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INTRODUCTION

e The main observable quantities in Quantum Field The-
ory, correlation functions, are expressed by Feynman path in-
tegrals. A mathematical definition of them involving a mea-
sure and actual integration is still lacking. Instead, it is
replaced by a series of ad hoc but highly efficient and sug-
gestive heuristic formulas such as perturbation formalism.

e Perturbation formalism interprets such an integral as
a formal series of finite—dimensional but divergent integrals,
indexed by Feynman graphs.

e Renormalization is a prescription that allows one to sys-
tematically “subtract infinities” from these divergent terms
producing an asymptotic series for quantum correlation func-
tions.
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e Graphs treated as “flowcharts”, also form a combinatorial
skeleton of the abstract computation theory.

e Infinities in Computation Theory arise from infinite
loops/searches in infinite haystacks for a needle which is
not there.

e In this paper I argue that such infinities can be ad-
dressed in the same way as Feynman divergences.



1. FEYNMAN GRAPHS AND PERTURBATION SERIES:
A TOY MODEL

e Feynman path integral is an heuristic expression of the
form
J ¥ D() "
fp eSO(W)D(cp) '

or, more generally, a similar heuristic expression for corre-
lation functions.

e In the expression (1.1), P is imagined as a functional
space of classical fields o on a space—time manifold M. S: P — C
is a functional of classical action measured in Planck’s units.

e Usually S(p) itself is an integral over M of a local
density on M called Lagrangian. In our notation S(p) =
— [y L(¢(x))dz. Lagrangian density may depend on deriva-
tives, include distributions etc.

e Finally, the integration measure D(yp) and the integral
itself fP should be considered as symbolic constituents of
the total expression (1.1) conveying a vague but powerful
idea of “summing over trajectories”.



e In our toy model, we will replace P by a finite-dimensional
real space. We endow it with a basis indexed by a finite set
of “colors” A, and an Euclidean metric ¢ encoded by the
symmetric tensor (¢°), a,b € A. We put (¢*°) = (ga) L.

e The action functional S(p) is a formal series in linear
coordinates on P, (¢“), of the form

S(9) = Sole) + 51(0),  Sole) = —5 O g

=31 Y Caweoet (12)
k=1

ai,...,ap €A
where (C,, .. ,,) are certain symmetric tensors.
e Below we will consider (g,5) and (C,, .. .,) as indepen-

dent formal variables, “formal coordinates on the space of
theories”.



e We will express the toy version of (1.1) as a series over
(isomorphism classes of) graphs.

e A graph 7 for us consists of two finite sets, edges F.. and
vertices V., and the incidence map sending FE. to the set of
unordered pairs of vertices. Halves of edges form flags F’..

e THEOREM. We have, for a formal parameter )\

f e 1S(w)p ()
fP eA™150(2) D () a 7;‘ |Aut 7| w(r)

(1.3)

where 7 runs over isomorphism classes of all finite graphs
7. The weight w(7) of such a graph is determined by the
action functional (1.2) as follows:

>, I o 1] Curon (1.4)

u:F,—A ecE. veV,

Each edge e consists of a pair of flags denoted Je, and each
vertex v determines the set of flags incident to it denoted
F,(v), and x(7) is the Euler characteristic of .



Some explanations:

e Making sense of the equality (1.83) in the toy model:

(i) Replace the exponent in the numerator integrand by
e* '%0(#) times the formal series in Cayoioapsy A1

(ii) Formally integrate the series termwise interpreting
the exponential term as Gaussian integral. Use Wick’s
Lemma to this end.

o Visualizing graphs:
aq—(f”):f%- (Jf(f”))

< -7 f ir(f) <.

)
f'=i-(f") \ /< )\\
ANV
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e How weights w(7) are produced from decorated graphs:

w(T) = Z H g9 H Cu(F; (v)) -

u:F,—A ecE. veV,

One decoration = a map u : F, — A, “coloring flags”.
It induces decorations of edges by variables ¢“(?¢) and
decorations of vertices by variables C, (g, (.))

A fixed decoration produces a monomial in formal coor-
dinates; the whole sum is a sum over isomorphism classes
of decorated graphs.
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e How weights w(T) are produced from decorated graphs:

w(T) = Z H g H Cu(F, (v)) -

u:F,—A ecE. veV,

One decoration = a map u : F, — A, “coloring flags”.

It induces decorations of edges by variables ¢“(9¢) and
decorations of vertices by variables C (g, ()

A fixed decoration produces a monomial in formal coor-
dinates; the whole sum is a sum over isomorphism classes
of decorated graphs.

e NB The graphs occurring in toy model are not oriented
and have no “free flags” = “tails”, “leaves” etc.

In the applications to computation, they will certainly
have tails symbolizing inputs and outputs, and will be “time”
oriented.
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2. GRAPHS, FLOWCHARTS, AND HOPF ALGEBRAS

e In order not to mix illustrative pictures with mathe-
matical structures, we will distinguish between combinatorial
graphs and their geometric realizations.

e A combinatorial flag is a family of sets and maps:
7= (F,V;,0, : Fr - V., j,: F, - F,;), j2=id.

Combinatorial graphs form a category, with various classes
of (not at all obvious) morphisms, serving different purposes
in different contexts. Only isomorphisms are evident.

e Geometric realization of 7 is a topological space glued
from segments [0,1/2] indexed by F.: first use 0, to pro-
duce corollas of vertices by gluing 0’s,, then use j. to collect
together corollas by gluing 1/2’s.

e Let L = (Lp,Ly) be two sets: labels of flags and vertices,
respectively.

An L—-decoration of the combinatorial graph 7 consists of
two maps F, — Lp, V. — Ly. Usually these maps are re-
stricted by certain compatibility with incidence relations.
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e Orientation := decoration F, — Lr = {in,out} such that
halves of any edge are decorated by different labels .

Tails of 7 oriented in (resp. out) are called (global) inputs
T (resp. (global) outputs T°"') of 7. Similarly, F,(v) is parti-
tioned into inputs and outputs of the vertex v.

e An oriented graph 7 is called directed if it satisfies the
following condition:

On each connected component of the geometric realiza-
tion |7|, one can define a continuous real valued function
(“time”) in such a way that moving in the direction of ori-
entation along each flag inreases the value of this function.

In particular, oriented trees and forests are always di-
rected.

e An abstract flowchart is a directed graph endowed with
the decoration of its vertices by a set Op of (names of) op-
erations that can be performed on certain inputs producing
certain outputs.
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Connes—Kreimer Hopf algebras of flowcharts

e The Connes—Kreimer renormalization procedure starts
with the construction of a Hopf algebra generated by Feyn-
man algebra.

Here we will introduce its flowcharts version.

e CUTS. Let 7 be an oriented graph. Call a proper cut C
of 7 any partition of V. into a disjoint union of two non—
empty subsets V¢ (upper vertices) and V, ¢ (lower vertices)
satisfying the following conditions:

(i) For each oriented wheel in 7, all its vertices belong
either to V.“, or to V, c.

(ii) If an edge e connects a vertex v; € V. to vy € V, ¢,
then it is oriented from v; to vy (“information flows only
from past to future” ).

(iii) Two improper cuts: 7¢ := 7 or 7¢c = 7.

Denote by 7¢ (resp. 7¢) the subgraphs of T consisting of
vertices V¢ (resp. V, ¢ and incident flags.
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Fix a set of labels L = (Lp, Ly). Assume that Lr = L% x
{in,out},

The isomorphism class of a decorated graph 7 is [7].

e DEFINITION. A set Fl (“flowcharts”) of L—decorated
graphs is called admissible, if the following conditions are
satisfied:

(i) Each connected component of a graph in Fl belongs
to Fl. Each disjoint union of a family of graphs from F
belongs to Fl. Empty graph () is in FI.

(ii) For each 7 € Fl and each cut C of 7, 7 and 7¢ belong
to Fl.
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Fix a set of labels L = (Lp, Ly). Assume that Ly = LY x
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The isomorphism class of a decorated graph 7 is [7].

e DEFINITION. A set Fl (“flowcharts”) of L—decorated
graphs is called admissible, if the following conditions are
satisfied:

(i) Each connected component of a graph in Fl belongs
to Fl. Each disjoint union of a family of graphs from FI
belongs to Fl. Empty graph () is in FI.

(ii) For each 7 € Fl and each cut C of 7, 7 and 7¢ belong
to Fl.

e THE BIALGEBRA OF FLOWCHARTS:

Fl := an admissible set of graphs, £ := a commutative
ring.
H = Hp;:= the k—linear span of isomorphism classes of

graphs in F,

m: HH— H, m(o]®]r]) = [UHTL



A:H—-HeH, A(r]):=> [ @]l
c

sum over all cuts of 7.

19
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e CLAIM. (i) m defines on H the structure of a commu-
tative k—algebra with unit [(}]. Set n: k — H, 1} — [0].

(ii) A is a coassociative comultiplication on H, with counit

e: H—k, Z a[T][T] — ajg

TeFI

(iii) (H,m,A,e,n) is a commutative bialgebra with unit
and counit.
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e CLAIM. (i) m defines on H the structure of a commu-
tative k—algebra with unit [(}]. Set n: &k — H, 1} — [0].

(ii) A is a coassociative comultiplication on H, with counit

e . H—>]€, Z CL[T][T] '—>CL[@]
TeFI

(iii) (H,m,A,e,n) is a commutative bialgebra with unit
and counit.

e THE HOPF ALGEBRA OF FLOWCHARTS. Existence
and uniqueness of antipode will follow ([E-FMan]) if we
introduce an appropriate grading such that

m(Hy, ® Hy) C Hpq, A(Hp) C Opyg=ntp ® Hy,

and moreover, Hy = k()] is one—dimensional, so that H is
connected.

A possible choice:

H,, := the k—submodule of H spanned by [t] in Fl with |F.| = n.
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3. REGULARIZATION AND RENORMALIZATION

e REGULARIZATION BY “MINIMAL SUBTRACTION”.
A typical example:

A := the ring of germs of meromorphic functions of z at
z =03

A_ = 271C[z 7Y,

A, consists of germs of regular functions at z = 0,

ealf) = f(0)

For f € A, the regularized value of f at 0 is e4(f+) = f1(0)
where

f+(2) := f(2) — the polar part of f.

e CONNES-KREIMER RENORMALIZATION = a ver-
sion of regularization that:

— Is performed simultaneously for an infinite family of
functions indexeded by flowcharts;

— Uses “division by the collective pole part” in a non-
commutative group in place of subtraction of an individual
pole.
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e INPUT DATA:
‘H := a Hopf K—algebra as above.

A, A C A a minimal subtraction unital algebra, ¢4 :
A— K.

G(A) := the group of K—linear maps ¢ : H — A such that
()0(17'0 = 1a,
with the convolution product

prp(x) == malp @ V)A(x) = () + (@) + Y _ (2’ )p(z")
(z)

with identity e(z) := uy o ¢(x) and inversion
P Hz) = e(2) + Y (e —9)™ ()
m=1

NB For any z € kere the latter sum contains only finitely
many non—zero summands.
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e BIRKHOFF DECOMPOSITION: Collective pole and
collective regular part.

If A is a minimal subtraction algebra, each ¢ € G(A) ad-
mits a unique decomposition of the form

o= ko (1) =14, ¢_(kere) CA_, ¢y (H) C A;.

Values of renormalized polar (resp. regular) parts ¢_
(resp. ¢1) on kere are given by the inductive formulas

p_(x)=—m o)+ o (z)p@") |,
(@)

pr(x) = (id—m) | o) + ) o (a")e(")
(@)

Here 7: A — A_ is the polar part projection in the alge-
bra A.

Physicists invented these inductive formulas: they are
known as BPZH-renormalization, for Bogolyubov—Parasyuk—
Zimmermann —Hepp.
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4. CUT-OFF REGULARIZATION
AND ANYTIME ALGORITHMS

e Any regularization/renormalization scheme involves a
deformation of initial problem: introduction of, say, a com-
plex parameter z such that the infinite outcome of the initial
problem can be treated as pole at z = 0, whereas outside
2z = 0 the deformed problem has a well defined solution.

e The simplest way of deforming an integral is to cut off
the pole of integrand from the integration domain.

In theoretical computing, this might involve cutting com-
puting time, storage capacity etc.

e Time cut—offs, accompanied by sober estimates of qual-
ity of outputs resulted in the notion of ” Anytime Algo-
rithms”, cf. [Gr].
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e THE CALUDE-STAY TIME CUT-OFF ARGUMENT:

(A) The runtime of the Kolmogorov optimal program at
a point z of its definition domain is either < cz?, or is not
“algorithmically random” (Theorem 5 of [CalSt1]).

(B) Not “algorithmically random” integers have density
zero for a class of computable probability distributions.
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This last statement justifies the time cut—off prescription
which is the main result of [CalSt1]:

e If the computation on the input x did not halt after
cx? Turing steps, stop it, decide that the function is not
determined at x, and proceed to x + 1.

e One can generalize the statement (A) to arbitrary par-
tial recursive functions in place of computation time.

Consider a pair of functions ¢,v : R-g — R~ satisfying
the following conditions:

x
plz)
certain xry and tend to infinity as *r — oo.

b) ¢(z) and — L&)

R ()

The simplest examples: ¢(z) = log(z +2), ¥(z) = (z+1)11=,
e > 0.

a) p(x) and are strictly increasing starting with a

are increasing and tend to infinity
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In our context, ¢ will play the role of a “randomness
scale”. Call x € ZT algorithmically p-random, if C(z) > z/p(z),
where C is the (exponential) Kolmogorov complexity.

The second function ) will then play the role of associated
growth scale.

e PROPOSITION. Let f be a partial recursive function.
Then for all sufficiently large = exactly one of the following
alternatives holds:

(i) z € D(f), and f(z) < ¢ ().
(i) « & D(f)-

(iii) = € D(f), and f(x) is not algorithmically ¢—random.
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5. REGULARIZATION AND HOPF RENORMALIZATION
OF THE HALTING PROBLEM

e PLAN:
(a) Deforming the Halting Problem.

Recognizing, whether a number k € Z™ belongs to the
definition domain D(f) of a partial recursive function f, is
translated into the problem, whether an analytic function
®(k, f;z) of a complex parameter z has a pole at z = 1.

(b) Choosing a minimal subtraction algebra.

Let A, be the algebra of analytic functions in |z| < 1,
continuous at |z| = 1. It is a unital algebra; we endow it with
augmentation e 4 : ®(z) — ®(1). Put A_ := (1-2)"1C[(1-2)71],
A = A_|_ SP) ./4_.

(c) Hopf algebra of a programming method.

Basically, ' H = Hp is the symmetric algebra, spanned by
isomorphism classes [p] of certain descriptions. Comultipli-
cation in Hp is dual to the composition of descriptions.

(d) Characters, corresponding to the halting problem.
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The character ¢, : Hp — A corresponding to the halting
problem at a point k € Z* for the partial recursive function
computable with the help of a description p € P(Z",Z%), is
defined as ¢ ([p]) := ®(k, f;2) € A.
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e A LESSON OF QUANTUM COMPUTING: Reduction
of the general halting problem to the recognition of fixed
points of permutations.

Start with a partial recursive function f : X — X where
X is an infinite constructive world. Extend X by one point,
i. e. form X [[{*x}. Choose a total recursive structure of
an additive group without torsion on X [[{xx} with zero
xy. Extend f to the everywhere defined (but generally un-
computable) function g : X [[{*x} — X ][{*x}, by g(y) :=
xx if y ¢ D(f). Define the map

o (X[l 1)? = (X [T 1?0 72 y) = (@ + (), )-

Clearly, it is a permutation. Since (X [[{*x},+) has no tor-
sion, the only finite orbits of TfZ are fixed points.

Moreover, the restriction of 74 upon the recursive enu-
merable subset D(oy) := (X [[{*x})xD(f) of the constructive
world Y := (X [[{*x})? induces a partial recursive permuta-
tion o of this subset. Since g(y) never takes the zero value
xx on y € D(f), but always is zero outside it, the comple-
ment to D(of) in Y consists entirely of fixed points of 7.
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Thus, the halting problem for f reduces to the fixed point
recognition for 7;.
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e THE KOLMOGOROV ORDER.

Define a Kolmogorov numbering on a constructive world
X as a bijection K = K, : X — Z' arranging elements of X
in the increasing order of their complexities C,.

Let 0 : X — X be a partial recursive map, such that o
maps D(o) to D(c) and induces a permutation of this set.
Put ok := Koo oK™! and consider this as a permutation of
the subset

D(ok):=K(D(0)) C Z™

consisting of numbers of elements of D(c) in the Kolmogorov
order.

If x € D(0) and if the orbit ¢%(z) is infinite, then there
exist such constants c;,c; > 0 that for k£ := K(z) and all n € Z

we have
c1-K(n) <og(k) <cz-K(n).
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e THE HALTING PROBLEM RENORMALIZATION
CHARACTER.

Let X = Z" and o be a partial recursive map, inducing a
permutation on its definition domain. Put

Bk 1 o0 ~K(n)
(h032) = 55+ 2 oy

Then we have:

(i) If o—orbit of x is finite, then ®(x,0;2) is a rational
function in z whose all poles are of the first order and lie at
roots of unity.

(ii) If this orbit is infinite, then ®(z,0;z2) is the Taylor
series of a function analytic at |z| < 1 and continuous at the
boundary |z| = 1.
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