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    In� uenza virus is responsible for annual epi-

demics that cause severe morbidity and death 

involving approximately � ve million people 

worldwide. Lethal pneumonia and encepha-

lopathy caused by in� uenza virus have now 

become a serious problem, especially among 

the elderly and children, respectively ( 1 ). Fur-

thermore, the H5N1 highly pathogenic avian 

in� uenza viruses that are associated with a high 

fatality rate ( > 60%) have been reported in South-

east Asia, Europe, and Africa. Therefore, there 

is an urgent and important public health need 

to develop e� ective vaccines against not only 

annual seasonal in� uenza viruses but also against 

highly pathogenic H5N1 avian in� uenza vi-

ruses. In� uenza virus is recognized through at 

least two viral sensors. First, the cytosolic sen-

sor retinoic acid inducible gene I (RIG-I) de-

tects in� uenza after fusion and replication in 

infected cells ( 2 ). Second, in� uenza genomic 

RNA, upon release in late endosomes, is rec-

ognized by Toll-like receptor (TLR) 7 ( 3, 4 ). 

The RIG-I pathway is used by most cells to 

respond to virus infection, whereas the latter is 

used by plasmacytoid DCs (pDCs) ( 2 ). Signaling 

through both RIG-I and TLR7 results in the 

production of type I IFNs, which limit viral rep-

lication and increasing resistance to infection. 

 In addition to type I IFNs, proin� ammatory 

cytokines such as IL-1 play a crucial role in pro-

tection against in� uenza. In� uenza virus infec-

tion is accompanied by IL-1 �  production in 

bronchoalveolar lavage (BAL) of mice ( 5 ). In-

� uenza virus infection activates IL-1 �  and IL-18 

production in human macrophages ( 6 ). IL-1 is 

responsible for acute lung immunopathology 

and is required to promote survival of the mice 

after in� uenza virus infection ( 7 ). In� uenza vi-

rus – speci� c CD4 T cell responses and IgM lev-

els were reduced in IL-1R – de� cient mice ( 7 ). 

Not surprisingly, in� uenza virus has evolved 

strategies to inhibit the activation of in� amma-

somes. NS1 protein of in� uenza virus suppressed 

caspase-1 activation, maturation of pro – IL-1 �  

and pro – IL-18, and caspase-1 – dependent apop-

tosis in infected primary human macrophages ( 8 ). 
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 In� uenza virus infection is recognized by the innate immune system through Toll like 

receptor (TLR) 7 and retinoic acid inducible gene I. These two recognition pathways lead to 

the activation of type I interferons and resistance to infection. In addition, TLR signals are 

required for the CD4 T cell and IgG2a, but not cytotoxic T lymphocyte, responses to in� u-

enza virus infection. In contrast, the role of NOD-like receptors (NLRs) in viral recognition 

and induction of adaptive immunity to in� uenza virus is unknown. We demonstrate that 

respiratory infection with in� uenza virus results in the activation of NLR in� ammasomes in 

the lung. Although NLRP3 was required for in� ammasome activation in certain cell types, 

CD4 and CD8 T cell responses, as well as mucosal IgA secretion and systemic IgG responses, 

required ASC and caspase-1 but not NLRP3. Consequently, ASC, caspase-1, and IL-1R, but 

not NLRP3, were required for protective immunity against � u challenge. Furthermore, we 

show that caspase-1 in� ammasome activation in the hematopoietic, but not stromal, 

compartment was required to induce protective antiviral immunity. These results demon-

strate that in addition to the TLR pathways, ASC in� ammasomes play a central role in 

adaptive immunity to in� uenza virus. 
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  RESULTS AND DISCUSSION  
 NLRP3 in� ammasome is activated in the lung 
after respiratory in� uenza infection 
 Although NLRP3-de� cient macrophages were reported to 

be unable to activate IL-1 �  in response to in� uenza virus in 

the presence of ATP in vitro ( 21 ), the role of in� ammasomes 

in in� uenza infection in vivo is unknown. In the lung, the 

primary targets of � u infection are the respiratory epithelial 

cells, which produce large amounts of virus that can subse-

quently infect alveolar macrophages ( 1 ) and DCs ( 22 ). To 

begin to dissect the importance of various components of the 

in� ammasome complex in response to in� uenza virus infec-

tion, we � rst examined IL-1 �  secretion in candidate cell 

types including BM – derived macrophages (BMM), BM DCs 

and lung � broblasts. Although BMM and BM DC exhibited 

signi� cant reduction in IL-1 �  secretion in the absence of 

NLRP3 ( Fig. 1, A and B ), lung � broblast cells activated in-

� ammasomes independently of NLRP3 ( Fig. 1 C ).  All cell 

types required caspase-1 for release of IL-1 �  ( Fig. 1, A – C ). 

Next, we examined the target of NLR recognition of in� u-

enza virus. Stimulation of cells with in� uenza virions showed 

that attachment (blocked by 65 ° C inactivation), fusion (blocked 

by 56 ° C inactivation), and replication (blocked by UV irra-

diation) of the virus were required to elicit in� ammasome 

activation in BM DCs (Fig. S1 A, available at http://www

.jem.org/cgi/content/full/jem.20081667/DC1) and in lung 

� broblasts (Fig. S1 C). Puri� ed genomic RNA, upon deliv-

ery by DOTAP, induced very low levels of IL-1 �  secretion 

in BM DC, which was enhanced by the addition of ATP 

(Fig. S1 B), indicating that � u genomic RNA, although in-

su�  cient to trigger in� ammasomes, could serve as signal 1 for 

NLR-mediated IL-1 �  secretion. In contrast, � u genomic RNA 

and ATP treatment failed to elicit in� ammasome activation 

in lung � broblasts (Fig. S1 D). Collectively, these data indi-

cated that in� uenza virus infection stimulates NLRP3-de-

pendent and NLRP-3 independent in� ammasomes in a cell 

autonomous and cell type – speci� c manner and that other 

factors, in addition to viral genomic RNA, are required to 

elicit in� ammasome activation. 

 Next, to determine the role of NLRP3 in� ammasomes in 

the secretion of IL-1 �  during physiologically relevant in� u-

enza virus infection in vivo, mice were challenged intranasally 

with in� uenza strain A/PR8. Active IL-1 �  was secreted into 

the BAL in a dose-dependent manner (Fig. S2 A, available at 

http://www.jem.org/cgi/content/full/jem.20081667/DC1). 

Starting at 2 d post infection (p.i.), IL-1 �  secretion was evi-

dent in the BAL in WT mice infected with 10 3  PFU of in� u-

enza virus. However, mice de� cient in NLRP3, ASC, or 

caspase-1, but not NLRC4, failed to secrete IL-1 �  ( Fig. 1 D ) 

or IL-18 (Fig. S2 B) into the alveolar space in response to 

in� uenza infection. In� ammasome-independent cytokines, 

such as IL-6, TNF- � , KC, and MIP-2, were secreted com-

parably from NLRP3, ASC, or caspase-1 KO mice (Fig. S2, 

C – F), indicating that the reduction in IL-1 �  and IL-18 secre-

tion is not caused by a general immune de� ciency in these 

mice. In contrast to the BAL � uid, IL-1 �  secretion in the 

However, the mechanism by which IL-1 �  and IL-18 are ac-

tivated during in� uenza infection in vivo is unknown. 

 In� ammasomes are molecular platforms that allow acti-

vation of caspase-1 ( 9 ). Caspase-1 is an essential regulator of 

in� ammatory response through its capacity to process and 

activate proIL-1 � , proIL-18, and proIL-33 ( 10 ). NOD-like 

receptors (NLRs) comprise a large family of intracellular 

PRRs that play an important role in innate immunity in re-

sponse to recognition of various  “ damaged ”  self ( 11 ) and 

nonself molecules ( 9, 12 ). NLR protein (NLRP) 3, also 

known as NALP3/Cryopyrin/CIAS1/PYPAF1 ( 13 ), forms 

a caspase-1 – activating in� ammasome. Mature IL-1 �  se-

cretion requires at least two steps: � rst, transcriptional and 

translational up-regulation of pro – IL-1 �  through TLR stim-

ulation; and second, the activation of caspase-1 by in� am-

masomes ( 9, 12 ). Recent reports indicate that infection by 

certain viruses also results in in� ammasome activation ( 14 – 16 ). 

Kanneganti et al. ( 15 ) showed that Sendai and in� uenza vi-

ruses activated the NLRP3 in� ammasome in macrophages 

pulsed transiently with ATP for 30 min in vitro. Muruve 

et al. ( 16 ) demonstrated that adenovirus infection activates 

IL-1 �  processing in NLRP3-, ASC-, and caspase-1 – dependent 

manners. However, in� ammasomes were not activated by 

transfection of RNA, Poly I:C, or infection with reovirus 

(double-stranded RNA virus) or vesicular stomatitis virus 

(single-stranded RNA virus). In another seminal study, Johnston 

et al. ( 14 ) reported that Myxoma virus carries a protein that 

inhibits ASC/caspase-1 activation and subsequent cell death 

after virus infection. Such an evasion mechanism supports 

the idea that in� ammasomes might play a vital role in anti-

viral defense. 

 Although the proin� ammatory role of in� ammasomes 

is well known, less is understood with respect to the re-

quirement for in� ammasomes in the generation of adap-

tive immune responses. Uric acid, which triggers NLRP3 

in� ammasomes ( 17 ), has been shown to stimulate DC matu-

ration and, when coinjected with antigen in vivo, signi� -

cantly enhances the generation of responses from CD8 +  T 

cells ( 18 ). NLRP3, as well as its adaptor molecule ASC, are 

required for contact hypersensitivity responses in vivo ( 19 ). 

More recently, the Th2-inducing adjuvant activity of alum 

was shown to be mediated through NLRP3/ASC in� amma-

somes ( 20 ). Thus, in� ammasomes appear to play an important 

role in certain types of autoimmune diseases, hyperrespon-

siveness, and immunization. However, the role of in� am-

masomes in the recognition of viral infection in vivo and 

generation of protective adaptive immunity is unknown. 

 In this paper, we examine the role of the NLRP3 in� am-

masomes in the initiation of adaptive immunity after physio-

logical infection with in� uenza virus. We describe requirement 

for caspase-1 in� ammasomes in the hematopoietic, but not 

stromal, cells in the establishment of Th1, CTL, and IgA re-

sponses to respiratory � u infection. Collectively, our data 

provide the � rst evidence of the in vivo requirement for the 

components of in� ammasomes in adaptive immunity to a vi-

rus infection. 
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alveolar space after respiratory challenge in a type I IFN-in-

dependent manner, whereas the lung tissue resident hemato-

poietic cells activate caspase-1 through NLRP3-independent 

pathways (Fig. S4). 

 ASC, caspase-1, and IL-1R, but not NLRP3, is required 
for cellular recruitment to the lung after � u infection 
 Next, we wished to determine the consequence of in� amma-

some activation in cellular recruitment to the infected lungs. 

In WT mice infected with A/PR8, accumulation of leuko-

cytes became apparent starting around day 3 p.i. and peaking 

around day 5 p.i. (Fig. S5 A, available at http://www.jem.org/

cgi/content/full/jem.20081667/DC1). Various leukocytes 

were detected including macrophages, DCs, pDCs, NK cells, 

neutrophils, and lymphocytes (Fig. S5 B). These cellular sub-

sets were de� ned by � ow cytometry as described in Fig. S6. 

lung tissue was found to be independent of NLRP3 ( Fig. 1 E ). 

To determine the cellular compartment responsible for the 

secretion of IL-1 �  in the lung, we generated BM chimeric 

mice in which only the hematopoietic (WT → caspase-1  � / �  ) 

or the stromal cells (caspase-1  � / �   → WT) expressed caspase-1. 

Measurement of IL-1 �  in the BAL ( Fig. 1 F ) and lung tissue 

( Fig. 1 G ) indicated that in� ammasome activation in vivo 

occurs within the hematopoietic compartment and the stro-

mal compartment. A previous study demonstrated the im-

portance of type I IFNs in in� ammasome activation after 

 Francisella novicida  infection ( 23 ). However, in response to in-

� uenza infection, although partly important in BM DC re-

sponse, responsiveness through type I IFN receptor was 

dispensable for IL-1 �  secretion in the BAL (Fig. S3). Collec-

tively, these data indicated that NLRP3 in� ammasome is ac-

tivated in the alveolar macrophages and DCs within the 

  Figure 1.     The role of NLRP3, ASC, and caspase-1 in in� ammasome activation and cellular recruitment to the lung after in� uenza infection. 
 (A – G) BM macrophages (A), BMDCs (B), or primary lung � broblast (C) prepared from WT, NLRP3-, and caspase-1 – de� cient mice were infected with A/PR8 

virus at MOI 2.5. Supernatant was collected 12 – 24 h after stimulation and analyzed for IL-1 �  by ELISA. WT, NLRP3-, NLRC4-, ASC-, and caspase-1 – de� cient 

mice were infected intranasally with 10 3  PFU A/PR8 virus. BAL was collected by washing the trachea and lungs twice by injecting a total of 1 ml PBS con-

taining 0.1% BSA (D and F). Lung homogenate was prepared in 2 ml PBS containing 0.1% BSA (E and G). IL-1 �  levels detected from the BAL or lung ho-

mogenate at different time points (D) or at 2 d p.i. (E – G) are shown. Horizontal lines show the mean. (H – I) Lung tissue was collected from the indicated 

groups of mice at 0 and 5 d p.i. Total lung leukocytes were enumerated. The values represent the mean of three mice per group and are expressed as the 

mean  ±  SD. Similar results were obtained from at least two separate experiments. *, P  <  0.05; **, P  <  0.01 versus a group of noninfected mice.   



82 INFLAMMASOME IN ADAPTIVE IMMUNITY TO INFLUENZA  | Ichinohe et al. 

  Figure 2.     In� uenza-speci� c CD4 and CD8 T cell responses depend largely on ASC and Caspase-1 but not NLRP3.  WT, NLRP3-, ASC-, and cas-

pase-1 – de� cient mice (A and B), IL-1R  � / �   mice (C and D), or WT → caspase-1  � / �   and caspase-1  � / �   → WT BM chimeric mice (E and F) were infected intra-

nasally with a sublethal dose (10 PFU) of A/PR8 virus. 14 d p.i., CD8 and CD4 T cells were isolated from spleen and stimulated with irradiated APCs with 
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the indicated amount of heat-inactivated virion or NP peptide for 72 h, respectively. IFN- �  production from CD4 +  T cells (A, C, and E) and CD8 +  T cells 

(B, D, and F) was measured by ELISA or by intracellular IFN- �  staining (G). (H) Indicated groups of mice were infected with 10 PFU of A/PR8/GP-33 recom-

binant in� uenza virus, and GP33-speci� c CD8 T cells were detected in the spleen and the lung at 14 d p.i. using the K b -GP33-41 tetramer. These � gures 

are representative of three similar experiments. Error bars show SD. *, P  <  0.05; **, P  <  0.01 versus WT mice.   

 

In contrast, mice de� cient in ASC and caspase-1, but not 

NLRP3, exhibited signi� cant reduction in cellular recruit-

ment of all subsets (Fig. S5 C). In addition, IL-1R – de� cient 

mice were also impaired in their ability to induce leukocyte 

recruitment to the lung ( Fig. 1 H ). Furthermore, mice selec-

tively defective in caspase-1 in the hematopoietic compart-

ment (caspase-1  � / �   → WT) were impaired in their ability to 

recruit leukocytes to the lung ( Fig. 1 I ). Thus, these data indi-

cated that although NLRP3 is required for IL-1 �  secretion 

into the alveolar space ( Fig. 1 D ), NLRP3-independent ASC/

caspase-1 – dependent pathways ( Fig. 1 E ) in the lung tissue 

hematopoietic cells ( Fig. 1 I ) result in IL-1 �  secretion leading 

to cellular in� ltration in the lung. 

 IL-1 �  is a well known stimulator of neutrophil recruitment, 

which is triggered by the synthesis and display of chemokines 

and leukocyte adhesion molecules. Our data demonstrated 

that di� erential requirements for NLRP3 – IL-1 �  secretion 

into the alveolar space depended on NLRP3 ( Fig. 1 D ), whereas 

IL-1 �  secretion in the lung interstitium ( Fig. 1 E ) and re-

cruitment of leukocytes to the lung were independent of 

NLRP3 ( Fig. 1 H ). Furthermore, lung leukocyte in� ltration 

depended on ASC, caspase-1, and IL-1R, indicating that 

in� ammasome-released IL-1 �  is required to mediate this pro-

cess. In contrast, NLRC4-de� cient mice had normal IL-1 �  

secretion as measured by BAL ( Fig. 1 D ). These data demon-

strated a di� erential role of NLRP3; the cell types that secrete 

IL-1 �  in the alveolar space (such as alveolar macrophages 

and DCs) require NLRP3 for in� ammasome activation, whereas 

those that secrete IL-1 �  in the lung interstitium (interstitial 

macrophages, DCs, and others) can trigger NLRP3-inde-

pendent in� ammasomes. Only the latter source of IL-1 �  is 

required to activate vascular endothelial cell to enable leuko-

cyte migration into the lung (Fig. S4). Evidence exists for the 

NLRP3-independent ASC dimer – mediated pyroptosome 

that can activate caspase-1 directly ( 24 ). It is of interest that 

other studies have described NLRP3/NLRC4-independent 

ASC/caspase-1 – dependent in� ammasome activation in re-

sponse to LPS ( 25 ) and cytosolic DNA ( 16 ). 

 In� uenza-speci� c CD4 and CD8 T cell responses depend 
largely on ASC and Caspase-1 but not NLRP3 
 Next, to decipher the importance of in� ammasomes in adap-

tive immune responses to in� uenza infection, mice de� cient 

in NLRP3, ASC, caspase-1, or IL-1R were infected with a 

sublethal dose of A/PR8 (10 PFU or 0.4 LD 50 ). 14 d later, 

CD4 +  and CD8 +  T cells were isolated from the spleen of � u-

primed mice and restimulated with varying concentrations of 

inactivated virion or H-2D b  – restricted nucleoprotein (NP) 

peptide, respectively. Although CD4 +  and CD8 +  T cells from 

infected NLRP3-de� cient mice responded similarly to those 

from WT mice, ASC  � / �  , caspase-1  � / �   ( Fig. 2 A ), and IL-1R  � / �   

( Fig. 2 C ) mice failed to mount comparable CD4 +  T cell 

responses.  In addition, ASC  � / �   mice demonstrated a partially 

reduced CTL phenotype compared with caspase-1  � / �   or 

IL-1R  � / �   mice, in which CD8 +  T cell responses were barely 

detectable after immunization with live � u infection ( Fig. 2 B ). 

Furthermore, comparable reduction in virus-speci� c CD8 T 

cell numbers in the spleen and lung was observed by intra-

cellular IFN- �  staining ( Fig. 2 G ) and by tetramer staining 

( Fig. 2 H ). These data indicated that NLRP3-independent 

ASC/caspase-1 in� ammasomes and responsiveness through 

the IL-1R are required to elicit T cell responses to in� uenza 

virus in vivo. In addition, the intermediate phenotype of the 

defect in T cell responses in ASC  � / �   compared with cas-

pase-1  � / �   mice suggests the presence of an ASC-independent 

caspase-1 in� ammasome in the generation of T cell responses 

after in� uenza infection. 

 Next, we examined the cellular compartment responsible 

for the in� ammasome-dependent generation of CD4 and 

CD8 T cell responses. T cell responses from � u-infected cas-

pase-1  � / �   → WT, but not WT → caspase-1  � / �   mice, were 

diminished ( Fig. 2, E and F ), indicating that activation of 

caspase-1 in� ammasomes by the hematopoietic, but not stro-

mal, cells link NLR recognition of in� uenza virus to the 

activation of adaptive immunity in vivo. 

 Differential requirement for in� ammasomes 
in immunoglobulin isotype responses to in� uenza virus 
 Antibody responses play a critical role in the clearance of 

many viral pathogens including in� uenza virus. Previous 

studies have indicated the role of MyD88 in IgG2a responses 

to in� uenza infection ( 26, 27 ). We determined the contribu-

tions of in� ammasomes in this process. To this end, mice were 

immunized with a sublethal dose (10 PFU) of live A/PR8 

virus. 2 wk p.i., in� uenza virion – speci� c nasal IgA and serum 

titers of IgM and IgG isotype levels were measured by serial 

dilution. Nasal IgA responses were found to be completely 

dependent on ASC, caspase-1, IL-1R, and MyD88 but not 

on NLRP3 ( Fig. 3 A ).  In contrast, serum IgG1 levels were 

signi� cantly elevated in MyD88-de� cient mice compared 

with WT or other in� ammasome KO groups ( Fig. 3 C ). A 

slight reduction in the IgG2c response was detected in ASC  � / �   

and caspase-1  � / �   mice, which was similar to that seen in IL-

1R  � / �   and MyD88  � / �   mice ( Fig. 3 D ). Only caspase-1  � / �   

mice had a signi� cant reduction in IgG3 responses but not 

IL-1R –  or MyD88-de� cient mice ( Fig. 3 E ), indicating that 

caspase-1 – dependent IL-1 �  – , IL-18 – , and IL-33 (all upstream 

of MyD88) – independent factors play a major role in the in-

duction of this isotype response. In contrast, no signi� cant 

di� erences were found in serum IgM responses ( Fig. 3 F ). 
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whereas IgG2a/c and CD4 T cell responses depend on MyD88 

( 26, 27 ). In light of the data we present here, in� ammasome 

recognition of in� uenza virus infection plays a more domi-

nant role in the establishment of CD8 T cell responses com-

pared with TLR7. In addition, we found that serum IgG2c 

responses were largely dependent on both ASC-dependent 

caspase-1 in� ammasome signals. These data suggested that 

caspase-1 in� ammasomes, as well as TLR7/MyD88 ( 26, 27 ), 

play a key role in the formation of IgG2c-secreting B cells 

after � u infection. A pronounced defect in nasal IgA produc-

tion in ASC and caspase-1 – de� cient mice and complete im-

pairment in MyD88  � / �   mice suggest that in� ammasomes 

and IL-1R signals are required to elicit B cell secretion of IgA 

in the nasal mucosa. 

 ASC, caspase-1, and IL-1R, but not NLRP3, are required 
for survival after sublethal in� uenza challenge 
 Finally, we examined the importance of in� ammasomes in 

immune-mediated protection. To this end, we followed viral 

titer and survival of mice after intranasal challenge with a sub-

lethal dose (10 PFU) of A/PR8. The virus titers in the lung of 

infected mice revealed that all mice sustained similar viral load 

at day 5 p.i., indicating that, with the low dose viral chal-

lenge, in� ammasomes were not required for innate immune 

protection ( Fig. 4, A and B ).  In contrast, at later stages of in-

fection, viral clearance was severely impaired in mice de� -

cient for ASC, caspase-1, or IL-1R, but not NLRP3 ( Fig. 4 A ). 

Speci� cally, caspase-1 in the hematopoietic but not stromal 

compartment was required for control of virus replication at 

this stage ( Fig. 4 B ). This e� ect became pronounced on day 

10 p.i., when WT and NLRP3  � / �   mice had completely 

Antibody secretion in the BM chimeric mice indicated that the 

requirement for caspase-1 was all attributable to its expression 

in the hematopoietic compartment alone (Fig. S7, available at 

http://www.jem.org/cgi/content/full/jem.20081667/DC1). 

These data indicated that at least one NLRP3-independent 

ASC- and caspase-1 – dependent in� ammasome is required 

for nasal IgA and, to some extent, serum IgG2c responses to 

in� uenza virus. In addition, IL-1R and MyD88, which is 

downstream of TLRs, IL-1R, IL-18R, and ST2, are required 

for the same process in vivo. In contrast, IgG3 responses appear 

to depend mainly on caspase-1 but not on IL-1R or MyD88, 

whereas MyD88 has a regulatory role for IgG1 responses. 

 Our results indicated that ASC/caspase-1 in� amma-

somes and the secreted IL-1 �  play a key role in the genera-

tion of Th1, CTL, and IgA responses after in� uenza infection 

(Table S1, available at http://www.jem.org/cgi/content/full/

jem.20081667/DC1). Previous studies have demonstrated 

the requirement for TLR7 and MyD88 in adaptive immu-

nity to in� uenza virus infection with somewhat con� icting 

results. Lopez et al. ( 28 ) found no requirement for MyD88 

on T cells or immunoglobulin responses to aerosolized in� u-

enza virus challenge. In contrast, Koyama et al. ( 27 ) showed 

that TLR7 or MyD88 is required for the induction of B cell 

secretion of anti-HA IgG2a and IgG2c but not CTL re-

sponses. Heer et al. ( 26 ) demonstrated that IgG2a and IgG2c 

responses to � u were impaired in MyD88  � / �   but not in 

TLR7  � / �   mice. All studies found IgG1 antibody levels to be 

elevated in MyD88  � / �   mice ( 26 – 28 ) as well as TLR7  � / �   

mice ( 26 ). Together, these studies indicated that activation of 

CD8 T cells during antiin� uenza immune response relies 

on mechanisms other than the TLR7 and MyD88 ( 26 – 28 ), 

  Figure 3.     Differential requirement for NLRP3, ASC, and caspase-1 for immunoglobulin isotype responses to in� uenza virus.  WT, NLRP3-, 

ASC-, caspase-1 – , IL-1R – , and MyD88-de� cient mice were infected intranasally with a sublethal dose (10 PFU) of A/PR8 virus. Serum and nasal swab were 

collected at 2 wk p.i. A/PR8-speci� c nasal IgA levels were measured by ELISA (A). A/PR8-speci� c serum antibody titers were determined by serial dilution 

of serum total IgG (B), IgG1 (C), IgG2c (D), IgG3 (E), and IgM (F). These � gures are representative of three similar experiments. *, P  <  0.05; **, P  <  0.01; and 

***, P  <  0.001 versus WT mice.   
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indicated that NLRP3-independent ASC-dependent caspase-1 

in� ammasomes are required to provide IL-1R – dependent 

immune protection against respiratory in� uenza infection. It 

is unclear which NLRPs are responsible for the recognition 

of in� uenza virus in the initiation of ASC in� ammasome-de-

pendent immune responses. Future identi� cation of NLRP 

responsible for in� uenza recognition will provide important 

insights into the molecular mechanism. 

 Mortality of ASC  � / �  , caspase-1  � / �  , and IL-1R  � / �   mice 

after a low-dose in� uenza challenge was associated with re-

duced CD4 and CD8 T cell responses ( Fig. 2 ) as well as im-

paired mucosal IgA and systemic IgG2 responses ( Fig. 3 ) to 

in� uenza viral antigens (Table S1). It is well known that re-

covery from in� uenza infection requires CD8 T cells. The 

antiviral capacity of � u-speci� c CD8 +  T cells is dependent on 

their ability to migrate to the lungs and come in contact with 

infected airway epithelium ( 29 ). E� ector CD8 T cells begin 

to appear in the lung  � 5 – 7 d after infection ( 30 ). Thus, the 

inability of ASC- and caspase-1 – de� cient mice to clear virus 

in the lung at 8 and 10 d after in� uenza infection ( Fig. 4 A ) 

is likely the result of a combined e� ect of their failure to de-

velop robust systemic CD8 T cell responses and to recruit ef-

fector CD8 T cells to the lung ( Fig. 2  and Fig. S5 C). This 

recruitment and e� ector T cell induction are downstream of 

IL-1R signaling, as IL-1R  � / �   mice failed to elicit lung cellu-

lar in� ltration ( Fig. 1 ) or T cell responses ( Fig. 2 ). These data 

provide important evidence for the requirements for in� am-

masomes in multiple stages of antiviral immune defense. 

 In conclusion, our study demonstrated the requirement for 

ASC/caspase-1 in� ammasomes in the development of adap-

tive immune responses to respiratory in� uenza virus infection. 

Our data support the notion that in� uenza virus is recognized 

through an ASC-dependent pathway in addition to TLR7 and 

RIG-I. Both caspase-1 (this paper) and TLR7 ( 26, 27 ) recog-

nition pathways, but not RIG-I ( 27 ), appear to be required for 

adaptive immune responses to in� uenza virus. These data have 

signi� cant implications in the design of prophylactic vaccines 

and management of in� uenza infection in general. Stimulants 

of in� ammasomes may provide an ideal adjuvant candidate in 

� u vaccines that will confer protective immune responses. 

Finally, clinical management of severe pathogenic in� uenza 

strains, such as H5N1 avian strains, which often cause immuno-

pathology, may require blockade of in� ammasome to atten-

uate pathology in addition to antiviral therapy. 

 MATERIALS AND METHODS 

 Animals.   The generation of mice de� cient in NLRP3, ASC ( 19 ), NLRC4 

( 31 ), caspase-1 ( 10 ), and MyD88  � / �   ( 32 ) has been reported previously. All 

KO mice have been backcrossed at least nine generations onto the C57BL/6 

background. Age- and sex-matched C57BL/6 mice from National Cancer 

Institute (Frederick, MD) were used as WT controls. IL-1R  � / �   mice were 

obtained from The Jackson Laboratory. All procedures used in this study 

complied with federal guidelines and were approved by the Yale Animal Care 

and Use Committee. 

 In� uenza virus infection in vitro .    Lung � broblasts were prepared accord-

ing to published procedures ( 33 ). BMM, DCs (8  ×  10 5  cells/24 wells), or lung 

� broblasts (2  ×  10 5  cells/96 wells) were stimulated with live or inactivated 

cleared the virus and those de� cient in ASC, caspase-1, or 

IL-1R sustained high virus burden in the lung ( Fig. 4 A ). 

Consequently, although WT and NLRP3  � / �   mice recovered 

from sublethal infection with in� uenza virus, the majority 

of the � u-challenged ASC  � / �  , caspase-1  � / �  , and IL-1R  � / �   

mice succumbed to death by 18 d p.i. ( Fig. 4 C ). These data 

  Figure 4.     ASC-1 – , caspase-1 – , and IL-1R – de� cient mice, but not 
NLRP3-de� cient mice, are more susceptible to in� uenza infection 
and disease.  WT, NLRP3-, ASC-, caspase-1 – , and IL-1R – de� cient mice 

(A) and WT → caspase-1  � / �   and caspase-1  � / �   → WT BM chimeric mice 

(B) were infected intranasally with a sublethal dose (10 PFU) of A/PR8 

virus. The lungs of in� uenza-infected mice were harvested at 5, 8, and 10 

d p.i., and viral titers were determined by plaque assay (A and B). The val-

ues are representative of three mice per group and are expressed as the 

mean  ±  SD. *, P  <  0.05; **, P  <  0.01 versus WT mice. (C) Survival of mice 

after infection is depicted. Similar results were obtained from at least two 

separate experiments.   
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 The serum titers of IgM and IgG isotypes against A/PR8 viruses were de-

termined by ELISA. In brief, a 96-well plate (EIA plates; Costar; Corning) was 

coated with formalin-inactivated A/PR8 virion with carbonate bu� er. The re-

actions were detected by goat anti – mouse IgA (Invitrogen), goat anti – mouse 

IgG1 (Bethyl laboratories, Inc.), goat anti – mouse IgG2c (Bethyl laboratories, 

Inc.), goat anti – mouse IgG3 (SouthernBiotech), goat anti – mouse IgG (Jackson 

ImmunoResearch Laboratories), or goat anti – mouse IgM (SouthernBiotech) 

antibodies conjugated to horseradish peroxidase. Endpoint titers were consid-

ered positive for dilutions with OD values that were twofold higher than the 

background level (nonimmune serum). 

 Online supplemental material.   Fig. S1 shows the viral and cellular determi-

nant for in� uenza recognition. Fig. S2 shows in� ammasome-dependent and in-

dependent cytokine secretion in the BAL of in� uenza-infected mice. Fig. S3 

examines the role of type I IFNs in in� ammasome activation by in� uenza virus. 

Fig. S4 is a schematic representation of the role of in� ammasomes in the genera-

tion of adaptive immunity against � u infection. Fig. S5 depicts leukocyte re-

cruitment to the lung of in� uenza-infected mice. Fig. S6 describes the strategy 

for cell type identi� cation by � ow cytometry. Fig. S7 shows in� uenza virus 

speci� c antibody production in BM chimeric mice. Online supplemental mate-

rial is available at http://www.jem.org/cgi/content/full/jem.20081667/DC1. 
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