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§ 0. Introduction.

One of the present authors has recently studied infinitesimal variations of
submanifolds of a Riemannian manifold, [5], [6], [7]. See also [1]. The method
used is to displace the varied quantities back parallelly from the displaced
point to the original point and to compare quantities obtained with the original
quantities, [5], [7]. The variation is said to be parallel when the tangent space
at a point of the submanifold and that at the corresponding point of the varied
submanifold are parallel, [7H, and the variation is said to be normal when the
variation vector is normal to the submanifold, [7].

In the present paper we study normal parallel variations which preserve the
Ricci tensor of a submanifold of a space of constant curvature and prove
Theorem 3. 8 using the following result of Sakamoto [4]. (See also [8])

THEOREM A ([4]). Let Mn be an n-dimensional connected complete submani-
fold with parallel second fundamental tensor immersed in an m-dimenswnal
sphere Sm(d) with radius α>0 (l<n<m) and suppose that the normal bundle is
locally trivial. Then Mn is a small sphere, a great sphere or a Pythagonan
product of a certain number of spheres.

To prove Theorem 4. 1 as a main result of the paper, we use the following
theorem proved by Lawson [3] (See also [2]).

THEOREM B ([3]). Let Mn+l(c, R) be the simply connected space of constant
curvature c, Sn+1(R), Rn+1 or Dn+1(R), depending on whether c is 1, 0 or — 1
respectively. Suppose that Mn is a submanifold of Mn+l(c, R) over which the
Ricci curvature is covanantly constant. Then, if Mn is isometrically immersed
into Mn+l(c, R) with constant mean curvature, it must be an open submanifold of

(i) Sk(r)xSn-k(^W^r*) for some r, R^r^Q, and k=0, •••, - if c=l.

(ii) Sk(r)xRn~k for some r^O and k=Q, — , n if c=Q.

(iiϊ) Sk(r)XDn~k(VW+r2) for some r^O and k=Q, •••, n, or Fn, if c=-l.
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§ 1. Structure equations of submanif olds.

Let Mm be an m-dimensional Riemannian manifold covered by a system of
coordinate neighborhoods {£/; xh} and denote by gjif Γfy, V,, Kkji

h and Kjt the
metric tensor, the Christoffel symbols formed with gjif the operator of covariant
differentiation with respect to Γ%> the curvature tensor and the Ricci tensor of
Mm respectively, where, here and in the sequel, the indices h, i, j, k, ••• run
over the range {ϊ, 2, •••, m}.

Let Mn be an ^-dimensional Riemannian manifold covered by a system of
coordinate neighborhoods {V ya} and denote by gcb, Γ%,, 7C, Kdcb

a and Kcb the
corresponding quantities of Mn respectively, where, here and in the sequel, the
indices α, b, c, d, ••• run over the range {1, 2, •••, n}.

We suppose that Mn is isometrically immersed in Mm by the immersion
i: Mn-*Mm and identify i(Mn) with Mn itself.

We represent the immersion by

(1.1) xh = xh(ya)

and put

Then Bb

h are n linearly independent vectors of Mm tangent to Mn. Since the
immersion is isometric, we have

(1-3) gc^Btigji,

where B£=Bc>Bb\

We denote by Cy

hm — n mutually orthogonal unit normals to Mn, where,
here and in the sequel, the indices x, y,z run over the range {n + 1, n+2, •••, m}.
Then the metric tensor of the normal bundle of Mn is given by

(1.4) g,v=CSCy*gJt

and has values gzy=dzy, δzy denoting the Kronecker delta.

It is well known that Γ%> and Γfy are related by

(1.5) Γ?b=(dcBb

h+Γ^BiQB\,

where Ba

h=Bb

tgbagίh, gba being contra variant components of the metric tensor
gcb of Mn and the components Γΐy of the connection induced in the normal
bundle are given by

(1. 6) Γ* =@cC/+ΓJ<Sc'Cy

<)C*Λ,

where Cx

h=Cy

lgyxgifL, gyx being contra variant components of the metric tensor
gyx of the normal bundle.
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If we denote by VC£6

Λ and V c C y

Λ the van der Waerden-Bortolotti covariant
derivatives of Bύ

h and Cy

h along Mn respectively, that is, if we put

(1.7) 7e

and

(1. 8) 7C Cy

 Λ=3β C/+ΓJ, 5cJ C/-Γ3, CΛ

then we can write equations of Gauss and those of Weingarten in the form

(1.9) ^cBb

h=hcb

xCx

h

and

(1.10) VcCyh=-hc

a

yBa

h

respectively, where hcb

x are the second fundamental tensors of Mn with respect
to the normals Cx

h and hc

a

x=hcbxg
6a=hcb

ygύagyx.

Equations of Gauss, Codazzi and Ricci are respectively

(1. 11) Kdcb

a=Kkji

hBttti+hd

a

x hcb

x-hc

a

x hdb

x,

(1. 12) 0=K

and

(1.13) Kdey*=Kkj

where

(i. 14) Kdcy

x

and

Kdcy

x being the curvature tensor of the connection induced in the normal
bundle.

§ 2. Infinitesimal variations of submanif olds. [7]

We now consider an infinitesimal variation of Mn of M m given by

(2.1) xh=xh+ξh(y)e,

where gjiξJξl>Q and ε is an infinitesimal. We then have

(2.2) Bb

h=B
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where Bb

h=dbx
h are n linearly independent vectors tangent to the varied sub-

manifold at the varied point (x h).

If we displace Bb

h back parallelly from the point (xh) to (xh), then we
obtain

that is,

(2.3) B ft

Λ=5

neglecting the terms of order higher than one with respect to ε, where

(2.4) 76£
Λ=36£

Λ+Γftβ6>£*.

In the sequel we always neglect terms of order higher than one with res-
pect to the infinitesimal ε.

Thus putting

(2.5) δBb

h=Bb

h-Bb\

we have

(2.6) W=(7ft£
A)6.

If we put

(2.7) ξh=ξaBa

h+ξ*Cx

h,

we have

(2.8) V 6fΛ=(7 6fα-Λ 6%f*)

When £*=(), that is, when the variation vector ξh is tangent to the sub-
manifold we say that the variation is tangential and when ξa=Q, that is, when
the variation vector ξh is normal to the submanifold we say that the variation
is normal.

From (2. 5), (2. 6) and (2. 8), we have

(2.9) Bb

h=tδϊ+Wbξ
a-hb\ξ*ϊε-]Ba

h + (Vbξ*+hba*ξa)Cx*ε.

When the tangent space at a point (xh) of the submanifold and that at the
corresponding point (x h) of the varied submanifold are parallel, we say that the
variation is parallel [7].
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From (2.9), we have

PROPOSITION 2. 1 [7]. In order for a normal variation of a submanifold to
be parallel, it is necessary and sufficient that

(2. 10) 7,£ =0,

that is, the variation vector ξxCx

h is parallel in the normal bundle.

When the submanifold is a hypersurface, a normal variation is given by
xh=xh+λChε, Ch being the unique unit normal to the hypersurface and λ a
function. In this case (2. 10) reduces to 7δΛ=0 and we have

PROPOSITION 2. 2 [7]. In order for a normal variation of a hypersurface to
be parallel, it is necessary and sufficient that the normal variation displaces each
point of the hypersurface the same distance.

Denoting by Cy

h m — n mutually orthogonal _unit normals to the varied
submanifold and by Cy

h the vectors obtained from Cy

h by parallel displacement
of Cy

h from the point (xh) to (xh), we have

(2. 11) /=C

We put

(2.12) δCyh =

and assume that δCy

h is of the form

(2.13) dCy

h = (ηy

a

Then (2. 11), (2. 12) and (2. 13) give

(2. 14) Cv

h=Cv

h-Γh

jiς>Cv*

Applying the operator δ to Bb

JCy

tgji=Q and using (2.6), (2.8), (2.13) and
δgjt=Q, we find

where ζy=ζ*g,y and ηyb=yy

cgcb, or, putting Vα-=^δ αVδ,

(2.15) ?/— C^ + V.a.

Applying the operator δ to Cj Cy

τgji=dzy and using (2.13) and δgjl=0,
we find

(2.16) ?v* + ?*y=0,

where ηyx=r)y

zgzχ.
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From (2. 12) and (2. 13), we have

(2. 17) Cv

h=lyy

aB

% 3. Variations of the curvature tensor.

In this section we compute infinitesimal variations of the Christoffel sym-
bols, the second fundamental tensors and curvature tensor of the submanifold.

Suppose that vh is a vector field of Mm defined intrinsically along the
submanifold Mn. When we displace the submanifold Mn by xh=xh+ξh(y)ε in
the direction ζh, we obtain a vector field ϋh which is defined also intrinsically
along the varied submanifold. If we displace vh back parallelly from the point
(xh) to (JCΛ), we obtain

and hence putting dvh=ϋh—vh, we find

(3. 1) δvh=ϋh-vh+Γ^ vl ε.

Similarly we have

that is,

(3.2)

On the other hand, from (3. 1) we have

(3.3) Vcdvh=Vcϋ
h-Vc

Thus forming (3.2) — (3.3), we find

(3.4) δVev
h-Vcδυh=KkJ

For a tensor field carrying three kinds of indices, say, Tby

h, we have

(3. 5) S7C Tby

h-VcδTby

h=KkJSξkBc> Tby* e-(3ΓS) Tay*-(δΓ& Tbx\

where dΓ?b and δΓ^ are variations of Γg> and Γ^ respectively.
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Applying formula (3. 5) to B^, we find

or using (1. 9) and (2. 6)

δ(hΛ*Cx* }

from which, using (2. 13),

Thus we have

(3. 6) δ

and

from which, using (1. 12) and (2. 8),

(3. 7) ,̂'=[5*7,, Ae» +A.»

Substituting (2. 8) and (2. 15) into (3. 6) and using equations (1. 11) of Gauss
and (1. 12) of Codazzi, we get

or, equivalently,

(3.8) 3ΓS

where J7.ΓS, denotes the Lie derivative of /"S, with respect to ξ a [6], that is,

For the varied submanifold, the curvature tensor of the submanifold can be
written as

(3. 9) Kdcb

a=ddΓ^-dcΓ
a

db+Γ^Γe

cb-Γa

ceΓ
e

db.

Thus denoting by Kdcb

a+δKdcb

a the curvature tensor and by ΓS+δΓ& the
Christoffel symbols of the varied submanifold, we have
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from which

Substituting (3. 8) into this and using (1. 14), we find by a straightforward
computation

(3. 10) a/s:drt

β

where [6]

(3. 11) -CKdcb"= V, _ΓΓ?6-7C J7/X

from which, using the Ricci identity,

(3. 12) a/fdrt^E^/fie*"-^,,..0 AΛf'+^<ι«» A.β,fί -V((7»(Ae

β»ί«)

which implies that

(3. 13)

+ Vc

Thus we have

PROPOSITION 3. 1. ^4n infinitesimal variation of a submanifold gives the
variation (3. 12) to the curvature tensor and consequently it preserves the curvature
tensor if and only if

(3. 14) -ΓKdcb*=Kdeβ*hb'xξ*-KdeShSxξ*

+ V, V6 (hc\ f*)- V, Vα (Λc 6 a ί f')-7c 76 (Ad% f)

PROPOSITION 3.2. ^4n infinitesimal variation of a submanifold gives the
variation (3. 13) to the Ricci tensor and consequently it preserves the Ricci tensor
if and only if
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(3. 15) -CKcb=Kcehb

e

xξ*-Kdcbah
d\ξ*

COROLLARY 3. 3. For an infinitesimal normal variation of a submamfold,
we have

(3. 16) δKcb=l-Kcehb

e

xξ*+Kdcbah
da

xξ*

and consequently a normal variation of a submanifold preserves the Ricci tensor
if and only if

(3.17) -Kcehb

e

x

From Proposition 2. 1 and Corollary 3. 3, we have immediately

COROLLARY 3. 4. An infinitesimal normal parallel variation of a submamfold
preserves the Ricci tensor if and only if

(3. 18) \_Kdcba h
d\-Kce /ιΛ- Vα Vδ hcax+Va 7α hcbx

We now prepare a lemma for later use.

LEMMA 3.5. // a submanifold Mn of a Riemannian manifold Mm admits
m—n linearly independent infinitesimal normal parallel variations, then the con-
nection induced in the normal bundle is of zero curvature.

Proof. By Proposition 2. 1, a normal parallel variation satisfies Vδp— 0,
from which

Thus if Mn admits m — n linearly independent infinitesimal normal parallel
variations, then we have Kdcy

x=Q, which proves the lemma.
We now suppose that the ambient manifold Mm is a space of constant cur-

vature c. Then we have from (1. 11), (1. 12) and (1. 13),

(3. 19) Kdef=c(δϊge»-δigdb)+hd

a

v hcb

y-hc

a

y hdbv,
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(3.20) 7dΛrt'-7cλdft*=0

and

(3.21) Kdcy

x=hde

xhc

e

y-hce

xhd*y

respectively.

From (3.18), (3.19) and (3.20) we have

(3. 22) Ihcav hdb

y hda

x-hc

d

y hde

y hb

e

x+he

e

y hcd

y hb

d

x

+ nchcbx-hdeyh
de

xhcby-che

e

xgcblξ
x=Q.

We now prove the following

LEMMA 3. 6. Let Mn be a minimal submanifold of a space Mm of constant
curvature c. If the submanifold Mn admits m—n linearly independent infinitesimal
normal parallel variations preserving the Ricci tensor of Mn, then the length of
the second fundamental tensor is constant.

If, moreover, c^O, then Mn is totally geodesic.

Proof. First of all, by Lemma 3.5, we have Kdcy

x=Q and consequently
by (3.21)

λdβ λβ%-λeβ AΛ=0.

Thus, Mn being minimal, we have from (3.22)

(3. 23) nchcby=ayx hcb

x,

where we have put

(3.24) ayx = hdeyh
de

x.

Applying Vd to (3.23) and taking skew-symmetric part with respect to d
and c, we find

(3. 25) (7dα,β) λeft*-(7eα,,) hdb*=Q

because of (3. 20), from which, Mn being minimal,

(3.26)

If we transvect hcby to (3.25) and make use of (3.24) and (3.26), then we
have

yx- ! yx —)OCy — y d(ayxa
y ) — ,

from which we see that avxa
yx is constant.
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Now, from (3. 24), we find

ayxa
yx=hdeyh

de

xa
yx,

from which, using (3.23)

(3. 27) ayx a
yx=nchd

Thus ay

y is also constant. The last assertion follows immediately from (3.24)
and (3. 27). This completes the proof of the lemma.

Finally we prepare the following lemma.

LEMMA 3.7. Let Mn be a minimal submanifold of a space Mm of constant
curvature c. If the submanifold Mn admits m—n linearly independent infinitesimal
normal parallel variations preserving the Ricci tensor of Mn, then the second
fundamental tensor is parallel.

Proof. We compute the Laplacian ΔF of the function F=hcύ

x hcb

x, which
is globally defined in Mn, where Δ— g c δ V c V 6 . We then have

±-LF=g*d (Ve V, λeft*) Λcδ,+(Vc hba

x) (Ψ hb\) .

By using the Ricci identity and equations (3. 20) of Codazzi, we can easily
find

~LF=Kc

a hba

x hcb

x-Kecba h
e\ hcbx+(Vchύa

x)(Ψhba

x)

with the help of Lemma 3.5 and gcbhcb

x—Q, where Kc

a is defined to be
Kc

a—Kcbg
ba and, as we can see from (3. 19), is given by

(3.28) Kc

a=c(n-l}δΐ-hc

e

xhe

ax

under our assumptions. If we substitute (3. 19) and (3. 28) into the expression

above of yΔF, then we have

y ΔF=ncA f t β* hba

x-ayx α»*+(7e A6β*) (Ψ hb\) ,

from which, taking account of Lemma 3. 6 and (3. 27),

V eA6 α*=0,

which proves the lemma.
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Combining Theorem A, Lemmas 3. 5, 3. 6 and 3. 7, we have

THEOREM 3. 7. Let Mn be a simply connected and complete minimal submani-
fold of a space Mm of constant curvature c. If Mn admits m—n linearly
independent infinitesimal normal parallel variations preserving the Ricci tensor of
Mn, then Mn is totally geodesic if c^O, Mn is Sn(r) or Sp(rJXSn-p(rύ if c>0,
where Sn(r) denotes an n-sphere of radius r>0.

§ 4. Variations of hypersurf aces preserving the Ricci tensor.

In this section, we consider a normal parallel variation xh= xh+λChε of a
hypersurface Mn, where λ is a positive function and Ch the unit normal to Mn.
In this case (2.10) reduces to Vbλ=Q and (3.13) to

(4. i) δκcb=ij:κcb-λκcehb

e+λκdcbah
da-^^b(λhca}

α 7α Uλcft)+7c Vδ tf AeO- V c V
α (λhba)~] ε.

In the sequel we suppose that the normal parallel variation of a hyper-
surface with constant mean curvature of a space of constant curvature preserves
the Ricci tensor. Then we have from (3. 19), (3. 20) and (3. 22)

(4. 2) (he

e) hcd hb

d+(cn-hed h
ed) hcb-che

egcb=Q.

Since the mean curvature he

e is constant, we have only to consider two
cases λβ

β=0 and λβ

β=£θ.

In the first case, we have from (4. 2),

(4.3) hedh
ed=nc or hcb=Q.

In the second case we have

(4.4) hcehb

e=khcb+cgcb,

where we have put

(4.5) k=-^(hdeh
de-nc).

ne

Differentiating (4.4) covariantly along Mn, we find

(4. 6) (7d /ice) hb

e+hceVd hb

e=(Vdk) hcb+kΊd hcb,

from which, taking skew-symmetric part with respect to d and c and using the
fact that V d /z c δ — V c /z d δ — 0, we have

(4.7) hceVdhb

e-hdeVchb

e=
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Interchanging indices d and b in (4.7), we get

Adding (4.6) and (4.8) and using 7ώ hce—^chde=0, we find

If we transvect gdb to this and use the fact that he

e is constant, then we have

(A. 1 Γf) h e^ ϊ? — — h & ^\J h^.ιυ; nc ve£- 2 ne vc/?.

Moreover, transvecting (4.9) with ha

c and taking account of (4.4) and (4.10),
we find

(4.11) kha

eΊdh

from which, transvecting gdb and using (4. 10)

from which, he

e being a constant, we have &=constant on Mn. Thus (4. 9) and
(4. 11) imply that

(4.12) (

Thus, if ^2+4c^O, we have 7d ΛC6=0. If £*+4c=0, then we see from (4. 4) that

and consequently hcb—-^-kgcb which implies that ^dhcb=0. Therefore in any

case we have

(4.13) Vdλe 6=0,

from which, using the equations of Gauss, we see that the Ricci tensor is
covariantly constant. Thus we conclude that

( i ) If he

e=Q, then hedh
ed=nc or /zcό=0,

(ii) If /ιe

e^0, then hcehb

e=khcb+cgcb, &=constant and 7^ hcb=Q.



284 KENTARO YANO, U-HANG KI AND JIN SUK PAK

Therefore by Theorem A (See also Chern, do Carmo and Kobayashi [2]) we
have

THEOREM 4.1. Let Mn be a complete hyper surf ace with constant mean cur-
vature of a unit sphere. If an infinitesimal normal parallel variation xh=xh+
λChε, Λ>0, preserves the Ricci tensor of Mn, then Mn is a sphere Sn or
SrXSn~r.
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