INFINITESIMAL VARIATIONS OF THE RICCI TENSOR OF A SUBMANIFOLD

Dedicated to professor Tominosuke Ōtsuki on his sixtieth birthday

By Kentaro Yano, U-Hang Ki and Jin Suk Pak

§ 0. Introduction.

One of the present authors has recently studied infinitesimal variations of submanifolds of a Riemannian manifold, [5], [6], [7]. See also [1]. The method used is to displace the varied quantities back parallelly from the displaced point to the original point and to compare quantities obtained with the original quantities, [5], [7]. The variation is said to be parallel when the tangent space at a point of the submanifold and that at the corresponding point of the varied submanifold are parallel, [7], and the variation is said to be normal when the variation vector is normal to the submanifold, [7].

In the present paper we study normal parallel variations which preserve the Ricci tensor of a submanifold of a space of constant curvature and prove Theorem 3.8 using the following result of Sakamoto [4]. (See also [8])

Theorem A ([4]). Let M^{n} be an n-dimensional connected complete submanifold with parallel second fundamental tensor immersed in an m-dimensional sphere $S^{m}(a)$ with radius $a>0(1<n<m)$ and suppose that the normal bundle is locally trivzal. Then M^{n} is a small sphere, a great sphere or a Pythagorian product of a certain number of spheres.

To prove Theorem 4.1 as a main result of the paper, we use the following theorem proved by Lawson [3] (See also [2]).

Theorem B ([3]). Let $M^{n+1}(c, R)$ be the simply connected space of constant curvature $c, S^{n+1}(R), R^{n+1}$ or $D^{n+1}(R)$, depending on whether c is 1,0 or -1 respectively. Suppose that M^{n} is a submantfold of $M^{n+1}(c, R)$ over which the Ricci curvature is covariantly constant. Then, if M^{n} is isometrically immersed into $M^{n+1}(c, R)$ with constant mean curvature, it must be an open submanifold of
(i) $S^{k}(r) \times S^{n-k}\left(\sqrt{R^{2}-r^{2}}\right)$ for some $r, R \geqq r \geqq 0$, and $k=0, \cdots, \frac{n}{2}$ if $c=1$.
(ii) $S^{k}(r) \times R^{n-k}$ for some $r \geqq 0$ and $k=0, \cdots, n$ if $c=0$.
(iii) $S^{k}(r) \times D^{n-k}\left(\sqrt{\bar{R}^{2}+r^{2}}\right)$ for some $r \geqq 0$ and $k=0, \cdots, n$, or F^{n}, if $c=-1$.

§ 1. Structure equations of submanifolds.

Let M^{m} be an m-dimensional Riemannian manifold covered by a system of coordinate neighborhoods $\left\{U ; x^{h}\right\}$ and denote by $g_{j i}, \Gamma_{j i}^{h}, \nabla_{j}, K_{k j i}{ }^{h}$ and $K_{j i}$ the metric tensor, the Christoffel symbols formed with $g_{j i}$, the operator of covariant differentiation with respect to $\Gamma_{j i}^{h}$, the curvature tensor and the Ricci tensor of M^{m} respectively, where, here and in the sequel, the indices h, i, j, k, \cdots run over the range $\{1, \overline{2}, \cdots, \bar{m}\}$.

Let M^{n} be an n-dimensional Riemannian manifold covered by a system of coordinate neighborhoods $\left\{V ; y^{a}\right\}$ and denote by $g_{c b}, \Gamma_{c b}^{a}, \nabla_{c}, K_{d c b}{ }^{a}$ and $K_{c b}$ the corresponding quantities of M^{n} respectively, where, here and in the sequel, the indices a, b, c, d, \cdots run over the range $\{1,2, \cdots, n\}$.

We suppose that M^{n} is isometrically immersed in M^{m} by the immersion $i: M^{n} \rightarrow M^{m}$ and identify $i\left(M^{n}\right)$ with M^{n} itself.

We represent the immersion by

$$
\begin{equation*}
x^{h}=x^{h}\left(y^{a}\right) \tag{1.1}
\end{equation*}
$$

and put

$$
\begin{equation*}
B_{b}{ }^{h}=\partial_{b} x^{h}, \quad\left(\partial_{b}=\partial / \partial y^{b}\right) . \tag{1.2}
\end{equation*}
$$

Then $B_{b}{ }^{h}$ are n linearly independent vectors of M^{m} tangent to M^{n}. Since the immersion is isometric, we have

$$
\begin{equation*}
g_{c b}=B_{c b}^{j i} g_{j i}, \tag{1.3}
\end{equation*}
$$

where $B_{c b}^{j i}=B_{c}{ }^{{ }^{3}} B_{b}{ }^{2}$.
We denote by $C_{y}{ }^{n} m-n$ mutually orthogonal unit normals to M^{n}, where, here and in the sequel, the indices x, y, z run over the range $\{n+1, n+2, \cdots, m\}$. Then the metric tensor of the normal bundle of M^{n} is given by

$$
\begin{equation*}
g_{z y}=C_{z}{ }^{3} C_{y}{ }^{2} g_{j i} \tag{1.4}
\end{equation*}
$$

and has values $g_{z y}=\delta_{z y}, \delta_{z y}$ denoting the Kronecker delta.
It is well known that $\Gamma_{c b}^{a}$ and $\Gamma_{j i}^{h}$ are related by

$$
\begin{equation*}
\Gamma_{c b}^{a}=\left(\partial_{c} B_{b}{ }^{h}+\Gamma_{j i}^{h} B_{c b}^{j i}\right) B^{a}{ }_{h}, \tag{1.5}
\end{equation*}
$$

where $B^{a}{ }_{h}=B_{b}{ }^{2} g^{b a} g_{i n}, g^{b a}$ being contravariant components of the metric tensor $g_{c b}$ of M^{n} and the components $\Gamma_{c y}^{x}$ of the connection induced in the normal bundle are given by

$$
\begin{equation*}
\Gamma_{c y}^{x}=\left(\partial_{c} C_{y}{ }^{h}+\Gamma_{j i}^{h} B_{c}{ }^{\jmath} C_{y}{ }^{i}\right) C^{x}{ }_{h}, \tag{1.6}
\end{equation*}
$$

where $C^{x}{ }_{h}=C_{y}{ }^{2} g^{y x} g_{i n}, g^{y x}$ being contravariant components of the metric tensor $g_{y x}$ of the normal bundle.

If we denote by $\nabla_{c} B_{b}{ }^{h}$ and $\nabla_{c} C_{y}{ }^{h}$ the van der Waerden-Bortolotti covariant derivatives of $B_{0}{ }^{h}$ and $C_{y}{ }^{h}$ along M^{n} respectively, that is, if we put

$$
\begin{equation*}
\nabla_{c} B_{b}{ }^{h}=\partial_{c} B_{b}{ }^{h}+\Gamma_{j i}^{h} B_{c b}^{j j}-\Gamma_{c b}^{a} B_{a}{ }^{h} \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{c} C_{y}{ }^{h}=\partial_{c} C_{y}{ }^{h}+\Gamma_{j i}^{h} B_{c}{ }^{j} C_{y}{ }^{2}-\Gamma_{c y}^{x} C_{x}{ }^{h}, \tag{1.8}
\end{equation*}
$$

then we can write equations of Gauss and those of Weingarten in the form

$$
\begin{equation*}
\nabla_{c} B_{b}{ }^{h}=h_{c b}{ }^{x} C_{x}{ }^{h} \tag{1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{c} C_{y}{ }^{h}=-h_{c}{ }^{a}{ }_{y} B_{a}{ }^{h} \tag{1.10}
\end{equation*}
$$

respectively, where $h_{c b}{ }^{x}$ are the second fundamental tensors of M^{n} with respect to the normals $C_{x}{ }^{h}$ and $h_{c}{ }^{a}{ }_{x}=h_{c b x} g^{b a}=h_{c b}{ }^{y} g^{b a} g_{y x}$.

Equations of Gauss, Codazzi and Ricci are respectively

$$
\begin{equation*}
K_{d c b}{ }^{a}=K_{k j i}{ }^{h} B_{d c b b i n}^{b j i z}+h_{d}{ }^{a}{ }_{x} h_{c b}{ }^{x}-h_{c}{ }^{a}{ }_{x} h_{d b}{ }^{x}, \tag{1.11}
\end{equation*}
$$

$$
\begin{equation*}
0=K_{k j i}{ }^{h} B_{d c b}^{b j i} C^{x}{ }_{h}-\left(\nabla_{d} h_{c b}{ }^{x}-\nabla_{c} h_{d b}{ }^{x}\right) \tag{1.12}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{d c y}{ }^{x}=K_{k j i}{ }^{h} B_{d c}^{k j} C_{y}{ }^{2} C^{x}{ }_{h}+\left(h_{d e}{ }^{x} h_{c}{ }^{e}{ }_{y}-h_{c e}{ }^{x} h_{d}{ }^{e}{ }_{y}\right), \tag{1.13}
\end{equation*}
$$

where

$$
\begin{equation*}
K_{d c y} x=\partial_{d} \Gamma_{c y}^{x}-\partial_{c} \Gamma_{d y}^{x}+\Gamma_{d z}^{x} \Gamma_{c y}^{z}-\Gamma_{c z}^{x} \Gamma_{d y}^{z} \tag{1.14}
\end{equation*}
$$

and

$$
B_{d c b h}^{k j i a}=B_{d}{ }^{k} B_{c}{ }^{j} B_{b}{ }^{2} B^{a}{ }_{h}, \quad B_{d c b}^{b j i}=B_{d}{ }^{k} B_{c}{ }^{3} B_{b}{ }^{2}, \quad C^{x}{ }_{h}=C_{y}{ }^{2} g^{y x} g_{i h},
$$

$K_{d c y}{ }^{x}$ being the curvature tensor of the connection induced in the normal bundle.

§ 2. Infinitesimal variations of submanifolds. [7]

We now consider an infinitesimal variation of M^{n} of M^{m} given by

$$
\begin{equation*}
\bar{x}^{h}=x^{h}+\xi^{h}(y) \varepsilon, \tag{2.1}
\end{equation*}
$$

where $g_{j i} \xi^{\prime} \xi^{\imath}>0$ and ε is an infinitesimal. We then have

$$
\begin{equation*}
\bar{B}_{b}{ }^{h}=B_{b}{ }^{h}+\left(\partial_{b} \xi^{h}\right) \varepsilon, \tag{2.2}
\end{equation*}
$$

where $\bar{B}_{0}{ }^{h}=\partial_{b} \bar{x}^{h}$ are n linearly independent vectors tangent to the varied submanifold at the varied point (\bar{x}^{h}).

If we displace $\bar{B}_{b}{ }^{h}$ back parallelly from the point $\left(\bar{x}^{h}\right)$ to $\left(x^{h}\right)$, then we obtain

$$
\tilde{B}_{b}{ }^{h}=\bar{B}_{b}{ }^{h}+\Gamma_{j i}^{h}(x+\xi \varepsilon) \xi^{\prime} \bar{B}_{b}{ }^{2} \varepsilon,
$$

that is,

$$
\begin{equation*}
\tilde{B}_{b}{ }^{h}=B_{b}{ }^{h}+\left(\nabla_{b} \xi^{h}\right) \varepsilon, \tag{2.3}
\end{equation*}
$$

neglecting the terms of order higher than one with respect to ε, where

$$
\begin{equation*}
\nabla_{b} \xi^{h}=\partial_{b} \xi^{h}+\Gamma_{j i}^{h} B_{b}{ }^{j} \xi^{2} . \tag{2.4}
\end{equation*}
$$

In the sequel we always neglect terms of order higher than one with respect to the infinitesimal ε.

Thus putting

$$
\begin{equation*}
\delta B_{b}{ }^{h}=\widetilde{B}_{b}{ }^{h}-B_{b}{ }^{h}, \tag{2.5}
\end{equation*}
$$

we have

$$
\begin{equation*}
\delta B_{b}{ }^{h}=\left(\nabla_{b} \xi^{h}\right) \varepsilon \tag{2.6}
\end{equation*}
$$

If we put

$$
\begin{equation*}
\xi^{h}=\xi^{a} B_{a}^{h}+\xi^{x} C_{x}{ }^{h}, \tag{2.7}
\end{equation*}
$$

we have

$$
\begin{equation*}
\nabla_{b} \xi^{h}=\left(\nabla_{b} \xi^{a}-h_{b}{ }^{a}{ }_{x} \xi^{x}\right) B_{a}{ }^{h}+\left(\nabla_{b} \xi^{x}+h_{b a}{ }^{x} \xi^{a}\right) C_{x}{ }^{h} . \tag{2.8}
\end{equation*}
$$

When $\xi^{x}=0$, that is, when the variation vector ξ^{h} is tangent to the submanifold we say that the variation is tangentıal and when $\xi^{a}=0$, that is, when the variation vector ξ^{h} is normal to the submanifold we say that the variation is normal.

From (2.5), (2.6) and (2.8), we have

$$
\begin{equation*}
\tilde{B}_{b}{ }^{h}=\left[\delta_{b}^{a}+\left(\nabla_{b} \xi^{a}-h_{b}{ }^{a}{ }_{x} \xi^{x}\right) \varepsilon\right] B_{a}{ }^{h}+\left(\nabla_{b} \xi^{x}+h_{b a}{ }^{x} \xi^{a}\right) C_{x}{ }^{h} \varepsilon . \tag{2.9}
\end{equation*}
$$

When the tangent space at a point $\left(x^{h}\right)$ of the submanifold and that at the corresponding point $\left(\bar{x}^{h}\right)$ of the varied submanifold are parallel, we say that the variation is parallel. [7].

From (2.9), we have
Proposition 2.1 [7]. In order for a normal variation of a submantfold to be parallel, it is necessary and sufficient that

$$
\begin{equation*}
\nabla_{b} \xi^{x}=0, \tag{2.10}
\end{equation*}
$$

that is, the variation vector $\xi^{x} C_{x}{ }^{n}$ is parallel in the normal bundle.
When the submanifold is a hypersurface, a normal variation is given by $\bar{x}^{h}=x^{h}+\lambda C^{h} \varepsilon, C^{h}$ being the unique unit normal to the hypersurface and λ a function. In this case (2.10) reduces to $\nabla_{b} \lambda=0$ and we have

Proposition 2.2 [7]. In order for a normal variation of a hypersurface to be parallel, it is necessary and sufficient that the normal variation displaces each point of the hypersurface the same distance.

Denoting by $\bar{C}_{y}{ }_{\sim}^{h} m-n$ mutually orthogonal unit normals to the varied submanifold and by $\widetilde{C}_{y}{ }^{h}$ the vectors obtained from $\bar{C}_{y}{ }^{h}$ by parallel displacement of $\bar{C}_{y}{ }^{h}$ from the point ($\left.\bar{x}^{h}\right)$ to $\left(x^{h}\right)$, we have

$$
\begin{equation*}
\tilde{C}_{y}{ }^{h}=\bar{C}_{y}{ }^{h}+\Gamma_{j i}^{h}(x+\xi \varepsilon) \xi^{\prime} \bar{C}_{y}{ }^{2} \varepsilon . \tag{2.11}
\end{equation*}
$$

We put

$$
\begin{equation*}
\delta C_{y}{ }^{h}=\widetilde{C}_{y}{ }^{h}-C_{y}{ }^{h} \tag{2.12}
\end{equation*}
$$

and assume that $\delta C_{y}{ }^{h}$ is of the form

$$
\begin{equation*}
\delta C_{y}{ }^{h}=\left(\eta_{y}{ }^{a} B_{a}{ }^{h}+\eta_{y}{ }^{x} C_{x}{ }^{h}\right) \varepsilon . \tag{2.13}
\end{equation*}
$$

Then (2.11), (2.12) and (2.13) give

$$
\begin{equation*}
\bar{C}_{y}{ }^{h}=C_{y}{ }^{h}-\Gamma_{j i}^{h} \xi^{\jmath} C_{y}{ }^{2} \varepsilon+\left(\eta_{y}{ }^{a} B_{a}{ }^{h}+\eta_{y}{ }^{x} C_{x}{ }^{h}\right) \varepsilon . \tag{2.14}
\end{equation*}
$$

Applying the operator δ to $B_{b}{ }^{3} C_{y}{ }^{2} g_{j i}=0$ and using (2.6), (2.8), (2.13) and $\delta g_{j i}=0$, we find

$$
\left(\nabla_{b} \xi_{y}+h_{b a y} \xi^{a}\right)+\eta_{y b}=0,
$$

where $\xi_{y}=\xi^{z} g_{z y}$ and $\eta_{y b}=\eta_{y}{ }^{c} g_{c b}$, or, putting $\nabla^{a}=g^{b a} \nabla_{b}$,

$$
\begin{equation*}
\eta_{y}{ }^{a}=-\left(\nabla^{a} \xi_{y}+h_{b}{ }^{a}{ }_{y} \xi^{b}\right) . \tag{2.15}
\end{equation*}
$$

Applying the operator δ to $C_{z}{ }^{3} C_{y}{ }^{2} g_{j i}=\delta_{z y}$ and using (2.13) and $\delta g_{j i}=0$, we find

$$
\begin{equation*}
\eta_{y x}+\eta_{x y}=0, \tag{2.16}
\end{equation*}
$$

where $\eta_{y x}=\eta_{y}{ }^{2} g_{z x}$.

From (2.12) and (2.13), we have

$$
\begin{equation*}
\widetilde{C}_{y}{ }^{h}=\left[\eta_{y}{ }^{a} B_{a}{ }^{h}+\left(\delta_{y}^{x}+\eta_{y}^{x}\right) C_{x}{ }^{h}\right] \varepsilon . \tag{2.17}
\end{equation*}
$$

§ 3. Variations of the curvature tensor.

In this section we compute infinitesimal variations of the Christoffel symbols, the second fundamental tensors and curvature tensor of the submanifold.

Suppose that v^{h} is a vector field of M^{m} defined intrinsically along the submanifold M^{n}. When we displace the submanifold M^{n} by $\bar{x}^{h}=x^{h}+\xi^{h}(y) \varepsilon$ in the direction ξ^{h}, we obtain a vector field \bar{v}^{h} which is defined also intrinsically along the varied submanifold. If we displace \bar{v}^{h} back parallelly from the point $\left(\bar{x}^{h}\right)$ to $\left(x^{h}\right)$, we obtain

$$
\tilde{v}^{h}=\bar{v}^{h}+\Gamma_{j i}^{h}(x+\xi \varepsilon) \xi^{\jmath} \bar{v}^{\imath} \varepsilon
$$

and hence putting $\delta v^{h}=\tilde{v}^{n}-v^{h}$, we find

$$
\begin{equation*}
\delta v^{h}=\bar{v}^{h}-v^{h}+\Gamma_{j i}^{h} \xi^{\jmath} v^{\imath} \varepsilon . \tag{3.1}
\end{equation*}
$$

Similarly we have

$$
\delta \nabla_{c} v^{h}=\bar{\nabla}_{c} \bar{v}^{h}-\nabla_{c} v^{h}+\Gamma_{j i}^{h} \xi^{j} \nabla_{c} v^{2} \varepsilon,
$$

that is,

$$
\begin{align*}
\delta \nabla_{c} v^{h}= & \nabla_{c} \bar{v}^{h}-\nabla_{c} v^{h}+\left(\partial_{k} \Gamma_{j i}^{h}+\Gamma_{k t}^{h} \Gamma_{j i}^{t}\right) \xi^{k} B_{c}{ }^{\rho} v^{2} \varepsilon \tag{3.2}\\
& +\Gamma_{j i}^{h}\left[\left(\partial_{c} \xi^{j}\right) v^{2}+\xi^{\jmath}\left(\partial_{c} v^{i}\right)\right] \varepsilon .
\end{align*}
$$

On the other hand, from (3.1) we have

$$
\begin{align*}
\nabla_{c} \delta v^{h}= & \nabla_{c} \bar{v}^{h}-\nabla_{c} v^{h}+\left(\partial_{J} \Gamma_{k i}^{h}+\Gamma_{j i}^{h} \Gamma_{k i}^{t}\right) \xi^{k} B_{c}{ }^{\jmath} v^{2} \varepsilon \tag{3.3}\\
& +\Gamma_{j i}^{h}\left[\left(\partial_{c} \xi^{j}\right) v^{2}+\xi^{\jmath}\left(\partial_{c} v^{i}\right)\right] \varepsilon .
\end{align*}
$$

Thus forming (3.2)-(3.3), we find

$$
\begin{equation*}
\delta \nabla_{c} v^{h}-\nabla_{c} \delta v^{h}=K_{k j i}{ }^{h} \xi^{k} B_{c}{ }^{\jmath} v^{i} \varepsilon . \tag{3.4}
\end{equation*}
$$

For a tensor field carrying three kinds of indices, say, $T_{b y}{ }^{h}$, we have
(3.5) $\quad \delta \nabla_{c} T_{b y}{ }^{h}-\nabla_{c} \delta T_{b y}{ }^{h}=K_{k j i}{ }^{h} \xi^{k} B_{c}{ }^{j} T_{b y}{ }^{2} \varepsilon-\left(\delta \Gamma_{c b}^{a}\right) T_{a y}{ }^{h}-\left(\delta \Gamma_{c y}^{x}\right) T_{b x}{ }^{h}$,
where $\delta \Gamma_{c b}^{a}$ and $\delta \Gamma_{c y}^{x}$ are variations of $\Gamma_{c b}^{a}$ and $\Gamma_{c y}^{x}$ respectively.

Applying formula (3.5) to $B_{0}{ }^{h}$, we find

$$
\delta \nabla_{c} B_{b}{ }^{h}-\nabla_{c} \delta B_{b}{ }^{h}=K_{k j i}{ }^{h} \xi^{h} B_{c}{ }^{j} B_{b}{ }^{2} \varepsilon-\left(\delta \Gamma_{c b}^{a}\right) B_{a}{ }^{h},
$$

or using (1.9) and (2.6)

$$
\delta\left(h_{c b}{ }^{x} C_{x}{ }^{h}\right)=\left(\nabla_{c} \nabla_{b} \xi^{h}+K_{k j i}{ }^{h} \xi^{k} B_{c}{ }^{J} B_{b}{ }^{i}\right) \varepsilon-\left(\delta \Gamma_{c b}^{a}\right) B_{a}{ }^{h},
$$

from which, using (2.13),

$$
\begin{aligned}
& \left(\delta h_{c b}{ }^{x}\right) C_{x}{ }^{h}+h_{c b}{ }^{x}\left(\eta_{x}{ }^{a} B_{a}{ }^{h}+\eta_{x}{ }^{y} C_{y}{ }^{h}\right) \varepsilon \\
& \quad=\left(\nabla_{c} \nabla_{b} \xi^{h}+K_{k j i}{ }^{h} \xi^{h} B_{c}{ }^{J} B_{b}{ }^{i}\right) \varepsilon-\left(\delta \Gamma_{c b}^{a}\right) B_{a}{ }^{h} .
\end{aligned}
$$

Thus we have

$$
\begin{equation*}
\delta \Gamma_{c b}^{a}=\left(\nabla_{c} \nabla_{b} \xi^{h}+K_{k j i}{ }^{h} \xi^{k} B_{c}{ }^{3} B_{b}{ }^{i}\right) B^{a}{ }_{h} \varepsilon-h_{c b}{ }^{y} \eta_{y}{ }^{a} \varepsilon \tag{3.6}
\end{equation*}
$$

and

$$
\delta h_{c b}{ }^{x}=-h_{c b}{ }^{y} \eta_{y}{ }^{x} \varepsilon+\left(\nabla_{c} \nabla_{b} \xi^{h}+K_{k j i}{ }^{h} \xi^{k} B_{c}{ }^{j} B_{b}{ }^{i}\right) C^{x}{ }_{h} \varepsilon,
$$

from which, using (1.12) and (2.8),

$$
\begin{align*}
\delta h_{c b}{ }^{x}= & {\left[\xi^{d} \nabla_{d} h_{c b}{ }^{x}+h_{e b}{ }^{x}\left(\nabla_{c} \xi^{e}\right)+h_{c e}{ }^{x}\left(\nabla_{b} \xi^{e}\right)-h_{c b}{ }^{y} \eta_{y}{ }^{x}\right] \varepsilon } \tag{3.7}\\
& +\left[\nabla_{c} \nabla_{b} \xi^{x}+K_{k j i}{ }^{h} C_{y}{ }^{k} B_{c b}^{j i} C^{x}{ }_{h} \xi^{y}-h_{c e^{x}} h_{b}{ }^{e}{ }_{y} \xi^{y}\right] \varepsilon .
\end{align*}
$$

Substituting (2.8) and (2.15) into (3.6) and using equations (1.11) of Gauss and (1.12) of Codazzi, we get

$$
\begin{aligned}
\delta \Gamma_{c b}^{a}= & \left(\nabla_{c} \nabla_{b} \xi^{a}+K_{d c b}{ }^{a} \xi^{d}\right) \varepsilon \\
& -\left[\nabla_{c}\left(h_{b e x} \xi^{x}\right)+\nabla_{b}\left(h_{c e x} \xi^{x}\right)-\nabla_{e}\left(h_{c b x} \xi^{x}\right)\right] g^{e a} \varepsilon,
\end{aligned}
$$

or, equivalently,

$$
\begin{equation*}
\delta \Gamma_{c b}^{a}=\left[\mathcal{L} \Gamma_{c b}^{a}-\nabla_{c}\left(h_{b}{ }^{a}{ }_{x} \xi^{x}\right)-\nabla_{b}\left(h_{c}{ }^{a}{ }_{x} \xi^{x}\right)+\nabla^{a}\left(h_{c b x} \xi^{x}\right)\right] \varepsilon, \tag{3.8}
\end{equation*}
$$

where $\mathcal{L} \Gamma_{c b}^{a}$ denotes the Lie derivative of $\Gamma_{c b}^{a}$ with respect to ξ^{a} [6], that is,

$$
\mathcal{L} \Gamma_{c b}^{a}=\nabla_{c} \nabla_{b} \xi^{a}+K_{d c b}{ }^{a} \xi^{d} .
$$

For the varied submanifold, the curvature tensor of the submanifold can be written as

$$
\begin{equation*}
\bar{K}_{d c b}^{a}=\partial_{d} \bar{\Gamma}_{c b}^{a}-\partial_{c} \bar{\Gamma}_{d b}^{a}+\bar{\Gamma}_{d e}^{a} \bar{\Gamma}_{c b}^{e}-\bar{\Gamma}_{c e}^{a} \bar{\Gamma}_{d b}^{e} . \tag{3.9}
\end{equation*}
$$

Thus denoting by $K_{d c b}{ }^{a}+\delta K_{d c b}{ }^{a}$ the curvature tensor and by $\Gamma_{c b}^{a}+\delta \Gamma_{c b}^{a}$ the Christoffel symbols of the varied submanifold, we have

278

$$
\begin{aligned}
K_{d c b}^{a}+\delta K_{d c b}^{a}= & \partial_{d}\left(\Gamma_{c b}^{a}+\delta \Gamma_{c b}^{a}\right)-\partial_{c}\left(\Gamma_{d b}^{a}+\delta \Gamma_{d b}^{a}\right) \\
& +\left(\Gamma_{d e}^{a}+\delta \Gamma_{d e}^{a}\right)\left(\Gamma_{c b}^{e}+\delta \Gamma_{c b}^{e}\right)-\left(\Gamma_{c e}^{a}+\delta \Gamma_{c e}^{a}\right)\left(\Gamma_{d b}^{e}+\delta \Gamma_{d b}^{e}\right),
\end{aligned}
$$

from which

$$
\delta K_{d c b}^{a}=\nabla_{d}\left(\delta \Gamma_{c b}^{a}\right)-\nabla_{c}\left(\delta \Gamma_{d b}^{a}\right) .
$$

Substituting (3.8) into this and using (1.14), we find by a straightforward computation

$$
\begin{align*}
\delta K_{d c b}{ }^{a}= & {\left[\mathcal{L} K_{d c b}{ }^{a}-\nabla_{d} \nabla_{c}\left(h_{b}{ }^{a}{ }_{x} \xi^{x}\right)-\nabla_{d} \nabla_{b}\left(h_{c}{ }^{a}{ }_{x} \xi^{x}\right)+\nabla_{d} \nabla^{a}\left(h_{c b x} \xi^{x}\right)\right.} \tag{3.10}\\
& \left.+\nabla_{c} \nabla_{d}\left(h_{b}{ }^{a}{ }_{x} \xi^{x}\right)+\nabla_{c} \nabla_{b}\left(h_{d}{ }^{a}{ }_{x} \xi^{x}\right)-\nabla_{c} \nabla^{a}\left(h_{d b x} \xi^{x}\right)\right] \varepsilon,
\end{align*}
$$

where [6]

$$
\begin{equation*}
\mathcal{L} K_{d c b}^{a}=\nabla_{d} \mathcal{L} \Gamma_{c b}^{a}-\nabla_{c} \mathcal{L} \Gamma_{d b}^{a}, \tag{3.11}
\end{equation*}
$$

from which, using the Ricci identity,

$$
\begin{align*}
\delta K_{d c b}{ }^{a}= & {\left[\mathcal{L} K_{d c b}{ }^{a}-K_{d c e}{ }^{a} h_{b}{ }^{e}{ }_{x} \xi^{x}+K_{d c b}{ }^{e} h_{e}{ }^{a}{ }_{x} \xi^{x}-\nabla_{d} \nabla_{b}\left(h_{c}{ }^{a}{ }_{x} \xi^{x}\right)\right.} \tag{3.12}\\
& \left.+\nabla_{d} \nabla^{a}\left(h_{c b x} \xi^{x}\right)+\nabla_{c} \nabla_{b}\left(h_{d}{ }^{a}{ }_{x} \xi^{x}\right)-\nabla_{c} \nabla^{a}\left(h_{d b x} \xi^{x}\right)\right] \varepsilon,
\end{align*}
$$

which implies that

$$
\begin{align*}
\delta K_{c b}= & {\left[\mathcal{L} K_{c b}-K_{c e} h_{b}^{e}{ }_{x} \xi^{x}+K_{d c b a} h^{d a}{ }_{x} \xi^{x}\right.} \tag{3.13}\\
& -\nabla^{a} \nabla_{b}\left(h_{c a x} \xi^{x}\right)+\nabla^{a} \nabla_{a}\left(h_{c b x} \xi^{x}\right) \\
& \left.+\nabla_{c} \nabla_{b}\left(h_{e}{ }_{e} \xi^{x}\right)-\nabla_{c} \nabla^{a}\left(h_{b a x} \xi^{x}\right)\right] \varepsilon .
\end{align*}
$$

Thus we have
Proposition 3.1. An infinitesimal variation of a submanrfold gives the variation (3.12) to the curvature tensor and consequently it preserves the curvature tensor if and only if

$$
\begin{align*}
\mathscr{L} K_{d c b}{ }^{a}= & K_{d c e}{ }^{a} h_{b}{ }^{e}{ }_{x} \xi^{x}-K_{d c b}{ }^{e} h_{e}{ }^{a}{ }_{x} \xi^{x} \tag{3.14}\\
& +\nabla_{d} \nabla_{b}\left(h_{c}{ }^{a}{ }_{x} \xi^{x}\right)-\nabla_{d} \nabla^{a}\left(h_{c b x} \xi^{x}\right)-\nabla_{c} \nabla_{b}\left(h_{d}{ }^{a}{ }_{x} \xi^{x}\right) \\
& +\nabla_{c} \nabla^{a}\left(h_{d b x} \xi^{x}\right) .
\end{align*}
$$

Proposition 3.2. An infinitesimal variation of a submannfold gives the variation (3.13) to the Ricci tensor and consequently tt preserves the Ricci tensor if and only if

$$
\begin{align*}
\mathcal{L} K_{c b}= & K_{c e} h_{b}^{e}{ }_{x} \xi^{x}-K_{d c b a} h^{d a}{ }_{x} \xi^{x} \tag{3.15}\\
& +\nabla^{a} \nabla_{b}\left(h_{c a x} \xi^{x}\right)-\nabla^{a} \nabla_{a}\left(h_{c b x} \xi^{x}\right) \\
& \left.-\nabla_{c} \nabla_{b}\left(h_{e}^{e}{ }_{x} \xi^{x}\right)+\nabla_{c} \nabla^{a}\left(h_{b a x} \xi^{x}\right)\right] .
\end{align*}
$$

Corollary 3.3. For an infinitesimal normal varation of a submanıfold, we have

$$
\begin{align*}
\delta K_{c b}= & {\left[-K_{c e} h_{b}^{e}{ }_{x} \xi^{x}+K_{d c b a} h^{d a}{ }_{x} \xi^{x}\right.} \tag{3.16}\\
& -\nabla^{a} \nabla_{b}\left(h_{c a x} \xi^{x}\right)+\nabla^{a} \nabla_{a}\left(h_{c b x} \xi^{x}\right) \\
& \left.+\nabla_{c} \nabla_{b}\left(h_{e}^{e}{ }_{x} \xi^{x}\right)-\nabla_{c} \nabla^{a}\left(h_{b a x} \xi^{x}\right)\right] \varepsilon
\end{align*}
$$

and consequently a normal variation of a submanifold preserves the Ricci tensor if and only if

$$
\begin{align*}
& -K_{c e} h_{b}^{e}{ }_{x} \xi^{x}+K_{d c b a} h^{d a}{ }_{x} \xi^{x}-\nabla^{a} \nabla_{b}\left(h_{c a x} \xi^{x}\right) \tag{3.17}\\
& \quad+\nabla^{a} \nabla_{a}\left(h_{c b x} \xi^{x}\right)+\nabla_{c} \nabla_{b}\left(h_{e}^{e}{ }_{x} \xi^{x}\right)-\nabla_{c} \nabla^{a}\left(h_{b a x} \xi^{x}\right)=0
\end{align*}
$$

From Proposition 2.1 and Corollary 3.3, we have immediately
Corollary 3.4. An infinitesimal normal parallel variation of a submanfold preserves the Ricci tensor if and only if

$$
\begin{align*}
{\left[K_{d c b a} h^{d a}{ }_{x}-K_{c e} h_{b}^{e}{ }_{x}\right.} & -\nabla^{a} \nabla_{b} h_{c a x}+\nabla^{a} \nabla_{a} h_{c b x} \tag{3.18}\\
& \left.+\nabla_{c} \nabla_{b}\left(h_{e}^{e}{ }_{x}\right)-\nabla_{c} \nabla^{a} h_{b a x}\right] \xi^{x}=0
\end{align*}
$$

We now prepare a lemma for later use.
Lemma 3.5. If a submanifold M^{n} of a Riemannian manifold M^{m} admits $m-n$ linearly independent infinitesimal normal parallel variations, then the connection induced in the normal bundle is of zero curvature.

Proof. By Proposition 2.1, a normal parallel variation satisfies $\nabla_{b} \xi^{x}=0$, from which

$$
0=\nabla_{d} \nabla_{c} \xi^{x}-\nabla_{c} \nabla_{d} \xi^{x}=K_{d c y}^{x} \xi^{y}
$$

Thus if M^{n} admits $m-n$ linearly independent infinitesimal normal parallel variations, then we have $K_{d c y}{ }^{x}=0$, which proves the lemma.

We now suppose that the ambient manifold M^{m} is a space of constant curvature c. Then we have from (1.11), (1.12) and (1.13),

$$
\begin{equation*}
K_{d c b}{ }^{a}=c\left(\delta_{d}^{a} g_{c b}-\delta_{c}^{a} g_{d b}\right)+h_{d}{ }^{a}{ }_{y} h_{c b}{ }^{y}-h_{c}{ }^{a}{ }_{y} h_{d b}{ }^{y}, \tag{3.19}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{d} h_{c b}^{x}-\nabla_{c} h_{d b}^{x}=0 \tag{3.20}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{d c y}{ }^{x}=h_{d e}{ }^{x} h_{c}{ }^{e} y-h_{c e^{x}} h_{d}{ }^{e}{ }_{y} \tag{3.21}
\end{equation*}
$$

respectively.
From (3.18), (3.19) and (3.20) we have

$$
\begin{align*}
& {\left[h_{c a y} h_{d b}{ }^{y} h^{d a}{ }_{x}-h_{c}{ }^{d}{ }_{y} h_{d e}{ }^{y} h_{b}{ }^{e}{ }_{x}+h_{e}{ }_{e}^{e} h_{c d}{ }^{y} h_{b}{ }^{d}{ }_{x}\right.} \tag{3.22}\\
& \left.\quad+n c h_{c b x}-h_{d e y} h^{d e}{ }_{x} h_{c b}{ }^{y}-c h_{e}{ }^{e}{ }_{x} g_{c b}\right] \xi^{x}=0
\end{align*}
$$

We now prove the following
Lemma 3.6. Let M^{n} be a minimal submanrfold of a space M^{m} of constant curvature c. If the submanifold M^{n} admits $m-n$ linearly independent infinitesimal normal parallel variations preserving the Ricci tensor of M^{n}, then the length of the second fundamental tensor is constant.

If, moreover, $c \leqq 0$, then M^{n} is totally geodesic.
Proof. First of all, by Lemma 3.5, we have $K_{d c y}{ }^{x}=0$ and consequently by (3.21)

$$
h_{d e}{ }^{x} h_{c}{ }^{e}{ }_{y}-h_{c e}{ }^{x} h_{d}{ }^{e}{ }_{y}=0 .
$$

Thus, M^{n} being minimal, we have from (3.22)

$$
\begin{equation*}
n c h_{c b y}=\alpha_{y x} h_{c b}{ }^{x} \tag{3.23}
\end{equation*}
$$

where we have put

$$
\begin{equation*}
\alpha_{y x}=h_{d e y} h^{d e}{ }_{x} \tag{3.24}
\end{equation*}
$$

Applying ∇_{d} to (3.23) and taking skew-symmetric part with respect to d and c, we find

$$
\begin{equation*}
\left(\nabla_{d} \alpha_{y x}\right) h_{c b}{ }^{x}-\left(\nabla_{c} \alpha_{y x}\right) h_{d b}{ }^{x}=0 \tag{3.25}
\end{equation*}
$$

because of (3.20), from which, M^{n} being minimal,

$$
\begin{equation*}
\left(\nabla_{d} \alpha_{y x}\right) h_{c}{ }^{d x}=0 . \tag{3.26}
\end{equation*}
$$

If we transvect $h^{c b y}$ to (3.25) and make use of (3.24) and (3.26), then we have

$$
\left(\nabla_{d} \alpha_{y x}\right) \alpha^{y x}=\frac{1}{2} \nabla_{d}\left(\alpha_{y x} \alpha^{y x}\right)=0,
$$

from which we see that $\alpha_{y x} \alpha^{y x}$ is constant.

Now, from (3.24), we find

$$
\alpha_{y x} \alpha^{y x}=h_{\text {dey }} h^{d e}{ }_{x} \alpha^{y x},
$$

from which, using (3.23)

$$
\begin{equation*}
\alpha_{y x} \alpha^{y x}=n c h_{d e y} h^{d e y}=n c \alpha_{y}^{y} . \tag{3.27}
\end{equation*}
$$

Thus $\alpha_{y}{ }^{y}$ is also constant. The last assertion follows immediately from (3.24) and (3.27). This completes the proof of the lemma.

Finally we prepare the following lemma.
Lemma 3.7. Let M^{n} be a minimal submanrfold of a space M^{m} of constant curvature c. If the submanifold M^{n} admits m-n linearly independent infinitesimal normal parallel variations preserving the Ricci tensor of M^{n}, then the second fundamental tensor is parallel.

Proof. We compute the Laplacian ΔF of the function $F=h_{c b}{ }^{x} h^{c b}{ }_{x}$, which is globally defined in M^{n}, where $\Delta=g^{c b} \nabla_{c} \nabla_{b}$. We then have

$$
\frac{1}{2} \Delta F=g^{e d}\left(\nabla_{e} \nabla_{d} h_{c o}{ }^{x}\right) h_{x}^{c b}+\left(\nabla_{c} h_{b a}^{x}\right)\left(\nabla^{c} h_{x}^{b a}\right) .
$$

By using the Ricci identity and equations (3.20) of Codazzi, we can easily find

$$
\frac{1}{2} \Delta F=K_{c}{ }^{a} h_{b a}{ }^{x} h^{c b}{ }_{x}-K_{e c b a} h^{e a}{ }_{x} h^{c b x}+\left(\nabla_{c} h_{b a} x\right)\left(\nabla^{c} h^{b a}{ }_{x}\right)
$$

with the help of Lemma 3.5 and $g^{c b} h_{c b}{ }^{x}=0$, where $K_{c}{ }^{a}$ is defined to be $K_{c}{ }^{a}=K_{c b} g^{b a}$ and, as we can see from (3.19), is given by

$$
\begin{equation*}
K_{c}{ }^{a}=c(n-1) \delta_{c}^{a}-h_{c}{ }_{c}^{e} x h_{e}{ }^{a x} \tag{3.28}
\end{equation*}
$$

under our assumptions. If we substitute (3.19) and (3.28) into the expression above of $\frac{1}{2} \Delta F$, then we have

$$
\frac{1}{2} \Delta F=n c h_{b a}{ }^{x} h^{b a}-\alpha_{y x} \alpha^{y x}+\left(\nabla_{c} h_{b a}\right)\left(\nabla^{c} h^{b a}{ }_{x}\right),
$$

from which, taking account of Lemma 3.6 and (3.27),

$$
\nabla_{c} h_{b a}^{x}=0,
$$

which proves the lemma.

Combining Theorem A, Lemmas 3.5, 3.6 and 3.7, we have
Theorem 3.7. Let M^{n} be a simply connected and complete minimal submanifold of a space M^{m} of constant curvature c. If M^{n} admıts $m-n$ linearly independent infinitesimal normal parallel variations preserving the Ricci tensor of M^{n}, then M^{n} is totally geodesic if $c \leqq 0, M^{n}$ is $S^{n}(r)$ or $S^{p}\left(r_{1}\right) \times S^{n-p}\left(r_{2}\right)$ if $c>0$, where $S^{n}(r)$ denotes an n-sphere of radius $r>0$.

§ 4. Variations of hypersurfaces preserving the Ricci tensor.

In this section, we consider a normal parallel variation $\bar{x}^{h}=x^{h}+\lambda C^{h} \varepsilon$ of a hypersurface M^{n}, where λ is a positive function and C^{n} the unit normal to M^{n}. In this case (2.10) reduces to $\nabla_{b} \lambda=0$ and (3.13) to

$$
\begin{align*}
\delta K_{c b}= & {\left[\mathcal{L} K_{c b}-\lambda K_{c e} h_{b}^{e}+\lambda K_{d c b a} h^{d a}-\nabla^{a} \nabla_{b}\left(\lambda h_{c a}\right)\right.} \tag{4.1}\\
& \left.+\nabla^{a} \nabla_{a}\left(\lambda h_{c b}\right)+\nabla_{c} \nabla_{b}\left(\lambda h_{e}^{e}\right)-\nabla_{c} \nabla^{a}\left(\lambda h_{b a}\right)\right] \varepsilon .
\end{align*}
$$

In the sequel we suppose that the normal parallel variation of a hypersurface with constant mean curvature of a space of constant curvature preserves the Ricci tensor. Then we have from (3.19), (3.20) and (3.22)

$$
\begin{equation*}
\left(h_{e}^{e}\right) h_{c d} h_{b}^{d}+\left(c n-h_{e d} h^{e d}\right) h_{c b}-c h_{e}^{e} g_{c b}=0 . \tag{4.2}
\end{equation*}
$$

Since the mean curvature $h_{e}{ }^{e}$ is constant, we have only to consider two cases $h_{e}{ }^{e}=0$ and $h_{e}{ }^{e} \neq 0$.

In the first case, we have from (4.2),

$$
\begin{equation*}
h_{e d} h^{e d}=n c \quad \text { or } \quad h_{c b}=0 . \tag{4.3}
\end{equation*}
$$

In the second case we have

$$
\begin{equation*}
h_{c e} h_{b}^{e}=k h_{c b}+c g_{c b}, \tag{4.4}
\end{equation*}
$$

where we have put

$$
\begin{equation*}
k=\frac{1}{h_{e}^{e}}\left(h_{d e} h^{d e}-n c\right) . \tag{4.5}
\end{equation*}
$$

Differentiating (4.4) covariantly along M^{n}, we find

$$
\begin{equation*}
\left(\nabla_{d} h_{c e}\right) h_{b}{ }^{e}+h_{c e} \nabla_{d} h_{b}^{e}=\left(\nabla_{d} k\right) h_{c b}+k \nabla_{d} h_{c b}, \tag{4.6}
\end{equation*}
$$

from which, taking skew-symmetric part with respect to d and c and using the fact that $\nabla_{d} h_{c b}-\nabla_{c} h_{d b}=0$, we have

$$
\begin{equation*}
h_{c e} \nabla_{d} h_{b}^{e}-h_{d e} \nabla_{c} h_{b}{ }^{e}=\left(\nabla_{d} k\right) h_{c b}-\left(\nabla_{c} k\right) h_{d b} . \tag{4.7}
\end{equation*}
$$

Interchanging indices d and b in (4.7), we get

$$
\begin{equation*}
h_{c e} \nabla_{b} h_{d}^{e}-h_{b e} \nabla_{c} h_{d}{ }^{e}=\left(\nabla_{b} k\right) h_{c d}-\left(\nabla_{c} k\right) h_{b d} . \tag{4.8}
\end{equation*}
$$

Adding (4.6) and (4.8) and using $\nabla_{d} h_{c e}-\nabla_{c} h_{d e}=0$, we find

$$
\begin{equation*}
2 h_{c e} \nabla_{d} h_{b}{ }^{e}=k \nabla_{d} h_{c b}+\left(\nabla_{d} k\right) h_{c b}+\left(\nabla_{b} k\right) h_{c d}-\left(\nabla_{c} k\right) h_{d b} . \tag{4.9}
\end{equation*}
$$

If we transvect $g^{d b}$ to this and use the fact that $h_{e}{ }^{e}$ is constant, then we have

$$
\begin{equation*}
h_{c}{ }^{e} \nabla_{e} k=\frac{1}{2} h_{e}{ }^{e} \nabla_{c} k . \tag{4.10}
\end{equation*}
$$

Moreover, transvecting (4.9) with $h_{a}{ }^{c}$ and taking account of (4.4) and (4.10), we find

$$
\begin{align*}
& k h_{a}^{e} \nabla_{d} h_{b e}+2 c \nabla_{d} h_{b a}=\left(k h_{b a}+c g_{b a}\right) \nabla_{d} k \tag{4.11}\\
& \quad+\left(k h_{d a}+c g_{d a}\right) \nabla_{b} k-\frac{1}{2} h_{e}^{e}\left(\nabla_{a} k\right) h_{d b}
\end{align*}
$$

from which, transvecting $g^{d b}$ and using (4.10)

$$
\left[k h_{e}^{e}+2 c-\frac{1}{2}\left(h_{e}^{e}\right)^{2}\right] \nabla_{a} k=0,
$$

from which, $h_{e}{ }^{e}$ being a constant, we have $k=$ constant on M^{n}. Thus (4.9) and (4.11) imply that

$$
\begin{equation*}
\left(k^{2}+4 c\right) \nabla_{d} h_{c b}=0 . \tag{4.12}
\end{equation*}
$$

Thus, if $k^{2}+4 c \neq 0$, we have $\nabla_{d} h_{c b}=0$. If $k^{2}+4 c=0$, then we see from (4.4) that

$$
\left(h_{c b}-\frac{1}{2} k g_{c b}\right)\left(h^{c b}-\frac{1}{2} k g^{c b}\right)=0
$$

and consequently $h_{c b}=\frac{1}{2} k g_{c b}$ which implies that $\nabla_{d} h_{c b}=0$. Therefore in any case we have
(4.13)

$$
\nabla_{d} h_{c b}=0,
$$

from which, using the equations of Gauss, we see that the Ricci tensor is covariantly constant. Thus we conclude that
(i) If $h_{e}{ }^{e}=0$, then $h_{e d} h^{e d}=n c$ or $h_{c b}=0$,
(ii) If $h_{e}{ }^{e} \neq 0$, then $h_{c e} h_{b}{ }^{e}=k h_{c b}+c g_{c b}, k=$ constant and $\nabla_{d} h_{c b}=0$.

Therefore by Theorem A (See also Chern, do Carmo and Kobayashi [2]) we have

Theorem 4.1. Let M^{n} be a complete hypersurface with constant mean curvature of a unit sphere. If an infinitesimal normal parallel variation $\bar{x}^{h}=x^{h}+$ $\lambda C^{h} \varepsilon, \lambda>0$, preserves the Riccl tensor of M^{n}, then M^{n} is a sphere S^{n} or $S^{r} \times S^{n-r}$.

Bibliography

[1] Bang-yen Chen and K. Yano, On the theory of normal variations, to appear in Journal of Differential Geometry.
[2] S. S. Chern, M. do Carmo and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, Functional Analysis and related fields, Springer-Verlag, (1970), 59-75.
[3] H. B. Lawson, Jr., Local rıgidity theorems for minimal hypersurfaces, Ann. of Math., 89 (1969), 187-197.
[4] K. Sakamoto, Submanifolds satisfying the condition $K(X, Y) K=0$, Köda1 Math. Sem. Rep., 25 (1973), 143-152.
[5] K. Yano, Sur la théorie des déformations infintésimales, J. of the Fac. of Sci., Univ. of Tokyo, 6 (1949), 1-75.
[6] K. Yano, The theory of Lie derivatives and its applications, North-Holland Publ. Co., Amsterdam (1957).
[7] K. Yano, Infinitesimal variations of submanifolds, Kodai Math. J. 1 (1978), 30-44.
[8] K. Yano and S. Ishihara, Submanifolds with parallel mean curvature vector, J. of Diff. Geom., 6 (1971), 95-118.

Tokyo Institute of technology
and
Kyungpook University

