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INTRODUCTION

• The main observable quantities in Quantum Field The-
ory, correlation functions, are expressed by Feynman path in-
tegrals. A mathematical definition of them involving a mea-
sure and actual integration is still lacking. Instead, it is
replaced by a series of ad hoc but highly efficient and sug-
gestive heuristic formulas such as perturbation formalism.

• Perturbation formalism interprets such an integral as
a formal series of finite–dimensional but divergent integrals,
indexed by Feynman graphs.

• Renormalization is a prescription that allows one to sys-
tematically “subtract infinities” from these divergent terms
producing an asymptotic series for quantum correlation func-
tions.
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• Graphs treated as “flowcharts”, also form a combinatorial
skeleton of the abstract computation theory.

• Infinities in Computation Theory arise from infinite
loops/searches in infinite haystacks for a needle which is
not there.

• In this paper I argue that such infinities can be ad-
dressed in the same way as Feynman divergences.
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1. FEYNMAN GRAPHS AND PERTURBATION SERIES:

A TOY MODEL

• Feynman path integral is an heuristic expression of the
form

∫

P
eS(ϕ)D(ϕ)

∫

P
eS0(ϕ)D(ϕ)

(1.1)

or, more generally, a similar heuristic expression for corre-
lation functions.

• In the expression (1.1), P is imagined as a functional
space of classical fields ϕ on a space–time manifold M . S : P → C
is a functional of classical action measured in Planck’s units.

• Usually S(ϕ) itself is an integral over M of a local
density on M called Lagrangian. In our notation S(ϕ) =
−

∫

M
L(ϕ(x))dx. Lagrangian density may depend on deriva-

tives, include distributions etc.

• Finally, the integration measure D(ϕ) and the integral
itself

∫

P
should be considered as symbolic constituents of

the total expression (1.1) conveying a vague but powerful
idea of “summing over trajectories”.
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• In our toy model, we will replace P by a finite–dimensional
real space. We endow it with a basis indexed by a finite set
of “colors” A, and an Euclidean metric g encoded by the
symmetric tensor (gab), a, b ∈ A. We put (gab) = (gab)

−1.

• The action functional S(ϕ) is a formal series in linear
coordinates on P, (ϕa), of the form

S(ϕ) = S0(ϕ) + S1(ϕ), S0(ϕ) := −
1

2

∑

a,b

gabϕ
aϕb,

S1(ϕ) :=
∞
∑

k=1

1

k!

∑

a1,...,ak∈A

Ca1,...,ak
ϕa1 . . . ϕak (1.2)

where (Ca1,...,an
) are certain symmetric tensors.

• Below we will consider (gab) and (Ca1,...,an
) as indepen-

dent formal variables, “formal coordinates on the space of
theories”.
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• We will express the toy version of (1.1) as a series over
(isomorphism classes of) graphs.

• A graph τ for us consists of two finite sets, edges Eτ and
vertices Vτ , and the incidence map sending Eτ to the set of
unordered pairs of vertices. Halves of edges form flags Fτ .

• THEOREM. We have, for a formal parameter λ

∫

P
eλ−1S(ϕ)D(ϕ)

∫

P
eλ−1S0(ϕ)D(ϕ)

=
∑

τ∈Γ

λ−χ(τ)

|Aut τ |
w(τ) (1.3)

where τ runs over isomorphism classes of all finite graphs
τ . The weight w(τ) of such a graph is determined by the
action functional (1.2) as follows:

w(τ) :=
∑

u: Fτ→A

∏

e∈Eτ

gu(∂e)
∏

v∈Vτ

Cu(Fτ (v)) . (1.4)

Each edge e consists of a pair of flags denoted ∂e, and each
vertex v determines the set of flags incident to it denoted
Fτ (v), and χ(τ) is the Euler characteristic of τ .



9

Some explanations:

• Making sense of the equality (1.3) in the toy model:

(i) Replace the exponent in the numerator integrand by

eλ−1S0(ϕ) times the formal series in Ca1,...,ak
, λ−1.

(ii) Formally integrate the series termwise interpreting
the exponential term as Gaussian integral. Use Wick’s
Lemma to this end.

• Visualizing graphs:

•
f

??
??

??
?

f ′=jτ (f ′)

��
��

��
�

jτ (f)
•

??
??

??
?

��
��

��
�

∂τ (f ′′)=∂τ (jτ (f ′′))

•

??
??

??
?

�������

???????
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• How weights w(τ) are produced from decorated graphs:

w(τ) :=
∑

u: Fτ→A

∏

e∈Eτ

gu(∂e)
∏

v∈Vτ

Cu(Fτ (v)) .

One decoration = a map u : Fτ → A, “coloring flags”.

It induces decorations of edges by variables gu(∂e) and
decorations of vertices by variables Cu(Fτ (v))

A fixed decoration produces a monomial in formal coor-
dinates; the whole sum is a sum over isomorphism classes
of decorated graphs.
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decorations of vertices by variables Cu(Fτ (v))

A fixed decoration produces a monomial in formal coor-
dinates; the whole sum is a sum over isomorphism classes
of decorated graphs.

• NB The graphs occurring in toy model are not oriented
and have no “free flags” = “tails”, “leaves” etc.

In the applications to computation, they will certainly
have tails symbolizing inputs and outputs, and will be “time”–
oriented.
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•
f

??
??

??
?

f ′=jτ (f ′)

out
��

��
��

�

jτ (f)
•

in

in

??
??

??
?
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��
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�

∂τ (f ′′)=∂τ (jτ (f ′′))

•

out
out
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??

??
?

�������
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2. GRAPHS, FLOWCHARTS, AND HOPF ALGEBRAS

• In order not to mix illustrative pictures with mathe-
matical structures, we will distinguish between combinatorial
graphs and their geometric realizations.

• A combinatorial flag is a family of sets and maps:

τ := (Fτ , Vτ , ∂τ : Fτ → Vτ , jτ : Fτ → Fτ ), j2τ = id.

Combinatorial graphs form a category, with various classes
of (not at all obvious) morphisms, serving different purposes
in different contexts. Only isomorphisms are evident.

• Geometric realization of τ is a topological space glued
from segments [0, 1/2] indexed by Fτ : first use ∂τ to pro-
duce corollas of vertices by gluing 0’s,, then use jτ to collect
together corollas by gluing 1/2’s.

• Let L = (LF , LV ) be two sets: labels of flags and vertices,
respectively.

An L–decoration of the combinatorial graph τ consists of
two maps Fτ → LF , Vτ → LV . Usually these maps are re-
stricted by certain compatibility with incidence relations.
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• Orientation := decoration Fτ → LF = {in, out} such that
halves of any edge are decorated by different labels .

Tails of τ oriented in (resp. out) are called (global) inputs
T in

τ (resp. (global) outputs T out
τ ) of τ . Similarly, Fτ (v) is parti-

tioned into inputs and outputs of the vertex v.

• An oriented graph τ is called directed if it satisfies the
following condition:

On each connected component of the geometric realiza-
tion |τ |, one can define a continuous real valued function
(“time”) in such a way that moving in the direction of ori-
entation along each flag inreases the value of this function.

In particular, oriented trees and forests are always di-
rected.

• An abstract flowchart is a directed graph endowed with
the decoration of its vertices by a set Op of (names of) op-
erations that can be performed on certain inputs producing
certain outputs.
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Connes–Kreimer Hopf algebras of flowcharts

• The Connes–Kreimer renormalization procedure starts
with the construction of a Hopf algebra generated by Feyn-
man algebra.

Here we will introduce its flowcharts version.

• CUTS. Let τ be an oriented graph. Call a proper cut C
of τ any partition of Vτ into a disjoint union of two non–
empty subsets V C

τ (upper vertices) and Vτ,C (lower vertices)
satisfying the following conditions:

(i) For each oriented wheel in τ , all its vertices belong
either to V C

τ , or to Vτ,C .

(ii) If an edge e connects a vertex v1 ∈ V C
τ to v2 ∈ Vτ,C ,

then it is oriented from v1 to v2 (“information flows only
from past to future” ).

(iii) Two improper cuts: τC := τ or τC = τ .

Denote by τC (resp. τC) the subgraphs of τ consisting of
vertices V C

τ (resp. Vτ,C and incident flags.
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Fix a set of labels L = (LF , LV ). Assume that LF = L0
F ×

{in, out},

The isomorphism class of a decorated graph τ is [τ ].

• DEFINITION. A set F l (“flowcharts”) of L–decorated
graphs is called admissible, if the following conditions are
satisfied:

(i) Each connected component of a graph in F l belongs
to F l. Each disjoint union of a family of graphs from F l
belongs to F l. Empty graph ∅ is in F l.

(ii) For each τ ∈ F l and each cut C of τ , τC and τC belong
to F l.
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(i) Each connected component of a graph in F l belongs
to F l. Each disjoint union of a family of graphs from F l
belongs to F l. Empty graph ∅ is in F l.

(ii) For each τ ∈ F l and each cut C of τ , τC and τC belong
to F l.

• THE BIALGEBRA OF FLOWCHARTS:

F l := an admissible set of graphs, k := a commutative
ring.

H = HFl:= the k–linear span of isomorphism classes of
graphs in F l,

m : H ⊗H → H, m([σ] ⊗ [τ ]) := [σ
∐

τ ],
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∆ : H → H ⊗H, ∆([τ ]) :=
∑

C

[τC ] ⊗ [τC ],

sum over all cuts of τ.
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• CLAIM. (i) m defines on H the structure of a commu-
tative k–algebra with unit [∅]. Set η : k → H, 1k 7→ [∅] .

(ii) ∆ is a coassociative comultiplication on H, with counit

ε : H → k,
∑

τ∈Fl

a[τ ][τ ] 7→ a[∅]

(iii) (H,m,∆, ε, η) is a commutative bialgebra with unit
and counit.
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• THE HOPF ALGEBRA OF FLOWCHARTS. Existence
and uniqueness of antipode will follow ([E–FMan]) if we
introduce an appropriate grading such that

m(Hp ⊗Hq) ⊂ Hp+q , ∆(Hn) ⊂ ⊕p+q=nHp ⊗Hq,

and moreover, H0 = k[∅] is one–dimensional, so that H is
connected.

A possible choice:

Hn := the k−submodule of H spanned by [τ ] in F l with |Fτ | = n.
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3. REGULARIZATION AND RENORMALIZATION

• REGULARIZATION BY “MINIMAL SUBTRACTION”.
A typical example:

A := the ring of germs of meromorphic functions of z at
z = 0;

A− := z−1C[z−1],
A+ consists of germs of regular functions at z = 0,
εA(f) := f(0)

For f ∈ A, the regularized value of f at 0 is εA(f+) = f+(0)
where

f+(z) := f(z) − the polar part of f.

• CONNES–KREIMER RENORMALIZATION = a ver-
sion of regularization that:

– Is performed simultaneously for an infinite family of
functions indexeded by flowcharts;

– Uses “division by the collective pole part” in a non-
commutative group in place of subtraction of an individual
pole.
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• INPUT DATA:

H := a Hopf K–algebra as above.

A+,A− ⊂ A a minimal subtraction unital algebra, εA :
A → K.

G(A) := the group of K–linear maps ϕ : H → A such that
ϕ(1H) = 1A,

with the convolution product

ϕ ∗ ψ(x) := mA(ϕ⊗ ψ)∆(x) = ϕ(x) + ψ(x) +
∑

(x)

ϕ(x′)ψ(x′′)

with identity e(x) := uA ◦ ε(x) and inversion

ϕ∗−1(x) = e(x) +

∞
∑

m=1

(e− ϕ)∗m(x)

NB For any x ∈ ker ε the latter sum contains only finitely
many non–zero summands.
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• BIRKHOFF DECOMPOSITION: Collective pole and
collective regular part.

If A is a minimal subtraction algebra, each ϕ ∈ G(A) ad-
mits a unique decomposition of the form

ϕ = ϕ∗−1
− ∗ ϕ+; ϕ−(1) = 1A, ϕ−(ker ε) ⊂ A−, ϕ+(H) ⊂ A+.

Values of renormalized polar (resp. regular) parts ϕ−

(resp. ϕ+) on ker ε are given by the inductive formulas

ϕ−(x) = −π



ϕ(x) +
∑

(x)

ϕ−(x′)ϕ(x′′)



 ,

ϕ+(x) = (id − π)



ϕ(x) +
∑

(x)

ϕ−(x′)ϕ(x′′)



 .

Here π : A → A− is the polar part projection in the alge-
bra A.

Physicists invented these inductive formulas: they are
known as BPZH–renormalization, for Bogolyubov–Parasyuk–
Zimmermann –Hepp.
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4. CUT–OFF REGULARIZATION

AND ANYTIME ALGORITHMS

• Any regularization/renormalization scheme involves a
deformation of initial problem: introduction of, say, a com-
plex parameter z such that the infinite outcome of the initial
problem can be treated as pole at z = 0, whereas outside
z = 0 the deformed problem has a well defined solution.

• The simplest way of deforming an integral is to cut off
the pole of integrand from the integration domain.

In theoretical computing, this might involve cutting com-
puting time, storage capacity etc.

• Time cut–offs, accompanied by sober estimates of qual-
ity of outputs resulted in the notion of ”Anytime Algo-
rithms”, cf. [Gr].
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• THE CALUDE–STAY TIME CUT–OFF ARGUMENT:

(A) The runtime of the Kolmogorov optimal program at
a point x of its definition domain is either ≤ cx2, or is not
“algorithmically random” (Theorem 5 of [CalSt1]).

(B) Not “algorithmically random” integers have density
zero for a class of computable probability distributions.
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This last statement justifies the time cut–off prescription
which is the main result of [CalSt1]:

————————————————————————
• If the computation on the input x did not halt after

cx2 Turing steps, stop it, decide that the function is not
determined at x, and proceed to x+ 1.

———————————————————————–

• One can generalize the statement (A) to arbitrary par-
tial recursive functions in place of computation time.

Consider a pair of functions ϕ,ψ : R>0 → R>0 satisfying
the following conditions:

a) ϕ(x) and
x

ϕ(x)
are strictly increasing starting with a

certain x0 and tend to infinity as x→ ∞.

b) ψ(x) and
ψ(x)

xϕ(ψ(x))
are increasing and tend to infinity

as x→ ∞.

The simplest examples: ϕ(x) = log(x+2), ψ(x) = (x+1)1+ε,
ε > 0.
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In our context, ϕ will play the role of a “randomness
scale”. Call x ∈ Z+ algorithmically ϕ–random, if C(x) > x/ϕ(x),
where C is the (exponential) Kolmogorov complexity.

The second function ψ will then play the role of associated
growth scale.

• PROPOSITION. Let f be a partial recursive function.
Then for all sufficiently large x exactly one of the following
alternatives holds:

(i) x ∈ D(f), and f(x) ≤ ψ(x).

(ii) x /∈ D(f).

(iii) x ∈ D(f), and f(x) is not algorithmically ϕ–random.
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5. REGULARIZATION AND HOPF RENORMALIZATION

OF THE HALTING PROBLEM

• PLAN:

(a) Deforming the Halting Problem.

Recognizing, whether a number k ∈ Z+ belongs to the
definition domain D(f) of a partial recursive function f , is
translated into the problem, whether an analytic function
Φ(k, f ; z) of a complex parameter z has a pole at z = 1.

(b) Choosing a minimal subtraction algebra.

Let A+ be the algebra of analytic functions in |z| < 1,
continuous at |z| = 1. It is a unital algebra; we endow it with
augmentation εA : Φ(z) 7→ Φ(1). Put A− := (1−z)−1C[(1−z)−1],
A := A+ ⊕A−.

(c) Hopf algebra of a programming method.

Basically, H = HP is the symmetric algebra, spanned by
isomorphism classes [p] of certain descriptions. Comultipli-
cation in HP is dual to the composition of descriptions.

(d) Characters, corresponding to the halting problem.
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The character ϕk : HP → A corresponding to the halting
problem at a point k ∈ Z+ for the partial recursive function
computable with the help of a description p ∈ P (Z+,Z+), is
defined as ϕk([p]) := Φ(k, f ; z) ∈ A.
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• A LESSON OF QUANTUM COMPUTING: Reduction
of the general halting problem to the recognition of fixed
points of permutations.

Start with a partial recursive function f : X → X where
X is an infinite constructive world. Extend X by one point,
i. e. form X

∐

{∗X}. Choose a total recursive structure of
an additive group without torsion on X

∐

{∗X} with zero
∗X . Extend f to the everywhere defined (but generally un-
computable) function g : X

∐

{∗X} → X
∐

{∗X}, by g(y) :=
∗X if y /∈ D(f). Define the map

τf : (X
∐

{∗X})2 → (X
∐

{∗X})2, τf (x, y) := (x+ g(y), y).

Clearly, it is a permutation. Since (X
∐

{∗X},+) has no tor-
sion, the only finite orbits of τZ

f are fixed points.

Moreover, the restriction of τf upon the recursive enu-
merable subset D(σf ) := (X

∐

{∗X})×D(f) of the constructive
world Y := (X

∐

{∗X})2 induces a partial recursive permuta-
tion σf of this subset. Since g(y) never takes the zero value
∗X on y ∈ D(f), but always is zero outside it, the comple-
ment to D(σf ) in Y consists entirely of fixed points of τf .
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———————————————————————–
Thus, the halting problem for f reduces to the fixed point

recognition for τf .
———————————————————————-
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• THE KOLMOGOROV ORDER.

Define a Kolmogorov numbering on a constructive world
X as a bijection K = Ku : X → Z+ arranging elements of X
in the increasing order of their complexities Cu.

Let σ : X → X be a partial recursive map, such that σ
maps D(σ) to D(σ) and induces a permutation of this set.
Put σK := K ◦ σ ◦K−1 and consider this as a permutation of
the subset

D(σK) := K(D(σ)) ⊂ Z+

consisting of numbers of elements of D(σ) in the Kolmogorov
order.

If x ∈ D(σ) and if the orbit σZ(x) is infinite, then there
exist such constants c1, c2 > 0 that for k := K(x) and all n ∈ Z
we have

c1 · K(n) ≤ σn
K

(k) ≤ c2 · K(n).
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• THE HALTING PROBLEM RENORMALIZATION
CHARACTER.

Let X = Z+ and σ be a partial recursive map, inducing a
permutation on its definition domain. Put

Φ(k, σ; z) :=
1

k2
+

∞
∑

n=1

zK(n)

(σn
K

(k))2
.

Then we have:

(i) If σ–orbit of x is finite, then Φ(x, σ; z) is a rational
function in z whose all poles are of the first order and lie at
roots of unity.

(ii) If this orbit is infinite, then Φ(x, σ; z) is the Taylor
series of a function analytic at |z| < 1 and continuous at the
boundary |z| = 1.
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