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Toldo S, Mauro AG, Cutter Z, Abbate A. Inflammasome, pyroptosis, and
cytokines in myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ
Physiol 315: H1553–H1568, 2018. First published August 31, 2018; doi:10.1152/
ajpheart.00158.2018.—Myocardial ischemia-reperfusion injury induces a sterile
inflammatory response, leading to further injury that contributes to the final infarct
size. Locally released danger-associated molecular patterns lead to priming and
triggering of the NOD-like receptor protein 3 inflammasome and amplification of
the inflammatory response and cell death by activation of caspase-1. We review
strategies inhibiting priming, triggering, or caspase-1 activity or blockade of the
inflammasome-related cytokines interleukin-1� and interleukin-18, focusing on the
beneficial effects in experimental models of acute myocardial infarction in animals
and the initial results of clinical translational research trials.
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THE INFLAMMASOME

The term inflammasome refers to a class of macromolecular
structures that are formed from the activation of intracellular
receptors for danger- or pathogen-associated molecular pat-
terns (DAMPs or PAMPs, respectively) (15, 130), part of
nucleotide-binding oligomerization domain (NOD)-like recep-
tors (NLRs), retinoic acid-inducible gene I-like receptors
(130), and absent in melanoma 2 (AIM2)-like receptor (123,
130). The evolutionary role of inflammasomes is to link de-
tection of a “danger signal,” in the form of a plethora of
molecular structures (microbial, cellular, and organic or inor-
ganic simple molecules), to a specific cellular response that
implies activation of the proinflammatory caspase-1 and re-
lease of the proinflammatory cytokines IL-1� and IL-18 (Fig.
1) (123, 130). The various inflammasomes have different
ligand specificity and, together, can recognize a wide range of
DAMPs and PAMPs (106). As such, inflammasomes are cen-
tral to innate immunity, a nonspecific first line of defense
promptly activated during the course of infections, in immune
and nonimmune cells, based on the chemical properties of the
antigen. Innate immunity is different from adaptive immunity,
which requires activity of specialized cells and produces an
antigen-specific response. DAMPs are a class of endogenous
(self) molecules, including nucleic acids, nucleotides, proteins,

fatty acids, and inorganic molecules, that, when in the extra-
cellular space, in endocytotic vesicles, or free in the cytoplasm,
trigger activation of the innate immune response independently
from the presence of the infectious pathogen (112). The re-
sponse to DAMPs in the absence of a microbial agent is,
therefore, defined as “sterile immunity” (112). Congruent ac-
tivation of the innate immune response in the presence or
absence of a pathogen is due to the virtually indistinguishable
chemical nature of DAMPs from PAMPs. The most studied
inflammasome receptor is NACHT, leucine-rich repeat, and
pyrin domain (PYD)-containing protein 3 [NLR protein 3
(NLRP3)], a pattern recognition receptor (PRR) that recog-
nizes bacterial and viral PAMPs as well as numerous DAMPs
involved in tissue injury (29, 93, 130). Several intracellular and
extracellular stimuli that originate from disruption of cell
homeostasis trigger NLRP3 activation, making this protein
central in control of the inflammatory response to tissue injury
(130). The focus of this review is to describe the activation of
the NLRP3 inflammasome, its associated cytokines, and their
consequences in response to myocardial ischemia-reperfusion
(I/R) injury.

INJURY AND INFLAMMATION IN ACUTE MYOCARDIAL
INFARCTION

Acute myocardial infarction (AMI) is one of commonest
causes of morbidity, hospitalization, and mortality on a global
scale (9). Sudden occlusion of a coronary artery due to rupture
of the fibrous cap that overlays a lipid plaque and subsequent
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thrombus formation results in immediate downstream reduc-
tion of oxygen delivery to the myocardium and intracellular
energy that culminates in cardiomyocyte necrosis (26, 50).
Restoration of blood flow to the ischemic myocardium, al-
though a standard of care in AMI, can paradoxically compound
injury to the myocardium through multiple mechanisms,
deemed reperfusion injury (153). AMI represents a prototypi-
cal example of sterile injury, in which the NLRP3 inflam-
masome coordinates an inflammatory response in the absence
of pathogens (130). While this response is essential to guaran-
tee healing of the wounded tissue, uncontrolled or exuberant
inflammation becomes a mechanism of disease (49). Prompted
by local and systemic signals associated with cell damage and
necrosis, leukocytes are recruited first to the region of ischemia
and infarction (117). After AMI, there is no restitutio ad
integrum. In fact, the resultant clearance of cellular debris,
together with immune cell proliferation and fibrotic scar for-
mation, leads to an incomplete functional recovery of the
affected tissue, compounded by negligible cell cycle entry and
regeneration of adult mammalian cardiomyocytes (48, 70,
117). Although the inflammatory response is needed to coor-
dinate these healing phases, a chronic and unresolved inflam-
matory response leads to continual loss of functional myocytes,

deleterious geometrical abnormalities, and aneurysm forma-
tion, worsening the consequences of AMI (23, 52, 117). The
activity of the NLRP3 inflammasome is a decisive component
of the innate immune response to ischemia, repair, and perpet-
uation of injury (125, 130).

Danger-Associated Molecular Patterns

Prolonged ischemia induces a loss of membrane integrity,
leading to necrosis, and is associated with the release of
intracellular contents not found in the normal interstitium (21,
40). Several intracellular proteins with different biological
functions are collectively named “alarmins” for their ability to
become alarm or danger signals for nearby cells. Identified
alarmins include IL-1� (see below), high-mobility group box
1, S100 family proteins, some heat shock proteins (HSPs), and
glucose-regulated proteins (GRPs) (10, 14, 77, 152). A com-
mon function of these alarmins is to activate NF-�B (14). As a
protein regulating transcription of pro- and anti-inflammatory
genes, NF-�B is a central orchestrator and key regulator of the
inflammatory response and inflammasome pathway after AMI
(137). One of the best-characterized alarmins is high-mobility
group box 1. This nuclear protein is passively released during
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Fig. 1. Inflammasomes react to the presence of danger-
associated molecule and activate a specific cytokine path-
way. A plethora of molecular structures, stemming from
pathogen invasion or host tissue/cell damage, result in a
streamlined initiation and activation of the innate immune
response. During pathogen invasion, bacterial and viral
products, such as lipopolysaccharide, DNA, or RNA, serve
as pathogen-associated molecular patterns (PAMPs) to the
inflammasome. During tissue damage, molecules of intra-
cellular origin serve as danger-associated molecular patterns
(DAMPs) to also activate the subsequent immune response.
Activation of the inflammasome induces production and
release of active IL-1� and/or IL-18.
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necrosis, leading to paracrine diffusion and binding to Toll-like
receptor (TLR)-4, a PRR of the TLR family, or the receptor for
advanced glycation end products, increasing NF-�B activation
and perpetuating reperfusion injury (14, 42, 78). The S100
family of proteins also diffuse after necrosis, binding to the
receptor for advanced glycation end products and TLR-4 and
eliciting NF-�B activation (41). A similar function has been
observed for GRPs (e.g., GRP94/gp96 and GRP170) and HSPs
(e.g., hsp70 and hsp90) (12, 83). Among other known DAMPs,
extracellular ATP serves as a trigger for aggregation of the
components of the NLRP3 inflammasome, leading to the active
macromolecular structure (15, 21, 40, 130).

NLRP3: a Sensor That Links Injury to Inflammation

NLRP3 is a member of a family of 14 NLRPs that includes
PRRs and proteins not involved in the inflammatory response.
NLRP3 is structurally characterized by a domain of leucine-
rich repeats assembled at the COOH terminus, a central
NATCH domain (also known as NOD), and an NH2-terminal
effector PYD (130). The function of NLRP3 is mostly associ-
ated with the inflammasome; however, there have been reports
of NLRP3 activity independent of the inflammasome pathway
(146, 149). Upon ligand sensing, NLRP3 oligomerizes and,

through its NH2-terminal PYD, interacts with the PYD of
adaptor protein apoptosis-associated speck-like protein con-
taining a COOH-terminus caspase activation and recruitment
domain (ASC) (Fig. 2) (112, 130). This PYD-PYD interaction
initiates polymerization of ASC into filamentous, insoluble
structures that macroscopically distinguish the presence of the
inflammasome as a large perinuclear speck (17). ASC is a
scaffold protein that is necessary for recruitment of the effector
enzyme pro-caspase-1 into the NLRP3 inflammasome (123,
130).

Initially named IL-1�-converting enzyme for its recognized
role in IL-1� activation, caspase-1 is a cysteine proteinase
synthesized as a zymogen (45). Although similar to other
caspases, caspase-1 is not part of the apoptotic pathway,
inasmuch as caspase-1-deficient mice remain sensitive to apo-
ptotic stimuli and progress through normal development (72).
Predominantly associated with the inflammasome and func-
tioning to process cytokines, caspase-1 cleaves the inactive
cytosolic pro-IL-1� and pro-IL-18 into their respective active
forms (45). Caspase-1 is also associated with a regulated form
of cell death, termed pyroptosis (13). Morphologically and
functionally distinct from apoptosis, which cleanly packages
intracellular contents for immune cell phagocytosis, pyroptosis
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Fig. 2. Stages of NOD-like receptor protein 3 (NLRP3) inflam-
masome activation: priming, triggering, and downstream ef-
fects. NLRP3 inflammasome activation requires two indepen-
dent steps. During tissue damage, the presence of damage-
associated molecular patterns (DAMPs) stimulates pattern
recognition receptors (PRRs) like Toll-like receptors (TLRs) or
the IL-1 receptor, leading to translocation of NF-�B into the
nucleus. This event induces transcription of hundreds of pro-
inflammatory genes, notably all components of the inflam-
masome (inflammasome priming). Sufficient translation of the
inflammasome components NLRP3, apoptosis-associated
speck-like protein containing a COOH-terminal caspase acti-
vation and recruitment domain (ASC), and pro-caspase-1 is a
necessary step toward inflammasome formation but does not
directly result in its activation. Extracellular DAMPs, like
extracellular ATP (eATP), or intracellular DAMPs can induce
NLRP3 activation (inflammasome trigger) through different
mechanisms that involve K� efflux. For example, eATP acti-
vates the purinergic P2X7 receptor, resulting in K� efflux and
activation of NLRP3. Once active, NLRP3 oligomerizes into a
platform for pyrin domain (PYD) interactions between itself
and ASC. Subsequent polymerization of ASC into filamentous
insoluble structures serves as a platform for pro-caspase-1
recruitment. Formation of the macromolecular structure is
followed by autocatalytic activation of pro-caspase-1 into
caspase-1 and cleavage of the pro-IL-1� and pro-IL-18 into
their active forms. Caspase-1-mediated cleavage of gasder-
min-D (GSDMD), culminating in oligomerization of the NH2-
terminal fragment of GSDMD into a plasma membrane pore,
mediates release of IL-1� and IL-18 into the extracellular space
for further autocrine, paracrine, and endocrine immune re-
sponses. Caspase-1 activity also mediates a form of regulated
cell death termed pyroptosis.
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features plasma membrane rupture and release of intracellular
and proinflammatory contents (13). This inflammation-linked
cell death is a driving factor of reperfusion injury (Figs. 2 and
3). NLRP3 can also serve as a platform for noncanonical
activation on two other caspases, caspase-8 and caspase-11.
However, it is not known whether these two caspases have a
role in the response to tissue injury (57, 69).

NLRP3 INFLAMMASOME ACTIVATION CONTRIBUTES TO
INFARCT SIZE

In the first report of inflammasome activation during AMI,
Kawaguchi et al. (68) noted visible ASC aggregates in the
human heart at autopsies. They subsequently showed smaller
infarcts, reduced IL-1� synthesis, and preservation of cardiac
function in mice lacking ASC or caspase-1 (68). This is
consistent with prior reports of the cardioprotective effect of
caspase-1 deletion, preceding the notion of the inflammasome
(53). Targeted deletion of caspase-1 reduces early mortality
and left ventricular (LV) dilation after myocardial infarction
(MI) (53, 105). Further evidence in support of a role of the
NLRP3 inflammasome in AMI derived from gene silencing of
NLRP3 in a different in vivo model of MI in the mouse by
Mezzaroma et al. (94). These reports were followed by the
work of Sandanger et al. (114), who found reduced infarct size
in Nlrp3�/� mice in an ex vivo Langendorff model of I/R.

Priming of the NLRP3 Inflammasome

Activation of the NLRP3 inflammasome involves two dis-
tinct and independent phases: inflammasome priming and trig-
gering of NLRP3 (Fig. 2) (130, 131). NF-�B drives transcrip-
tion of hundreds of proinflammatory genes, including all the
components of the NLRP3 inflammasome in leukocytes and
cardiac resident cells, such as cardiomyocytes, fibroblasts, and
endothelial cells (78, 123, 130). This step mediated by NF-�B,
termed priming, is necessary to produce a critical mass of

inflammasome components to suffice formation of the macro-
molecular complex (130, 131). The TLR signaling induced by
DAMPs, including alarmins, and the activation of other cyto-
kine receptors are the main factors that mediate the priming
step (50, 130, 131).

Triggering of the NLRP3 Inflammasome

The presence of extracellular or intracellular triggers then
leads to activation of NLRP3 (Fig. 2) (123). Many of these
signals (see below) are associated with K� efflux. Common
trigger signals include extracellular ATP, reactive oxygen
species (ROS), and impairment of the autophagy process,
which has been shown to exacerbate the NLRP3 inflam-
masome-mediated response (150). When present in high ex-
tracellular concentration, ATP binds to the purinergic P2X7

receptor, inducing K� efflux and triggering the NLRP3 acti-
vation cascade (Fig. 2) (130).

In some instances, as in monocytes, the priming signal
induced by lipopolysaccharide (LPS) is sufficient to induce
release of IL-1� (101). However, in the heart, the combination
of the priming and triggering signals is necessary to elicit
NLRP3 inflammasome activation (130, 131). The requirement
for two signals broadens the therapeutic possibilities aimed at
blocking inflammasome activation. The complexity of NLRP3
signaling and converging cellular processes continues to grow.
Some of the mechanisms relevant to the sterile inflammatory
response are described below.

ROLE OF THE INFLAMMASOME AND PYROPTOTIC CELL
DEATH IN THE WAVEFRONT OF REPERFUSION INJURY

In the absence of priming, the concentration of inflam-
masome components in the heart is insufficient to respond to a
trigger signal (131). This has been demonstrated using the
mouse model of constitutively active mutant NLRP3, which
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Fig. 3. Wavefront of reperfusion injury. Prolonged ischemia
inevitably leads to death of cardiomyocytes mainly through
necrosis. This initial area of necrotic cells represents only a
part of the mature infarct measured hours after reperfusion.
In the initial phases (�3 h) of reperfusion, activity of the
inflammasome is negligible, but damage-associated molecu-
lar patterns (DAMPs) released by necrotic cells contribute to
increase expression of inflammasome components. When
levels of inflammasome proteins reach a threshold for acti-
vation, the high intensity of inflammasome activity becomes
associated with a rapid growth of the infarct through pyrop-
tosis, the inflammatory cell death mediated by the inflam-
masome. The first hours before the increase in this inflam-
masome activity represent a time window for successful
therapeutic intervention.
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fails to activate caspase-1 in the heart in the absence of priming
(131).

I/R injury offers a combination of priming and triggering
that activates the inflammasome pathway in the heart. We and
others have shown that, after reperfusion, the size of the infarct
increases in a time-dependent fashion (99, 127). Even if rep-
erfusion reduces the total amount of myocardial necrosis,
reperfusion fails to salvage all the myocardium that could be
salvaged. Indeed, during the early phases of reperfusion, most
of the infarct is represented by the necrotic core that is
generated during ischemia plus a bordering portion that is part
of the area at risk that is rescued from the hypoxic necrosis but
has been exposed to sublethal injury and proinflammatory
stimuli by DAMPs generated by the neighboring necrotic cells.
Similar to the wavefront of ischemic injury during prolonged
ischemia, this phenomenon represents a “wavefront of reper-
fusion injury,” whereby the size of the infarct continues to
expand over the 3–6 h after reperfusion (Fig. 3) (109). The
wavefront of reperfusion injury may, at least in part, be due to
a propagation of cell damage, of an inflammatory nature, to
cells that were previously harmed but not killed. Expression of
NLRP3 and the inflammasome activation indeed increase over
time after reperfusion, resulting in cell death (82, 127). In
accordance with these dynamics, we have shown, in the mouse,
a therapeutic intervention window of a few hours after reper-
fusion, characterized by a reduction in infarct size with inhi-
bition of the NLRP3 inflammasome, that is lost if treatment is
given 3 h after reperfusion (127). These results indicate that, in
the mouse heart, a sustained NLRP3 inflammasome activation
occurs between 1 and 3 h after reperfusion, and a therapeutic
intervention before 3 h may improve the reperfusion outcome.
As explained above, the mechanism by which the NLRP3
inflammasome induces cardiomyocyte death and infarct expan-
sion is likely through pyroptosis and not through production of
IL-1� (94). Deletion or inhibition of the inflammasome com-
ponents (NLRP3, ASC, or caspase-1) reduces infarct size,
whereas IL-1� blockade (see below) at the time of reperfusion
fails to reduce infarct size (68, 84, 86, 113, 114, 127, 138).
However, the mouse lacking IL-1 receptor type I (IL-1RI) or
the mouse pretreated with an IL-1 blocker is protected, and this
may be related to a further downregulation of the sensors of the
inflammasome in the heart (133).

MECHANISMS OF REGULATION OF THE NLRP3
INFLAMMASOME

As described above, NLRP3 responds to a variety of differ-
ent stimuli. The extensive research of the past few years has
pointed out some key pathways and events that lead to the
activation of NLRP3.

ROS and Mitochondrial Dysfunction

ROS, among the most common cellular byproducts pro-
duced during I/R injury, lead to oxidative stress and activation
of the inflammasome cascade via multiple mechanisms (52,
108). Oxidative stress leads to an unfolded protein response
that can cause detachment of thioredoxin from thioredoxin-
interacting protein, which interacts with NLRP3 to promote
activation of the inflammasome (82). siRNA against thiore-
doxin-interacting protein was shown to reduce inflammasome
formation in the heart and reduce infarct size after I/R injury

(82). Mitochondria are responsible for cellular energy produc-
tion and are actively involved in the induction of necrotic,
apoptotic, and pyroptotic cell death (50). These organelles
constitute one of the major sources of ROS after reperfusion,
due to damage to the segment between complex III and
cytochrome oxidase of the mitochondrial respiratory chain
(22). ROS represent a potent trigger of NLRP3 and induce
NLRP3-dependent lysosomal damage and inflammasome acti-
vation (62, 130). Another activator of NLRP3 of mitochondrial
origin is cardiolipin, a phospholipid that is located in the inner
membrane of the mitochondria and is responsible for several
bioenergetic processes (65). In ROS-mediated mitochondrial
dysfunction, exposed cardiolipin binds to and activates NLRP3
(65). Released cardiolipin, in combination with an ineffective
autophagic clearance of damaged mitochondria, leads to
NLRP3-mediated activation of caspase-1 and subsequent pro-
duction of IL-1�. Additionally, impaired mitochondrial fission
can contribute to activation of NLRP3. This has been shown by
deletion of dynamin-related protein 1, which leads to an
increase in NLRP3-dependent caspase-1 activation and IL-1�
secretion (103).

Autophagy

Autophagy is an additional important pathway that is linked
to myocardial ischemia and inflammasome activation (122,
150). The primary function of autophagy is removal and
recycling of misfolded or damaged proteins and organelles
(97). Autophagy is, therefore, essential to maintain tissue
homeostasis and becomes fundamental in limiting cellular
damage (43, 97). Recent evidence has shown that autophagy is
necessary to reduce myocardial damage after AMI (150). The
autophagic process can limit activation of the NLRP3 inflam-
masome by removing damaged mitochondria (122). It has also
been shown that physiological autophagy limits secretion of
mature IL-1� in macrophages in a mouse model of acute liver
toxicity; however, this has not been shown in the heart (38,
124). The overall effect exerted on the inflammasome pathway
by functional, physiological autophagy would be to minimize
activation of the inflammasome and reduce secretion of cyto-
kines. However, impairment of the autophagic pathways, as a
consequence of extensive cell damage, would lead to ineffec-
tive or incomplete autophagy (and mitophagy), inducing acti-
vation of NLRP3 and exacerbation of myocardial damage.

Posttranslational Regulation of NLRP3 Inflammasome
Activity

Activation of the inflammasome is also regulated by post-
translational modifications of its components (Fig. 4). In a
model of stroke, Bruton’s tyrosine kinase has been shown to
interact with both NLRP3 and ASC, suggesting a potential role
of Bruton’s tyrosine kinase in the phosphorylation of ASC
(64). Two other important kinases, spleen tyrosine kinase and
c-Jun NH2-terminal kinase, are involved in the response to
oxidative stress and enhance ASC oligomerization through
posttranslational modification of ASC (151). An additional
kinase, NEK7, a member of the never in mitosis gene A-related
kinase family, acts downstream of the P2X7 receptor and binds
to NLRP3, regulating its activation and oligomerization (61).
NEK7 is highly expressed in heart muscle and might be a target
for intervention in the heart (61).
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Recently, a member of the NLR family has been found to act
as a negative regulator of the inflammatory response during
AMI. In an in vitro model of hypoxia-induced myocardial
injury, NLRX1 has been found to inhibit NLRP3 activation
mediated by mitochondrial antiviral signaling protein (121).
Mitochondrial antiviral signaling protein is a mitochondrion-
associated adaptor protein that is essential for recruitment of
NLRP3 to the mitochondrial outer membrane (Fig. 4) (80,
121).

INFLAMMASOME-ASSOCIATED CYTOKINES

Inhibition of the NLRP3 inflammasome limits the inflam-
matory injury after myocardial I/R in the mouse. As described
above, caspase-1 has a central role in the function of the
inflammasome. This enzyme is fundamental for induction of
pyroptotic cell death and is also necessary for processing and
release of the inflammasome-associated cytokines IL-1� and
IL-18 (Fig. 5) (45, 46). The mechanism by which caspase-1
accomplishes these two functions is through cleavage of the
protein gasdermin D (GSDMD) followed by oligomerization
of the NH2-terminal domain of GSDMD, to form a pore in the
plasma membrane (36, 38, 61, 101). This pore disrupts the
ionic gradients, causing Na� and water influx, osmotic swell-
ing, and membrane rupture (46, 119). Recent data hypothe-
sized an intermediate phase between inflammasome activation
and pyroptotic cell rupture, deemed “hyperactivated,” where
GSDMD pores permit IL-1� (and IL-18) release in macro-
phages with activated inflammasomes and intact lipid bilayers
(44, 74).

Interleukin-1�

IL-1�, the original member of the IL-1 family of cytokines,
has been extensively studied because of its integral role in
initiating and perpetuating physiological and pathological in-
flammation (31–33). IL-1� is normally transcribed and trans-
lated in the cytosol at low basal levels in its inactive pro form;
however, upon stimulation of TLRs or other cytokine recep-
tors, transcription and translation are dramatically increased
within 15 min (33). As previously reported, IL-1� secretion in
its active form requires the active form of caspase-1 (33).
Therefore, the rate-limiting step in IL-1� processing and se-
cretion is inflammasome activation. Lacking a signal pep-
tide for the classic endoplasmic reticulum-Golgi apparatus
protein secretion pathway, IL-1� secretion requires forma-
tion of a GSDMD pore (13, 44). Once released in the
extracellular space, IL-1� acts in an autocrine, paracrine,
and endocrine fashion to initiate and sustain proinflamma-
tory activity (33, 44).

The heterodimerization of two plasma membrane receptors,
IL-1RI and IL-1 receptor accessory protein (IL-1RAcP), me-
diates signal transduction of the two isoforms of IL-1 (IL-1�
and IL-1�) (16). This signaling involves interaction of the
Toll-IL-1 receptor (TIR) domain of IL-1RI with the TIR
domain of the myeloid differentiation factor 88 that activates a
kinase-dependent signaling cascade (35). A second type II
receptor, IL-1RII, is membrane bound but lacks the intracel-
lular TIR domain and acts as a scavenger receptor (30, 35). The
intracellular cascades [reviewed in detail elsewhere (123)]
result in transcription of a multitude of chemokines, cytokines,
and adhesion molecules that drive immune cell recruitment,
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Fig. 4. Molecular signaling of regulation of the NOD-like
receptor protein 3 (NLRP3) inflammasome during tissue injury.
Several stimuli regulate activation of NLRP3 [and apoptosis-
associated speck-like protein containing a COOH-terminal
caspase activation and recruitment domain (ASC)], controlling
formation of the inflammasome. Mitochondria can stimulate
NLRP3 activation though generation of reactive oxygen species
(ROS). Although there are alternative sources of ROS, the
mitochondrial origin of ROS is predominant during the reper-
fusion phase of injury. ROS also cause dissociation of thiore-
doxin-interacting protein (TNXIP) from thioredoxin. Free
TNXIP mediates activation of NLRP3. Damaged mitochondria
also release cardiolipin, a phospholipid present only in the inner
mitochondrial membrane, but can be released in the cytoplasm
and activate NLRP3 during damage. The mitochondrial antivi-
ral signaling protein (MAVS) is also an important regulator of
NLRP3 during viral infection and tissue damage. Interaction of
MAVS with the nucleotide-binding oligomerization domain,
leucine-rich repeat containing X1 (NLRX1) protein prevents
NLRP3 activation. Damaged mitochondria enter autophagic
vesicles for effective removal of the potentially dangerous
organelle. Effective autophagy and mitophagy, leading to com-
plete removal of defective proteins and intracellular organelles,
prevent activity of the inflammasome. On the other hand,
defective autophagy and mitophagy lead to the leak of the
proteolytic enzyme cathepsin B inside the cytoplasm, leading to
NLRP3 activation. NEK7, a member of the never in mitosis
gene A (NIMA)-related kinases family, promotes NLRP3 acti-
vation after K� efflux. Bruton’s tyrosine kinase (BTK) also
activates the inflammasome by interacting with NLRP3 and
ASC. Two other kinases, spleen tyrosine kinase (SYK) and
c-jun NH2-terminal kinase (JNK), enhance oligomerization of
ASC.
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activation, and differentiation (94). IL-1 signaling also alters
intracellular protein expression, changing cellular function and
metabolism (31). Sharing ~26% amino acid homology with
IL-1� is IL-1 receptor antagonist (IL-1Ra), an endogenous
protein that tightly binds to and occupies IL-1RI, inhibits the
binding of IL-1RAcP and subsequent receptor heterodimeriza-
tion, and prevents the intracellular transduction of signals
(130). Production of this high-affinity competitor is induced by
several proinflammatory stimuli, including LPS, a complex
molecule common on the wall of gram-negative bacteria that
activates TLR4, and IL-1�, presumably to balance a perpetual
cycle of proinflammatory signaling (120, 126). Intracellular
functions, specifically antiapoptotic, of IL-1Ra have also been
noted in cardiomyocytes (144).

Interleukin-18

IL-18, also a member of the IL-1 family of cytokines,
requires caspase-1-mediated cleavage to the active form (45).
IL-18 is produced and stored in the cytoplasm, also in the
absence of TLR or other proinflammatory stimulation, and is
readily available for cleavage and secretion in case of inflam-
masome activation or by extracellular proteases in case of
passive diffusion due to cell necrosis (102, 130). Receptor
binding and signaling of IL-18 resemble receptor binding and
signaling of IL-1, whereby a heterodimeric complex of IL-
18R� and IL-18R� combine to evoke intracellular cascades,
culminating in proinflammatory gene transcription (67, 102). A
second IL-18 receptor, Na�-Cl� cotransporter (NCC) was
identified in 2015. NCC is a solute carrier symporter that is
mainly present in the distal tubule of the glomeruli in the
kidney (89). NCC becomes expressed in the atherosclerotic

plaques of apolipoprotein E-deficient mice and mediates IL-18
signaling in cytokine-primed macrophages (147). An endoge-
nous circulating binding protein of IL-18 (IL-18BP) in healthy
humans is normally present at levels 25–50 times higher than
IL-18, with significantly higher affinity for membrane-bound
IL-18R� (37).

Differences and Similarities Between IL-1� and IL-18

The production and signaling of IL-1� and IL-18 are similar,
because both cytokines require caspase-1 and GSDMD for
their secretion, bind a heterodimeric receptor of a similar
structure, and share some intracellular downstream cascades
involving myeloid differentiation factor 88 activation and con-
vergence on NF-�B (18, 45, 102). The specificity of the signal
depends on the receptor and cell type; therefore, depending on
the target, these two cytokines promote different biological
effects (79). As previously mentioned, basal gene expression
for IL-1� in several cell types (e.g., blood mononuclear cells,
hematopoietic cells, and endothelial cells) is extremely low
(107). In contrast, the IL-18 precursor is present in blood
monocytes from healthy subjects, unstimulated macrophages,
and epithelial and endothelial cells (37). In addition, IL-1
induces fever and IL-18 does not. [IL-18 does not affect
cyclooxygenase-2 or PGE2 production (37, 79).] IL-1 (� or �)
is active at concentrations severalfold lower than IL-18 (37). In
addition, in some diseases, the activity of IL-1 and IL-18 is
different. IL-1 is more involved in rheumatoid arthritis,
whereas IL-18 is more involved in inflammatory bowel disease
(34, 66). IL-18 is also involved in homeostasis. When fed a
standard diet, mice lacking IL-18 develop obesity and hyper-
glycemia, a phenotype exacerbated by a high-fat diet (19, 100).

Inflammasome

NLRP3

ASC

Caspase-1

Cytokines
ReleasePyroptosis

Infarct size
Myocardial cell death

Contractile Dysfunction

Apoptosis

Inflammasome

Fig. 5. Dual function of caspase-1 activation during myocardial infarction.
Activation of the inflammasome leads to caspase-1 activation, which has
two associated, but different, effects: 1) inflammatory cell death (pyrop-
tosis), which fosters increased infarct size and myocardial cell death, and
2) release of cytokines IL-1� and IL-18, which spur contractile dysfunc-
tion and regulated cell death through apoptosis. NLRP3, NOD-like recep-
tor protein 3; ASC, apoptosis-associated speck-like protein containing a
COOH-terminal caspase activation and recruitment domain.

H1559EFFECT OF THE INFLAMMASOME IN AMI

AJP-Heart Circ Physiol • doi:10.1152/ajpheart.00158.2018 • www.ajpheart.org
Downloaded from journals.physiology.org/journal/ajpheart (106.051.226.007) on August 4, 2022.



Finally, in the same cells, IL-1 and IL-18 can activate different
responses: IL-1� strongly induces NF-�B, whereas IL-18 may
promote a p38 MAPK-specific response (79).

IL-1�, a Cytokine and an Alarmin

IL-1� is also produced and stored in the cell (39). Different
from IL-1� and IL-18, IL-1� translocates to the nucleus to
influence transcription and is functionally active in its precur-
sor form (14, 32). Therefore, pro-IL-1� is capable of acting as
an alarmin, initiating proinflammatory paracrine responses im-
mediately after release from the cytosol after cellular necrosis
(14, 36, 63), before IL-1� becomes active and exerts its
function (14, 36). IL-1� is not recognized by caspase-1 and
thus is not activated through the inflammasome (36), although
it has been reported that active release of IL-1� also necessi-
tates inflammasome activation, likely through GSDM pore
formation (14). The initial inflammatory signal that follows
necrosis and recruitment of neutrophils has been shown to be
due to the precursor of IL-1�, whereas recruitment of macro-
phages to potentiate and maintain the inflammatory process
was characteristic of IL-1� (110).

CELL-SPECIFIC EFFECTS OF THE INFLAMMASOME AND ITS
CYTOKINES ON AMI

Cell-Specific Effects of the Inflammasome

After AMI, ASC specks can be detected in most of the
resident cells (endothelial cells, cardiomyocytes, and fibro-
blasts) and in cells infiltrating the infarct. In the subacute
phase, the majority of the specks are observed in cells of the
granulation tissue. However, during healing and maturation of
the scar, as the infiltrate resolves, ASC positivity is detected
mostly in isolated cardiomyocytes or fibroblasts (94, 130). The
effects of NLRP3 inflammasome formation in the different
cardiac resident cells are cell specific (125). IL-1� production
has been documented in cardiac fibroblasts and endothelial
cells but not in cardiomyocytes, despite an increase in NLRP3
and caspase-1 activity in the latter (68, 82, 94, 114). Inflam-
masome and caspase-1 activation in cardiomyocytes, instead,
induces loss of cell membrane integrity and death (94, 125).

Cell-Specific Effects of IL-1�

After AMI, locally produced active IL-1� also has regula-
tory and detrimental effects on cardiac resident and infiltrating
cells. The initial release of active IL-1� in the area of infarction
creates homing signals for leukocytes and creates a “sticky”
endothelium (48, 56). Abrupt chemokine release after ischemia
creates a gradient that attracts leukocytes to the region (11, 51).
Proinflammatory cytokines, including IL-1� and IL-1�, in-
crease endothelial cell surface expression of adhesion mole-
cules that bind to the recruited leukocytes and begin the
process of leukocyte extravasation from the vessel into the
injured area (52). IL-1� is also capable of increasing chemo-
kines, such as monocyte chemoattractant protein-1, responsible
for mobilizing proinflammatory monocytes to the area (104).
Resident cardiac fibroblasts are also important players in the
post-AMI inflammatory response. In the initial phase after
ischemic injury, IL-1� has been shown to increase fibroblast
expression of collagenases and inhibit transforming growth
factor-� signaling, possibly to ensure that the injured matrix

area has been effectively broken down and cleared of addi-
tional damage signals before tissue reparative engines are fully
engaged and fibroblast populations are converted to myofibro-
blasts (48, 115). Cardiomyocytes are also sensitive to IL-1�. In
fact, IL-� depresses contractility, in vitro and in vivo, via
uncoupling of the L-type Ca2� channel from the �-adrenergic
receptor (81, 116), decreasing expression of phospholamban
and the sarco(endo)plasmic reticulum Ca2�-ATPase and in-
creasing local nitric oxide, which affects ATP production
within the mitochondria (25). Moreover, IL-1� induces apo-
ptotic cell death of cardiomyocytes in the subacute and chronic
phases after AMI (5, 132).

Cell-Specific Effects of IL-18

The cell-specific effects of IL-18 on myocardial cells post-
AMI have been investigated to a lesser extent. IL-18 appears to
induce angiogenesis but, at the same time, inhibits angiogen-
esis after ischemic damage (148). In vitro experiments using
recombinant IL-18 proved that it induces apoptosis of cardiac
endothelial cells in vitro (20). Cardiac fibroblasts exposed to
IL-18 proliferate, produce collagen, and remodel the extracel-
lular matrix (47). IL-18 depresses the contractility of cardio-
myocytes in vitro and in vivo, and in an ex vivo model of
hypoxia, IL-18 impairs the contractility of human cardiac strips
(105).

PHARMACOLOGICAL INHIBITION OF THE NLRP3
INFLAMMASOME

Several NLRP3 inflammasome inhibitors have been identi-
fied; they include molecules already known and synthetized
and newly designed compounds derived in attempts to increase
specificity and successful clinical application (Tables 1 and 2).

Colchicine

Colchicine is one of the oldest anti-inflammatory drugs and,
recently (2009), was found to inhibit NLRP3 activity by
preventing its assembly and activation (87). Although histori-
cally used for treatment of Mediterranean fever, colchicine has
been recently approved by the United States Food and Drug
Administration for treatment of gout (27). Besides its effect on
microtubule polymerization, colchicine inhibits NLRP3 acti-
vation, preventing the pore formation induced by the P2X7

receptor and, therefore, limiting K� efflux (87). Because of the
integral role of microtubules in providing a platform for me-
diating intracellular trafficking and the known translocation
and aggregation of NLRP3, ASC, and caspase-1, colchicine
may inhibit the inflammasome by decreasing aggregation of its
components. Colchicine suppressed the colocalization of ASC
to NLRP3 and decreased amounts of mature IL-1� in the
peritoneal cavity of mice during acute gout (95). The novel
understanding of the mechanism of action has opened the way
to the investigation in the field of cardiology (27, 91). In a
nonreperfused AMI mouse model, a high dose (0.1
mg·kg�1·day�1) of colchicine administered for 7 days signif-
icantly inhibited the increase in NLRP3 mRNA and caspase-1
activity at 24 h post-MI, inhibited expansion of LV scar size at
1 wk, attenuated ventricular remodeling at 7 days and 4 wk
after MI, and improved 7-day survival (54). These findings
show that colchicine inhibits the inflammasome pathway in the
in vivo AMI model. Similarly, in a model of reperfused AMI
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induced by 45 min of transient ischemia, a single dose (0.4
mg/kg ip) of colchicine administered 25 min before reperfusion
significantly reduced infarct size, troponin T levels, and in-
flammatory markers 24 h post-MI and significantly reduced
fibrosis 10 wk after AMI (8). Recently, in a clinical trial,
patients presenting with ST-segment elevation MI (STEMI)
undergoing primary percutaneous coronary intervention were
treated with colchicine (initial dose of 1.5 mg followed 1 h
later by 0.5 mg and 0.5 mg twice daily for 5 days). The clinical
trial results revealed a reduction in infarct size with colchicine,
measured as area under the curve for creatine kinase myocar-
dial band (28).

Glyburide Derivative

Glyburide, a sulfonylurea used to increase pancreatic �-cell
insulin secretion to treat type 2 diabetes mellitus, was shown to
inhibit IL-1� release in vitro by acting upstream of NLRP3 and
downstream of the P2X7 receptor (76). The use of glyburide at

a dose proven to inhibit the NLRP3 inflammasome would,
however, cause lethal hypoglycemia in the mouse (84). A
derivative of glyburide, 4-[2-(5-chloro-2-methoxybenzamido-
)ethyl]benzenesulfamide, which lacks the moiety responsible
for inducing insulin secretion, was developed to maintain the
inflammasome inhibitory effect and also to abolish the hypo-
glycemic effect of glyburide (84). This compound, known also
as 16673-34-0, has been studied in a murine model of acute
transient (30 or 75 min) coronary ligation and permanent
ligation as well as in a model of cardiotoxicity induced by a
single dose (10 mg/kg) of doxorubicin (86). Single-dose (100
mg/kg) glyburide analog treatment at reperfusion significantly
decreased macromolecular aggregation of ASC, caspase-1 ac-
tivity, plasma levels of cardiac troponin I, and infarct size,
without effects on glycemia (84). Furthermore, when admin-
istered within 1 h of reperfusion injury, 16673-34-0 is as
effective as when it is given at the time of reperfusion (127).
This finding is particularly important, because it confirms the

Table 1. NLRP3 inflammasome inhibitors in experimental AMI

Name(s) Method(s) Finding(s) Reference(s)

Colchicine 0.1 mg/kg ip daily for 7 days to the mouse
starting before ischemia in the
nonreperfused AMI model

Smaller scar, reduced adverse
remodeling, and heart failure
and improved survival

8, 54

N-[(7S)-1,2,3,10-tetramethoxy-9-oxo-6,7-dihydro-5H-
benzo[a ]heptalen-7yl] acetamide

0.4 mg/kg ip 25 min before reperfusion in a
model of transient I/R

Reduced infarct size and fibrosis in
the chronic setting

Glyburide derivative; 100 mg/kg ip before surgery in a reperfused
AMI model

Reduced infarct size and improved
LV function

84, 86, 127

16673-34-0 100 mg/kg ip after ischemia in a model of
nonreperfused AMI

Improved cardiac remodeling and
LV dysfunction

5-chloro-2-methoxy-N-[2-(4-sulfamoyl-phenyl) ethyl]
benzamide

100 mg/kg ip up to 60 min after reperfusion Reduced infarct size at 24 h

MCC950 3–6 mg/kg iv 15 min before reperfusion
and again after 24 h and following 5
days in the pig balloon angioplasty
inflation ischemia model

Reduced infarct size; improved
cardiac remodeling and
prevention of LV dysfunction

138
N-((1,2,3,5,6,7-hexahydro-s-indacen-4-yl)carbamoyl)-4-

(2-hydroxypropan-2-yl)furan-2-sulfonamide; N-
[[(1,2,3,5,6,7-hexahydro-S-indacen-4-yl)amino]
carbonyl]-4-(1-hydroxy-1-methylethyl)-2-
furansulfonamide

BAY 11-7082 Treatment (dose not specified) before
ischemia or before reperfusion in I/R
models in mouse and rat

Reduced infarct size; preserved
cardiac function

71
3-[(4-methyl- phenyl)-sulfonyl]-(2E)-propenenitrile

INF4E 50 �M in an ex vivo myocardial ischemia
model 20 min before ischemia

Reduced infarct size at 60 min
Reduced infarct size

88
ethyl 2-((2-chlorophenyl)(hydroxy)methyl)acrylate
OLT1177 (dapansutrile) 6–600 mg/kg ip before, or up to 60 min

after, reperfusion in the mouse surgical
coronary artery ligation model

128
3-(methanesulfonyl) propanenitrile

AMI, acute myocardial infarction; I/R, ischemia-reperfusion; LV, left ventricular; NLRP3, NOD-like receptor protein 3.

Table 2. Clinical trials of colchicine and IL-1 blockers in AMI and heart failure

Disease Clinical Trial Name Study Design and Drug Regimen Main Finding(s) Reference(s)

ST-segment
elevation AMI

Anti-Inflammatory
Treatment With
Colchicine in AMI

Randomization 1:1 Reduced infarct size (cardiac magnetic
resonance and cardiac biomarkers);
reduced peak CRP

28
Colchicine or placebo

(n 	 151) Loading dose of 2 mg (1.5 mg initially followed
by 0.5 mg 1 h later) and continuing with 0.5
mg twice daily, or placebo, for 5 days

ST-segment
elevation AMI

VCU-ART Randomization 1:1 Reduced peak CRP; trend toward reduced
incidence of heart failure at 3 mo and at
long-term followup with anakinra

2, 3, 6

(n 	 10) VCU-ART2 Anakinra or placebo
(n 	 30) Anakinra 100 mg once daily for 14 days
Non-ST-segment

elevation AMI
MRC-ILA Heart Study Randomization 1:1 Reduced peak CRP; no differences in major

adverse cardiac events at 30 days and 3
mo, but more events after 6 mo in the
anakinra-treated group

98

(n 	 182) Anakinra or placebo
Anakinra 100 mg once daily for 14 days

AMI, acute myocardial infarction; CRP, C-reactive protein.
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timing of activation of NLRP3 after I/R in AMI. Drugs that
necessitate prompt administration after reperfusion are at
higher risk of failure during testing in the clinical setting (136).
Therefore, identification of a therapeutic target that can be
blocked during an extended time window of intervention may
lead to increased success during the clinical translation phase.
After permanent ligation in the mouse, daily treatment with
16673-34-0 (100 mg/kg) for 7 days significantly preserved LV
fractional shortening and LV end-diastolic and end-systolic
diameters without affecting infarct size, indicating that some of
the benefits for cardiac function are independent of infarct
reduction, possibly due to reduced IL-1� and IL-18 cytokine
secretion (see below) (86). In the cardiotoxicity model, 16673-
34-0 reduced myocardial fibrosis and preserved LV fractional
shortening (84). The mechanism of action seems directed
toward NLRP3 oligomerization downstream of activation,
since 16673-34-0 inhibits macrophages with constitutively
active mutant NLRP3 (86).

Recently, a compound derived from 16673-34-0, termed
JC124, was tested in a setting of longer-term (75 min) isch-
emia; it was given after reperfusion and significantly reduced
infarct size, indicating benefits also after more dramatic isch-
emic damage (55).

MCC950

A potent inhibitor of NLRP3, MCC950, is part of a class of
drugs previously shown to inhibit NLRP3-induced ASC oli-
gomerization, preventing formation of the specks (24, 75).
MCC950 reduced IL-1� production in vivo when given 1 h
before LPS treatment and blocked ASC oligomerization in
vitro without inhibiting NLRP3 ATPase activity (24).
MCC950 has been shown to be effective also in a mouse model
of experimental autoimmune encephalomyelitis in which
NLRP3 is required for development of the disease (58). Ad-
ministration of MCC950 suppressed T cell responses and
attenuated the severity of the disease (58). Additionally,
MCC950 has been effective in treating mice displaying
Muckle-Wells syndrome, a cryopyrin-associated periodic syn-
drome. These mice, carrying a gain-of-function mutation of
Nlrp3, are contradistinguished by neonatal mortality due to
high IL-1� and IL-18 plasma levels. Treatment for 28 days
with MCC950 rescued these mice with constitutively active
mutant NLRP3 (24).

In a porcine model of 75-min transluminal coronary artery
balloon occlusion, MCC950 treatment (6 or 3 mg/kg) 15 min
before ischemia and once daily after ischemia decreased infarct
size, preserved LV ejection fraction, decreased myocardial
IL-1� levels, and attenuated myocardial neutrophil influx,
validating the therapeutic target in the large-animal model
(138).

BAY 11-7082

BAY 11-7082, previously known to inhibit NF-�B, has been
shown to directly inhibit NLRP3 ATPase activity in response
to NLRP3-specific stimuli in vitro (71). In a rat model of I/R,
pretreatment with BAY 11-7082 (130 �g/kg) 30 min before
reperfusion significantly reduced infarct size and cardiac fibro-
sis and improved LV fractional shortening (71).

INF4E

Acrylamide derivatives were developed by an Italian cohort
as covalent inhibitors of NLRP3 and its ATPase activity
required for inflammasome activation (88). An ex vivo model
of I/R including pretreatment with the NLRP3 inhibitor ethyl-
2-{[(2-chlorophenyl)hydroxyl]methyl}acrylate (INF4E)
showed a significant reduction of infarct size and an improve-
ment in LV developed pressure 60 min after ischemia (88).

Dapansutrile/OLT1177

Perhaps the NLRP3 inhibitor most advanced into the clinical
testing realm is dapansutrile (or OLT1177). Preclinical models
of 30 min of transient coronary ligation followed by OLT1177
administration (60 mg/kg) within 60 min at reperfusion in the
mouse have shown significant reduction of infarct size, reduc-
tion of plasma cardiac troponin I, and preservation of LV
fractional shortening (128). OLT1177 was tested as an orally
active �-sulfonyl nitrile molecule in humans, and its safety has
been shown at oral doses up to 1,000 mg/day for 8 days, with
no clinical, hematological, or organ toxicities (85). Marchetti
and colleagues (85) described an effect of OLT1177 on NLRP3
ATPase activity, leading to decreased NLRP-ASC oligomer-
ization, but no effect on NLRC4 or AIM2 inflammasomes, K�

efflux, gene expression, or synthesis of IL-1� precursor or on
other kinases on a broad-range screen. The potential for
OLT1177 as a treatment for acute gouty arthritis and osteoar-
thritis is under investigation in a phase II clinical trial (136a,
136b).

BLOCKADE OF IL-1� AND IL-1� IN AMI

The benefit of an anti-inflammatory strategy aimed at the
inflammasome appears to extend beyond inhibition of inflam-
masome formation and to be, at least in part, related to reduced
synthesis and secretion of proinflammatory cytokines.

Genetic deletion or pharmacological inhibition of IL-1 ac-
tivity, via direct antibody neutralization/modulation of IL-1�
or IL-1�, IL-1 receptor antagonism, or IL-1�/IL-1� sequestra-
tion via a chimeric protein made by the ectodomains of IL-1RI
and IL-1RAcP (IL-1Trap), has been shown to lead to signifi-
cantly reduced cardiomyocyte apoptosis and prevent LV dila-
tion and systolic dysfunction (142, 143). One of the first reports
of the use of anakinra, a recombinant IL-1Ra, given at different
doses in an experimental AMI in mice and in rats, reduced the
adverse remodeling process and myocardial apoptotic rate and
preserved LV function (5). These data were supported by
another study in which IL-1R1�/� mice exhibited, after I/R
injury, an attenuated proinflammatory and profibrotic response
followed by a reduction of infarcted area and an attenuation of
adverse remodeling of the LV (4). As shown in an elegant
study from Sager et al. (113) using parabiotic bone marrow
transplantation, release of IL-1� after AMI fosters mobiliza-
tion of inflammatory cells from the hematopoietic system,
leading to granulation tissue and scar formation in the heart
after AMI. Moreover, neutralization of the systemically re-
leased IL-1� with an anti–IL-1� treatment lowered monocyte
and neutrophil infiltration and ameliorated adverse ventricular
remodeling (113). As previously described, IL-1Ra prevents
binding of both IL-1� and IL-1� to IL-1RI, making it impos-
sible to distinguish the role of the two isoforms (32).
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Anakinra is approved by the United States Food and Drug
Administration for the treatment of rheumatoid arthritis and
cryopyrin-associated periodic syndromes, diseases driven by
enhanced IL-1 activity (73). Pilot clinical trials completed for
the use of anakinra (100 mg sc daily) in patients with reper-
fused STEMI and primary percutaneous coronary intervention
(n 	 40) noted that IL-1 blockade was safe, significantly
limited the C-reactive protein (CRP) increase at 72 h, and
lowered the rate of new onset heart failure after STEMI (Table
2) (2, 3, 6). The VCU-ART3 trial evaluating a higher dose of
anakinra (100 mg twice daily) versus the standard dose (100
mg daily) versus placebo is ongoing (136c).

In the phase II clinical trial MRC-ILA heart study involving
182 patients with non-STEMI who were treated with anakinra
(100 mg daily for 14 days), a similar reduction in the acute
inflammatory response was observed (98). At 30 days and 3
mo, there was no change in clinical events, but by 12 mo,
ischemic events were significantly increased in the anakinra-
compared with placebo-treated patients.

Phase II clinical trials in patients with heart failure also
support a beneficial role of IL-1 blockade with anakinra (Table
2) (139–141).

In additional studies conducted in mice after AMI, selective
blockade of IL-1� was explored using a monoclonal IgG2a
antibody directed against IL-1�, a mouse equivalent of canaki-
numab (7, 129). The antibody, given at reperfusion and re-
peated 1 wk later improved long-term survival after AMI; it
inhibited myocardial apoptosis, limiting ventricular enlarge-
ment (7), independent of infarct size reduction (113, 132). In a
recent study conducted on mice, administration of a polyclonal
antibody against IL-1� after I/R injury, on the other hand,
limited inflammasome activation, decreased infarct size, and
preserved LV function (90). This points to a different role and
timing of action of the two isoforms of IL-1, IL-1� and IL-1�.
In a recent preclinical study in diabetic rats, administration of
gevokizumab, a monoclonal antibody against IL-1�, limited
the progression of HF after MI and reduced oxidative stress,
ventricular remodeling, scar size, and coronary endothelium-
dependent relaxation, independent of infarct size (60, 134).

There have been no clinical trials of selective IL-1� or IL-1�
blockade in AMI. In a randomized, double-blind study involv-
ing 10,061 patients who had experienced AMI 
30 days
before enrollment and had serum CRP �2 mg/l, canakinumab,
a human monoclonal antibody that inhibits IL-1�, given sub-
cutaneously once every 3 mo, decreased the incidence of
nonfatal MI, nonfatal stroke, or cardiovascular death at a
median followup of 3.7 yr. Administration of 150 mg of
canakinumab every 3 mo significantly reduced the incidence of
the primary end point (cardiac death, nonfatal MI, and nonfatal
stroke) with a hazard ratio of 0.85. This outcome was largely
due to a 24% reduction in MI. Interestingly, there was also a
36% reduction in urgent revascularization and a 37% reduction
in cardiac arrest (1). In the patients who had a high-sensitivity
CRP of �2.0 mg/l within 3 mo after the first dose of canaki-
numab, incidence of the primary end point was significantly
decreased over time, whereas patients who had a high-sensi-
tivity CRP of 
2.0 mg/l did not benefit from the treatment.
This signifies the importance of identifying specific responders
to the anti-inflammatory intervention within the heterogeneous
group of patients. Additionally, the decreased incidence of
cardiovascular events was independent of lipid levels (111).

The effects on AMI-specific outcomes or HF have not been
reported. A small single-center substudy of the Canakinumab
Anti-Inflammatory Thrombosis Outcome Study in patients
with systolic heart failure showed an improvement in peak
aerobic exercise capacity in patients treated with canakinumab
(135).

BLOCKADE OF IL-18 IN AMI

The role and blockade of IL-18 in myocardial ischemia and
MI are less established. IL-18 expression and plasma levels
increase after reperfusion in animal models, with myocardial
levels peaking at 3 h after reperfusion and serum levels peaking
at 6 h (145). Treatment with an IL-18-neutralizing antibody 1
h before I/R significantly decreased infarct size (145). The role
of IL-18 has also been investigated in I/R injury in an exper-
imental heart transplantation model. Using syngeneic hetero-
topic heart transplantation after myocardial ischemia, Gu et al.
(59) explored the cardioprotective effects of IL-18BP that
prevented IL-18 from binding its receptor. Pretreatment with
IL-18BP before ischemia increased graft survival, reduced
myocardial damage and leukocyte infiltration, and lowered
expression of proinflammatory cytokines (59).

Clinical trials have been completed or are underway to prove
the safety of intravenous infusion of GSK1070806, a human-
ized monoclonal antibody to IL-18, in patients with diabetes
mellitus or inflammatory bowel disease (92, 96). A separate
recombinant human IL-18BP (tadekinig alfa) phase III trial is
underway in patients with NLRC4 macrophage activation
syndrome (NLRC4-MAS) mutation or X-linked inhibitor of
apoptosis deficiency (136d).

CONCLUSIONS

Myocardial I/R induces a sterile injury and inflammatory
response, characterized by the priming and triggering of the
NLRP3 inflammasome by locally released DAMPs. Strategies
inhibiting the priming, triggering, or activity of the inflam-
masome or blockade of the inflammasome-related cytokines
IL-1� and IL-18 have shown beneficial effects in experimental
models of AMI in animals (118, 134). None of the inflam-
masome inhibitors are approved for clinical use in myocardial
I/R syndromes. IL-1 blockers have shown promising results in
small studies of patients with STEMI and heart failure (anak-
inra) and in a large secondary prevention study in patients with
prior AMI (canakinumab). NLRP3 inflammasome inhibitors
are under development in phase I�II clinical programs (136a,
136b).
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