Set Iω = {i ∈ I ∃(i1, · · · , ir) ∈ Ir s.t. ωi,i1,··· ,ir 6= 0}
and define the support of ω by suppω =

⋃
i∈Iω

Ui. If suppω is relatively compact,

then ω is said to be of compact support.

Let ω be a globally defined differential form and denote by s(ω) the support
of ω in the usual sense. If V is an open set containing s(ω), then, taking
refinements of coverings, we may assume that s(ω) ⊂ suppω ⊂ V .

The localization of DµBq(F) is defined by means of Γ -vector fields. The
notion of Γ -vector fields and basic X-connections below are originally due to
Heitsch [16]. The following definitions are slight modifications of those in [16].

Definition 5.2 ([3]). A vector fieldX defined on an open setOX ofM is said to
be a Γ -vector field for F if [E,X] ⊂ E on OX . Set ZX = {X ∈ E}∪ (M \OX).
Then F and X form a transversally holomorphic foliation FX on the open set
M \ ZX . If X is a Γ -vector field on OX , then X induces a foliated section of
Q(F) on OX , which is denoted by XQ.

Note that ZX is saturated by leaves of F if OX is saturated. Given a Γ -
vector fieldX, we denote by UX an open neighborhood (which is not necessarily
saturated) of ZX and by VX an open neighborhood of M \UX . We will choose
UX arbitrarily small.

Definition 5.3. Let X be a Γ -vector field for F on OX , and let UX and VX
be as above. A Bott connection ∇X = {∇X

i } of −KF is said to be a basic
X-connection for F supported off VX if (∇X

i )Xs = LXs provided Ui ⊂ UX ,
where LX denotes the Lie derivative with respect to X.

Note that basic X-connections depend only on XQ.
One can always obtain a globally well-defined basic X-connection from a

family of local basic-X connections by using a partition of unity. Thus obtained
connection is a basic X-connection for F supported off VX in the sense of
Heitsch. Once an isomorphism Q(F) ∼= CXQ ⊕ Q(FX) is fixed, a basic X-
connection induces a Bott connection for FX on VX .

Let W be an open subset of M . We denote by H1
c (W ; ΘF |W ) the coho-

mology of elements of Iq(q−1,q)(W ;−KF) with compact support. Elements of
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H1
c (W ; ΘF |W ) can be regarded as infinitesimal deformations of F whose sup-

port is compact and is contained in W .

Definition 5.4. Let X be a Γ -vector field for F on OX , and let UX and VX
be as above. Let W be an open subset of M and µ ∈ H1

c (W ; ΘF |W ). Then,
denote by resDµBq(F , X) an element of H2q+1

c (UX ∩ W ;C) represented by
DσBq(∇X , (∇X)′), where ∇X is a basic X-connection supported off VX , and
(∇X)′ is the infinitesimal derivative of ∇X with respect to σ.

It is clear that resDµBq(F , X) depends on XQ but not on X itself, so that
the residue is also denoted by resDµBq(F , XQ).

Theorem 5.5. resDµBq(F , X) is well-defined. Let ι : UX ∩W → M be the
inclusion and ι∗ : H2q+1

c (UX ∩ W ;C) → H2q+1(M ;C) the natural mapping.
Then ι∗ resDµBq(F , X) = DµBq(F). Moreover, if ZX is decomposed into
connected components Z1, · · · , Zr, then the residue is naturally decomposed
into elements of H2q+1(Ui∩W ;C) as well, where Ui, i = 1, . . . , r, are mutually
disjoint open neighborhoods of Zi.

Proof. By the assumption, µ is represented by a cocycle compactly supported
in W . It follows from (2.11.a) and (2.11.b) that the support of the infinitesimal
derivative of any Bott connection is compact and contained in W when taken
the wedge product with elements of I(q)(M). On the other hand, if basic-
X connections are used in calculation, cochains such as (dθ + β)q vanish on
VX thanks to the Bott vanishing for FX . It follows that the supports of the
coboundaries constructed in Claims 3 and 4 in the proof of Theorem 2.14 are
compact and contained in UX ∩W . The last claim also follows from similar
arguments. �

Let X0 be a Γ -vector field for F0 on OX0 , and let UX0 and VX0 be as above.
If there is a trivialization eVX0

of −KF |VX0
, then the residue of the Bott class is

defined as an element of H2q+1
c (UX0 ;C/Z) [3]. When residues are considered,

a version of Theorem 2.18 holds under some additional conditions.

Theorem 5.6. Let {(Fs, Xs, es)} be a smooth family of triples with the fol-
lowing properties :

1) {Fs} is a smooth family of transversally holomorphic foliations.
2) {Xs} is a smooth family such that each Xs is a Γ -vector field for Fs

and that ZXs is independent of s. We denote ZXs by ZX .
3) There are open neighborhoods UX of ZX and VX of M \ UX such that
{es} restricted to VX is a smooth family of trivializations of −KFs|VX .

Assume that e0 is foliated and that LXe0 = 0, where LX denotes the Lie deriv-
ative with respect to X. Let µ ∈ H1(M ;−KF) be the infinitesimal deformation

induced by {Fs}, then resDµBq(F , X) =
∂

∂s
resBq(Fs, Xs, es)

∣∣∣∣
s=0

.
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Proof. Under the assumptions, we can repeat the proof of Theorem 2.18 in a
compactly supported manner. Indeed, since there is a trivialization of −KF
on VX , the cocycle Θ in Proposition 1.10 is zero on VX . Moreover, since e0

is foliated with respect to FX , the cochains u1 and v1 belong to I(1)(FX).
Hence the cochains ρk are equal to zero on VX . Therefore, the equality in the
statement holds in H2q+1

c (M ;C). �

Remark 5.7. It is natural to choose XQ as e0 if q = 1. Theorem 5.6 fails
if the assumption on e0 is dropped as shown in Example 7.3, although the
left hand side is independent of e0. The assumption is needed in order that
Proposition 1.10 works in a compactly supported manner.

Localization using L is given as follows. Let H1
c(W ; ΘF |W ) be the cohomol-

ogy of K∗ (Definition 2.9) with compact support.

Theorem 5.8. Let F be a transversally holomorphic foliation of M . Suppose
that F admits on an open set V of M , possibly V = ∅, a transversal complex
projective structure P. Let U be an open neighborhood of M \ V . Finally, let
µ ∈ H1

c(W ; ΘF |W ), where W is an open subset of M , and let σ be a represen-
tative of µ. Then 〈L | σ〉 represents an element of H2q+1

c (U ∩W ;C), which is
independent of the choice of representatives, where the foliation atlas is always
chosen to be adapted to P on V .

Proof. By the choice of the foliation atlas, the support of L is contained in
U . Hence the support of 〈L | σ〉 is contained in U ∩W . If we choose another
foliation atlas adapted to P and obtain L′, then L and L′ are cohomologous
as cocycles supported on U . It is not difficult to show that 〈L | σ〉 and 〈L | σ′〉
represent the same cohomology class if σ and σ′ are representatives of µ. �

Definition 5.9. An element of H2q+1
c (U ∩W ;C) obtained in Theorem 5.8 is

denoted by res〈L(F ,P)|µ〉.
Proposition 5.10. Let W be an open subset of M and let µ ∈ H1

c (W ;−KF |W ).
Then resDµBq(F , X) = res〈L(F ,P) |µ〉 ∈ H2q+1

c (W ;C) holds for any Γ -
vector field X and any transversal projective structure P.

This follows from the fact that the support of the coboundaries constructed
in Proposition 4.7 are compact.

6. Relation to the Fatou-Julia decomposition

If the complex codimension is equal to one, the localization in terms of the
(classical) Schwarzian L(F) and the Fatou-Julia decomposition in the sense
of Ghys, Gomez-Mont and Saludes [13] are related as follows. Let BF be
the sheaf of germs of locally L∞-foliated sections of Q(F)∗ ⊗ Q(F), where
Q(F) denotes the complex conjugate of Q(F). Then H0(M ;BF) is the space
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of locally L∞-foliated sections of Q(F)∗ ⊗ Q(F). The space H0(M ;BF) is a
Banach space with the essential supremum norm, and there is a natural map-
ping δ : H0(M ;BF) → H1(M ; ΘF). The image of δ consists of infinitesimal
deformations preserving FR, where FR denotes the underlying real foliation.

Lemma 6.1. Let M be a closed manifold and let σ ∈ H0(M ;BF). Set
µ = δ(σ), then 〈L | σ〉 is well-defined as an integrable 3-form. It is equal
to 〈L(F)|µ〉 as an element of HomC(HdimM−3(M ;C),C) ∼= H3(M ;C).

Proof. After extending σ as a section of E∗⊗Q(F) by requiring σ|TF = 0, we
approximate it by differential forms of class C∞. The lemma follows by the
Lebesgue convergence theorem. �

More detailed information on H0(M ;BF) was obtained in [13]. Let F be the
Fatou set and J the Julia set. The Julia set is measurably decomposed into
the recurrent component J0 and the ergodic components J1, · · · , Jr. There

is a corresponding decomposition H0(M ;BF) =
r⊕

k=0

H0(Jk;BF) ⊕ H0(F ;BF).

It is almost by definition that the mapping δ restricted to
r⊕

k=1

H0(Jk;BF) is

injective [13, p. 307]. Moreover, δ|J0 is equal to zero and the image of δ|Jk
is one-dimensional for k 6= 0. Recalling that H0(M ;BF) is a Banach space,
choose a basis σk of unit length of H0(Jk;BF) for each k > 0. By choosing a
section, we fix an isomorphism ϕ : H1(M ; ΘF) ∼= H0(J ;BF)⊕HI ⊕HO, where
H0(J ;BF) ⊕ HI = Image δ and HO

∼= coker δ. Elements of HI correspond
to infinitesimal deformations preserving FR, which cannot be induced by in-
finitesimal deformations supported on J , and elements of HO correspond to
infinitesimal deformations which do not preserve FR.

We normalize the volume of M to be 1 and denote by |Jk| the volume of Jk.
Note that |Jk| > 0 for k > 0. We propose the following

Definition 6.2. The infinitesimal derivative of the Bott class with respect to
the ergodic component Jk, k > 0, is the element of H3(M ;C) determined by
|Jk| 〈L | σk〉 and denoted by ∂JkB1(F).

It is easy to see that ∂JkB1(F) is independent of the choice of σk.

Proposition 6.3. Let µ ∈ H1(M ; ΘF) and let µ = µJ +µI +µO be the decom-

position given by the isomorphism ϕ. Decompose further µJ as
r∑

k=1

ak(|Jk|σk).

Then there is a decomposition of 〈L(F)|µ〉 in H3(M ;C) as

〈L(F)|µ〉 =
r∑

k=1

ak∂JkB1(F) + 〈L(F)|µI〉+ 〈L(F)|µO〉.

It follows from the classification of the Fatou components [13] that each
Fatou component admits transversal projective structures.
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Definition 6.4. Let U be a neighborhood of the Julia set J . Fix a transversal
projective structure P on the Fatou sets. Given µ ∈ H1(M ; ΘF) and a smooth
representative σ of µ, we denote by res〈L(F ,P)|µ〉 an element of H3

c (U ;C)
represented by 〈L | σ〉.

The class res〈L(F ,P)|µ〉 is independent of the choice of a foliation atlas
adapted to P as well as the representative σ. If J can be decomposed into
connected components, then the residue admits a natural decomposition.

Remark 6.5. The Julia set affects 〈L(F)|µI〉 so that it need not vanish. In

addition, the image of res〈L(F ,P)|µ〉 in H3(M ;C) and
r∑

k=1

ak∂JkB1(F) are

distinct in general. See Example 7.1.

Let X be a Γ -vector field on OX . If {Oi} is a foliation atlas for OX , then
there are projections πi : Oi → C which give the transversal holomorphic
structure. The (1, 0)-part Xi of πi∗X|Oi is well-defined and holomorphic, since
X is a Γ -vector field. By integrating 2 ReXi, we can find a refinement {Vi} of
{Oi} such that the transversal direction of transition functions is the restriction

of translations in C and that Xi =
∂

∂zi
on Vi, where zi denotes the transversal

coordinates on Vi. Hence a projective structure is determined, and is denoted
by PX . It is clear that PX depends only on XQ. Note that the flat connection
with respect to the local trivializations {Xi} of Q(F) is a unique basic X-
connection.

Definition 6.6. The transversal projective structure PX as above is called
the transversal projective structure associated with X.

There are foliated trivializations of Q(F) on the most of the Fatou com-
ponents. Indeed, wandering Fatou components are locally trivial fibrations
over finite Riemann surfaces, and each restriction of F to semi-wandering and
dense components is a G-Lie foliation [13]. Let F ′ be the union of wandering
Fatou components of which the base spaces are closed surfaces of genus g 6= 1,
and let U be an arbitrarily small neighborhood of J ∪ F ′. There always exists
a foliated trivialization XQ of Q(F) on a neighborhood O of M \ U , and an
element resDµB1(F , XQ) of H3

c (U ;C).

Proposition 6.7. Let X be any lift of XQ to a Γ -vector field. Then resDµB1(F , X) =
res〈L(F ,PXQ)|µ〉 ∈ H3

c (UX ;C).

This corresponds to the following fact, where a version of residues res∗W B1(F , e)
is defined by using transversal invariant Hermitian metric and trivialization of
Q(F) ([3, Definition 5.1]).

Proposition 6.8 (cf. [3, Corollary 5.4]). Let F ′, W and X be as above. Then,
there is a well-defined element resB1(F , X, e) of H3

c (W ;C), where e = {ei} is
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a family of local trivializations of Q(F) such that ei = X if Ui ⊂M \ (J ∪F ′).
Moreover, resB1(F , X, e) = res∗W B1(F , e).

Proof. Since there is a foliated trivialization of Q(F)(= −KF) on F0 \ F ′, the
arguments in [3] remain valid even if F0 is replaced with F ′. �

7. Examples

Example 7.1. Let X = λ0z
0 ∂

∂z0
+ λ1z

1 ∂

∂z1
be a holomorphic vector field on

C2, where (z0, z1) are the natural coordinates. Assume that λ0λ1 6= 0 and that
λ = λ0/λ1 is not a negative real number. Then X induces a transversally holo-
morphic foliation Fλ of S3. The family {Fλ} is a smooth family of transversally
holomorphic foliations, and B1(Fλ) is the natural image of (λ+λ−1)[S3], where
[S3] is the generator ofH3(S3;Z) [8]. Let Y be the Γ -vector field for Fλ induced

by νz1 ∂

∂z1
. Then ZY consists of two circles C0 and C1. Let µ ∈ H1(M ;Fα)

be the infinitesimal deformation induced by the family {Fλ}. Let Ui be a
tubular neighborhood of Ci and identify H3

c (Ui;C) with H1(Ci;C) by integra-
tion along the fiber. The residue resDµB1(Fα, Y ) is naturally decomposed
into the sum of resCi DµB1(Fα, Y ) ∈ H1(Ci;C) for i = 0, 1. By Theorem 5.6,

resC0 DµB1(Fα, Y ) = [C0] and resC1 DµB1(Fα, Y ) = − 1

α2
[C1]. Let PY be

the projective structure on a neighborhood of S3 \ (U0 ∪ U1) associated with
Y . Then res〈L(Fα,PY )|µ〉 is the sum of resi〈L(Fα,PY )|µ〉 ∈ H1(Ci;C) for
i = 0, 1. We have resi〈L(Fα,PY )|µ〉 = resCi DµB1(Fα, Y ) by Proposition 6.7.

If α = 1, then F1 is the Hopf fibration and is transversally projective. Hence
L(F1) = 0 and B1(F1) is infinitesimally rigid. However, resi〈L(F1,PY )|µ〉 can
be non-trivial because PY might not be extended to the whole S3. On the other
hand, the Julia set is empty so that the localization given in Section 6 is trivial.
If α 6= 1, then L(Fα) is non-trivial. Indeed, B1(Fα) is not infinitesimally rigid
and Fα cannot admit any transversal projective structures. The Julia set is
equal to C0 ∪ C1 and is of Lebesgue measure zero so that ∂JB1(Fα) = 0. It
follows that 〈L(F)|µ′F 〉 + 〈L(F)|µO〉 6= 0. An example of non-trivial µO is
given in [4].

There are similar foliations on S2q+1 obtained from the vector field
q∑
i=0

λiz
i ∂

∂zi

on Cq+1. If the convex hull of λ0, · · · , λq does not contain the origin, a foliation
Fλ of S2q+1 is induced and

Bq(Fλ) =
(λ0 + · · ·+ λq)

q

λ0 · · ·λq [S2q+1].

It follows from Theorem 2.18 that the most of Fλ does not admit any transver-
sal projective structures.
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Example 7.2. Let H =

{
(aij)0≤i,j≤q

∣∣∣∣ ai0 = 0 if i > 0

}
be the subgroup of

G = SL(q + 1;C) and Γ a discrete subgroup of G such that M = Γ\G/U(q)
is a closed manifold, where U(q) is considered as a subgroup of SL(q + 1;C)
by the mapping A ∈ U(q) 7→ (detA)−1 ⊕ A ∈ SL(q + 1;C). The cosets
{gH}g∈G induce a transversally holomorphic foliation F of M . The Bott class
of F is non-trivial ([5]) and is infinitesimally rigid because F is transversally
projective.

Example 7.3 ([17]). Let Yλ =
q∑
j=1

λjz
j ∂

∂zj
be a holomorphic vector field

on Cq, and let Fλ be the foliation of S1 × Cq induced by the vector field
∂

∂t
+ Yλ, where S1 is identified with R/Z, and (z1, · · · , zq) and t denote the

standard coordinates of Cq and R, respectively. Suppose that δj, j = 1, · · · , q,
are non-zero complex numbers. Then Yδ is a Γ -vector field for any λ. Let

e =
∂

∂z1
∧ · · · ∧ ∂

∂zq
be a trivialization of −KFλ . Then

Bq(Fλ, Yδ, e) =
1

2π
√−1

(λ1 + · · ·+ λq)
(δ1 + · · ·+ δq)

q

δ1 · · · δq [S1],

where [S1] denotes the natural generator of H1(S1;Z). Hence the residue
DµBq(Fλ, Yδ) can vary if Γ -vector fields are deformed even if Fλ is fixed. On
the other hand, e is foliated with respect to FYδ if λ1+· · ·+λq = δ1+· · ·+δq = 0.
The derivative of Bq(Fλ, Yδ, e) is trivial in this case.
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