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Abstract. Infinitesimal bialgebras were introduced by Joni and Rota [JR]. The basic
theory of these objects was developed in [A1] and [A2]. In this paper we present a simple
proof of the existence of thecd-index of polytopes, based on the theory of infinitesimal
Hopf algebras.

For the purpose of this work, the main examples of infinitesimal Hopf algebras are
provided by the algebraP of all posets and the algebrak〈a,b〉 of noncommutative poly-
nomials. We show thatk〈a,b〉 satisfies the following universal property: given a graded
infinitesimal bialgebraA and a morphism of algebrasζA: A → k, there exists a unique
morphism of graded infinitesimal bialgebrasψ : A→ k〈a,b〉 such thatζ1,0ψ = ζA, where
ζ1,0 is evaluation at(1,0). When the universal property is applied to the algebra of posets
and the usual zeta functionζP (P) = 1, one obtains theab-index of posetsψ : P → k〈a,b〉.

The notion of antipode is used to define an analog of the M¨obius function of posets
for more general infinitesimal Hopf algebras thanP, and this in turn is used to define a
canonical infinitesimal Hopf subalgebra, called theeulerian subalgebra. All eulerian posets
belong to the eulerian subalgebra ofP. The eulerian subalgebra ofk〈a,b〉 is precisely the
algebra spanned byc= a+ b andd = ab+ ba. The existence of thecd-index of eulerian
posets is then an immediate consequence of the simple fact that eulerian subalgebras are
preserved under morphisms of infinitesimal Hopf algebras.

The theory also provides a version of the generalized Dehn–Sommerville equations for
more general infinitesimal Hopf algebras thank〈a,b〉.

1. Introduction

Let P be a convex polytope of affine dimension dimP = n + 1. For each subsetS of
{1, . . . ,n}, let fS(P) denote the number of chains of facesF1 ⊂ · · · ⊂ Fi of P such
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that{dim F1, . . . ,dim Fi } = S. The flag vector ofP is the 2n-dimensional vector with
coordinatesfS(P) indexed by the subsets of{1, . . . ,n}.

An important result of Bayer and Billera describes the linear relations that hold
among the flag vectors of all convex polytopes [BB, Theorem 2.1]. These are known as
thegeneralized Dehn–Sommerville equations. There is one such relation associated to
every subsetS of {1, . . . ,n} and a maximal interval [a,b] of {1, . . . ,n}\S, as follows:

(−1)a−1 fS +
b∑

i=a

(−1)i fS∪{i } + (−1)b+1 fS = 0.

These generalize Euler’s relation among the number of faces of a convex polytope,
which is the relation that corresponds toS = ∅ (anda = 1, b = n).

The poset of faces of a convex polytope is an example of an eulerian poset (see
Section 6). Bayer and Billera showed that these relations hold among the flag vectors of
all eulerian posets.

Later, Bayer, Klapper and Fine noted that one could encode the existence of these
relations by means of what appears to be a simple change of notation. First, one rewrites
the flag vector as a homogeneous polynomial of two noncommuting variablesa and
b, whose coefficients are the entries of the vector. This defines, for every graded poset
P, a polynomial ina andb called itsab-index . It turns out that the flag vector ofP
satisfies the generalized Dehn–Sommerville equations if and only if itsab-index can be
expressed as polynomial in the variablesc = a+ b andd = ab+ ba [BK, Theorem
4]. This new polynomial is called thecd-index . By the result of Bayer and Billera, it is
defined for all eulerian posets.

More recent work of Ehrenborg and Readdy suggested that there might be more than
meets the eye to encoding the flag vector as a polynomial. They showed that one can define
two natural infinitesimal bialgebra structures (see Section 2), one consisting of posets,
the other of polynomials; one may view theab-index as a mapψ from the former to the
latter, and it turns out that these structures are preserved underψ [ER, Proposition 3.1].

In this work we make full use of this algebraic structure in order to produce a new
proof of the existence of thecd-index of eulerian posets. The crucial algebraic notion
that must be considered to obtain the existence of thecd-index is the notion of an-
tipodes for infinitesimal bialgebras. This was defined and studied in [A1]. It allows
us to define analogs of the M¨obius function and eulerian posets for other infinitesimal
bialgebras than that of posets. The analog of eulerian posets for the infinitesimal bial-
gebra of polynomials is precisely the polynomials onc and d. The existence of the
cd-index is then obtained from the simple fact that eulerian subalgebras are preserved
under morphisms of infinitesimal bialgebras, applied to theab-index . This is done in
Section 6.

Each eulerian subalgebra is defined by a canonical set of equations, which may be
regarded as a version of the generalized Dehn–Sommerville equations forarbitrary
infinitesimal Hopf algebras. For the algebra of polynomials, these equations are not
exactly the same as the equations of Bayer and Billera, although they have the same
solutions. We present these equations in Section 7.

In Sections 4 and 5 we find that theab-index can be defined by means of a very
simple universal property satisfied by the infinitesimal Hopf algebra of polynomials. We
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also show that other variants of theab-index can be obtained similarly from the same
universal property. Thus, we find that the notion of infinitesimal Hopf algebra provides
a solid conceptual base for the theory of theab-index .

Alternative approaches to flag vectors, theab-index andcd-index can be found in the
recent works [BL], [BMSV] and [E3].

I would like to express my gratitude to Richard Ehrenborg for introducing me to his
work on these topics.

Notation. k denotes a fixed field, often omitted from the notation. Sum symbols are
omitted from Sweedler’s notation: we write1(a) = a1

⊗
a2 when1 is a coassociative

comultiplication.

2. Infinitesimal Hopf Algebras. Examples

Definition 2.1. An infinitesimal bialgebra (abbreviatedε-bialgebra) is a triple(A,
m,1) where

(A,m) is an associative algebra (possibly without unit),

(A,1) is a coassociative coalgebra (possibly without counit)

and, for eacha,b ∈ A,

1(ab) = ab1
⊗

b2+ a1
⊗

a2b. (2.1)

In other words, the comultiplication1: A→ A
⊗

A is required to be a derivation of
the algebraA with values on theA-bimoduleA

⊗
A, or, equivalently, the multiplication

m: A
⊗

A→ A is required to be a coderivation of the coalgebraA.
Infinitesimal bialgebras were introduced by Joni and Rota [JR, Section XII]. Ehren-

borg and Readdy have called themnewtonian coalgebras[ER]. Infinitesimal Hopf alge-
bras were introduced in [A1].

Definition 2.2. An infinitesimal bialgebraA is called an infinitesimal Hopf algebra
(abbreviatedε-Hopf algebra) if there is a mapS: A→ A with the property that

S(a1)a2+ S(a)+ a = 0= a1S(a2)+ a+ S(a), ∀a ∈ A. (2.2)

In this case, the mapS is unique. It is called the antipode ofA. Among other properties,
it satisfies

S(1) = −1 (if there is a unit element), (2.3)

S(ab) = −S(a)S(b), (2.4)

S(a1)
⊗

S(a2) = −S(a)1
⊗

S(a)2. (2.5)

These assertions are proven in Section 3 of [A1].
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Example 2.3. (1) Let Q be an arbitrary quiver (oriented graph). Then thepath algebra
kQ carries a canonicalε-bialgebra structure. Recall thatkQ= ⊕∞n=0 kQn whereQn is
the set of pathsγ in Q of lengthn:

γ : e0
a1→ e1

a2→ e2
a3→ · · ·en−1

an→ en.

In particular,Q0 is the set of vertices andQ1 is the set of arrows. The multiplication
is concatenation of paths whenever possible; otherwise is zero. The comultiplication is
defined on a pathγ = a1a2 · · ·an as above by

1(γ ) = e0
⊗

a2a3 · · ·an + a1
⊗

a3 · · ·an + · · · + a1 · · ·an−1
⊗

en.

In particular,1(e) = 0 for every vertexe ∈ Q0 and1(a) = s(a)
⊗

t (a) for every
arrowa ∈ Q1.

The path algebrakQ is anε-Hopf algebra. The antipode is uniquely determined, in
view of 2.4, by

S(e) = −e, ∀e∈ Q0, and

S(a) =
{

e− a if s(a) = t (a) = e,

−a if s(a) 6= t (a),
∀a ∈ Q1.

The pathε-Hopf algebra corresponding to the quiver

1

x

��

is the polynomial algebrak[x]. Under the standard identificationk[x]
⊗

k[x] ∼= k[x, y],
the comultiplication is thedivided difference operator

1( f (x)) = f (x)− f (y)
x− y

.

This was the original example ofε-bialgebra in [JR]. The antipode is

S( f (x)) = − f (x− 1).

Of particular relevance to our study of thecd-index is theε-Hopf algebra of noncom-
mutative polynomialsk〈a,b〉. This is theε-Hopf algebra corresponding to the quiver

1a
$$

b
zz

.

The comultiplication is the unique derivation such that

1(a) = 1(b) = 1
⊗

1.

The antipode is given on any noncommutative polynomialp(a,b) by

S(p(a,b)) = −p(a− 1,b− 1).
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(2) The algebraP of posets is defined as follows. As a vector space,P has a basis
consisting of the isomorphism classes of all finitegradedposetsP. We say that a finite
posetP is graded if it possesses a top element 1P and a bottom element 0P, with 0P 6= 1P,
and all maximal chains inP have the same length.1 This common length is called the
rank of the poset.

The product of two such posetsP andQ is the poset

PQ= (P − {1P}) ∪ (Q− {0Q}),
(disjoint union), where

x ≤ y iff


x, y ∈ P and x ≤ y in P,

x, y ∈ Q and x ≤ y in Q, or

x ∈ P and y ∈ Q.

This algebra possesses a unit element, namely the posetB1 = {0< 1}. Moreover,P
is anε-bialgebra with comultiplication

1(P) =
∑

0P<x<1P

[0P, x]
⊗

[x,1P].

Here, and in everything that follows, ifx andy are two elements of a posetP, then [x, y]
denotes the poset{z ∈ P / x ≤ z≤ y}.

This ε-bialgebra was first considered by Ehrenborg and Hetyei [EH], and further
studied by Billera, Ehrenborg and Readdy in connection with thecd-index of polytopes
[ER], [BE]. This study is deepened in this work. In Section 3 we show thatP is an
ε-Hopf algebra with antipode

S(P) =
∑

c

(−1)`(c)Pc; (2.6)

where the sum is over all chainsc = {0P = x0 < x1 < · · · < xk−1 < xk = 1P},
`(c) = k is the length of the chain andPc is the following subposet ofP:

Pc = {x ∈ P / xi−1 < x < xi for somei = 1, . . . , k} ∪ {0P,1P}.
We also relate the antipode ofP to the Möbius function of posets. In Section 6 we obtain
the existence of thecd-index from further exploitation of theε-Hopf algebra structure
of P.

Remark. There is a way of constructing anordinaryHopf algebraH from isomorphism
classes of posets, similar to the construction of theε-bialgebraP above, that appears
in several places in the literature [AF], [E1], [S1]; see also [BS]. As a coalgebra,H is
obtained fromP by formally adjoining a counit; however, the algebra structures ofH
andP are of a fairly different nature: while the product ofH is the cartesian product of

1 The assumption that the posets be graded is not necessary for obtaining anε-Hopf algebra, but it is
required for the definition of theab-index .
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posets, that ofP is (essentially) the ordinal sum. Theε-bialgebra structure ofP is suitable
for the algebraic construction of theab-index andcd-index of posets that we propose
in this work. An approach to theab-index andcd-index via ordinary Hopf algebras is
presented in [BMSV].

(3) The algebraS of sets is defined as follows. As a vector space,S = ⊕∞
n=0Sn,

where the vector spaceSn has a basis consisting of all subsets of{1,2, . . . ,n}. The
product of two setsS ∈ Sn andT ∈ Sm is the set

ST = S ∪ (n+ T) ∈ Sn+m.

In other words, the elements ofT are all shifted byn in order to make the resulting union
disjoint.

In order to describe the comultiplication, we introduce the following notation. For
S ⊆ {1,2, . . . ,n} and 0≤ i < j ≤ n+ 1, let

S(i, j ) = S ∩ {i + 1, i + 2, . . . , j − 1} − i ⊆ {1,2, . . . , j − i − 1}.
In other words,S(i, j ) consists of those elements ofS that lie strictly betweeni and j , but
shifted by−i in order to make the resulting intersection a subset of{1,2, . . . , j − i −1}.
The comultiplication on a basis elementS ∈ Sn is

1(S) =
∑
i∈S

S(0, i )
⊗

S(i,n+ 1) ∈
n∑

i=1

Si−1
⊗Sn−i .

In order to distinguish between elements of differentSn’s we sometimes useSn to denote
the element ofSn corresponding to a subsetS ⊆ {1,2, . . . ,n}. For instance, for eachn
there is a different element∅n ∈ Sn, corresponding to the empty subset of{1,2, . . . ,n}.
Some values of the comultiplication are

1(∅n) = 0, ∀n ≥ 0, and 1({2,3}3) = ∅1
⊗ {1}1+ {2}2⊗∅0.

S is anε-Hopf algebra. The antipode is explicitly given onS ∈ Sn by

S(S) = −
∑
T⊆S

(−1)#TS\\T,

whereS\\T is a shifted version of the usual set differenceS\T. In order to describe this
construction, definef : N→ N by f (i ) = #({1,2, . . . , i } ∩ T). Then

S\\T = {i − f (i ) / i ∈ S\T} ∈ Sn−#T.

For instance, ifS = {1,3,4,7,8,10} andT = {3,4,8}, thenS\\T = {1−0,7−2,10−
3} = {1,5,7}.

Theε-Hopf algebraS is studied in detail in Section 4.
(4) The free algebraA = k〈x1, x2, x3, . . .〉 is anε-Hopf algebra with comultiplication

1(xn) =
n−1∑
i=0

xi
⊗

xn−1−i = 1
⊗

xn−1+ x1
⊗

xn−2+ · · · + xn−1
⊗

1
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and antipode

S(xn) =
n+1∑
k=1

(−1)k
∑

n1+···+nk=n+1
ni >0

xn1−1xn2−1 · · · xnk−1

(we setx0 = 1).1 andSare then uniquely determined by (2.1) and (2.4), and the axioms
are satisfied.

More examples ofε-bialgebras appear in [A1] and [A2]. We close this section by stating
some general properties ofε-bialgebras. Proofs and more results can be found in [A1].

If an ε-bialgebra has a unit 1∈ A, then1(1) = 0. If an ε-bialgebra has both a unit
1 ∈ A and a counitε ∈ A∗, thenA = 0.

If C is a coalgebra andA is an algebra, then the setHomk(C, A) is a monoid under
thecircular convolution product:

f ~ g = f ∗ g+ f + g or ( f ~ g)(c) = f (c1)g(c2)+ f (c)+ g(c).

The unit element of this monoid is the zero map. The antipode of anε-Hopf algebraA
is, by definition, the inverse of the identityid: A→ A in Homk(A, A).

A morphism ofε-bialgebras is a linear mapψ : A→ B that is both a morphism of
algebras and coalgebras:

mB(ψ
⊗
ψ) = ψmA and (ψ

⊗
ψ)1A = 1Bψ.

If A andB areε-Hopf algebras andψ : A→ B a morphism ofε-bialgebras, thenψ
automatically preserves the antipodes:ψSA = SBψ .

Let A be anε-Hopf algebra and letB be an algebra. Iff : A → B is a morphism
of algebras, thenf is invertible inHomk(A, B) with respect to circular convolution, its
inverse isf SA. In addition,− f SA: A→ B is a morphism of algebras, by (2.4).

An ε-bialgebra(A,m,1) is calledgradedif there is a sequenceAn of subspaces such
that

A =
∞⊕

n=0
An, m(Ai

⊗
Aj ) ⊆ Ai+ j and 1(An) ⊆

⊕
i+ j=n−1

Ai
⊗

Aj . (2.7)

Note that it is required that1 lowers degrees by 1. In this case,A is anε-Hopf algebra
with antipode

S=
∞∑

n=1

(−1)nm(n−1)1(n−1) , i.e. S(a) =
∞∑

n=1

(−1)na1a2 · · ·an, (2.8)

where1(n−1)(a) = a1
⊗

a2
⊗ · · ·⊗an denotes the comultiplication iteratedn − 1

times. This result guarantees the existence of the antipode for theε-bialgebras of Exam-
ples 2.3(1)–(4), since they are graded.

3. Theε-Hopf Algebra of Posets

In this section we use the general properties ofε-bialgebras summarized above to relate
the antipode of theε-Hopf algebraP to the classical M¨obius function of posets.
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First, note thatP is graded in the sense of (2.7), by choosing forPn the subspace
spanned by all posets of rankn + 1, i.e. those posetsP for which there is a maximal
chain of the form 0P < x1 < · · · < xn < 1P.

Let P ∈ P be a poset. We have1(P) =∑0P<x<1P
[0P, x]

⊗
[x,1P]. Hence

1(n−1)(P) =
∑

0P<x1<···<xn−1<1P

[0P, x1]
⊗

[x1, x2]
⊗ · · ·⊗ [xn−1,1P];

and, according to (2.8),

S(P) =
∞∑

n=1

(−1)n
∑

0P<x1<···<xn−1<1P

[0P, x1][x1, x2] · · · [xn−1,1P]. (3.1)

By rewriting this formula in terms of chains we obtain (2.6).
Consider the linear functionalsζ : P → k andµ: P → k defined by

ζ(P) = 1, ∀ posetP ∈ P and µ = ζS.

Note thatζ is a morphism of algebras. As recalled at the end of Section 2, it follows that
ζ is circular invertible with inverseµ, and that−µ is a morphism of algebras. Explicitly,
the first fact says

0= µ~ ζ = µ ∗ ζ + µ+ ζ.
Evaluating at a posetP ∈ P we find

0=
∑

0P<x<1P

µ[0P, x]ζ [x,1P] + µ(P)+ ζ(P)

⇒ µ[0P,1P] = −1−
∑

0P<x<1P

µ[0P, x].

This shows thatµ is the usualMöbius functionof posets (since this is its defining
recursion).

Applying ζ to both sides of 3.1 we find

µ(P) =
∞∑

n=1

(−1)n#{0P < x1 < · · · < xn−1 < 1P};

the well-known formula of P. Hall giving the M¨obius function in terms of numbers of
chains.

The fact that−µ is a morphism of algebras gives us

µ(PQ) = −µ(P)µ(Q),
another well-known property of the M¨obius function and the product of posets under
consideration.

As an illustration of the structure ofP, we close this section by explicitly describing
a particularε-Hopf subalgebra. The subspace ofP spanned by all boolean posetsBn

(the poset of subsets of{1,2, . . . ,n}) is clearly a subcoalgebra ofP. It follows that the
subalgebraB of P generated by all boolean posets is anε-Hopf subalgebra. Moreover,
it is easy to see thatB is isomorphic to theε-Hopf algebra of polynomials of Example
2.3(4), via(xn 7→ 1/(n+1)!)Bn+1.P itself is also a free algebra, but this is not important
for us.
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4. The Universal Property of theε-Hopf Algebra of Sets

The algebra of sets (Example 2.3(3)) comes equipped with a morphism of algebras
ζS : S → k defined onS ∈ Sn by

ζS(S) =
{

1 if S = ∅n ∈ Sn,

0 if S 6= ∅n.

In this work we say that a coalgebra(C,1) is gradedif C =⊕∞n=0 Cn with 1(Cn) ⊆∑
i+ j=n−1 Ci

⊗
Cj . This agrees with the terminology introduced before (2.7) forε-

bialgebras.
The pair(S, ζS) satisfies the following universal property, which reveals its central

role in the theory.

Theorem 4.1. Let C be a graded coalgebra and letζC: C→ k be a linear functional.
Then there exists a unique morphism of graded coalgebrasψ : C→ S such that

C
ψ //

ζC ��???????? S

ζS���������

k

commutes.

Proof. We defineψ by an explicit formula. To state it, we introduce some notation.
First, for eachn ≥ 0, defineψn: C→ k by

ψn(c) =
{
ζC(c) if c ∈ Cn,

0 if not.

Second, forS = {s1 < s2 < · · · < si } ⊆ {1,2, . . . ,n}, let s0 = 0, si+1 = n+ 1 and

(d1,d2, . . . ,di+1) := (s1− s0, s2− s1, . . . , si+1− si )− (1,1, . . . ,1) ∈ Ni+1.

Finally, defineψS: C⊗(i+1)→ k byψS = ψd1

⊗
ψd2

⊗ · · ·⊗ψdi+1. Thenψ : C→ S
is defined onc ∈ Cn by

ψ(c) =
∑
S∈Sn

ψS1
(#S)(c) · S. (4.1)

We first check that the diagram commutes. Takec ∈ Cn. SinceζS annihilates all
nonempty subsets of{1, . . . ,n},

ζSψ(c) = ψ∅1(0)(c) = ψn(c) = ζC(c),

as needed.
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By definition,ψ is degree preserving. Thus, to show that it is a morphism of graded
coalgebras it only remains to verify that1ψ = (ψ⊗ψ)1. The proof is based on the
following facts:

(1) For anyn ≥ 0, there is a bijection{(S, k) / S ∈ Sn, k ∈ S} →∐n
k=1Sk−1×Sn−k,

given by

(S, k) 7→ (S(0, k),S(k,n+ 1)) ∈ Sk−1× Sn−k and

(R,T) ∈ Sk−1× Sn−k 7→ (R ∪ {k} ∪ (k+ T), k).

(2) ψR∪{k}∪(k+T) = ψR
⊗
ψT and1(#R+1+#T) = 1(#R)⊗1(#T) ·1.

(3) If S ∈ Sn, c ∈ Cm andn 6= m, thenψS1
(#S)(c) = 0.

Assertions (1) and (2) are straightforward. In order to verify (3), write1(#S)(c) =∑
c1
⊗

c2
⊗ · · ·⊗ ci+1. Then

ψS1
(#S)(c) =

∑
ψd1(c1)

⊗
ψd2(c2) · · ·ψdi+1(ci+1).

Suppose this sum is not zero. Then some term must be nonzero. Hence, for this term,
the degree of eachcj equalsdj = sj − sj−1 − 1 (otherwisecj would be annihilated by
ψdj ). Since1 is homogeneous, it follows that the total degree of1(#S)(c) is

i+1∑
j=1

(sj − sj−1− 1) = si+1− s0− (i + 1) = n+ 1− (i + 1) = n− i .

On the other hand, since1 decreases degrees by one, this total degree must also be
equal to the degree ofc minus #S, i.e. m− i . We conclude thatn = m. This proves
assertion (3).

The proof proceeds as follows. Takec ∈ Cn and write1(c) = ∑n
j=1 cj−1

⊗
c′n− j ,

with cj−1 ∈ Cj−1 andc′n− j ∈ Cn− j . We have

1ψ(c) =
∑
S∈Sn

∑
k∈S

ψS1
(#S)(c)S(0, k)

⊗
S(k,n+ 1)

(1)=
n∑

k=1

∑
R∈Sk−1
T∈Sn−k

ψR∪{k}∪(k+T)1
(#R+1+#T)(c) · R⊗T

(2)=
n∑

k=1

∑
R∈Sk−1
T∈Sn−k

n∑
j=1

ψR1
(#R)(cj−1)ψT1

(#T)(c′n− j ) · R
⊗

T

(3)=
n∑

k=1

( ∑
R∈Sk−1

ψR1
(#R)(ck−1)R

)⊗( ∑
T∈Sn−k

ψT1
(#T)(c′n−k)T

)

=
n∑

k=1

ψ(ck−1)
⊗
ψ(c′n−k) = (ψ

⊗
ψ)1(c)

as needed.
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It only remains to verify uniqueness. Letϕ: C→ S be another morphism of graded
coalgebras such thatζSϕ = ζC. We show by induction onn thatψ andϕ agree onCn.

For c ∈ C0, we must haveϕ(c) = λ∅0 for someλ ∈ k, sinceϕ is degree preserving.
Then

λ = ζSϕ(c) = ζC(c) = ψ0(c),

and thus

ϕ(c) = ψ0(c)∅0 = ψ(c).
Assume now thatψ andϕ agree onCi for everyi < n. Since1 decreases degrees, we
can assert that for anyc ∈ Cn,

1ϕ(c) = (ϕ⊗ϕ)1(c) = (ψ⊗ψ)1(c) = 1ψ(c).
In other words,ψ(c)−ϕ(c) ∈ Ker(1|Sn

). Now, from the definition of the comultiplication
of S it is clear thatKer(1|Sn

) is the one-dimensional space spanned by∅n. Therefore,

ψ(c)− ϕ(c) = λ∅n

for some new scalarλ ∈ k. Applying ζS we obtainλ = 0. Thusψ(c) = ϕ(c) for every
c ∈ Cn. The proof is complete.

The following are the first values ofψ , according to its explicit definition 4.2:

if c ∈ C0, ψ(c) = ψ0(c) · ∅0;
if c ∈ C1, ψ(c) = ψ1(c) · ∅1+ (ψ0

⊗
ψ0)1(c) · {1}1;

if c ∈ C2, ψ(c) = ψ2(c) · ∅2+ (ψ0
⊗
ψ1)1(c) · {1}2+ (ψ1

⊗
ψ0)1(c) · {2}2

+(ψ0
⊗
ψ0
⊗
ψ0)1

(2)(c) · {1,2}2.
The universal property of the algebra of sets admits a few variants, which are useful

for the study of thecd-index . The first of these involves comodules and coderivations.
Recall that, if(C,1) is a coalgebra, aC-bicomodule consists of a triple(M, s, t) where
M is a space ands: M → M

⊗
C andt : M → C

⊗
M are linear maps such that the

following diagrams commute:

M
s //

s

��

M
⊗

C

s⊗id

��
M
⊗

C
id⊗1

// M
⊗

C
⊗

C

M
t //

t

��

C
⊗

M

id⊗t

��
C
⊗

M
1⊗id

// C
⊗

C
⊗

M

M
t //

s

��

C
⊗

M

id⊗s

��
M
⊗

C
t⊗id

// C
⊗

M
⊗

C

For instance,(C,1,1) and(C
⊗

C, id
⊗
1,1

⊗
id) areC-bicomodules.

A coderivation is a mapδ: M → C such that

1δ = (δ⊗ id)s+ (id⊗ δ)t.

If C is graded, then we say thatM is a graded bicomodule if there is given a decompo-
sition M = ⊕∞n=0 Mn with s(Mn) ⊆

∑n
i=1 Mi−1

⊗
Cn−i andt (Mn) ⊆

∑n
i=1 Ci−1

⊗
Mn−i .
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Corollary 4.2. Let M be a gradedS-bicomodule and letζM : M → k be a linear
functional. Then there is a unique degree-preserving coderivationδ: M → S such that

M
δ //

ζM ��@@@@@@@@ S

ζS���������

k

commutes.

Proof. It is possible to give a direct proof, similar to the proof of Theorem 4.1. Alter-
natively, one may resort to the standard trick of viewing coderivations as morphisms of
coalgebras, and apply Theorem 4.1. We leave the details to the reader.

Corollary 4.3. Let A be a gradedε-bialgebra(in the sense of(2.7))and letζA: A→ k
be a morphism of algebras. Then there exists a unique morphism of gradedε-Hopf
algebrasψ : A→ S such that

A
ψ //

ζA ��>>>>>>> S

ζS���������

k

commutes.

Proof. According to Theorem 4.1, there is a unique morphism of graded coalgebras
ψ : A→ S such thatζSψ = ζA. We only have to show that, under the present hypothesis,
ψ is also a morphism of algebras, i.e. thatψmA = mS(ψ

⊗
ψ). (Recall that a morphism

of ε-bialgebras always preserves the antipodes.)
First, note that sinceζA andζS are morphisms of algebras, the following diagrams

commute:

A
⊗

A
mA //

ζA⊗ζA
""EEEEEEEEE A

ζA

��

ψ // S

ζS����������

k

A
⊗

A
ψ⊗ψ //

ζA⊗ζA
%%JJJJJJJJJJ
S⊗S
ζS
⊗

ζS

��

mS // S

ζS
||yyyyyyyyyy

k

We appeal to the uniqueness in Corollary 4.2. SinceA is a gradedε-bialgebra,mA

is a degree-preserving coderivation, and sinceψ is a morphism of graded coalgebras,
ψmA: A

⊗
A→ S is a degree-preserving coderivation. Similarly, sincemS is a degree-

preserving coderivation andψ
⊗
ψ is a degree-preserving morphism ofS-bicomodules,

mS(ψ
⊗
ψ) is a degree-preserving coderivation. Therefore, by uniqueness of degree-

preserving coderivations intoS (Corollary 4.2), the composites along the top of the
diagrams above must coincide. This is the desired conclusion.
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Remark. In the situation of Corollary 4.3, suppose thatA possesses a unit element
1 ∈ A0 and thatζA preserves units. Then

ψ(1) = ψ0(1)∅0 = ζA(1)∅0 = ∅0,

soψ preserves units as well.

Example 4.4. We apply the universal property of the algebra of sets to the algebra of
posets and the functionalζP : P → k defined in Section 3. SinceζP is a morphism of
algebras, Corollary 4.3 yields a unique morphism ofε-Hopf algebrasψ : P → S such
thatζSψ = ζP . It follows readily from (4.2) that this is none other than theab-index of
posets. We work out the details of this calculation in Section 5.2, after introducing the
necessary notation.

5. Applications of the Universal Property. The ab-Index of Posets

In this section we derive some important applications of the universal property, including
the construction of theab-index of posets as a morphism ofε-Hopf algebras and also
of several variants of it. In particular, we define a version of theab-index for weighted
posets, that generalizes not only the usualab-index but also several other versions in the
literature, as the relativeab-index of Stanley.

Only the results from Sections 5.1 and 5.2 are needed for the construction of the
cd-index in Section 6.

5.1. The Algebra of Noncommutative Polynomials

Consider theε-Hopf algebra of Example 2.3(1), i.e. the algebrak〈a,b〉 of noncommu-
tative polynomials with

1(a) = 1(b) = 1
⊗

1.

Corollary 5.1. There is an isomorphism of gradedε-Hopf algebrasS → k〈a,b〉 send-
ing S ∈ Sn to uS = u1u2 · · ·un, where

ui =
{

a− b if i /∈ S,

b if i ∈ S.

Proof. Define a morphism of algebrasζ1,0: k〈a,b〉 → k by

ζ1,0(p(a,b)) = p(1,0). (5.1)

By the universal property ofS (Corollary 4.3), there exists a unique morphism of graded
ε-Hopf algebrasψ : k〈a,b〉 → S such thatζSψ = ζ1,0. From the explicit formula (4.1)
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for ψ we see that

ψ(a) = ψ1(a) · ∅1+ (ψ0
⊗
ψ0)1(a) · {1}1

= ζ1,0(a) · ∅1+ ζ1,0(1)ζ1,0(1) · {1}1 = ∅1+ {1}1,
ψ(b) = ψ1(b) · ∅1+ (ψ0

⊗
ψ0)1(b) · {1}1

= ζ1,0(b) · ∅1+ ζ1,0(1)ζ1,0(1) · {1}1 = {1}1.

Hence,

ψ(ui ) =
{
∅1 if i /∈ S,

{1}1 if i ∈ S.

It follows immediately from the definition of multiplication inS that

ψ(uS) = ψ(u1)ψ(u2) · · ·ψ(un) = S, ∀S ∈ Sn.

In particular,ψ : k〈a,b〉n → Sn is surjective. Since dimk〈a,b〉n = 2n = dimSn, it
follows thatψ : k〈a,b〉 → S is an isomorphism.

Remark. It is easy to see that the universal property of the coalgebraS (Theorem 4.1)
may be equivalently expressed as follows:S is the cofree noncounital graded coalgebra
on countably many cogenerators{ζn}n≥0, one cogeneratorζn ∈ (Sn)

∗ of degreen for
eachn ≥ 0. Therefore, the graded dual of the coalgebraS is the free nonunital graded
algebra on countably many generators, one generator for each degreen ≥ 0. In view of
the preceding corollary, this result applies to the graded dual of the coalgebrak〈a,b〉. In
this form, this result was obtained before by Billera and Liu [BL, Proposition 5.2].

The corollary allows us to apply the universal properties of Section 4 to the algebra
k〈a,b〉, equipped with the functional defined by (5.2). This amounts to replacingS for
uS in (4.1). We do this in a number of situations next.

5.2. Theab-Index of Posets

We apply the universal property ofk〈a,b〉 to the algebra of posets and the functional
ζP : P → k defined, as in Section 3, byζP(P) = 1 for every posetP. SinceζP is a mor-
phism of algebras, Corollaries 4.3 and 5.1 yield a unique morphism ofε-Hopf algebras
ψ : P → k〈a,b〉 such that

P
ψ //

ζP   BBBBBBBB k〈a,b〉

ζ1,0
||yyyyyyyyy

k



Infinitesimal Hopf Algebras and the cd-Index of Polytopes 17

commutes. This is none other than theab-index of posets. To see this, we calculateψ(P)
using the explicit formula (4.1). First note that

ψn(P) =
{

1 if rank(P) = n+ 1,

0 if not.

Let S = {s1 < s2 < · · · < si } be a subset of{1,2, . . . ,n}, s0 = 0, si+1 = n + 1 and
dj = sj − sj−1− 1 for j = 1, . . . , i + 1. Then

ψS1
(i )(P) =

∑
0P=x0<x1<x2<···<xi<xi+1=1P

ψd1([0P, x1])ψd2([x1, x2]) · · ·ψdi+1([xi ,1])

= #{0P < x1 < x2 < · · · < xi < 1P / rank([xj−1, xj ]) = dj + 1,

∀ j = 1, . . . , i + 1}
= #{0P < x1 < x2 < · · · < xi < 1P / rank(xj ) = sj , ∀ j = 1, . . . , i }.

This number is usually called theflag numberof P corresponding to the set of ranksS,
and it is denotedfS(P). Thus, formula (4.1) gives

ψ(P) =
∑
S∈Sn

fS(P) · uS,

which is the usual definition of theab-index of posets, see [BK] or [S2].
The fact that this formula defines a morphism ofε-bialgebrasψ : P → k〈a,b〉 is

known, and due to Ehrenborg and Readdy [ER, Proposition 3.1]. The approach taken
in this work allows us to arrive at theab-index from minimal data: the zeta function of
posets.

5.3. Automorphisms of k〈a,b〉

For any (graded)ε-Hopf algebraA, the set of (graded) automorphismsα: A → A of
ε-Hopf algebras forms a group under composition, denotedAut(A).

When the elements of anε-Hopf algebraA consist of combinatorial objects, as in the
caseA = P above, one may view a morphism ofε-Hopf algebrasA→ k〈a,b〉 as the
association of a generating function (in two variables) to each combinatorial object of
A. Clearly, two such morphisms will keep track of the same combinatorial information
if they are related by an automorphism ofk〈a,b〉. For this reason, one would like a
description of the groupAut(k〈a,b〉). This can be easily obtained, thanks again to the
universal property ofk〈a,b〉.

Recall that the group of affine transformations of the line is

Aff(k) = ko k× = {(v, r )/v ∈ k, r ∈ k, r 6= 0}

with multiplication(v, r ) · (w, s) = (v + rw, rs) and unit(0,1). The groupAff(k) acts
on the linek by (v, r ) · x = v + r x .
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Claim. The group of automorphisms of the gradedε-Hopf algebra k〈a,b〉 is the group
of affine transformations of the line.

Proof. According to the universal property ofk〈a,b〉 (Corollary 4.3), an endomorphism
α: k〈a,b〉 → k〈a,b〉of gradedε-Hopf algebras is uniquely determined by the morphism
of algebrasζ1,0α: k〈a,b〉 → k. Sincek〈a,b〉 is free, such morphism is in turn uniquely
determined by the pair of scalars

q = ζ1,0α(a) and p = ζ1,0α(b).

Formula (4.1) gives

α(a) = qa+ (1− q)b and α(b) = pa+ (1− p)b.

Moreover, the universal property also guarantees thatα is invertible if and only if it is
invertible on the piece of degree 1, i.e. if and only ifq 6= p. Thus,

Aut(k〈a,b〉)→ Aff(k), α 7→ (p,q − p)

is a bijection. It is easy to see that this preserves the group structures.

The automorphism ofS corresponding to(v, r ) ∈ Aff(k) is given onS ∈ Sn by

α(S) = r n−#S
∑
T⊆S

v#S−#TT ∈ Sn,

as one readily sees by combining the previous result with Corollary 5.1.

5.4. Edge Labelled Posets

An edge labelledposet is a triple(P, λ, L)whereP andL are posets andλ: H(P)→ L
is an arbitrary assignment of an element ofL to each edge of the Hasse diagram ofP,

H(P) = {(x, y) ∈ P × P / x < y and there is noz such thatx < z< y}.
We assume thatP is a finite, graded poset (as before), whileL may be an arbitrary
poset. Two edge labelled posets(P, λ, L) and (Q, µ,M) are isomorphic if there are
isomorphisms of posetsP ∼= Q andL ∼= M preserving the labellingsλ andµ.

We define a new gradedε-Hopf algebraPE L, consisting of edge labelled posets. As
a vector space,PE L has a basis consisting of the isomorphism classes of edge labelled
posets(P, λ, L). The comultiplication is

1(P, λ, L) =
∑

0P<x<1P

([0P, x], λ|H([OP ,x]) , L)
⊗
([x,1P], λ|H([x,1P ]) , L).

To describe the multiplication, we first define a productL ∗ M of arbitrary posets as
follows. We adjoin a top element toL and a bottom element toM and form the cartesian
product of the resulting posets:

L∗M=(L∪{1L})×({0M}∪M), (l ,m)≤(l ′,m′) ⇐⇒ l ≤ l ′ and m≤ m′.
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Note that this is an associative operation. Now we define a multiplication inPE L by

(P, λ, L) · (Q, µ,M) = (P Q, ν, L ∗ M),

wherePQ is defined as before (Example 2.3(2)), andν: H(PQ)→ L ∗ M is

ν(x, y) =


(λ(x, y),0M) if (x, y) ∈ H(P),

(1L , µ(x, y)) if (x, y) ∈ H(Q),

(λ(x,1P), µ(0Q, y)) if (x,1P) ∈ H(P) and (0Q, y) ∈ H(Q).

By construction, the map(P, λ, L) 7→ P is a morphism of gradedε-Hopf algebras
PE L → P.

Given a chain 0P = x0 < x1 < · · · < xn < xn+1 = 1P in an edge labelled poset
(P, λ, L), aλ-descentof the chain is an indexi = 1, . . . ,n such that

λ(xi−1, xi ) 6≤ λ(xi , xi+1) in L .

A chain isλ-increasingif it has noλ-descents, i.e. ifλ(xi−1, xi ) ≤ λ(xi , xi+1), ∀i .
Consider the mapζE L: PE L → k defined by

ζE L(P, λ, L) = the number ofλ-increasing maximal chains inP.

It is easy to see thatζE L is a morphism of algebras. Therefore, by the universal prop-
erty of k〈a,b〉 (Corollary 4.3), there is a unique morphism of gradedε-Hopf algebras
ψE L: PE L → k〈a,b〉 such thatζ1,0ψE L = ζE L. Working out formula 4.2 as in Section
5.2, one readily finds thatψE L is given on a posetP of rankn+ 1 by

ψE L(P, λ, L) =
∑
S∈Sn

fS(P, λ, L) · uS,

where fS(P, λ, L) is the number of maximal chains inP whoseλ-descents are contained
in S. One may view the morphismψE L as a version of theab-index specific to edge
labelled posets. As in the case of the usualab-index , it is easy to see directly that this
formula indeed defines a morphism ofε-Hopf algebras.

Consider now those labelled posets(P, λ, L) for which every interval contains exactly
oneλ-increasing maximal chain. Such posets are calledR-labelled. Since this condition
refers toall intervals of the poset,R-labelled posets span a subcoalgebra ofPE L, that
we denote byPRL. Clearly,PRL is also anε-Hopf subalgebra ofPE L.

Now, by definition, if(P, λ, L) ∈ PRL, then

ζE L(P, λ, L) = 1= ζP(P).
It follows, by uniqueness in the universal property ofk〈a,b〉applied to theε-Hopf algebra
PRL, that for every(P, λ, L) ∈ PRL,

ψE L(P, λ, L) = ψ(P).
Thus, if(P, λ, L) is anR-labelled poset of rankn+ 1, then

fS(P, λ, L) = fS(P)

for anyS ⊆ {1, . . . ,n}. This equality has been noted by Bj¨orner [B, Theorem 2.7] (again,
it is very easy to give a direct proof).



20 M. Aguiar

Remark. An equivalent version of theab-index of edge labelled posetsψE L was
constructed by Bergeron and Sottile [BS], from the point of view of ordinary Hopf
algebras. In this reference, and often in the literature, the labellings take values on
totally ordered sets. In order to obtain anε-Hopf algebra, one has to allow poset-valued
labellings, as done above. We thank the referee for pointing this out to us.

5.5. Theab-Index of Weighted Posets

As a final application of the universal property, we construct a very natural version of
theab-index that generalizes at the same time the usualab-index of posets, theab-index
of edge labelled posets of Section 5.4 and also the relativeab-index of Stanley.

A weighton a posetP is an arbitrary scalar-valued mapw defined on the collection
of nonempty intervals ofP. Such a weight induces a weight on every interval ofP, by
restriction.

As before, we may construct anε-bialgebraPW consisting of pairs(P, w), of (iso-
morphism classes of finite, graded) weighted posets. Explicitly, the comultiplication is

1(P, w) =
∑

0P<x<1P

([0P, x], w|[OP ,x] )
⊗
([x,1P], w|[x,1P ] )

and the multiplication is

(P,u) · (Q, v) = (PQ, w),

wherePQ is defined as before (Example 2.3(2)) and

w([x, y]) =


u([x, y]) if 0P ≤ x < y < 1P,

v([x, y]) if 0Q < x < y ≤ 1P,

u([x,1P])v([0Q, y]) if x < 1P, 0Q < y.

Theε-bialgebraPW comes equipped with a canonical morphism of algebrasζW: PW →
k defined by

ζW(P, w) = w([0P,1P]).

Hence, the universal property ofk〈a,b〉 yields a unique morphism ofε-bialgebras
ψW: PW → k〈a,b〉 such thatζ1,0ψW = ζW. Formula (4.1) immediately gives, for
a graded posetP of rankn+ 1 with weightw,

ψW(P, w) =
∑
S∈Sn

fS(P, w) · uS,

where, forS = {s1 < s2 < · · · < si } ⊆ {1,2, . . . ,n},
fS(P, w) =

∑
0P=x0<x1<x2<···<xi <xi+1=1P

rank(xi )=si

w([0P, x1])w([x1, x2]) · · ·w([xi ,1]). (5.2)

We callψW theab-index of weighted posets. It generalizes several versions of theab-
index , as we now explain.



Infinitesimal Hopf Algebras and the cd-Index of Polytopes 21

First, any posetP carries the trivial weighte defined bye([x, y]) = 1 for anyx < y
in P. This defines a morphism ofε-bialgebrasP → PW, P 7→ (P,e), which preserves
the zeta functions, and hence also theab-indicesψ andψW, by uniqueness. In other
words, fS(P,e) = fS(P).

To relate theab-index of weighted posets to theab-index of edge labelled posets,
consider the map

PE L → PW, (P, λ, L) 7→ (P, wλ),

where

wλ([x, y]) = the number ofλ-increasing maximal chains in [x, y].

This is a morphism ofε-bialgebras which preserves the zeta functionsζE L andζW, and
hence also theab-indicesψE L andψW. We deduce (the simple fact) that the number of
descents and the number of weighted chains are related by

fS(P, λ, L) = fS(P, wλ), (5.3)

for any edge labelled poset(P, λ, L). If (P, λ, L) is R-labelled, thenwλ is the trivial
weight, and we recover the result of Bj¨orner mentioned at the end of Section 5.4.

Finally, we indicate how theab-index of weighted posets generalizes the relative
ab-index of Stanley. To every collectionX of nontrivial intervals ofP one may associate
a weightwX on P defined by

wX([x, y]) =
{

1 if [x, y] ∈ X,

0 if not.

Formula (5.2) becomes

fS(P, wX) = #{0P = x0 < x1 < · · · < xi < xi+1 = 1P / rank(xj ) = sj

and [xj−1, xj ] ∈ X, ∀ j }.

This is the relative flag vector of Section 1 of [S3].
Let (P, λ, L) be an edge labelled poset for which every interval possessesat most

oneλ-increasing maximal chain. One may call such posetsweakly R-labelled. In this
case, the weight associated to the labelling coincides with the weight associated to the
collectionXλ of intervals which possess aλ-increasing maximal chain. Therefore, (5.3)
becomes

fS(P, λ, L) = #{0P = x0 < x1 < · · · < xi < xi+1 = 1P / rank(xj ) = sj

and [xj−1, xj ] possesses aλ-increasing maximal
chain,∀ j }. (5.4)

This is Theorem 4.4.a in [S3].

Remark. Stanley defines the relative flag vector from the set0X consisting of those
chains 0P < x1 < · · · < xi < 1P for which some interval [xj−1, xj ] is not in X [S3, page
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5]. He assumes that the collectionX is closed under subintervals in order to guarantee that
0X is a subcomplex of the simplicial complex of all chains inP. For the same reason, he
makes an additional assumption on the edge labellings. These assumptions are not needed
for the construction of a well-behavedab-index , or to obtain (5.4), as we have seen.

6. Eulerian Subalgebras. The cd-Index of Eulerian Posets

In Section 5.2 we saw that to construct theab-index of posets one only needs to know
the zeta function of posetsζ : P → k. The universal property ofk〈a,b〉 took care of the
rest. Notice that this property only involves theε-bialgebra structure ofP.

Similarly, to construct thecd-index of eulerian posets, all one needs is knowledge
of the Möbius function of posets,µ: P → k. As we saw in Section 3, the M¨obius
function is closely related to the antipode of theε-Hopf algebraP. It is the general
notion of antipode that allows us to define a notion of “M¨obius function” for arbitrary
ε-Hopf algebrasA equipped with a morphism of algebrasζ : A→ k.

Definition 6.1. Let A be anε-Hopf algebra, with antipodeS, and letζ : A→ k be a
morphism of algebras. The M¨obius function of(A, ζ ) is the functional

µ = ζS: A→ k.

As recalled at the end of Section 2, it follows that−µ: A→ k is a morphism of algebras.
For instance, ifA = k〈a,b〉 andζ is defined as in (5.2) byζ(p(a,b)) = p(1,0),

since the antipode satisfiesS(p(a,b)) = −p(a−1,b−1) (Example 2.3(1)), the M¨obius
function satisfiesµ(p(a,b)) = −p(0,−1).

Suppose now thatA is a gradedε-bialgebra andζ : A→ k is a morphism of algebras.
ThenA is automatically anε-Hopf algebra, so the M¨obius functionµof (A, ζ ) is defined.
Consider the functionalα: A→ k defined on a homogeneous elementx ∈ An by

α(x) = µ(x)+ (−1)nζ(x).

Observe thatα satisfies, forx ∈ An andy ∈ Am,α(xy) = −µ(x)α(y)+(−1)nα(x)ζ(y).
Define a graded subspace ofA by

E0(ζ ) =
∞⊕

n=0
Ker(α: An→ k).

In view of the above,E0(ζ ) is a graded subalgebra ofA.

Definition 6.2. Let A be as above. The eulerian subalgebra of(A, ζ ) is the largest
subcoalgebra ofA contained inE0(ζ ). We denote it byE(ζ ).

We will see below thatE(ζ ) is anε-Hopf subalgebra ofA, which justifies the termi-
nology.

Given any coalgebraC and a subspaceE0 of C, the largest subcoalgebraE of C
contained inE0 always exists: it is the sum of all subcoalgebras contained inE0 (there
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is at least one, the zero subspace). In fact, this notion is dual to the notion of ideal
generated by a subspace in an algebra. For this reason, one sometimes says thatE is
the subcoalgebra ofC cogeneratedby E0. With this in mind, it is easy to obtain the
following properties of eulerian subalgebras.

Proposition 6.3. Let(A, ζ ) be as above and let E(ζ ) be its eulerian subalgebra. Then:

(1) E(ζ ) is a gradedε-Hopf subalgebra of A.
(2) The piece of degree n of E(ζ ) consists precisely of those x∈ An such that

α(x) = 0,

(α
⊗

id)1(x) = 0= (id⊗α)1(x), (6.1)

(id
⊗
α
⊗

id)1(2)(x) = 0.

(3) Suppose thatψ : A→ B is a morphism of gradedε-bialgebras such that

A
ψ //

ζA ��>>>>>>> B

ζB����������

k

commutes. Thenψ maps E(ζA) to E(ζB).

Proof. (1) We show, more generally, that the subcoalgebra cogenerated by a graded
subalgebra of a gradedε-Hopf algebra is always a gradedε-Hopf subalgebra.

An ideal generated by homogeneous elements is necessarily graded. Dually, a sub-
coalgebra cogenerated by a graded subspace is necessarily graded. On the other hand, it
follows immediately from (2.1) that ifC andD are subcoalgebras of anε-bialgebraA,
then so isC + D + C · D. Therefore, the subcoalgebra cogenerated by a subalgebra is
again a subalgebra.

This shows that the subcoalgebra cogenerated by a graded subalgebra of a graded
ε-bialgebra is always a gradedε-subbialgebra. Since by (2.8) the antipode is determined
by the bialgebra structure, the claim follows.

(2) Again, we provide a proof of a more general assertion. The ideal generated by a
subspaceV of a nonunital algebra(A,m) is

V +m(V
⊗

A)+m(A
⊗

V)+m(2)(A
⊗

V
⊗

A)

(this subspace is closed under both left and right multiplications by associativity). IfV
is defined as the image of a linear mapα: A→ A, then the ideal generated byV is the
sum of the images of the maps

α, m(α
⊗

id), m(id
⊗
α) andm(2)(id

⊗
α
⊗

id).

Dually, the subcoalgebra cogenerated by a subspaceV of a noncounital coalgebra(C,1)
is

V ∩1−1(C
⊗

V) ∩1−1(V
⊗

C) ∩1(−2)(C
⊗

V
⊗

C),
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and if V is the kernel of a linear mapα: C→ C, then this can also be described as the
intersection of the kernels of the maps

α, (α
⊗

id)1, (id
⊗
α)1 and(id

⊗
α
⊗

id)1(2).

With some care, these assertions can also be extended to the graded context, and the
desired conclusion follows.

(3) By hypothesisψ preserves the zeta functionals, and hence also the alpha func-
tionals, since a morphism ofε-bialgebras always preserves the antipodes. Therefore,

ψ(E(ζA)) ⊆ ψ(E0(ζA)) ⊆ E0(ζB).

Since the image of a subcoalgebra under a morphism of coalgebras is another subcoal-
gebra, it follows thatψ(E(ζA)) ⊆ E(ζB).

Recall that a graded posetP is calledeulerian if the Möbius function alternates
between 1 and−1 on the intervals ofP, or, more precisely, if for anyx ≤ y in P,

µP([x, y]) = (−1)rank(y)−rank(x). (6.2)

The next is the main result of this work. It implies the existence of thecd-index of
eulerian posets. Its value lies on the simplicity of the proof. For the second assertion, we
assume that the characteristic of the field is not 2.

Theorem 6.4. Consider the gradedε-Hopf algebras P and k〈a,b〉, with the
functionals

ζP : P → k, ζP(P) = 1 and ζ1,0: k〈a,b〉 → k, ζ1,0(p(a,b)) = p(1,0)

and the corresponding eulerian subalgebras. Then:

(1) E(ζP) contains all eulerian posets.
(2) E(ζ1,0) is the subalgebra of k〈a,b〉 generated byc= a+ b andd = ab+ ba.

Proof. (1) First, note that if a poset is eulerian, then so are any of its intervals. Hence,
the class of eulerian posets spans a subcoalgebra ofP. Therefore, to show that the class of
eulerian posets is contained inE(ζP), it suffices to verify that it is contained inE0(ζP).
This is immediate: ifP ∈ Pn is an eulerian poset of rankn+ 1, then

α(P) = µP(P)+ (−1)nζP(P)
(6.2)= (−1)n+1+ (−1)n = 0,

so P ∈ E0(ζP) .
Alternatively, one may verify (6.1) directly. Each of the four equations corresponds

to the choice of an interval ofP, which may be of the form [0P,1P], [0P, x], [x,1P] or
[x, y].

(2) We abbreviateE = E(ζ1,0) andE0 = E0(ζ1,0).
It is straightforward to verify (6.1) forc andd. SinceE is a subalgebra, it follows that

the subalgebra generated byc andd is contained inE.
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The converse inclusion requires a little work. Letp(a,b) ∈ E be a homogeneous
polynomial. Introduce a new variablee= a− b. Thenc ande generatek〈a,b〉, so we
can write

p(a,b) =
∑
r ,s

λrses0cr1es1cr2 · · · crnesn .

This sum is over sequences of natural numbersr = (r1, r2, . . . , rn) ands= (s0, s1, . . . ,

sn), where onlys0 andsn are allowed to be zero, andλrs are nonzero scalars.
Note that

e2 = (a− b)2 = (a+ b)2− 2(ab+ ba) = c2− 2d.

Therefore, it suffices to show that allsi are even to conclude thatp(a,b) belongs to the
subalgebra generated byc andd.2

We verify this as follows. We have1(c) = 2 · 1⊗1 and1(e) = 0, and from here,
using (2.1),

1(r )(cr ) = 2r · 1⊗ · · ·⊗1︸ ︷︷ ︸
r+1

and 1(es) = 0.

Let | r |= r1+ r2+ · · · + rn. It follows easily that

1(|r |)(es0cr1es1cr2 · · · crnesn) = 2|r |es0
⊗

1⊗(r1−1)⊗es1
⊗

1⊗(r2−1)⊗ · · ·⊗
1⊗(rn−1)⊗esn ∈ A⊗(|r |+1). (∗)

SinceE is a subcoalgebra,1(|r |)(p(a,b)) belongs toE⊗(|r |+1).
On the other hand, by definition of eulerian subalgebra we have

E⊗(|r |+1) ⊆ E⊗(|r |+1)
0 ⊆ Ker(α)⊗(|r |+1) =

|r |⋂
t=0

A⊗(t)
⊗

Ker(α)
⊗

A⊗(|r |−t).

Hence, for anyt , applyingid⊗(t)
⊗
α
⊗

id⊗(|r |−t) to 1(|r |)(p(a,b)) we must get zero.
Choosing appropriate values oft , we obtain from(∗) that

0 =
∑
r ,s

λrs2|r |es0
⊗

1⊗(r1−1)⊗es1
⊗ · · ·⊗1⊗(ri−1)α(esi )

⊗ · · ·⊗1⊗(rn−1)⊗esn,

for any i = 0, . . . ,n.

Since p(a,b) is homogeneous, all terms in this sum belong to distinct homogeneous
components ofA⊗(|r |+1). Hence, by linear independence, and sincechar(k) 6= 2, we
deduce that

α(esi ) = 0, ∀i = 0, . . . ,n.

However,

α(esi ) = µ(esi )+ (−1)si ζ(esi ) = −1+ (−1)si ,

so eachsi must be even. The proof is complete.

2 This is the same trick used by Stanley in his proof of the existence of thecd-index [S2, Theorem 1.1].
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Corollary 6.5. If P is an eulerian poset, then itsab-index belongs to the subalgebra
of k〈a,b〉 generated byc andd.

Proof. Theab-index was defined in Section 5.2 as the unique morphismψ of graded
ε-bialgebras for which

P
ψ //

ζP   BBBBBBBB k〈a,b〉

ζ1,0
||yyyyyyyyy

k

commutes. Therefore, by Proposition 6.3,ψ takes the eulerian subalgebra ofP to the
eulerian subalgebra ofk〈a,b〉. Together with Theorem 6.4, this implies that ifP is an
eulerian poset, thenψ(P) belongs to the subalgebra generated byc andd.

Remark. Ehrenborg and Readdy constructed an example of a non-eulerian posetP
for whichψ(P) is nevertheless in the subalgebra generated byc andd [ER, Section 3]:

It turns out that the stronger fact thatP belongs to the eulerian subalgebra ofP is also
true. Thus, the eulerian subalgebra ofP contains non-eulerian posets.

7. The Generalized Dehn–Sommerville Equations

Let P be an eulerian poset. The fact that itsab-indexψ(P) belongs to the subalgebra
generated byc andd imposes some conditions on the coefficients ofψ(P), i.e., on the
flag vector{ fS(P)}S∈Sn . As recalled in the Introduction, according to Theorem 4 of
[BK], these conditions are equivalent to the generalized Dehn–Sommerville equations
of Bayer and Billera. We do not produce another proof of this fact here. Instead, we will
provide another set of equations, equivalent to the equations of Bayer and Billera, that
is dictated by the theory ofε-Hopf algebras, and is therefore very natural from the point
of view of this work. As the equations of Bayer and Billera, our equations are indexed
by triples(S,a,b) whereS is a subset of{1, . . . ,n} and [a,b] is a maximal interval of
{1, . . . ,n}\S. The equation corresponding to such a triple is

((−1)b−a + 1) fS +
∑

T⊆[a,b],T 6=∅
(−1)#T fS∪T = 0. (7.1)

To obtain these equations, we make use of the explicit description of eulerian subal-
gebras provided by (6.1), for the case of theε-Hopf algebrak〈a,b〉.
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It is convenient to deal with the algebra of setsS directly, rather than with the iso-
morphic algebrak〈a,b〉. First, note that the zeta, M¨obius and alpha functionals for this
algebra are given on a basis elementS ∈ Sn by

ζ(S) =
{

1 if S = ∅,
0 if not,

µ(S) = (−1)#S+1 and

α(S) =
{
(−1)n − 1 if S = ∅n,

(−1)#S+1 if not.

Recall that in theε-Hopf algebra of sets the comultiplication is

1(S) =
∑
i∈S

S(0, i )
⊗

S(i,n+ 1)

whereS(i, j ) ∈ Sj−i−1 consists of those elements ofS that lie strictly betweeni and j
(see the precise definition in Example 2.3(3)).

Let x =∑S∈Sn
fS · S be an arbitrary element of degreen of S. LetTn denote the set

of triples(S,a,b) as above, and for(S,a,b) ∈ Tn let

ES,a,b(x) := ((−1)b−a−1− 1) fS −
∑

T⊆[a,b],T 6=∅
(−1)#T fS∪T.

Using the formulas above forα and1 one finds, by direct calculations whose details we
omit, that

α(x) = E∅,1,n(x),
(α
⊗

id)1(x) =
∑
S∈Sn

S 6=∅,1/∈S

ES,1,minS−1(x) · S(minS,n+ 1),

(id
⊗
α)1(x) =

∑
S∈Sn

S 6=∅,n/∈S

ES,maxS+1,n(x) · S(0,maxS),

(id
⊗
α
⊗

id)1(2)(x) =
∑

(S,a,b)∈Tn
1<a,b<n

ES,a,b(x) · S(0,a− 1)
⊗

S(b+ 1,n+ 1).

These are expressions in terms of distinct basis elements ofS. In fact, suppose for
instance thatS(minS,n+ 1) = T(minT,n+ 1) for two setsS andT ∈ Sn. Then, first,
these elements must lie in the same homogeneous component ofS, which means that
minS = minT. Second, the elements ofS lying strictly between minS andn+ 1 must
coincide with the elements ofT between minT andn+1. Thus,S = T. Similarly, suppose
that S(0,a − 1)

⊗
S(b+ 1,n + 1) = T(0, c− 1)

⊗
T(d + 1,n + 1) for two triples

(S,a,b) and(T, c,d) ∈ Tn. By comparing degrees, we see thata = c andb = d. It then
follows that the elements that lie strictly between 0 anda−1 or betweenb+1 andn+1
are the same for bothS andT. Since, by definition of triple, the elements that lie between
a−1 andb+1 are preciselya−1 andb+1, for bothS andT, we conclude thatS = T.

Equations (6.1), defining eulerian subalgebras, express the vanishing of the above
expressions. It follows that the elementx belongs to the eulerian subalgebra ofS if and
only if

E∅,1,n(x) = 0,
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ES,1,minS−1(x) = 0 for every S ∈ Sn such that S 6= ∅ and 1/∈ S,

ES,maxS+1,n(x) = 0 for every S ∈ Sn such that S 6= ∅ and n /∈ S,

ES,a,b(x) = 0 for every triple (S,a,b) ∈ Tn such that

1< a and b < n.

Now, an arbitrary triple inTn is of one the four forms above. Hence, these conditions
can be expressed more simply as follows:

ES,a,b(x) = 0 for every triple (S,a,b) ∈ Tn.

This is exactly the announced (7.1). It is the version of the generalized Dehn–Sommerville
equations furnished by the theory ofε-Hopf algebras.

In conclusion, one may regard (6.1) as the generalized Dehn–Sommerville equations
for an arbitrary ε-Hopf algebra. The main results of this work can be summarized as
follows. The generalized Dehn–Sommerville equations for theε-Hopf algebraP are
satisfied by any eulerian poset. The generalized Dehn–Sommerville equations for the
ε-Hopf algebrak〈a,b〉 are explicitly given by (7.1), and they define the subalgebra
generated byc andd.
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