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INFINITESIMAL VARIATIONS OF HODGE STRUCTURE (II): AN
INFINITESIMAL INVARIANT OF HODGE CLASSES

Phillip Griffiths and Joe Harris

Compositio Mathematica 50 (1983) 207-265
@ 1983 Martinus Nijhoff Publishers, The Hague. Printed in the Netherlands

This is the second in the series of papers on infinitesimal variations of

Hodge structure begun in [3]. There we introduced five invariants associ-
ated to an infinitesimal variation of Hodge structure and investigated the
geometric interpretation of the first one. In this paper we shall study the
geometry of the third construction, given in Section 1 (c) of [3].

This invariant is associated to the pair (V, y ) consisting of an infinites-
imal variation of Hodge structure V={Hz, Hp,q, Q, T, 03B4} of even weight
n = 2 m and Hodge class y E Hz n Hm,m. If we think of F as a Ist order
variation, with tangent space T, of the Hodge structure {Hz, Hp,q, Q},
then the invariant is a linear subspace

such that the quotient space Hm+1,m-1/Hm+1,m-1(-03B3) is naturally
isomorphic to the co-normal space of the subspace

03BE~T such that y remains of type ( m, m) when the ~T.Hodge structure moves infinitesimally in the direction ~T.
In case V arises from a family

of polarized varieties and y is the fundamental class of an algebraic cycle
r c X where X is the reduced fibre of X~S, then there is a geometri-
cally defined subspace

( Note : Actually, we shall study all the subspaces Hp’ q( - y ) c Hp,q where
p &#x3E; q, and for these there are corresponding geometrically defined sub-
spaces Hp,q(-0393)~Hp,q(-03B3). In particular, H2m,0(-0393) is defined by
the position of r relative to the canonical system tK xl.) Our first main
result is for the situation r c X ~ P3 where r is a smooth curve and X is
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a smooth surface containing r; the theorem computes the dimension of
H2,0(-03B3)/H2,0(-0393) as h1(N0393/P3). A consequence is that when the

degree of X is large (relative to the degree of F) and r has general
moduli, then the equations of r are given purely in terms of the Hodge
theoretic data (V, y); it is this phenomenon that we should like to

understand.
In a sense the simplest subvarieties (other than complete intersections)

lying in a projective variety X are the linear subspaces A contained in X.
Obviously it is of interest to be able to recognize which Hodge classes are
fundamental classes of such linear spaces, and in Section 4(b) (cf.
Theorem (4.b.2)) we give a first result of this kind. This result first

appeared in [8], but here we give a different proof that extends to prove
the following rather unexpected theorem (cf. (4.b.26)): "Let r c X ~ P3
be as above with fundamental class 03B3 ~ H2(X, Z). Suppose now that we
are only given a Hodge class y with the same numerical properties and
that deg X is large relative to the numbers 03B32, 03B3·03C9 (03C9 = c1(OX(1))). Then
y is the fundamental class of an effective curve r on X." This result

implies very subtle behaviour of the intersection of the " variable sub-
space" H1,1(X) with the "fixed lattice" H2(X, Z).

In Section 4(c) we discuss the infinitesimal variational aspects of the
question of when a Hodge class on a smooth surface X c P 3 remains
effective under 1 st order deformations. Some of this discussion is a

special case of that in Section 4(a), but in the earlier section we choose to
ignore crucial scheme-theoretic considerations in order to get to the

essential point as quickly as possible. It is worthwhile pointing out that,
although both Sections 4(b) and (c) are centered around the question of
when a Hodge class on X~P3 is effective, the two discussions are

complementary. Taken together they give a fairly reasonable picture of
the scheme of pairs (X, r) where r c X~P3. However certain crucial
questions remain open; for example: Let Rd,k~|OP3(d)| be the set of
smooth surfaces X~P3 of degree d where the Picard number 03C1(X)  k
+ 1. Then is codim Rd,1  d - 3 with equality holding only for the

component of Rd,1 given by surfaces containing a line? (More generally,
it is easy to check that the component of Rd,k consisting of surfaces
containing k coplanar lines has codimension k ( d - 3)-(k-2 2) in |OP3(d)|.
One may conjecture that this is the codimension of Rd,k.)

As an application of Sections 4(b) and (c), in Section 4(d) we show
how to reconstruct the Fermat surface Fd~P3(d5) from its universal
infinitesimal variation of Hodge structure. Actually, the proof gives a
global Torelli theorem (in the form that a variety is uniquely determined
by its universal infinitesimal variation of Hodge structure) for the family
’5J-d of smooth surfaces X C: p 3 of degree d that contain d - 5 sets of d - 3
coplanar lines (it is well known that Fd~Fd). Although our Torelli
theorem is to some extent now subsumed by the recent result of Donagi
[5], our proof is of a geometric character (rather than algebraic, as in [5])
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and illustrates very clearly our general premise that an infinitesimal
variation of Hodge structure may at least to some extent serve as a
surrogate for the theta divisor in the classical case of curves (in this

regard, see the Schottky discussion in [5]). The argument also clearly
points out the necessity of refining the data consisting of a Hodge
structure alone in order to obtain geometric results.

In Section 4(e) we study the pair (V, y ) corresponding to a 2-plane r
lying in a smooth fourfold X~P5. Although the global result from

Section 4(b) is lacking (the Hodge conjecture is not known if deg X &#x3E; 5)
we are able to establish the analogues of the infinitesimal results from
Section 4(c); in particular, we obtain the equalities

Partly the point here is to give computations involving Hodge classes and
the "middle" Hodge groups Hp,q (p ~ 0, q ~ 0).

The setup in both Sections 4(c) and (e) was first considered by Bloch
in [2]. Part of our results may be interpreted as proving that certain
subvarieties satisfy his condition of semi-regularity.

In Section 4(f), as an application of the infinitesimal Max Noether
theorem in [3] and interpretation (4.a.3) of our infinitesimal invariant of
Hodge classes, we may easily show that many smooth curves C c S C p 3 ,
where S is a smooth surface of degree &#x3E; 4, have indecomposable normal
bundles. Actually, the result is true for deg S &#x3E; 2 (cf. also Hulek [10]),
but the remaining cases require a separate argument. An amusing off-
shoot is the formula

where e E H1(KC(4 - 2d)) is the extension class of 0 ~ NC/S ~ NC/P3 ~
NS/P3 ~ OC ~ 0. Taking Section 4(a) and the main result of [6] into

account, it follows that both sides are zero if C has general moduli.
In closing we should like to express our opinion that the geometry of

the infinitesimal invariant of Hodge classes has turned out to be richer
and more general than we originally thought (initially, it was designed to
only study Hodge lines leading up to the Torelli for Fermat surfaces),
and our study raises more questions then it answers.
We should also like to express particular gratitude to the referee, who

did a marvelous job of deciphering and subsequently improving our
original manuscript.



210

4. Infinitésimal invariants associated to Hodge classes

(a) The basic observation

An object of increasing interest in algebraic geometry is the global
subvarieties of moduli spaces defined by considering all varieties of a
certain type and having an additional specified geometric property. For
example, the subvariety Mrg,d c 9tL of the moduli space of curves, which
consists of smooth curves having a linear series grd, seems certain to play
an important role in the global moduli theory of curves (cf. [9]). As a
second example, we let U be a neighborhood (in the analytic topology) of
a surface S in its global moduli space (assumed to exist). We may
topologically identify all the surfaces S’ E U, and for a fixed class

y E H2(S, Z) we define

It is possible to show that Uy is open in its Zariski-closure in the moduli
space of S (cf. [12]).

In the first example the local structure of Mrg,d is one of the main
concerns of Brill-Noether theory. In particular, when the Brill-Noether
number

we have the " postulated dimension formula"

which gives at least a first approximation to dim Mrg,d. Moreover the
Zariski tangent space is given by

where

are the usual maps of Brill-Noether theory [1]. The object of this section
will be to analogously study the infinitesimal theory of the varieties U,
and their generalizations.
We first recall from Section 1(c) of [3] the third invariant introduced
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there. Let V = {Hz, Hp,q, Q, T, 03B4} be an infinitesimal variation of

(polarized) Hodge structure of even weight 2 m and y E Hm,mZ a Hodge
class. Then we defined:

As motivation we consider a family of polarized varieties {Xs}s~S and
suppose that V is the infinitesimal variation of Hodge structure corre-
sponding to X = Xso in this family. We denote by U a neighborhood of so
in S and as above we identify all the H*( Xs, Z) for s E U. Given a Hodge
class y E Hm,m( X, Z) we define

Using the Lefschetz decomposition it will suffice to consider only primi-
tive cohomology, and then assuming that Y E H2mprim(X, Z) we have

The tangent space to U, at so is obtained by differentiating the equations
(4.a.2), and with the notations

it is given by

Thus we have

and the number

is codimension of the Zariski tangent space to U03B3. (1) ~ For this reason we
are led naturally to ask if there is an effective way of computing

~ These numbers refer to notes at the end of the paper.
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hm+k,m-k(-03B3), at least in first approximation? It turns out that this

question contains a surprising amount of geometry.
A key step is the following trivial observation: Suppose that

(Hz , HP,q, Q, T, 03B4} arises from an infinitesimal family

of polarized varieties. If we denote the reduced fibre by X, then Hz =
H2m(X, Z) ~H2mprim(X) and the polarized Hodge structure {Hz, Hp,q, Q}
is the usual one on primitive cohomology. The tangent space is given by
T=(m/m2)*, and 8 is induced by composing the cup-product and
Kodaira-Spencer mappings (cf. Section 2(a) of [3]). Suppose also that y is
the primitive part of the fundamental class of a codimension-m algebraic
cycle

on X. (2) We define the support of r to be

and denote by Io(r) the ideal sheaf of 03C3(0393). We shall use the notation

to denote the image in Hm-kprim(X, 03A9m+kX)=Hm+k,m-k of the composite
map

With this understood we have the

OBSERVATION:

PROOF: Since for 1 OE T and k &#x3E; 2, the definition (4.a.1 ) immediately gives
that
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it will suffice to verify (4.a.4) when k = 1. Let 03C8~ Hm-1(X, 03A9m+1X(-0393))
and let 03BE~ T with

Then

since 03C8 vanishes on the Z; . Q.E.D.
When n = 2 and X = S is a smooth surface, (4.a.1 ) is the linear

subsystem of the canonical system given by

Also, r = 03A3niCi is a (virtual) curve and (4.a.4) is (where we set H2.0( - 0393)
= HO(S, Ks( - o(r))

where o(r) = Y-Ci is the support of r. We shall discuss the question:
Under what circumstances can we expect equality in (4.a.5)? As will now
be seen this has (to us) a suprising answer.

Let C~P3 be a smooth curve of degree m and genus g, and denote by
N - C the normal bundle. We recall that C is said to be non-special in the
sense of Brill-Noether if

in particular, by the Gieseker-Petri Theorem this is true if C has general
moduli (cf. [1]). We shall assume that C is a smooth point on the Chow
variety E of curves of degree m in P3; it is well known (cf. [ 11 ]) that this
is true if (4.a.6) is satisfied. (Note: For the result (4.a.7) to be proved
below it may not be necessary to make this assumption, but it simplifies
the argument technically.)
We denote by U~|OP3(d)| the Zariski open set of smooth surfaces S

of degree d in P3, and
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will denote the subset of U consisting of the smooth surfaces passing
through C. We assume d is large enough that U(-C)~~, and for

S E U(-C) we consider the infinitesimal variation of Hodge structure
{HZ, Hp,q, Q, T, 03B4} corresponding to HZ = H2(S, Z)~H2prim(S) and
with tangent space T = TS(U) corresponding to all variations of S in P3.
Finally, we denote by

the primitive part of the fundamental class of C.

PROPOSITION: There exists an integer d ( m, g) depending only on the

degree m and genus g of C cp 3 such that for d  d ( m, g) and ,S E U( - C)

In particular, if C is non-special in the sense of Brill-Noether then

COROLLARY: If C is non-special in the sense of Brill-Noether, then the
equations of C c S are given purely in terms of the fundamental class of C
and infinitesimal variation of Hodge structure of S in p 3. (4.a.8)

PROOF OF COROLLARY: Recalling that y is the primitive part of the
fundamental class of C, C is the base locus of the linear subsystem
H2,0(-03B3) c HO(S, Ks). 

PROOF OF PROPOSITION: Shifting notation slightly, we now let --- be a
smooth open neighborhood (Zariski or analytic; it doesn’t matter) of C in
the Chow variety of degree m curves in p 3. Then by the Riemann-Roch
theorem for vector bundles over C

We denote by

the subvariety of smooth surfaces S that contain some curve C’ E ::: (thus
set-theoretically

In giving the following argument we shall make a couple of dimension
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counts whose rigorous justification necessitates careful analysis of certain
scheme structures. Since this analysis will be carried out in detail in
Section 4(c) below in a special case (however, cf. remark (4.c.18)), but one
where the techniques may be easily modified to apply in general, we shall
not do this here.
We now focus attention on our curve C OE E. From the adjunction

formula

it follows that C2  0 for large d. Thus

where 6. (C) = es (C) 0 ec is the normal bundle of C in S, and there are
only a finite number of curves C’ E E that are contained in S. In

particular, assuming that d is large enough to have hl(OP3(d)~IC)=0
for i = 1, 2, we may compute the codimension of U’E, near S as follows
(this is one step that will be justified more rigorously in Section 4(c)) :

for d  d(m, g), by the Riemann-Roch theorem for C and (4.a.9).
We now consider a neighborhood (in the analytic topology) W c U of

S and set

By choosing W sufficiently small we may topologically identify all the
surfaces S’ E W, and with the identification H2(S, Z)=H2(S’, Z) we
define

This is an analytic subvariety and clearly
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LEMMA: We have that

PROOF: If L - S is the line bundle corresponding to C, then according to
the general variational theory of cohomology classes it will suffice to

prove that

Indeed, for (S,) c Wy a variation of S = So, there will be a (unique since
Pic0(St) = (0)) holomorphically varying family of line bundles Lt ~ St
with c1(Lt)=03B3, and by obstruction theory (cf. [1]) the sufficient condi-
tion that the section So E HO(SO, Lo) defining C be stable under small
deformations is just (4.a.11).

By the Riemann-Roch theorem for surfaces,

where we have used the adjunction formula for C c S and Riemann-Roch
theorem for h0(OC(d - 4)) (assuming, of course, that d is large enough
that h1(OC(d - 4)) = 0). Q.E.D. for the lemma.

Finally, we shall estimate codim W03B3 Hodge-theoretically (again, the
details for justifying this dimension count will be given in Section 4(c)):
We have by (4.a.3)

codim

where
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by the Riemann-Roch theorem for C. Comparing this with the formula
for codim U= = codim W and using lemma (4.a.10) gives that

in (4.a.12). By the definition of E we conclude the proof of the Proposi-
tion. Q.E.D.

REMARK: Using lemma (4.a.10) let us agree to call the formula

the naive Hodge dimension count. This means: we count the number of
geometrically apparent (at first glance) conditions that a variation of S
should contain a variation of C; by (4.a.10) and (4.a.5) this number is
h 0 (S, KS)-h0(S, KS(-03C3(0393))). On the other hand, the naive dimension
count for Z is the formula

for the reasons explained in [1] ] we shall refer to this as the naive
Brill-Noether dimension count. Then the proposition says that the naive
Hodge dimension count and nâive Brill-Noether dimension count both
fail by the same amount. This certainly suggests some interesting relation
between Hodge theory and geometry.

(b) Lines on surfaces (i)

Let SeP 3 be a smooth surface of degree d containing a line A with
fundamental class 03BB ~ H2(S, Z). Then À satisfies the conditions

DEFINITION: A class 03BB~H2(S, ll) satisfying the conditions (4.b.1) will
be called a Hodge line.

In this section we will give a proof of the following result (cf. [8] for
the original proof):

THEOREM: A Hodge line is the fundamental class of a unique line A c S.
(4.b.2)
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Given a Hodge line À there is a unique holomorphic line bundle L - S
with c1(L)=03BB, and one may try to use the Riemann-Roch theorem for
L - S. This gives

To be able to use this we must know that

and as will be seen below this is almost tantamount to assuming the
theorem. (3) However, when d = 5, (4.b.3) gives

We want to show that

and if this were false then

Any effective divisor D E 1 K - L| satisfies

If any pencil from IDI has a fixed component E, then we must have
deg E = 1, 2 or 3. If deg E = 2 or 3 then S contains a pencil of rational
curves, which implies that S is rational. If deg E = 1 then S contains a
pencil of elliptic or rational curves, and must then be an elliptic or
rational surface. In all cases we obtain a contradiction to the fact that

|KS| is very ample.
It follows that the linear system |D| gives a holomorphic map

whose image ~(S) cannot be a surface, and therefore must be a curve r.
Since S is regular, r must be a rational curve non-degenerately embedded
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in Pn by a complete linear system. If n  2 then |D|=|~-1(O0393(1))|=
|~-1(OP1(n))| and the mapping (p is the composition

where q is given by |OP1(n)|. Since deg D = 4, deg 4, - 1(t) 2 for t~P1

and S again contains a pencil of rational curves, which is a contradiction.
This establishes the theorem when d = 5.

Turning to the general case, we choose a smooth curve

where H = OS(1) is the hyperplane bundle. We want to show that

For m sufficiently large there is a surface R of degree m not containing S
and such that

In this case

where A is the desired line. Establishing (4.b.4) involves examining the
postulation sequence of C, and this is what we shall do. (4) We first
record the relevant data concerning the degree d(C) and genus g of C:

where the last step follows from (4.b.1 ) and the adjunction formula.
We next choose a general hyperplane divisor D = P 2 . C and consider

the commutative diagram:
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where le c (9p3 3 is the ideal sheaf of C and ID c S IP 2 is the ideal sheaf of
D. A piece of the cohomology diagram is

We use the notations

so that wk=h0(OP2(k)) - h0(ID(k)) is the number of conditions im-

posed by D on |OP2(k)|. We thus have

We set

and note (as will be explained more fully below) that yk is the dimension
of a linear series cut out on a line Pl ~ P2. (6)

We now denote by r the intersection S . I? 2; we may assume that r is
a smooth plane curve of degree d and

is a divisor of degree md - 1. We will study curves 03A6k~|OP2(k)| that
pass through D. We have

(i) if 0  k  d then no curve (Dk passes through D; and
(ii) if d  k  m then any curve 03A6k through D must contain r.

Both of these follow from D c 0393·03A6 and deg D = md - 1 &#x3E; kd if k  m.
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If we define

least integer 
such that there exists a 

n 

= curve 03A6n not containing r and passing through D

then n  m and from (i) and (ii) we have

This gives

A crucial step in the proof is provided by the

LEMMA: For k  n, either Yk  Yk-1 or Yk-1 = 0.

PROOF: Let p 1 ~ P2 be a general line and set

Since H0(ID(k)) ~ 0393· H0(OP2(k - d )) + 03A6n · Ho(ep2(k - n)), and since
we may assume that P1 misses the intersection 4$ ~ r, it follows from

k  n that Uk c H0(OP1(k)) is a base point free linear subsystem, and
that the image of

contains Uk. On the other hand

Lemma (4.b.10) then follows from the
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LEMMA(Gieseker) : Let UJ c H0(OP1(j)) ( j = k - 1, k) be base point free
linear systems such that

If dim UJ = u., then either

or else

PROOF: Set U = Uk _ 1 c H0(OP1(k - 1)) and u = dim U. Then by Koszul’s
complex we have

where E is a vector bundle of rank u - 1 over I? 1. Since by assumption
we have

it follows that

To estimate h0(E) we use Grothendieck’s decomposition to write

Since cI(E) = u - k the conditions on the 1, are

We let
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Then h0(E) = 2 a + 03B2, and by (4.b.12) and (4.b.13)

Adding the last two and substituting into (4.b.14) gives

from which Gieseker’s lemma is an immediate consequence. Q.E.D.
Using (4.b.9) and (4.b.10) we may picture the graph of yk as a function

of k as follows:

From

it follows by telescoping that
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On the other hand, by the cohomology diagram (4.b.6)

By the Riemann-Roch theorem for C, for k » 0

which by (4.b.5) gives

At this stage, using (4.b.9), (4.b.10), and (4.b.15) our result will be a
consequence of the following combinatorial

LEMMA: Let {yk}, k = 0, 1, 2,..., be a sequence of non-negative integers
satisfying
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Then

with equality holding if, and only if, n = m and ym-1+J = d - j for j  d - 2,
.ym+d-2 - 0.

In other words, the sum in (4.b.17) is maximized, subject to the con-
straints (4.b.9), (4.b.10), and (4.b.15), by the figure

We will not give a proof of this lemma, which may be found in [12].
Using it and comparing with (4.b.18), it follows that n = m and that

(4.b.17) and (4.b.16) are equalities. From the definitions (4.b.7) and
cohomology diagrams (4.b.6) for all k, it follows that

Thus C~P3 is projectively normal, and consequently Tk in (4.b.6) is

surjective for all k. Therefore there exists a surface R ~|IC(m)| which
cuts out the curve tP E |ID(m)| in p 2, and this is the surface required in
(4.b.4). Q.E.D.
We ask now how far this argument can be pushed. One extension is

immediate: we can replace the "line" in (4.b.2) by a "plane curve" of
degree e  d. Specifically, the class À of a plane curve of degree E on the
surface S will satisfy

and we claim that in fact

THEOREM: Any class ÀEHI,1(S)nH2(S,Z) satisfying (4.b.19) is the

fundamental class of a plane curve of degree e contained in S, unique if
03B5  d - 2. (4.b.20)
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PROOF: The proof follows exactly the same lines as that of (4.b.2). We let
L, C and D be as before, but instead of (4.b.5) we have

As before, we analyze the sequences vk, Wk and Yk for C and D, and again
find that the sequence Yk must be extremal; specifically, we have the

LEMMA: Let {yk} be a sequence satisfying the first three conditions of
(4.b.19), but with ¿YI = md - E. Then

with equality holding if, and only if n = m and

In other words, the sum (4.b.17) is maximized by the figure

Thus, as in the case of Hodge lines, we see that C must be projectively
normal, and that D lies on a curve of degree m in I? 2 not containing r, so
that C lies on a surface R of degree m not containing S. Writing

R·S=C+E

we see that E is a plane curve of degree f and class À. Q.E.D.
Note that this argument establishes as well the

COROLLARY: If À is an integral class of type (1, 1) on S, and À .,w = 03B5  d,
then
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PROOF: If À2 &#x3E; 03B5(03B5-d + 1), then for the curve C appearing in the proof
of the theorem we have 03C0(C) &#x3E; i7(m, d, e). Tracing through the proof of
that result, this latter inequality violates the first statement in lemma

(4.b.22). Q.E.D.
More generally, we have the

COROLLARY: If À is an integral class of type (1, 1) on S, writing

PROOF: This is just corollary (4.b.24) applied to the class À - lw.
The next question to ask, clearly, is what about classes À of "degree"

À ’ cj = - with À2  e( e - d + 1) - or, equivalently, with virtual genus

(Note that 03C0(03BB) may be negative, as in the case of a pair of skew lines.)
To answer this, let 8 represents the defect (03B5-1 2)-03C0(03BB) of the virtual
genus of À ; equivalently, write

Clearly, theorem (4.b.20) cannot be true as stated for classes À with
defect 8 &#x3E; 0. Surprisingly, however, it is true if the degree d of S is large
enough compared to E and 8. Precisely, we have the

THEOREM: Let S be a smooth surface of degree d, 03BB an integral class of type
(1, 1) on S with

(i.e., 03C0(03BB) = (03B5-1 2) - 03B4). Assume d &#x3E; 03B5 + 8 + 2. Then À is the class of an
effective divisor on S. (4.b.26)

PROOF: The proof follows, at first, the same lines as those above: If we
let L be the line bundle on S with Chem class À, m » 0, and C an
irreducible smooth curve in the linear system mH - LI, then we find that
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where 03C0(m, d, e) is given by (4.b.21). We let D, r, wk, and yk be as
before. Here, of course, yk need not be the sequence specified in (4.b.23),
inasmuch as we know only that

There is, however, one thing we can say, using our assumption that d is
large, and that is that

n=m

or, equivalently, that

Ym = d - 1,

or, equivalently, that D lies on a curve of degree m npt containing r. To
see this, note that if we add 1 to ym in the sequence represented by
(4.b.23), we have to subtract 1 from some ym+J, and the first j for which
we can do this without violating the condition that {yk} be strictly
decreasing (cf. (4.b.l0)) in this range is j=m+d-2-03B5. From this it

follows that if {yl} is a sequence satisfying the conditions of (4.b.22) and
such that ym = d,

Since our present curve C has genus g = -7(m, d, E) - S &#x3E; 7r(m, d, E) - d
+ 2 + E, we conclude that Ym = d - 1 and hence that D lies on a curve of

degree m not containing r.
We now encounter the second difficulty in applying the previous

argument: since C need not be projectively normal, the fact that D lies on
a curve of degree m not containing r does not insure (as it did before)
that C lies on a surface R of degree m not containing S. Indeed, from the
sequence

we see that the space of curves of degree k in p2 containing D, modulo
those which are restrictions of surfaces of degree k containing C, has
dimension exactly

dim ker lk,

where lk is the map in diagram (4.b.6). What we can do, however, is to
bound this discrepancy: since by (4.b.8) and (4.b.16), we have
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we have in our present circumstances

From this we may deduce the

LEMMA: For some v, 0  v  8, the linear series 11c(m + v)1 in p 3 cuts out
the complete series 11D(m + v)1 in P2. (4.b.27)

Now, let v be as in Lemma (4.b.27). The series 11c(m + v)| of surfaces
of degree m + v through C then cuts out on S the complete linear series
|E| = 1(m + v)H - C| = vH + L|. We now make the

CLAIM: The base locus of the linear series JE | is a curve Eo c ,S’ with
fundamental class À. (4.b.28)

To see this, consider the series cut out on r by 1 El. To begin with, since
the divisor D lies on a curve of degree m not containing I, we can write
on r

mH - D + F

for some effective divisor F of degree e ; in fact, we have O0393(F)=L~O0393.
The linear séries JE on S thus cuts out, on the general hyperplane section
r of S, the complete linear series

What does this linear system on F look like? The key point here is the

LEMMA: Let r be a plane curve of degree d, F an effective divisor of degree
e on r. Then for any v such that d - 1 &#x3E; v + E, the linear series vH + F| on
r has F as fixed divisor; i. e., it consists of the linear series |vH| plus F.

(4.b.29)

PROOF OF LEMMA. Write F = p 1 + ... + p,, let Li c P 2 be a general line
through pi, and write

Then the complete linear series |vH+F| will be cut out by curves of
degree v + E passing through the 03B5(d - 1) points {qij}. But by Bezout’s
theorem any curve of degree v + E  d - 1 passing through ql,1, ... , ql, d-1 
must contain Li’ and the lemma follows. Q.E.D. for (4.b.29).
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Applying the lemma in our present circumstances (which we may do,
since by hypothesis d &#x3E; 8 + 03B5 + 2  v + e + 2), we see that the linear

system JE on S cuts out on r a linear system with fixed divisor exactly F.
The fixed divisor Eo of JE is thus a curve on S whose restriction to r is
F. Since O0393(F)=L~O0393, then, we conclude that for a general hyper-
plane section r of S,

and hence that

This establishes our claim (4.b.28) and thereby our theorem (4.b.26).

REMARK: The variational form of Theorem (4.b.26) will be discussed
below (cf. remark (4.c.18)).

As an example we may take

where the L, ~P3 are non-intersecting lines. Then for S a smooth surface
passing through the L, and with À denoting the fundamental class of C,
the virtual genus

Our theorem then implies the interesting fact:

If S is a smooth surface of degree

that contains a Hodge class À with

then necessarily

where the 03BBi are Hodge lines.

PROOF: By Theorem (4.b.26), À is the fundamental class of a curve C.
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Assuming that all components of C are reduced, it is clear from 03C0(03BB) =
- E + 1 that C must have  03B5 irreducible components, while from X - w = E
it follows that C must have exactly - components L, each of degree one.
Thus Li is a line, and these lines must be pairwise disjoint. Now take À, to
be the fundamental class of Li,

It remains to justify our assumption that all components of C have
multiplicity one. Suppose first that

where A is a line and C’ is an irreducible curve of degree e - 2. Using the
formula

for divisors D, E on S, we have

(since the genus of C’ ~ P3 is maximized when C’ is a smooth plane
curve);

But our assumption on d rules this possibility out.
Now suppose that C is any effective divisor having at least one

non-reduced component. Then an easy computation using (4.b.32) shows
that 03C0(C) is maximized when C is of the form (4.b.31). From this it now
follows that our C must have all components reduced. Q.E.D.

This result shows that the variable Hodge decomposition

intersects the fixed lattice Hz c H in an extremely subtle manner.

(c) Lines on surfaces (U)

Let S~P3 be a smooth surface of degree d  3 and denote by
{Hz, Hp,q, Q, T, 03B4} the infinitesimal variation of Hodge structure on
Hz = H2(S, Z) ~ H2prim(S) whose tangent space T = H0(S, OS(d)) corre-
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sponds to all infinitesimal deformations of ,S in p 3. Let A c S be a line
with fundamental class À. In this section we shall prove the following (cf.
(4.a.5))

THEOREM: With the above notations we have

Since this result is infinitesimal its proof will require a scheme-theo-
retic study of both Hodge-theoretic and projective conditions that a
surface contain a line (the latter is certainly well-known to experts). For
this we denote by

respectively the family of smooth surfaces S~|OP3(d)|, and those S that
contain a line.

Projective study. We begin by proving that

codim W = d - 3. (4.c.2)

For this we denote by W039B c Ud the subvariety of surfaces that contain a
fixed line A. The exact cohomology sequence of

gives

Since h0(O039B(d)) = d + 1 this implies that

codim W039B = d + 1. (4.c.3)

Finally, since the Grassmannian G = G(1, 3) of lines in p3 has dimension
4, (4.c.2) follows from (4.c.3).
We will reestablish (4.c.2) and at the same time give a natural

desingularization of W. For this we consider the incidence correspon-
dence

defined by
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Denoting by 03C01 and 7r2 the respective projections, we begin by noting that
for d3

is finite. ( Proof : Denoting the hyperplane class by w, the class À of any
line satisfies

From the Hodge index theorem it follows that the number of solutions
03BB~H2(S, Z) to the equation (4.c.4) is finite. Since h0(OS(039B)) = 1 our

claim follows.) The proof of (4.c.3) gives that

has codimension d + 1 in Ud X G. Putting these two observations together
yields

codim W = codim ir ( I )
= codim I - dim G.

=d-3.

For our infinitesimal purposes we need the

PROPOSITION: 1 is smooth ( including reduced). (4.c.5)

PROOF: We begin by identifying tangent spaces. Assuming that S E Ud is
given by

tangent vectors F1~ TS(Ud) may be considered as variations F0(x) +
tF1(x) (i.e., TS(Ud) ~ SymdC4/C . F0). Next, we also think of G as

2-planes in C 4and use the standard isomorphism

Explicitly, if A is given parametrically by

where
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then any arc {039Bt} in G with 039B0 = A and with tangent vector ~ corre-
sponding to the 2 X 2 matrix ~~l,2+J~ (i,j = 0, 1) is given parametrically
by

where (... ) are higher order terms in t and 03BB0, ÀI are linear functions of
s. The condition that

be tangent to I is

Setting

(4.c.6) is

Equivalently, we consider the map

given by sending (F1, ç) to the polynomial on the left-hand side of
(4.c.7). It is clear that 03C8 is surjective and the sequence

is exact (for any S E |OP3(d)|). This proves that the Zariski tangent space
to I is everywhere of codimension d + 1, which establishes (4.c.5). Q.E.D.
We will next show that

PROPOSITION: The map 03C01 : I ~ Ud is everywhere of maximal rank. Thus
W is the union of smooth branches each of codimension d - 3. (4.c.8)

PROOF : The differential
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is given by

where (Fl, ~) satisfies (4.c.7). The kernel of (4.c.9) is given by fields of
tangent vectors to P3

defined along A and satisfying

along A. Thus e is tangent to S along A and gives a section i OE

H0(O039B(N039B/S)) of the normal bundle to A in S. Since N039B/S ~ Un (2 - d )
we have h0(O039B(N039B/S)) = 0 for d  3. Q.E. .
REMARK: As indicated in Section 4(a), the same result holds if we replace
A by any smooth curve C~P3 with h1(NC/P3) = 0, G by an irreducible
Zariski neighborhood Z in the Chow variety corresponding to C, and W
by smooth surfaces of sufficiently high degree passing through some
C’ E . Moreover, if we assume that Z is smooth (scheme-theoretically),
then we may drop the condition h1(NC/P3) = 0.

Hodge theoretic study. Given a smooth surface S E Ud containing a line
A, we denote by V a neighborhood (in the analytic topology) of S in Ud
and by vn the subvariety of surfaces S’ E v that contain a line A’ close to
A. More precisely, vn is the intersection of V with the branch of
W = 03C01(I) determined by A. By (4.c.8), vn c V is a smooth submanifold of
codimension d - 3.

We may assume that the S’ E V are diffeomorphic to S by a diffeo-
morphism preserving the hyperplane class, and we denote by 03BB’ ~

H2(S’, Z) the class corresponding to the fundamental class À of A. The
condition that À’ be of type (1, 1) defines the following subscheme
VÀ c V:

By Theorem (4.b.2) we have

support Vx = V039B.

PROPOSITION: The schemes Vx and VA coincide. ( 4.c.ll) 

Assuming the proposition we shall complete the proof of Theorem (4.c.1),
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and then we shall give the proof of (4.c.11 ).

Proof of Theorem (4.c.l): We first note the

LEMMA: The codimension of H 0 (S, KS(- A)) in HO(S, KS) is d - 3.
(4.c.12)

PROOF: This follows from

and the exact cohomology sequence of

Recall that {HZ, Hp,q, Q, T, 03B4} denotes the infinitesimal variation of
Hodge structure on Hz = H2( S, Z) ~ H2prim(S) with tangent space

The Zariski tangent space to the scheme Vx given by (4.c.10) is (cf. (4.a.3)

From the definition (4.a.1 ) it follows that TS(V03BB) has codimension h2,0 -
h2,0( -À) in TS(V) (i.e., of the h2,0 equations that define TS(V03BB), exactly
h2,0 - h2,0(-03BB) are independent). We then have

by (4.c.12)

by (4.a.5)

by Proposition (4.c.11). It follows that (4.c.13) must be an equality, i.e.

which proves the theorem.



237

PROOF oF PROPOSITION (4.c.11 ) : With the notation NX/Y for the normal
bundle to X in Y we have exact sequences

A piece of the exact cohomology diagram is

(the top row is the exact cohomology sequence of (a), the vertical row
that of (b), and the bottom row that of (c)). We note the interpretations: (9)

03B2-1 (image a) = infinitesimal deformations of S in P3 such that there is
an infinitesimal deformation of A c P 3 that remains in
S.

It follows that

ker(03B3°03B2) = infinitesimal deformations of S~P3 under which A is
stable (i.e., A moves with S ).

We note finally the interpretation

ker(03B4°03B3°03B2) = infinitesimal deformations of S~P3 under which À
remains of type (1, 1) (the verification of this requires a
computation-c.f. [2]).

Combining the interpretations it follows that the proposition is equiva-
lent to:

We will prove this by showing that 8 is injective (this implies semi-regu-
larity in Bloch’s sense).
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The dual of the top row of (4.c.15) is the top row of

where we have used that

The commutativity of (4.c.17) is again a straightforward verification, and
Proposition (4.c.11) follows from the obvious surjectivity of the bottom
row in (4.c.17). Q.E.D.

REMARK: We may view Proposition (4.c.11 ) as an infinitesimal analogue
of Theorem (4.b.2). However, the proof gives also an infinitesimal

analogue of Theorem (4.b.26), as follows: Let 039B~P = P3 be a smooth
curve and S~|OP(d)|a smooth surface containing O. Define Vx and
as before (using the Chow variety to replace the Grassmannian, as was
done in 4.a)). Then: (4.c.18)

If h1(I039B(d - 4)) = h1(I039B(d)) = 0, then proposition (4.c.11) is still true.
(4.c.19)

PROOF: In the diagram (4.c.15),

Moreover, as in (4.c.17) the dual of the top row in (4.c.15) is

where 8* is the usual restriction map. Thus, from the exact cohomology
sequence of 0 ~ I039B(d - 4) - OP(d - 4) - O039B(d - 4) ~ 0,

Consequently, (4.c.16) holds and the argument is just as before. Q.E.D.
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(d) Infinitesimal variation of Hodge structure for Fermat surfaces

We denote by Fd the Fermat surface

of degree d in p 3. These surfaces have been the object of considerable
recent study (cf. [13], [14], and [15]). Given any smooth surface S E
|OP3(d)| we denote by

the infinitesimal variation of Hodge structure with (i) Hz = H2(S, Z); (ii)
Hp,q = Hp,q(S); (iii) Q = cup-product form on HZ; (iv) w = c1(OS(1)) is
the polarizing form; (v) T~H0(OP3(d))/H0(0398P3) is the tangent space
to l10p3(d)IIPGL at S; and (vi) 8 is the usual differential of the variation
of Hodge structure. We note that H2prim(S,Z) = {03C8~ HZ: Q(03C8, 03C9) = 0),
and that from V(S) we may construct the usual polarized Hodge
structure ~(S) associated to H2prim(S, Z). We also note that 03B4(03BE)03C9 = 0
for all e e T, and that

is injective. (10) Thus V(S) gives a point (p(S) Ei D, the classifying space
for polarized Hodge structures, together with a subspace T c Tcp(S)(D)
(more precisely, V(S) gives a point in 0393BD, and we choose a lift

cp(S) E D of this point). In this section we will prove the following

THEOREM: (i) If S ~|OP3(d)| is a smooth surface of degree d  5 with

then S is projectively equivalent to Fd. (ii) The automorphisms of V(Fd) are
exactly the automorphisms of I? 3 that leave Fd invariant.

The idea is, of course, to use the lines in S. The proof will show quite
clearly that just giving the Hodge structure does not seem sufficient to
reconstruct the Fermat surface, and we also feel that there are automor-
phisms of the polarized Hodge structure on H2( Fd, Z) that are not
induced by automorphisms of P 3.
We begin by describing the configuration of lines on Fd.

DEFINITION: A star is given by set of d coplanar lines in I? 3 all passing
through a common point.
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Briefly, a star consists of d members of a pencil of lines in P J. In suitable
homogeneous coordinates [ yo, y,, y2, y3] the plane of the star is YJ = 0,
the common point is yj = y2 = y3 = 0, and the lines are

We will say that the star is special if we can take

Intrinsically, the lines through [1, 0, 0, 0] in the plane y2 = 0 form a I? 1,
and these d points in P1 should be the orbit of a single point under a
cyclic automorphism. It follows that, if d &#x3E; 4, not every star is special.

It is well known that there are 6d special stars of lines on Fd, and
that every line belongs to exactly two stars. For example, setting e =
e03C0~-1/d and fixing an integer jn with 1  Il  d, the lines given parametri-
cally by

form a star lying in the plane

and passing through the point [0, 0, 1, 1’]. The other stars are obtained
by applying the automorphisms of Fd to this one (cf. [ 13], [15]).

Thus there are 3d2 lines on Fd, and two lines meet if, and only if, they
belong to the same star. We will denote these lines by L,,, where
jn = 1,..., d indexes the lines in a star and i = 1,..., 6 d indexes the stars.
With this labelling every line appears twice. We will also denote by
1B1t" E H2(Fd, ll) the respective classes of these lines.
Now let S~P3 be a smooth surface with the same polarized Hodge

structure as Fd. Thus there is an isomorphism

that preserves (i) the polarizing class 03C9=c1(O(1)); (ii) the intersection
form Q; and (iii) the Hodge decomposition. Using ~ we will identify the
two cohomology groups, and will denote by {HZ, Hp,q, Q, 03C9} the Hodge
structure on Hz = H2(Fd’ Z).

By Theorem (4.b.2) there are lines 039B03BC,l c S whose fundamental classes
are 03BB03BC,l. We can even say that the lines



241

are coplanar. ( Proof : First, using the intersection form any two of these
lines must intersect in a point. Choose three from among them; say 039B1,l,
039B2,l, 039B3,l. Then these are the possibilities:

In case (i) it is clear that all three lines lie in a plane. This is also true in
case (ii), since they must lie in the tangent plane TP(S).) In summary,
using only the Hodge structure we may say that S contains 3d2 lines that
fall in 6d sets of d coplanar lines, and that every line belong to exactly
two of these sets. But it is not at all clear that each set forms a star, much
less a special star. For this we must use the infinitesimal variation of
Hodge structure.
We now assume that d &#x3E; 5 and that (4.d.5) is induced by an isomor-

phism of the infinitesimal variations of Hodge structure corresponding to
S and Fd. (Equivalently, the period map

should satisfy the conditions

We may thus identify the spaces (cf. (4.a.l)) H2,0(-03BB03BC,l) for S and Fj.
Denote by 039B03BC,l, L,,, the respective lines on S, Fj with fundamental
classes 03BB03BC,l. Then by Theorem (4.c.l) the isomorphism (4.c.5) induces

(Note: we do not know yet that (4.d.6) is induced by a linear automor-
phism of P’ - in a certain sense this is the whole point). Using (4.d.6) we
will now show how to distinguish between the possibilities (i) and (ii) on
S. Although not logically necessary for the proof this will show clearly
the use of the infinitesimal variation of Hodge structure. We claim that
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the possibilities (i) and (ii) correspond respectively to

PROOF : In case (i) we may assume that the lines all lie in the plane y3 = 0
and are given by yo = 0, YI = 0, y2 = 0 respectively. It is then clear that the
union of their ideals consists of all homogeneous forms of positive
degree.

In case (ii), all the forms in

vanish at the common point p. Q.E.D. for the claim.
At this juncture we now know that the 6 d sets of coplanar lines on S

fall into stars, and presumably using the automorphisms of the infinitesi-
mal variation of Hodge structure we could even show that these are
special stars. Instead, we will give a direct argument for (i) in Theorem
(4.d.2).

For this we consider the intersection

where the equality is a definition. Since the lines 039B03BC,l are coplanar,
H2,0(-03C0l) consists of the forms in H°(S, OS(d - 4)) = H0(P3, OP3(d -
4)) that vanish on a plane P2l ~ P3. (This is because any form P E

H2,0(-03C0l) will either vanish on P2l or will cut out a curve r of degree
d - 4. The latter is impossible since r must contain the d lines 039B03BC,l.)
We next consider the intersection of d - 5 of the H2,0(-03C0l); say

The elements in this intersection are all of the form

where Ll(x) defines P2l and L(x) is an arbitrary linear form. In other
words, if V=H0(S,OS(1))* is the four-dimensional vector space such
that S = PV, then the intersection (4.d.7) is naturally ismorphic to V*.



243

DEFINITION: Given any class À". that does not correspond to a line in
one of the planes P21,...,P2d-5, we define

By what we have said above, 039B~v,J c h* consists of the linear forms on
PV that vanish on 039Bv,J.
Now the isomorphism (4.d.5) induces an isomorphism between the

corresponding spaces (4.d.7). Using this isomorphism we have that both
S and Fd are embedded in the same p 3 = PV and that 039Bv,J = Lv,J. Since
there are at most d(d - 5) lines in the planes PI2,..., P2d-5, there are at
least

lines 039Bv,j = Lv,j in the intersection ,S ~ Fd. By Bezout’s theorem it follows
that S = Fd and we are done for part (i) of the theorem.

The proof of part (ii) is similar. Given an automorphism of only the
Hodge structure, by Theorem (4.b.2) it induces an automorphism L03BC,l -
L03C3(03BC),03C3(l) of the configuration of lines in Fd. Since a preserves incidence it
takes stars into stars, but it is by no means evident that a is induced by a
linear automorphism of p3.

However, suppose that we have an automorphism of the infinitesimal
variation of Hodge structure inducing the permutation L,,"i ~ L03C3(03BC),03C3(i) of
the configuration of lines. Then there is an induced linear transformation

of the vector space V*, where Fd c PK Denote by

the contragredient transformation. Then (cf. (4.d.8))

for all lines Lv,j not in one of the planes IP 12 , ... , P2d-5. As in the proof of
(i) it follows that A(Fd) = Fd . Q.E.D.

(e) Planes contained in hypersurfaces in I? 5

When we try to generalize Theorems (4.b.2) and (4.C.1) about lines

contained in smooth surfaces in P3 to projective planes contained in
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smooth hypersurfaces X~P5, three difficulties arise: (i) since the Hodge
conjecture is not known for algebraic 2-cycles on a fourfold, we cannot
say that all of H4(X, Z)~H2,2(X)=H2,2(X, Z) consists of algebraic
cycles (modulo torsion questions); (ii) even if we are given a class

03BB~H2,2(X,Z) represented by an algebraic cycle, there are not yet
methods such as used in the proof of Theorem (4.b.2) to determine if À
contains an effective class (obviously (i) and (ii) are related); and (iii) in
contrast to H°(S, KS(-039B)) = (space of holomorphic 2-forms on SeP 3
vanishing on a line A ~S}, we do not have an obvious geometric
interpretation of H1(X, 03A93X~I039B), where A is a 2-plane lying in X c
P5. (12) On the other hand the fact that, among all surfaces in P5, planes
impose the least number of conditions on hypersurfaces leads us to

expect a positive answer to the following

QUESTION: Given a smooth hypersurface X~P5 of degree d with w =

c1(OX(1)), and given a Hodge plane; that is, a class 03BB~H2,2(X,Z)
satisfying (4.e.l)

does there exist a unique projective plane A c X whose fundamental class
is 03BB?

In this section we shall give an affirmative answer to the variational
form of (4.e.1), and in so doing shall in this case overcome the difficulty
iii) above. Specifically, we shall prove the

THEOREM: Let X be a smooth hypersurface of degree d in I? 5 and A c X be
a projective plane. Then equality holds in (4. a.4); i. e.,

As was the case for lines contained in surfaces, the proof of this theorem
will give an affirmative answer to the variational form of (4.e.1 ) (cf.
(4.c.ll)).

Let X~|OP5(d)| be a smooth hypersurface and U a small neighbor-
hood of X in |OP3(d)|. We may topologically identify all X’ E U with X,
and using this we will make the identification

H4(X’, l);: H4(X, Z) (X’ E U). (4.e.3)
Of course (4.e.3) will preserve the hyperplane class and cup-product and
therefore induces an isomorphism on primitive cohomology. Given a
Hodge class
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we let À’ E H4(X’, Z) be the class corresponding under (4.e.3) and
define, in the obvious natural way, a subscheme U03BB c U whose support is

The Zariski tangent space to Ux at X is given by (cf. (4.a.3))

where

is the differential of the variation of Hodge structure.
Now suppose X contains a 2-plane A with fundamental class À. We

may define a subscheme

whose support is

supp U039B = {X’ ~ U: X’ contains a 2-plane A’ close to 039B}.

To justify this we need to give a discussion parallel to that for lines in
surfaces in section 4(c), but since this is completely analogous to the
previous case we will not give the details.

As in the proof of Theorem (4.c.1 ), a major step in the proof of (4.e.2)
is given by the

PROPOSITION: The schemes UÀ, UA are smooth, and in fact

PROOF: In general we suppose that we have three compact, complex
manifolds

and we set

NA = normal bundle of A in P

NX = normal bundle of X in P

N039B/X = normal bundle of A c X.
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Then we have the pair of exact sequences

A piece of resulting cohomology diagram is (where 5 will be defined
below)

As before we have the interpretation:

ker y 0 /3 = infinitesimal deformations of X c P under which A is stable
( P is fixed). (4.e.8)

We will define 8 as the dual of a natural mapping

where we assume that

The mapping (4.e.9) is derived from the Ist two cohomology sequences of
the diagram

Again, as before we have the interpretation (cf. Bloch [2]):

ker 03B4 ° y o /3 = infinitesimal deformations of X c P under which the
fundamental class of A remains of type ( m, m ). (4.e.10)
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Comparing (4.e.8) and (4.e.l0), Proposition (4.e.5) is equivalent to

Note: The referee points out that 8 and y are surjective under the
hypothesis

moreover, ( * ) is satisfied for 039B~X4~P5. Thus ker(03B303B2) = ker(03B403B303B2) if
and only if 8 is injective; i.e., A E X is semi-regular in the sense of Bloch
(loc. cit.) So our proof of (4.e.5) reduces to the following residue-theoretic
computation establishing the semi-regularity of 039B~P2 in a smooth

hypersurface X c P 5.
To prove (4.e.l 1) we introduce coordinates [x, y == [x0,x1,x2,y0,y1,y2]

in p5 so that A is given by yo = y, = y2 = 0 and X by F( x, y ) = 0. For any
form P(x,y) we denote by P(x, 0) the restriction of P(x, y) to A. The
first sequence in (4.e.6) is (using NX ~ O039B ~ O039B(d) and N039B ~ ~ 3O039B(1))

where, for

By the discussion in Section 3(b) of [3] we have (using the notations
there)

The main computational step in the proof of (4.e.5) is provided by the
following lemma, whose proof is entirely analogous to the main computa-
tion in [4] and will therefore be omitted.
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LEMMA: Taking m = 2 in (4.e.7) and making the identification H0(039B,
NX ~ O039B)=H0(039B, O039B(d)), for P(x,y)~S2d-6 and Q(x)~H0(039B, O039B(d)),

Here the left-hand side is the duality pairing

and the right-hand side is the Grothendieck residue symbol.
It follows from (4.e.14) and the local duality theorem (cf. Chapter V of

[7]) that

By (4.e.12) this is exactly the condition that Q ~ image a, which proves
(4.e.11) and therefore also Proposition (4.e.5).

We may now complete the proof of Theorem (4.e.2). By the proof of
the proposition (cf. (4.e.10)) we have

By Lemma (4.e.14) and the local duality theorem,

This is clearly equivalent to

To complete the proof of the theorem we need only observe that the
proof of Theorem (3.b.7) in [3] gives that the residue mapping induces

The method of proof also gives the
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PROPOSITION : With the notations of Theorem (4. e. 2),

PROOF: If P E Sd-6 has residue

then by the proof of Theorem (4.e.2) we have

for all Q( x, y ) E Sd. By the local duality theorem and fact that deg P = d
- 6  d - 1 we conclude that P(x, 0) = 0. Thus P E H0(OP5(d - 6) ~ 1.B)
and 03C9P~H0(X, KX ~ h ). Q.E.D.

COROLLARY: If d  7, then the plane 039B is the base locus of the linear
system H4,0(-03BB)~H0(X, KX). (4.e.16)

Once again, the equations of the algebraic cycle A (assumed to exist)
are given by purely Hodge-theoretic data.

Put differently, for d  7 the base locus of PH4,0(-03BB) c PH0(X, KX)
gives the unique candidate for the equations of A. In particular, if A exists
it is unique. The trouble with using H4,0(-03BB) to show the existence of A
is the arithmetic properties of the Hodge class À must somehow be used.
In Part III of this series of papers we will give a general way of
constructing a candidate for equations of a cycle that does use these
arithmetic properties (to construct a global normal function). Of course,
we have no idea how viable this candidate is.

Note: Suppose that X~P5 is a smooth hypersurface of degree d contain-
ing a pair 039B1, 039B2 of skew 2-planes and set

Then the fundamental class of A is

where À) E H2,2(X, Z) is the fundamental class of 039BJ. We note that if

oj = c1(OX(1)), then À1, 03BB2, (.V2 are linearly independent. We claim that:

Theorem (4.e.2) remains valid when A is given by (4.e.17). (4.e.18)
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PROOF: We may define

and U. as before, and then the first step is to verify (4.e.5). Choose
coordinates [x0, x1, x2, y0, y1, y2] so that

Then the 1 st sequence in (4.e.6) is

where, for a sheaf on A,, we denote by F1  F2 the corresponding
sheaf on A (thus, H0(F1  F2) ~ H0(F1) ~ H0(F2)). To describe a we
remark that for

3 3

in H0(( ~ O039B1(1))  ( ~ SA2(1))),

in H0(O039B1(d)  SA (d)). The analogue of (4.e.14) is (this is the main step
in the proof):

where
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To complete the proof of (4.e.18) we have again from (4.e.19) that

the remainder of the argument is just as before.

COROLLARY: Under any infinitesimal deformation of X ~P5 such that

03BB=03BB1 + 03BB2 remains a Hodge class, both A 1 and 03BB2 also remain Hodge
classes. (4.e.20)

This again illustrates how the variable Hodge decomposition meets the
integral lattice in a very subtle manner.

As an application of the infinitesimal Max Noether theorem and scheme-
theoretic interpretation (4.a.3) of our infinitesimal invariant

Hm+k,m-k(-03B3), we will give a criterion for when the normal bundle of a
smooth curve C ~ P3 = P is indecomposable. Suppose, in fact, that we
have

where S is a smooth surface, and consider the normal bundle sequence

Note that

where deg S = n. We will prove the
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THEOREM: The sequence (4.f.1) splits if, and only if, C = S ~ R is a

complete intersection. (4.f.3)

COROLLARY: If C has degree d and genus g, and if

then the normal bundle Nc/p is indecomposable.

PROOF OF COROLLARY: We first note that if N’, N" are any two distinct
line sub-bundles of a rank 2 vector bundle N ~ C, then the obvious map

is surjective on a general fibre, and hence

with equality holding if, and only if,

It follows that if M c N is a line sub-bundle with c1(M)  1 2 c1(N), then
N is decomposable if, and only if, the sequence

splits. Indeed, if N = N’ ~ N" with say c1(N’)  c1 (N"), then c1(N’) 
c1(N/M) and either the map N’ ~ N/M is an isomorphism or else it is
zero, in which case N’ ~ M is an isomorphism. In either alternative,
(4.f.5) splits.

Applying this observation to (4.f.1) and using (4.f.2), we obtain the
corollary. Q.E.D.

EXAMPLE: If n &#x3E; 2 and A c S is a line, then for sufficiently large m we
may find surfaces R ~ |OP3(m)| such that (4.f.6)

S~R=C+039B

where C is smooth. From (4.b.5) it follows that the normal bundle to
C~P3 is indecomposable.

EXAMPLE: In particular, when n = 2 it follows easily that any irrational
curve, other than a complete intersection, on a quadric has an indecom-
posable normal bundle. (4.f.7)
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PROOF OF THEOREM (4.f.3): We first treat the case

n4,

as this is an immediate consequence of (4.c.20) and the infinitesimal Max
Noether theorem (3.a.16) in [3]. To see this, we look at the maps

where a is an in (4.f.1) and /3 is the obvious restriction. By the general
principle (4.c.20)9, a first order deformation S of S corresponding to a
section 03C4~H0(NS/P) will contain the first order deformation Û of C
corresponding to 03C3~H(NC/P) if and only if /3( T) = a( (J). But at the
same time, the infinitesimal Max Noether theorem asserts that, in case
n &#x3E; 4 and C is not a complete intersection on S, there exist first-order
deformations of S that contain no first-order deformations of C. We

conclude, then, that the map a is not surjective on global sections, and
hence that the sequence (4.f.1 ) does not split; this proves the theorem in
case n &#x3E; 4 (cf. remark (4.f.13) below).

The remaining cases n = 2, 3 of the theorem are naturally more
delicate, inasmuch as a deformation of a smooth quadric or cubic surface
will preserve the Picard number (and indeed, the map a will be surjective
on global sections in these cases).

The key idea here will be to look at the base locus E of a first-order
deformation of the surface S, and at the divisor classes cut out on E by a
first-order deformation of the curve C c S. We will show: (i) if C is not a
complete intersection with S, then this divisor class must indeed vary as
we deform C; and (ii) if the sequence (4.f.1) splits, we can make this
divisor class constant.

To make this precise in case n = 2, let S be a quadric in p 3 given by
the polynomial Qo. Let T = Spec C[03B5]/(03B52), and let the subscheme

be the first-order deformation of S given by the equation

for some quadric Q1. We may assume that the quadrics Qo and Q meet
transversely, so that the curve E ~ P3 given by Qo = Q = 0 is a smooth,
irreducible elliptic quartic curve; note that if 03C0:P3 T~P3 is the

projection, then
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Now, let Ml and M2 c S be lines of the two rulings of S, and let L be
a line bundle on  whose restriction to S is OS(M1). The restriction
L 0 O of L to É = E X T is then a first-order deformation of the line
bundle OE(M1), and so gives, via the induced map T ~ Pic E, a tangent
vector

to Pic E. The first half of our argument is now expressed in the

LEMMA: v ~ 0 (4.f.9)

PROOF: We prove this by globalizing. Let {Q03BB}03BB~P1 be the pencil of
quadrics generated by Qo and Q1, and let F be the curve consisting of
pairs (À, M ) where À E pl and M is the divisor class of a line on Qx; let

be the map given by

Since F is an elliptic curve - it is the double cover of PI branched at the
four values of À corresponding to the singular quadrics in the pencil ~ -
and non-constant, we conclude that ~ is an isogeny. In fact, ~ is an

isomorphism, but that is irrelevant; for our present purposes what is

important is the fact that the differential of ~ is never zero; since ~ is the
restriction of 0 to T c F, this establishes the lemma.
Lemma (4.f.9) asserts that as we vary the quadric Qo (to first order) in

the pencil QOQI, the divisor class cut on E = Qo ~ QI by a line on Qo
(and hence by any linear combination aMI + bM2 with a ~ b ) must vary.
We claim now that if the sequence (4.f.1) splits for a curve C c S linearly
equivalent to aMi + bM2, a =1= b, then we obtain a contradiction.

To see this, suppose that C is such a curve, and that (4.f.1) splits; let
Qo, 61 and É ~~P3 x T be as before. Let T E H0(S, Ns/p3) be the
section corresponding to the deformation S of S. (i.e. a section with
zero-divisor E~S). Then since (4.f.1 ) splits, there exists a section (J E
H0(C, NC/P3) whose image in NS/p3 ~ OC is the restriction of T to C; and
moreover we may choose a to vanish whenever |C does; that is, along the
intersection C~E=Q1~C. Now let ~P3  T be the first-order

~ In fact, a pencil of quadrics in P3 will have exactly four singular elements if and only if
its base locus is smooth (as was assumed in the present case).
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deformation of C corresponding to a; by the general principle (4.c.21),
we have

note, moreover, that since S is smooth over T, Û c S is a Cartier divisor.
But now the divisor C restricted to E is flat of degree 2 - deg C over T, as
is 03C0-1(C~E); since ~~03C0-1(C~E), then, it follows from (4. f .10)
that

Simply put, the divisor cut on E by C does not vary as we vary C. Thus,
in particular, the line bundle

the line bundle O() restricted to E is constant on Ê = E X T. If a =t= b,
however, this contradicts Lemma (4.f.9), and so we may conclude that
(4.f.1) does not split.

It remains to treat the case n = 3. Our argument here will follow

exactly the lines of the case n = 2. Indeed, it is clear that the latter half of
our argument goes over word for word if Qo and QI are cubics rather
than quadrics. What we have to analyze, then in case n = 3 is how the
various divisor classes on a varying cubic surface behave under restriction
to the infinitesimal base locus of that variation. Specifically, suppose S is
the cubic surface given by the cubic polynomial Qo, QI a second cubic
polynomial cutting a smooth curve E on S, and

the corresponding first-order deformation. Let L1,...,L6~S be skew
lines (and thus generators, together with the hyperplane class, of Pic S)
and let L 1, ... , L6 ~  be the corresponding deformations of L,, .... L6.
Then if we set, as before, É = 03C0-1(E)~, the restrictions O(i) ~ O
define first order deformations of the line bundles OS(Li) ~ (9 E and,
correspondingly tangent vectors v1,...,v6 to Pic(E). In these terms, it is
not hard to see that the remaining case n = 3 of (4.f.3) will follow, as in
the case n = 2, from the

LEMMA: The vectors v1,..., v6 are linearly independent. (4.f.11)

PROOF: Let us first check that the vectors v; are non-zero. This is not
hard; since i~03C0-1Li ( Q; does not vanish identically on any line

Li c S ), the first order deformation i/ of the divisor Li|E represents a
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non-zero tangent vector i6i to the symmetric product E3 of E. But since C
is not trigonal (any three points of E impose independent conditions on
the canonical series |KE|, which is cut on E by quadrics in P3), the

u

natural map E3 ~ Pic3(E) is an embedding; in particular the differential

u* is everywhere injective and hence vi = u*i ~ 0.
This said, we now want to identify the line in the tangent space

T(Pic3(E)) generated by each v, or equivalently, via the identifications

the codimension 1 linear system rl cl |OP3(2)| of quadrics which annihilate
the tangent vector vl. To see what rl is, note that if S is the locus of the
homogeneous polynomial F(X), then of the 4-dimensional vector space
of polars {~F/~X03B1} of F, a 2-dimensional subspace vanishes identically
on the line L,. The remaining ones cut on L, a pencil of what we may call
the polar divisors; these are just the divisors p + q of degree 2 on LI such
that

or, equivalently, such that there is a plane H~P3 through LI meeting S
in Ll plus a conic curve C with

This said, we claim that the linear system fi consists exactly of those
quadrics which cut a polar divisor on LI,

To see this, note first that since the tangent vector vI is a linear
combination of tangent vectors to E c J(E)) at the points PI of Li E E,
its annihilator in H0(E, 01 ) certainly contains the 1-forms on E vanish-
ing at all three points pi - that is, the quadrics in P3 containing the line
Li*

The second point needed to establish the claim is more subtle. We
observe that since the divisors Di = Li - E and Di,03B5 = Ll,03B5· E. are both
colinear - that is, h0(E, 6 (F - Di» = hO(E, 6 (F - Di,03B5)) = 2 where F is
the hyperplane divisor on E ~ P 3 - the tangent vector vi lies in the tangent
space to the subscheme W16 c J(E) at the point F - Dl . This tangent space
is in turn identified as the annihilator in H0(E, Qk)* of the image of the
tensor product map (cf. [1])

Dually, then it follows that rt contains any quadric whose intersection with
E contains a divisor of the pencil |F - DII on E. But now any polar divisor
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p + q on Li is, as noted, cut on L, by a conic C c S residual to L, in the
intersection of S with a plane in P3; and for any such conic C we can
certainly find a quadric Q ~ P3 containing C but not L,. Since C cuts on
E a divisor of the pencil ||F - Dl|, then, Q ~ 0393l; and since Q ~ C but
Q J L, Q must cut on Li exactly the divisor p + q. Thus li cuts out on L,
the polar pencil; since it includes as well all quadrics containing L, our
claim is proved.

Having now identified the linear system r, as those quadrics which cut
polar divisors on L,, to show that the original vectors vl are independent
we have to show that

and since we can spot right away a 3-dimensional (sub)series of r, - just
the system of polar quadrics of S - this is equivalent to the final

LEMMA: Any quadric which cuts a polar divisor on each of the lines

L1,..., L6 is in fact a polar quadric of S.

Now, this statement as it stands appears difficult; we know of no way
to establish it directly. We can, however, prove it easily by going back a
step or two and transposing it. The point is that since

(i) any linear relation 03A3aiLi=0 in the classes of the lines Li in

Pic(S) ~ H2(S,Z) modulo the hyperplane class implies the same relation
03A3aivi = 0 among the vectors vi; and since

(ii) the classes LI,,,., L6 generate H2(S, Z) modulo the hyperplane
class, we see that we can replace the lines Ll, ... , L6 in Lemma 2 with the
six lines on S independent in H2(S, Z) modulo the hyperplane class. In
particular, we may replace L, and L6 with the two lines Ml, M2 on S
meeting each of L1, L2, L3 and L4 (cf. [7], p. 486) forming a configura-
tion

(in fact, the classes LI,... , L4, Ml, M2 and H form a unimodular basis
for H2(S, Z)) and now the Lemma is easy: if there were in fact five

independent quadrics in I? 3, each cutting a polar divisor on each of the
lines L1, L2, L3, L4, M1, and M2, then there would be a non-zero quadric
Q containing Ml and M2 and cutting a polar divisor on each of

L1,..., L4. But since M1 and M2 are skew, the divisor pi + qi, pi = M1 · Ll,
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ql = M2 - Lt on Ll is not polar; since Q contains p, and ql it follows that Q
must contain LI, L2, L3 and L4. This finally is impossible: a quadric
Q ~ P3 cannot contain four skew lines of intersection with a cubic.
Q.E.D.

REMARK: While Corollary (4.f.4) applies to a large range of curves in P3
- for example, if S is any smooth surface and C any curve on S not a
complete intersection, for all m sufficiently large the linear system
|OS(C)(M)| on S consists of generically smooth curves satisfying the
requisite inequality

it does not apply to a general embedding in P 3of degree d of a general
curve of genus g &#x3E; 7: for such a curve, estimates on hO(C, Sc(n)) and the
inequality g &#x3E; d(n - 2) + 1 would combine to say that h1(C, OC(n)), and
hence h1(C, NC/P3), were non-zero; but we know the latter vanishes (cf.
[6]). Thus the question remains of whether the normal bundle of such a
curve is, in general, indecomposable.

REMARK: By comparing Proposition (4.a.7) and the extension (4.c.19) of
Proposition (4.c.11 ) we are not only able to say that the sequence (4.f.1 )
does not split but, in a rather curious way, are able to measure how
non-split it is. To explain this, let C c P = P3 be a smooth non-complete
intersection curve of genus g and degree m, and let S c P be a smooth
surface of degree d &#x3E; d(g, m ) containing C. Using the fact that (4. f .13)

the exact sequence (4.f.1) is

and we let

be the extension class. Finally we consider the natural pairing

and denote by
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the natural mapping

Then we have the

PROPOSITION :

COROLLARY: e ~ 0 for d sufficiently large.

PROOF OF COROLLARY: By the Riemann-Roch for C

for sufficiently large d. By the proposition we must then have e ~ 0.
Q.E.D.

PROOF OF PROPOSITION: Let Y E H1,1(S) ~H2(S, Z) be the fundamental
class of C. By (4.a.7)

On the other hand, we consider the diagram (4.c.15) (with C replacing
A). If F( x ) = 0 is the equation of S, then there is a natural identification

and the diagram gives (with fi denoting restriction)

Set Sk = H0(OP(k)) and think of elements Q E Sd as giving the tangent
to the deformation { F + tQ = 0) of S. Using the duality isomorphism
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we have

On the other hand, any G E Sk gives by restriction an element g E
H0(OC(k)) and an easy computation gives

where e ~ H1(KC(4 - 2d)) ~ H0(OC(2d - 4))* is the extension class of

(4.f.14). (In fact, the cohomology map H0(O(d)) ~ H1(KC(4 - d)) is
well-known to be given by cup-product with e, and (4.f.18) is an obvious
consequence of this.) From (4.f.18) we have

From (4.f.19) we have

But by (4.f.17) the left hand side is also equal to

and the proposition follows from these two equations. Q.E.D.

REMARK: Theorem (4.f.3) and Proposition (4.f.15) may to some extent be
generalized to an arbitrary smooth 039Bm ~ P2m+1, as follows: For simplic-
ity we consider the case of a smooth surface

and let X c P be a smooth hypersurface of degree d containing A. The
analogue of (4.f.1 ) is
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and using the infinitesimal Max Noether theorem (3.a.16) we have that:

If A is not homologous to a complete intersection, then the sequence (4.f.21)
does not split for d  3. (4.f.22)

PROOF: If it does split, then y = 0 in (4.e.7). This then implies that the
fundamental class of A remains of type (2, 2) under all infinitesimal
deformations of X, which contradicts (3.a.16) in [3]. Q.E.D.

As before we may prove a stronger result for d assumed to be

sufficiently large (this automatically implies that A is not homologous to
a complete intersection). To explain this we let

be the extension class of (4.f.21). Observe that

and let

be the image of e 0 e under the natural map

PROPOSITION: A2e ~ 0. In particular, the sequence (4.f 21) does not split.

PROOF: We set Sk = H0(OP(k)) and denote the restriction mapping

by

If X has equation F( x ) = 0 ( F E Sd ), then each P E Sd may be considered
as tangent to the family {F + tP = 0) of hypersurfaces, and we denote by

the corresponding infinitesimal change in Hodge structure (03BEP is cup-



262

product with the Kodaira-Spencer class of P). The diagram (4.e.7) gives,
for each P ~ Sd,

where (Q) = q. Given

we have the following analogue of (4.f.18):

( Note : This makes sense since pqr E H0(O039B(3d - 6)) and 039B2e E H2(K039B(6
- 3d)) ~ H0(O039B(3d - 6))*.) The proof of (4.f.25) is based on the remark
that y : H0(O039B(d)) ~ H1(N039B/X) is given by cup-product with e; further
details will be omitted.)

Since

we may conclude that

where 03BB ~ H4(X) is the fundamental class of A. On the other hand, if
d &#x3E; 6 and A is not a complete intersection, then the infinitesimal Max
Noether theorem (3.a.16) implies that

03BEP03BEQ03BB ~ 0 for some P, Q E Sd.

This proves the proposition. Q.E.D.
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Notes

(1) Put slightly differently, we may identify

with the conormal space to T(U03B3) in T(U).

(2) This means that, in the Lefschetz decomposition

y is the projection to H2mprim(X) of the fundamental class of r.

(3) In a certain sense, the Riemann-Roch theorem

for surfaces is just a reflection of the Riemann-Roch theorem for the curves on S. What
(4.b.2) seems to require is the deeper understanding of special linear series on curves lying
on S.

We remark that the theorem is easy for d = 3 (cf. Chapter IV of [6]), and follows
immediately from (4.b.3) when d = 4. Thus we may restrict attention to the case d  5.

(4) This is equivalent to examining the sequence h0(OP3(k) ~ IC), which is clearly what
is relevant to the proof of (4.b.4).

(5) We recall that C is projectively normal if
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By (4.b.6) this is equivalent to

being surjective for all k &#x3E; 0.

(6) The proof consists in examining the restrictions of the linear séries IHo(Sp3(k) 0 Il
first to planes and then to lines.

(7) Put differently, the failure of projective normality or of the postulation sequence for
C would force the genus of C to be less than that of a smooth curve that is residual to a line

in a complete intersection S ~ R. But from (4.b.1 ) we know what the genus of C must be, so
that all inequalities must be equalities.

(8) We note that

and that the vector

may be intrinsically interpreted as a section in H0(039B, N039B/P3) where N039B/P3 ~ O039B(1) ~ O039B(1)
is the normal bundle to A in P3. With this interpretation

(9) These interpretations together with the analogous ones to be used in 4(e) and 4(f)
are consequences and variants of the following:

GENERAL PRINCIPLE: Let X c Y C Z be smooth varieties, and in the diagram

let a and,8 be the natural quotient and restriction maps. Let a E HO (NX/Z) and T E HO (NY/Z),
and let X,  c Z X Spec C[ E]/( E2 ) be the corresponding first order deformations of X, Y in Z
( cf . Kodaira [ 11 D. Then X c  if, and only if, 03B1(03C3) = 03B2() (4.c.20)

COROLLARY: Keeping the above notations, let W c Y be the scheme of zeroes of T and
7r: Z X C[03B5]/(03B52) - Z the projection. Then

PROOF: This follows from (4.c.20) in the case 0 --- 0.
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(10) Using the notations of § III b) of [4] (with S corresponding to X), we may identify
T’ with SdIJFd and H 2,0 with Sd-4’ H1,1 with S2d-4/JF,2d-4’ When this is done the

differential

becomes ordinary multiplication

which by Macaulay’s theorem is injective in each factor.

(11) Briefly, an isomorphism between the Hodge structure for S and Fd induces an
isomorphism

Moreover, each of S, Fd will contain configurations of lines 039B03BC,l, L03BC,l whose fundamental
classes correspond under (4.c.5). However, more geometric information relating these is
required, and this is provided by using the infinitesimal variations of Hodge structure to
prove that ( * ) induces

which is just (4.d.6).

(12) In fact, (iii) is also related to (i) and (ii) in that a basic difficulty in constructing
cycles is the lack of a suitable geometric interpretation of the middle Hodge groups Hp’q for
p,q&#x3E;0.
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