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Abstract

Inflammationaffects all stagesof tumorigenesis. A key signaling
pathway leading to acute and chronic inflammation is through
activation of the caspase-1 inflammasome. Inflammasome com-
plexes are assembled on activation of certain nucleotide-binding
domain, leucine-rich repeat–containing proteins (NLR), AIM2-
like receptors, or pyrin. Of these, NLRP1, NLRP3, NLRC4, NLRP6,
and AIM2 influence the pathogenesis of cancer by modulating
innate and adaptive immune responses, cell death, proliferation,
and/or the gut microbiota. Activation of the inflammasome and
IL18 signaling pathways is largely protective in colitis-associated

colorectal cancer, whereas excessive inflammation driven by the
inflammasome or the IL1 signaling pathways promotes breast
cancer, fibrosarcoma, gastric carcinoma, and lung metastasis in a
context-dependent manner. The clinical relevance of inflamma-
somes in multiple forms of cancer highlights their therapeutic
promise as molecular targets. In this review, we explore the
crossroads between inflammasomes and the development of
various tumors and discuss possible therapeutic values in target-
ing the inflammasome for the prevention and treatment of cancer.
Cancer Immunol Res; 5(2); 94–99. �2017 AACR.

Introduction
Inflammation triggered by microbial or danger signals drives

many forms of cancer in humans (1). Inflammation associated
with tumor development is triggered by a variety of immune cells,
includingmacrophages, neutrophils, dendritic cells, natural killer
(NK) cells, and T and B lymphocytes (2). A central mechanism
driving inflammation in immune cells is orchestrated by the
inflammasome, a cytoplasmic multimeric protein complex that
provides a molecular platform for activation of the cysteine
protease caspase-1 (3). Activated caspase-1 mediates proteolytic
cleavage and release of the proinflammatory cytokines IL1b and
IL18 and initiates an inflammatory form of programed cell death
known as pyroptosis (3).

Certain members of the nucleotide-binding domain, leucine-
rich repeat containing proteins (NLR) and AIM2-like receptors
(ALR), form inflammasome complexes in response to pathogen-
associated molecular patterns (PAMP) or danger-associated
molecular patterns (DAMP; ref. 3). Mutations in genes encoding
inflammasome components often lead to susceptibilities to can-
cer, infection, and autoinflammatory diseases in humans. In the
context of cancer, polymorphisms in the gene encoding NLRP1
are linked to mesothelioma (4), melanoma (5), and epidermal
hyperplasia (6); those of NLRP3 are associated with melanoma
(5) and colorectal cancer (7); and those of AIM2 with colorectal
cancer (8). Furthermore, our contemporary appreciation of the
functional importance of inflammasomes in cancer is illuminated

by mouse models. Here, we highlight recent development in our
understanding of inflammasomes in cancer and outline the
therapeutic potential of modulating inflammasome responses
for use in anticancer therapies.

Protective Roles of Inflammasomes in
Cancer

The global inflammasome-initiating sensor of PAMPs and
DAMPs, NLRP3, assembles a fully functional inflammasome
complex by recruiting the inflammasome adaptor protein, ASC,
and the cysteine protease, caspase-1. The ability of NLRP3 to
respond a variety of signals contributes to its biological impor-
tance in a number of diseases, including colorectal cancer, mel-
anoma, and transplantable tumors. Multiple studies have shown
that mice lacking NLRP3 are hypersusceptible to colitis and
colitis-associated colorectal cancer induced by theDNAdamaging
agent azoxymethane (AOM) and chemical colitogen dextran
sulfate sodium (DSS; refs. 9–12). However, another study has
suggested that mice lacking NLRP3 are more resistant to DSS-
induced colitis compared with wild-type mice (13), whereas a
further studyhas founda similar tumorburdenbetweenwild-type
mice and mice lacking NLRP3, treated with AOM and DSS (14).
It is possible that alteration in the gut microbiota between
different animal facilities could have contributed to the differ-
ences observed in these studies. It is important to note that mice
lacking ASC and caspase-1 are also susceptible to DSS-induced
colitis and colitis-associated colorectal cancer (9–11, 15), provid-
ing substantial evidence to favor a protective role of inflamma-
somes in an inflammatory model of colorectal cancer.

Bone marrow chimera studies have identified that signaling
through the NLRP3 inflammasome in the hematopoietic, but not
in the stromal, compartment is essential for mediating protection
against tumorigenesis (9, 10). The ability of inflammasome
sensors such as NLRP3 to mediate secretion of IL18, a cytokine
that contributes to epithelial barrier repair against damage, is a
potential mechanism explaining the protective role of IL18
against colitis-associated colorectal cancer (Fig. 1A; refs. 5, 6,

Department of Immunology, St. Jude Children's Research Hospital, Memphis,
Tennessee.

R. Karki and S.M. Man share first authorship of this article.

Corresponding Author: Thirumala-Devi Kanneganti, St. Jude Children's
Research Hospital, MS #351 262 Danny Thomas Place, Memphis, TN 38105-
3678. Phone: 910-595-3634; Fax. 910-595-5766; E-mail:
Thirumala-Devi.Kanneganti@STJUDE.ORG

doi: 10.1158/2326-6066.CIR-16-0269

�2017 American Association for Cancer Research.

Cancer
Immunology
Research

Cancer Immunol Res; 5(2) February 201794

D
ow

nloaded from
 http://aacrjournals.org/cancerim

m
unolres/article-pdf/5/2/94/2350713/94.pdf by guest on 26 August 2022



9–11, 15–38). In contrastwith previous studies showing thatmice
lacking IL18 are susceptible to DSS-induced intestinal inflamma-
tion and tumorigenesis (9, 16, 17), a study has found that mice
with a conditional deletion of IL18 in either epithelial cells or
hematopoietic cells are more resistant to DSS-induced colitis
compared with cohoused wild-type mice, indicating an IL18-
dependent function in both enterocytes and hematopoietic cells
(39). Under cohousing conditions wherebymice harbor a similar
microbiota profile, IL18 inhibits goblet cell maturation prior
to the onset of colitis to drive pathology (39). However, injection
of recombinant IL18 into mice lacking inflammasome compo-
nents reduces the prevalence of tumors in response to AOM and
DSS (9), suggesting that this inflammasome-associated cytokine
could be considered a potential candidate in immunotherapy
against certain cases of colorectal cancer.

NLRP3 inflammasome-mediated secretion of IL18 can also
induce tumoricidal activity of NK cells against metastasized
colonic tumor cells in the mouse liver (19). In addition, IL18
promotes downregulation of the soluble IL22 receptor, IL22-
binding protein (IL22BP; ref. 24; Fig. 1A). Controlled production
of IL22BP fine-tunes the biological activity of IL22, a cytokine that
exerts protective effects against intestinal damage at the peak of
inflammation and promotes tumor development at later stages
(24). IL22 alsomaintains IL18 expression in epithelial cells of the
ileum, whereas IL18 itself is required for IL22 expression in CD4þ

T cells and innate lymphoid cells (40).
The diametrical roles of IL18 have also been observed in lung

metastasis. Recombinant IL18 injected into mice twice within a
week enhances the development of B16F10 metastases, whereas
daily administration for 5 days reduces tumorigenesis (41). In
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Figure 1.

Diverse roles of inflammasome sensors in tumorigenesis. A, NLRP1b, NLRP3, and NLRP6 mediate the production of IL18, contributing to the protection against
colitis-associated colorectal cancer. The IL18 axis can also induce tumoricidal activity of NK cells againstmetastasized colonic tumor cells, downregulate IL22 binding
protein (IL22BP), and inhibit the colonization of colitogenic microbiota, possibly through its role in MUC2 secretion by goblet cells. The NLRP3 inflammasome
and the IL1b–IL1 receptor (IL1R) signaling axis drives a T-cell response toward transplantable tumor cells. Mouse NAIP1–6 proteins control phosphorylation of STAT3
and the expression of genes encoding antiapoptotic and proliferation-related molecules. NLRC4 controls the suppression of melanoma growth by amplifying
inflammation in macrophages and potentiates production of IFNg in T cells. AIM2 inhibits phosphorylation of AKT and cMyc activities and stem cell proliferation,
while preventing colonization of colitogenic microbiota. B, The NLRP3–IL1b–IL1R signaling axis suppresses the tumoricidal activity of NK cells and T cells and
promotes methylcholanthrene (MCA)-induced fibrosarcomas. It also induces secretion of IL17 by CD4þ T cells and dampens the antitumor efficacy of
chemotherapeutic agents in thymoma. Overexpression of IL1b mobilizes myeloid-derived suppressor cells (MDSC) to the stomach and induces gastric cancer.
IL1 signaling drives accumulation of MDSCs and promotes primary and metastatic mammary tumors. Inflammasome-independent activity of NLRP3 suppresses
NK cells and increases lung metastasis in certain models of melanoma. The NLRC4 inflammasome mediates expression of adipocyte-mediated vascular
endothelial growth factor A (VEGFA) and accelerates the progression of breast cancer. In some cases, ASC increases the viability and growth of melanoma
cells and promotes inflammation in infiltrating myeloid cells and the development of skin cancer. Mutations in the gene encoding NLRP1 are linked to melanoma
and epidermal hyperplasia in humans.
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addition, mice lacking IL18 are more susceptible to B16-F10
tumor metastasis (28). It is possible to speculate that temporary
exposure to IL18 might drive inflammation and accelerate metas-
tasis, whereas a sustained circuit of IL18might be fully required to
enhance and shape antitumor immunosurveillance. Indeed, IL18
has the capacity to fine-tune the activation status of NK cells (28,
41). In cases in which IL18 is detrimental, the use of IL18 binding
protein (IL18BP, a soluble protein that binds to IL18) to neu-
tralize IL18might be beneficial in the treatment of certain types of
cancer (Fig. 2; refs. 3, 41–51).

The NLRP3 inflammasome is also required for anticancer
adaptive immune responses. The release of ATP by dying tumor
cells treated with chemotherapeutic agents activates the NLRP3
inflammasome and the IL1b–IL1 receptor (IL1R) signaling axis in
dendritic cells (ref. 25; Fig. 1A). This pathway drives an effective
CD8þ T-cell response toward transplantable tumor cells (25). As a
result, oxaliplatin therapy of transplantable tumors in mice lack-
ing the NLRP3 inflammasome is ineffective because IL1 produc-
tion from dendritic cells is not induced, nor are CD8þ T cells
primed (25).

In addition to NLRP3, other NLR sensors, including NLRP1b
and NLRP6, mediate protection against tumorigenesis (18, 20–

23, 52; Fig. 1A). In mice, the NLRP1b inflammasome provides
protection against colon tumorigenesis, mediating secretion of
both IL1b and IL18 in stromal cells of the colon (18). NLRP6 has
several interrelated mechanistic functions by which it confers
protection against colon tumorigenesis in mice. NLRP6 has been
proposed to activate caspase-1 and drive IL18 production in the
intestine in response to AOM and DSS treatment (20–22). The
NLRP6–IL18 signaling axis prevents the colonization of pro-
colitogenic bacterial species TM7 and those of the Prevotellaceae
family (21). Furthermore, NLRP6 is essential for MUC2 secretion
by goblet cells to clear potentially colitogenic bacteria (23, 26).
NLRP6–dependent secretion of MUC2 in the intestinal epitheli-
um have been shown to be dependent and independent of the
inflammasome (23, 26), observations that could be attributed to
differences in the gutmicrobiota and themouse facilities housing
the animals.

The ability of inflammasome sensors to provide protection
against cancer does not always rely on the effector functions of
caspase-1 and the cytokines processed by inflammasomes
(Fig. 1A).MouseNAIP1–6proteins are components of theNLRC4
inflammasome and have been linked to the protection against
AOM-DSS–induced colorectal cancer (27). The mechanism
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Figure 2.

Therapeutic targets of the inflammasome pathway. Recognition of pathogen-associated molecular patterns (PAMP) or danger-associated molecular patterns
(DAMP) by inflammasome-initiating sensors leads to the activation of the inflammasome and initiation of pyroptosis and release of the bioactive form of IL1b
and IL18. IL1b and IL18 engage in autocrine and paracrine signaling pathways via the IL1 receptor (IL1R) and IL18 receptor (IL18R), respectively. The inflammasome
signaling pathway can be inhibited by pharmacologic inhibition of activation of the inflammasome (parthenolide, MCC950, glyburide, and BAY-11-7082), ASC
oligomerization (CRID3), caspase-1 (thalidomide and belnacasan or VX-765), and IL1R (anakinra or kineret, and rilonacept or arcalyst), or neutralizing IL1b
(canakinumab or ilaris) or IL18 (IL18 binding proteins or IL18BP).
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driving this response is independent of the NLRC4 inflamma-
some, but relates to the ability of NAIP proteins to inhibit
hyperactivation of the transcription factor STAT3 and the
expression of genes encoding antiapoptotic and proliferation-
related molecules (27). Further, some evidence suggests that
adjuvant-based cancer immunotherapies targeting cytosolic
NAIP proteins and surface-associated TLR5 could be beneficial.
The NAIP proteins and TLR5 both recognize flagellin of certain
bacteria (3). Enforced expression of flagellin in tumor cell lines,
ensuring dual recognition by NAIP proteins and TLR5, induces
tumor cell clearance by innate immune cells and activation of
tumor-specific CD4þ and CD8þ T-cell responses in mice (53).
These findings suggest that recognition of tumor cells by the
inflammasome and other innate immune sensors could lead to
desirable outcomes.

The role of NLRC4 itself in the AOM-DSS–induced tumor
model is unclear; a study suggests that NLRC4 prevents colorectal
tumorigenesis by inhibiting cellular proliferation and driving cell
death (14), whereas another found no role for NLRC4 (10).
NLRC4 can also amplify inflammatory signaling pathways in
macrophages independently of inflammasome assembly and
potentiates production of IFNg in CD4þ and CD8þ T cells to
dampen melanoma tumor growth in mice (29).

In addition to NLRs, the DNA-sensing inflammasome sensor
AIM2 can inhibit AOM-DSS–induced and spontaneous colorectal
tumorigenesis via an inflammasome-independent mechanism
(refs. 30, 31; Fig. 1A). AIM2 inhibits overt proliferation of intes-
tinal stem cells and promotes cell death (30). Furthermore, AIM2
interactswith and limits the activation ofDNA-dependent protein
kinase (DNA-PK) to reduce phosphorylation of AKT, which
governs cell proliferation (31). In addition, AIM2 expression
prevents colonization of colitogenic microbiota and reduces
susceptibility of mice to colorectal tumorigenesis (30). Overall,
substantial evidence suggests that inflammasome sensors have
tumor-suppressive roles in certain forms of cancer. These onco-
genic inhibitory activities are dependent on the ability of inflam-
masome sensors to modulate cytokine production, engaging T-
cell activities, cellular proliferation, and maturation, and the
microbiota profile of the host (Fig. 1A).

Detrimental Roles of Inflammasomes in
Cancer

Activation of the inflammasome leads to inflammatory
responses and, in some cases, suppression of antitumor immu-
nity (Fig. 1B). NLRP3 activity is associated with increased lung
metastasis when mice were injected intravenously, but not
subcutaneously, with B16-F10 melanoma cells or RM-1 pros-
tate carcinoma cells (28, 32). In this case, mice lacking NLRP3
have a substantially reduced number of lung metastases com-
pared with wild-type mice, whereas mice lacking caspase-1 and
caspase-11 or IL1R have a similar number of lung metastases
compared with wild-type mice (28). The negative effect of
NLRP3 is also observed when mice are vaccinated with wild-
type dendritic cells pulsed with B16-F10 melanoma cell lysates
prior to injection with B16-F10 melanoma, such that a greater
proportion of vaccinated mice lacking NLRP3 survived com-
pared with that of vaccinated wild-type mice (32). The delete-
rious effect of NLRP3 in the melanoma model is owing to its
ability to suppress activation of NK cells that secrete IFNg and
kill tumor cells (ref. 28; Fig. 1B).

The inflammasome adaptor protein ASC also appears to
have multiple biological activities that affect the outcome of
tumorigenesis (34). A knockdown of the gene encoding ASC
increases the viability and growth of primary melanoma cells,
whereas it reduces the viability and growth of metastatic
melanoma cells, when these cells were injected into nude
mice (34). Using cell-type–specific knockout mouse strains
lacking ASC in a chemically induced skin carcinogenesis
model, ASC was found to limit keratinocyte proliferation
and tumor formation, whereas it promotes inflammation in
infiltrating myeloid cells and the development of tumors
(ref. 35; Fig. 1B). These findings further highlight the cell-
type and tissue-specific roles for inflammasome components
in cancer.

In addition to IL18, activation of the inflammasome leads to
secretion of the inflammasome substrate IL1b. IL1b is involved in
the pathogenesis of spontaneous gastric cancer or Helicobacter
felis-induced gastric cancer (33). A transgenic mouse strain engi-
neered to overexpress human IL1b in the stomach is prone
to developing gastric cancer due to increased mobilization of
myeloid-derived suppressor cells (MDSC) to the stomach (33). A
deleterious role for IL1 signaling is also supported by the finding
that mice lacking IL1R have a delayed accumulation of MDSCs
and reduced primary and metastatic mammary tumors (36),
suggesting that inflammation driven by the IL1R signaling path-
way is detrimental (Fig. 1B).

The relationship between IL1R signaling and MDSCs in
cancer is further demonstrated in a study showing that acti-
vation of the NLRP3 inflammasome by chemotherapeutic
agents gemcitabine and 5-fluorouracil leads to IL1b produc-
tion in MDSCs (37). Production of IL1b by MDSCs induces
secretion of IL17 by CD4þ T cells and dampens the antitumor
efficacy of gemcitabine and 5-fluorouracil (37). The IL1b–IL1R
signaling axis activated by the NLRP3 inflammasome has an
adverse role in methylcholanthrene (MCA)-induced fibrosar-
comas (28). In this case, IL1b suppresses the tumoricidal
activity of NK cells and T cells (28). Moreover, IL1b produced
as a result of activation of the NLRC4 inflammasome mediates
expression of adipocyte-mediated vascular endothelial growth
factor A and angiogenesis, which accelerates the progression of
breast cancer (38). Gain-of-function mutations in the gene
encoding NLRP1 induce spontaneous inflammasome activa-
tion and IL1 production and drives epidermal hyperplasia in
humans (ref. 6; Fig. 1B).

Owing to the detrimental effects of the IL1R signaling path-
way, treatment of mice with IL1R antagonist IL1Ra enhances
the antitumor effect of gemcitabine and 5-fluorouracil (37). In
addition, neutralizing IL1b or IL1R at early stages of tumori-
genesis reduces the incidence of MCA-induced fibrosarcomas in
mice (28). Inhibitors of IL1 cytokines, such as Anakinra, have
been suggested for use in prophylaxis or treatment of multiple
myeloma (ref. 48; Fig. 2). Similarly, thalidomide, an immu-
nomodulator approved by the FDA can inhibit caspase-1 acti-
vation and is used for the treatment of malignant myeloma
(ref. 46; Fig. 2). Excessive inflammation induced by inflamma-
some activation and inflammasome substrates is a consistent
theme that seems to explain the detrimental effects of inflam-
masomes in multiple forms of cancer. The complex and dia-
metrical roles of inflammasome components in different forms
of cancer suggest that anticancer therapies must be tailored to
the specific cancer type and stage of disease.
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Conclusions
In this review, we provided a brief overview of the bio-

logical importance of inflammasomes in different forms of
cancer. Activation of inflammasome sensors is largely bene-
ficial in colitis-associated colorectal cancer largely owing to
the epithelial healing effects of the IL18 signaling pathway,
regulation of cellular proliferation, maturation and cell
death, and maintenance of a healthy gut microbiota. Iden-
tification of novel tumor-suppressive mechanisms of inflam-
masome sensors pushes the boundaries of the traditional
roles of inflammasomes.

In other cases, inflammation triggered by inflammasomes and
IL1 signaling leads to suppression of antitumor immunity con-
ferred by NK cells and T cells that is detrimental to the develop-
ment of fibrosarcoma, melanoma, gastric carcinoma, and lung
metastasis. As a result, boosting or reducing the activity of inflam-
masomes or their effector molecules could be efficacious by
tailoring therapy to specific types of cancer. Several small mole-
cules, antagonists, and monoclonal antibodies are being devel-
oped against components of the inflammasome for use in ther-
apies to control cancer (Fig. 2). However, inappropriate use of
inflammasome modulatory therapies might lead to suppression
of antitumor immunity and/or increased susceptibility to infec-
tion and the development of metabolic and autoinflammatory
diseases.

Because inflammasome sensors regulate multiple signaling
pathways beyond that of caspase-1, an understanding of which
molecular mechanism is governed by inflammasome compo-
nents in specific tumors is essential. The protumorigenic and
antitumorigenic properties of inflammasomes are largely deter-
mined by the types of cells, tissues, and organs involved.
The use of tissue- and cell-type–specific conditional deletion
approaches in mice would fully reveal the complex functions of
inflammasomes in the progression of cancer. The biological
relationship between inflammasomes and cancer provides
promising avenues with which to explore new anticancer
therapies.
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