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Bone remodeling is tightly controlled by osteoclast-mediated bone resorption and

osteoblast-mediated bone formation. Fine tuning of the osteoclast–osteoblast balance

results in strict synchronization of bone resorption and formation, which maintains

structural integrity and bone tissue homeostasis; in contrast, dysregulated bone

remodeling may cause pathological osteolysis, in which inflammation plays a vital role in

promoting bone destruction. The alveolar bone presents high turnover rate, complex

associations with the tooth and periodontium, and susceptibility to oral pathogenic insults

and mechanical stress, which enhance its complexity in host defense and bone

remodeling. Alveolar bone loss is also involved in systemic bone destruction and is

affected by medication or systemic pathological factors. Therefore, it is essential to

investigate the osteoimmunological mechanisms involved in the dysregulation of

alveolar bone remodeling. The inflammasome is a supramolecular protein complex

assembled in response to pattern recognition receptors and damage-associated

molecular patterns, leading to the maturation and secretion of pro-inflammatory

cytokines and activation of inflammatory responses. Pyroptosis downstream of

inflammasome activation also facilitates the clearance of intracellular pathogens and

irritants. However, inadequate or excessive activity of the inflammasome may allow for

persistent infection and infection spreading or uncontrolled destruction of the alveolar

bone, as commonly observed in periodontitis, periapical periodontitis, peri-implantitis,

orthodontic tooth movement, medication-related osteonecrosis of the jaw, nonsterile or

sterile osteomyelitis of the jaw, and osteoporosis. In this review, we present a framework

for understanding the role and mechanism of canonical and noncanonical inflammasomes

in the pathogenesis and development of etiologically diverse diseases associated with

alveolar bone loss. Inappropriate inflammasome activation may drive alveolar osteolysis by

regulating cellular players, including osteoclasts, osteoblasts, osteocytes, periodontal

ligament cells, macrophages, monocytes, neutrophils, and adaptive immune cells, such

as T helper 17 cells, causing increased osteoclast activity, decreased osteoblast activity,

and enhanced periodontium inflammation by creating a pro-inflammatory milieu in a

context- and cell type-dependent manner. We also discuss promising therapeutic

strategies targeting inappropriate inflammasome activity in the treatment of alveolar
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bone loss. Novel strategies for inhibiting inflammasome signaling may facilitate the

development of versatile drugs that carefully balance the beneficial contributions of

inflammasomes to host defense.

Keywords: alveolar bone loss, bone remodeling, inflammasome, inflammation, interleukin-1, osteolysis,

pyroptosis, periodontitis

INTRODUCTION

The alveolar bone, an important part of the maxillofacial
skeleton, is a connective tissue that supports teeth, is subjected
to mechanical stress, and undergoes continuous bone
remodeling (1). Similar to other bone tissues, osteoclasts and
osteoblasts are the main components responsible for the highly
dynamic equilibrium between bone resorption and formation in
the alveolar bone. In addition to these two vital players, a
complex cellular communication network, including osteocytes,
macrophages, monocytes, neutrophils, and adaptive immune
cells, such as T helper 17 cells (Th17 cells), also plays critical
roles in maintaining strict bone coupling and alveolar bone
homeostasis (2). Alveolar bone remodeling is not only a part
of the bone turnover of the skeletal system but also mirrors
skeletal bone conditions. Interestingly, the turnover rate of
alveolar bone is significantly higher in the mandible and
maxilla than in the femur and at the alveolar crest than at the
level of the mandibular canal and the inferior compact border,
suggesting highly dynamic remodeling of the alveolar bone (3, 4).
The association between the tooth and periodontium also increases
the complexity of alveolar bone remodeling. Pathogen invasion
from the oral environment or hematogenous spread, mechanical
stress from orthodontic treatments, medication, and systemic
pathological factors can induce sophisticated inflammation, which
dictates the activities of osteoclasts and osteoblasts in alveolar bone,
shifting the balance of bone homeostasis to increase bone resorption
and decrease bone formation. Hence, it is important to understand
the osteoimmunological mechanism of alveolar bone loss.

Innate immunity acts as the front line of defense against
pathogen invasion and tissue damage. Inflammasomes serve as
intracellular pattern recognition receptors to activate inflammatory
caspases (5). In response to pathogen-associated molecular patterns
(PAMPs) and damage-associated molecular patterns (DAMPs),
canonical inflammasomes are activated as a multimolecular
protein complex and platform to recruit caspase-1, leading to its
autoproteolytic activation, subsequent production of mature
interleukin (IL)-1b and IL-18, and a lytic form of cell death called
pyroptosis. Likewise, noncanonical inflammasome caspases (human
caspase-4/5 and mouse caspase-11) act as both the sensor and
effector, recognize stimuli such as intracellular lipopolysaccharide
(LPS), and induce pyroptosis (6). The inflammasome is not only a
key regulator of innate immunity but also plays critical roles in
adaptive immunity, making it a pivotal player in the immune
response and host defense (7). Appropriate inflammasome
activity is required for wound healing and bone homeostasis,
whereas inappropriate inflammasome activity could negatively

influence host defense and homeostasis (8). Pathogens and their
by-products may inhibit inflammasome activation to escape host
immune defense, resulting in persistent infection or spreading of
infection (9). However, excessive inflammasome activity can
contribute to the pathogenesis and development of various
diseases associated with bone destruction (10–13). Hence,
inflammasomes act as a double-edged sword with both protective
and detrimental potential for host defense and bone remodeling.
Inflammasomes also play critical roles in unbalanced alveolar bone
remodeling, which may occur as a local dysregulation or as part of
systemic bone diseases. A comprehensive understanding of the
mechanisms of inflammasomes in alveolar bone loss may
contribute to the identification of therapeutic targets and the
development of novel anti-inflammatory drugs.

Here, we review the recent advancements and insights into
the potential mechanisms of inflammasomes in the pathogenesis
and development of alveolar bone loss and discuss the potential
and novel therapeutic strategies targeting inappropriate
inflammasome activity in this field.

STRUCTURE AND ACTIVATION
OF INFLAMMASOMES

The inflammasome, an intracellular supramolecular protein
complex, is activated upon sensing PAMPs and DAMPs.
Among the canonical inflammasomes, nucleotide-binding
oligomerization domain (NOD)-like receptors (NLRs), absent
in melanoma 2 (AIM2)-like receptors (ALRs), and pyrin play
pivotal roles in the innate immune response (14). Noncanonical
inflammasomes induce pyroptosis and secondary activation of
other inflammasomes (15). Inflammasomes can be modulated by
several regulators, such as caspase activation and recruitment
domain (CARD)-only proteins, pyrin domain (PYD)-only proteins,
interferons (IFNs), autophagy molecules, and tripartite motif
(TRIM) proteins, which have been reviewed elsewhere (16–18).
Herein, we focus on the structure and activation of canonical and
noncanonical inflammasomes (Table 1).

NLR family members, such as NLRPs, NLRCs, and NAIPs,
usually possess a leucine-rich repeat (LRR) domain at the C-
terminal and a nucleotide-binding domain (NBD) or NACHT
domain in the central region, except for NLRP10, which lacks an
LRR domain, and NLRP1, which has an NACHT-LRR-C-terminal
arrangement (9). LRRs contribute to ligand recognition and post-
translational modifications, whereas NACHT is associated with
adenosine triphosphate (ATP)-induced oligomerized assembly
(14). Despite LRRs and NACHT, NLR family members usually
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TABLE 1 | Molecules or domains associated with inflammasome activation.

Name Main functions in inflammasome activation

Absent in melanoma 2 (AIM2) AIM2 functions as a canonical inflammasome for DNA recognition (19–21).

AIM2-like receptors (ALR) Four and 13 ALRs are expressed in humans and mice, respectively; only AIM2 and IFI16 function as inflammasomes for the

recognition of cytoplasmic and nuclear DNA from pathogens and damaged cells (14).

Apoptosis associated speck-like

protein containing a CARD (ASC)

ASC binds to inflammasomes and caspase-1 via the homotypic interaction of PYD-PYD and CARD-CARD, respectively (8).

Baculoviral IAP repeat-containing

proteins (NAIPs)

NAIPs in NLR family have three baculovirus inhibitor-of-apoptosis repeats at the N-terminus. Humans express only one NAIP,

which recognizes the T3SS needle protein of bacteria such as Chromobacterium violaceum. Recognition of flagellin by NAIP5

and NAIP6 as well as recognition of T3SS proteins by NAIP2 indirectly activate caspase-1 through NLRC4 oligomerization (22).

Canonical inflammasomes Canonical inflammasomes are activated as a multimolecular protein complex and platform to recruit caspase-1, leading to its

autoproteolytic activation, subsequent production of mature IL-1b and IL-18, and pyroptosis (14).

Caspase activation and recruitment

domain (CARD)

CARD is a domain in inflammasomes that directly binds to its counterpart domain in caspase-1 for its recruitment (23).

Caspase-1 Caspase-1 is recruited by canonical inflammasomes, leading to its autoproteolytic activation, subsequent production of mature

IL-1b and IL-18, and pyroptosis (23).

Caspase-4 Caspase-4 in humans can convert GSDMD into GSDMD-N to induce pyroptosis. Caspase-4 may process pro-IL-18 but not

pro-IL-1b (24).

Caspase-5 Caspase-5 in humans can convert GSDMD into GSDMD-N to induce pyroptosis. Caspase-5 possesses a weak ability to

process pro-IL-1b and pro-IL-18 (24).

Caspase-11 Caspase-11 in mice can convert GSDMD into GSDMD-N to induce pyroptosis. Caspase-11 is not able to process pro-IL-1b

and pro-IL-18 (24).

Conserved in UNC5, PIDD, and

ankyrin domain (UPA)

UPA is a domain in FIIND of NLRP1. FIIND autoprocessing yields two polypeptides: UPA-CARD and NACHT-LRR-ZU5 (25).

Cyclic GMP-AMP synthase (cGAS)/

stimulator of IFN genes (STING)/

STING-TANK binding kinase 1 (TBK1)/

IRF3 axis

This axis drives IFN regulatory factor 1 (IRF1) expression upon which GBP2/GBP5 and IRGB10 are produced (26–28).

Damage-associated molecular

patterns (DAMPs)

DAMPs are associated with host damage and endogenous danger signals (e.g., extracellular heat shock protein 70) (5).

Found in ZO-1 and UNC5 domains

(ZU5)

ZU5 is a domain in FIIND of NLRP1. FIIND autoprocessing yields two polypeptides: UPA-CARD and NACHT-LRR-ZU5 (25).

Function-to-find domain (FIIND) FIIND is a domain in NLRP1 that may undergo autoprocessing (25).

Gasdermin D (GSDMD) GSDMD can be cleaved by caspase-1/-4/-5/-11 to induce pyroptosis (29).

GSDMD N-terminal fragment

(GSDMD-N)

GSDMD-N interacts with the inner membrane glycerophospholipids of the lipid bilayer, forming pores on cell membranes and

triggering pyroptosis (29).

Guanylate-binding protein 2 (GBP2)

and protein 5 (GBP5)

GBP2 and GBP5 disrupt the bacterial membrane and vacuoles containing bacteria, leading to bacteria and DNA exposure

(26, 28).

IFN-gamma inducible 16 (IFI16) IFI16 is a canonical inflammasome in ALR family. It is located in the nucleus, has two HIN-200 domains, and forms an

inflammasome upon infection by viruses such as herpesviruses (30).

Immunity-related GTPase family

member b10 (IRGB10)

IRGB10 disrupts the bacterial membrane and vacuoles containing bacteria, leading to bacteria and DNA exposure (26, 28).

Interleukin (IL)-1b Caspase-1 can process pro-IL-1b into IL-1b during inflammasome activation (9).

Interleukin (IL)-18 Caspase-1 can process pro-IL-18 into IL-18 during inflammasome activation (9).

Leucine-rich repeat (LRR) LRR is a domain in NLRs that contributes to ligand recognition and post-translational modifications (9).

NIMA-related kinase 7 (NEK7) NEK7 interacts with LRR and NBD in NLRP3 to promote NLRP3 activation (31).

NLR family CARD domain-containing

protein 4 (NLRC4)

NLRC4 is a canonical inflammasome in NLR family that indirectly recognizes flagellin and T3SS proteins through NAIPs (22).

Noncanonical inflammasomes Noncanonical inflammasome caspases (human caspase-4/5 and mouse caspase-11) act as both the sensor and effector,

recognize stimuli such as intracellular LPS, and induce pyroptosis (6).

Nucleotide-binding domain (NBD) or

NATCH

NBD is a domain in NLRs associated with ATP-induced oligomerized assembly (14).

Nucleotide-binding oligomerization

domain-like receptors (NLRs)

Twenty-three and 34 NLRs have been identified in humans and mice, respectively. NLRs usually possess a LRR domain at the

C-terminal and a NBD or NACHT domain in the central region (14).

Nucleotide-binding oligomerization

domain-like receptor protein 3

(NLRP3)

NLRP3 is a canonical inflammasome in NLR family. Due to a lack of constitutive expression in most resting cells, activation of

NLRP3 inflammasome usually requires two steps: the first signal for priming and the second signal for oligomerization and

further recruitment of other components (32).

Pathogen-associated molecular

patterns (PAMPs)

PAMPs are associated with pathogens and microorganism components (e.g., lipoteichoic acid [LTA] and lipopolysaccharide

[LPS]) (5).

PKC-related serine/threonine-protein

kinase N1 (PKN1) and N2 (PKN2)

PKN1 and PKN2 can phosphorylate pyrin, leading to interaction of pyrin with inhibitory 14-3-3 protein and maintaining pyrin in

an inactive state. RhoA inhibition decreases the activity of PKN1 and PKN2 and consequently reduces the level of pyrin

phosphorylation, resulting in pyrin release from 14-3-3 and accelerating pyrin inflammasome activation (33).

Pyrin domain (PYD) PYD indirectly binds to caspase-1 via the homotypic interaction of PYD-PYD and CARD-CARD via ASC (23).

Toll-like receptors (TLRs) TLRs are transmembrane pattern recognition receptors. TLR-, NOD ligand-, or inflammatory cytokine-mediated NF-kB-

dependent transcriptional signaling provides the first signal for NLRP3 priming (5).

ATP, adenosine triphosphate; T3SS, type III secretion system.
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have N-terminal domains that are responsible for caspase
recruitment. CARD in NLRP1 (in the C-terminal) and NLRC4
directly binds to its counterpart domain in caspase-1, whereas PYD
in other NLRP proteins, such as NLRP3, indirectly binds to caspase-
1 via the homotypic interaction of PYD-PYD and CARD-CARD
via the adaptor protein termed apoptosis-associated speck-like
protein containing a CARD (ASC, containing a C-terminal
CARD and an N-terminal PYD) (23). In contrast to other NLRs,
NAIPs have three baculovirus inhibitor-of-apoptosis repeats at the
N-terminus, and recognition of flagellin by NAIP5 and NAIP6 as
well as recognition of type III secretion system (T3SS) rod proteins
by NAIP2 indirectly activate caspase-1 through NLRC4
oligomerization (22). Once the full-length caspase-1 (containing
an N-terminal CARD, a large central catalytic domain [p20], and a
C-terminal, small catalytic domain [p10]) is recruited to the
oligomerized inflammasome, it is activated through dimerization
and autoproteolysis, and the active caspase-1 then cleaves pro-IL-1b
and pro-IL-18 into their active forms. Similar activation is observed
in ALR inflammasomes, which contain a C-terminal pyrin and
HIN-200 domain for auto-inhibition and recognition and an N-
terminal PYD for recruitment of caspase-1 with the help of ASC
(26). Caspase-8 may also be involved in inflammasome activation
and IL-1b production downstream of Toll-like receptors (TLRs)
and Fas death receptors (34, 35). In addition, following
inflammasome activation, mature caspase-1 cleaves gasdermin D
(GSDMD) to its N-terminal form (GSDMD-N), which interacts
with the inner membrane glycerophospholipids of the lipid bilayer,
forming pores on cell membranes and triggering a lytic form of
regulated cell death known as pyroptosis (29). Interestingly,
GSDMD-N may also interact with cardiolipin in the bacterial
membrane and the inner leaflet of the mitochondrial membrane,
killing bacteria and causing mitochondrial permeabilization (36,
37). Pyroptotic pores also allow for the release of cytosolic contents,
including IL-1b, IL-18, and other danger signals (38). Of note,
robust production of mature IL-1b and IL-18 by inflammasomes
containing CARDs may still require the involvement of ASC,
whereas induction of pyroptosis may not (9, 39). Hence,
activation of canonical inflammasomes elicits at least two major
events: 1) maturation and release of IL-1b and IL-18 and 2)
induction of pyroptosis. These events may amplify pro-
inflammatory responses and contribute to tissue damage.

Twenty-three and 34 NLRs have been identified in humans
and mice, respectively; however, only a few of these assemble into
inflammasomes, such as NLRP3, NLRP1, NLRP6, NLRC4,
NLRP7, and NLRP12. NLRP3 is the best-characterized
inflammasome in the NLR family. Nevertheless, due to a lack
of constitutive expression in most resting cells, activation of
NLRP3 inflammasome usually requires two steps: the first signal
for priming and the second signal for oligomerization and
further recruitment of other components (Figure 1) (32). TLR-
, NOD ligand-, or inflammatory cytokine-mediated NF-kB-
dependent transcriptional signaling provides the first signal for
NLRP3 priming, leading to an increase in transcriptional and
translational expression of NLRP3 inflammasome components
and subsequent post-translational modifications, such as
phosphorylation and ubiquitination (40). Once primed, the

NLRP3 inflammasome can be activated by a plethora of
stimuli and agonists, including (but not limited to) infection by
bacteria, viruses, and fungi, crystalline or particulate matter,
reactive oxygen species (ROS) generated by ATP signaling via

the P2X7 receptor, calcium influx, potassium efflux, chloride
efflux, mitochondrial damage, oxidized mitochondrial DNA, and
lysosomal destabilization, as reviewed elsewhere (41). These
different agonists may converge into similar downstream
events that increase cell stress as the second signal, leading to
the assembly and eventual activation of NLRP3, which requires
the interaction of its LRR and NBD with NIMA-related kinase 7
(NEK7) (31). The exact mechanism of NLRP3 activation is
still unclear.

Other members of the NLR family also play important roles in
host defense. Humans encode a single NLRP1 gene, whereas mice
harbor three multiple paralogs, namely NLRP1A, -B, and -C. The
activation of the NLRP1 inflammasome occurs in a proteasome-
dependent manner, referred to as functional degradation (42). As
previously described, NLRP1 has a C-terminal CARD. Compared
to other NLRs, it also has a function-to-find domain (FIIND)
containing the conserved in UNC5, PIDD, and ankyrin domain
(UPA) and the found in ZO-1 and UNC5 domains (ZU5) (25).
Therefore, FIIND autoprocessing yields two polypeptides: UPA-
CARD and NACHT-LRR-ZU5. The lethal toxin of Bacillus

anthracis may induce the cleavage of the N-terminal of NLRP1,
resulting in proteasomal N-terminal degradation (43). FIIND
protects the C-terminal from degradation, and the released
UPA-CARDs then undergo self-assembly for subsequent
caspase-1 recruitment (44). However, whether other pathogens,
such as Toxoplasma gondii and Listeria monocytogenes, induce
NLRP1 activation through functional degradation remains to be
elucidated. In addition, NLRP6 forms an inflammasome in
response to both microbial infections and steady-state
conditions (45). Lipoteichoic acid (LTA) of gram-positive
bacteria, such as L. monocytogenes, increases NLRP6 expression
and the activation of caspase-11 and caspase-1 by regulating type I
IFN signaling (46). Co-expression of NLRP6 and ASC causes NF-
kB activation, while NLRP6 may also negatively regulate canonical
NF-kB-dependent inflammatory signaling after TLR ligation in
response to L. monocytogenes infection (47, 48). Another NLR
family member, NLRC4, indirectly recognizes flagellin through
NAIP5 and NAIP6 as well as T3SS inner rod proteins through
NAIP2, thereby reacting against infection by gram-negative
bacteria, such as Salmonella typhimurium and Legionella
pneumophila (22). However, humans express only one NAIP,
which recognizes the T3SS needle protein of bacteria such as
Chromobacterium violaceum. In addition, during bacterial
infection, transcription of NAIPs is modulated by the IFN
regulatory factor 8 transcription factor (49). Hence, NLRC4
inflammasome activation requires NAIPs as upstream sensors
for cytosolic PAMP recognition. In addition, NOD1 and NOD2,
which were among the first NLRs described, recognize bacterial
peptidoglycan components and perturbations of cellular processes.
They subsequently recruit the CARD-containing kinase RIP-2 via
CARD-CARD interactions, resulting in NODosome formation
and NF-kB activation (50).
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Four and 13 ALRs are expressed in humans and mice,
respectively; only AIM2 and human IFN-gamma inducible 16
(IFI16) function as inflammasomes for the recognition of
cytoplasmic and nuclear DNA from pathogens and damaged
cells. AIM2, first identified as a novel gene lacking in melanoma
cell lines using subtractive cDNA selection and later found to be the
first cytosolic member of the ALR family for innate immune
sensing, recognizes double-stranded DNA (dsDNA) in a
sequence-independent manner (Figure 2) (19–21). During
bacterial infections, such as infection by Porphyromonas gingivalis,
AIM2 inflammasome activation usually requires an upstream
signal, such as type I IFN signaling. The precise mechanism of
AIM2 recognition remains unclear. One proposed hypothesis
suggests that, in response to bacterial infection, type I IFN is
synthesized and drives the expression of IFN regulatory factor 1
(IRF1) via an autocrine pathway through activation of the cyclic
GMP-AMP synthase (cGAS)/stimulator of IFN genes (STING)/
STING-TANK binding kinase 1 (TBK1)/IRF3 axis (27). Upon IRF1
expression, guanylate-binding protein 2 (GBP2)/GBP5 and
immunity-related GTPase family member b10 (IRGB10) are
produced and disrupt the bacterial membrane and vacuoles
containing bacteria (26, 28). Therefore, a large quantity of dsDNA

is exposed and sensed by the AIM2 inflammasome. Caspase-1
activation and GSDMD-mediated pyroptosis seem to inhibit the
STING pathway (51). In addition, in the context of infection by
DNA viruses, such as human papillomavirus, the AIM
inflammasome may recognize dsDNA directly and rapidly
without the activity of type I IFN (52). IFI16, which is located in
the nucleus and has two HIN-200 domains, forms an
inflammasome upon infection by viruses such as herpesviruses
(30). IFI16may upregulate AIM2 expression during priming ormay
inhibit AIM2 inflammasome activation by impeding cytoplasmic
dsDNA sensing and functional AIM2-ASC interactions (53). IFI16
also promotes p53-mediated apoptosis (54, 55). Together, canonical
ALR inflammasomes are mainly responsible for dsDNA sensing
and activate caspase-1 with or without the activation of type I IFN.

Pyrin, also known as TRIM20, is another canonical
inflammasome that recruits caspase-1 via ASC, leading to IL-1b
and IL-18 processing and pyroptosis. Pyrin has an N-terminal PYD
(the domain is named after the protein) for ASC binding, a linker
region for 14-3-3 dimer binding, a B-box domain, and a coiled-coil
domain for interaction of proline-serine-threonine phosphatase-
interacting protein 1 (PSTPIP1), which is critical for organization of
the cytoskeleton (56). Human pyrin contains a B30.2 domain in the

FIGURE 1 | Schematic of NLRP3 inflammasome activation. In most cell types, activation of the NLRP3 inflammasome typically requires two signals. The first signal

for priming (purple arrows) may result from TLR-mediated NF-kB-dependent transcriptional signaling, leading to increased expression and post-translational

modification of NLRP3 inflammasome components and substrates. The second signal (green arrows) comes from a plethora of stimuli and agonists, such as ROS,

potassium efflux, and lysosomal destabilization, which converge to increase cellular stress. NLRP3 oligomerizes and interacts with pro-caspase-1 with the help of

ASC via homotypic interactions of PYD-PYD and CARD-CARD. The activated caspase-1 processes pro-IL-1b and pro-IL-18 to mature IL-1b and IL-18 and cleaves

GSDMD to GSDMD-N, which inserts into the membranes to form pores, thereby leading to pyroptosis. ASC, apoptosis-associated speck-like protein containing a

CARD; CARD, caspase activation and recruitment domain; GSDMD, gasdermin D; LRR, leucine-rich repeat; NEK7, NIMA-related kinase 7; NF-kB, nuclear factor-kB;

PYD, pyrin domain; ROS, reactive oxygen species.
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C-terminal, whereas murine pyrin possesses a short amino acid
sequence following the coiled-coil domain. Pyrin senses pathogen-
induced inhibition of the Ras homologous protein guanosine
triphosphates (Rho GTPases) (57). Bacterial proteins, such as
toxin B of Clostridium difficile and TecA of Burkholderia

cenocepacia, decrease the activity of Ras homolog family member
A (RhoA), which is a small Rho GTPase, and activate the pyrin
inflammasome (58, 59). Notably, pyrin recognizes the signals
downstream of RhoA modifications rather than specific
modifications. Therefore, actin cytoskeletal dynamics regulated by
Rho GTPases and affected by pathogen invasion may be involved in
pyrin inflammasome activation (60). More precisely, the RhoA-
dependent and protein kinase C-related serine/threonine-protein
kinases PKN1 and PKN2 phosphorylate pyrin, leading to
interaction of pyrin with inhibitory 14-3-3 protein and
maintaining pyrin in an inactive state. RhoA inhibition decreases
the activity of PKN1 and PKN2 and consequently reduces the level
of pyrin phosphorylation, resulting in pyrin release from 14-3-3 and
accelerating pyrin inflammasome activation (33). Inappropriate
pyrin inflammasome activation plays critical roles in

autoinflammatory diseases, such as familial Mediterranean fever
(FMF), which is characterized by increased IL-1 synthesis and
recurrent fever with inflammation, as mutations in MEFV, which
encodes pyrin, are observed in FMF (61, 62). These mutations may
reduce pyrin affinity to PKN1/PKN2 and disrupt the autoinhibitory
state of pyrin, thus leading to constitutive pyrin inflammasome
activation (60). Mutations in PSTPIP1 may cause pyoderma
gangrenosum and acne syndrome (PAPA); the PAPA-associated
mutations A230T, E250Q, and E250K may increase PSTPIP1
phosphorylation, which further activates the pyrin inflammasome
by increasing ASC-mediated inflammasome assembly (63–65).
Therefore, the pyrin inflammasome plays a role in the
pathogenesis of autoinflammatory diseases associated with
mutations in the genes encoding its components. However, pyrin
may inhibit IL-1b secretion by interacting with NLRP3, NLRP1, and
caspase-1 and act as a negative regulator of the inflammasome
signaling pathway (66–69). These functional discrepancies of pyrin
in inflammasome activity remain to be clarified.

Unlike the PAMPs and DAMPs that activate the canonical
inflammasome through multiprotein scaffolds, LPS may activate

FIGURE 2 | Schematic of AIM2 inflammasome activation. Cytosolic DNA from virus and self-origin directly causes “canonical” activation of the AIM2 inflammasome

(arrows in grey for retroviruses, green for DNA viruses, and purple for self-DNA). However, bacteria-induced “noncanonical” activation of the AIM2 inflammasome is

dependent on type I IFN signaling (yellow arrows). In this scenario, small amounts of DNA may be released from intracellular bacteria that escape from vacuoles; this

DNA can be detected by cGAS. Through cGAS/STING/TBK1/IRF3 signaling, type I IFN drives IRF1 expression in an autocrine manner. GBPs and IRGB10 are then

produced and disrupt the bacterial membrane and vacuoles containing bacteria, leading to exposure of a mass of DNA. DNA is then recognized by the AIM2

inflammasome. AIM2 oligomerizes and interacts with pro-caspase-1 with the help of ASC. The activated caspase-1 processes pro-IL-1b and pro-IL-18 into mature

IL-1b and IL-18 and cleaves GSDMD to induce pyroptosis. AIM2, absent in melanoma 2; ASC, apoptosis-associated speck-like protein containing a CARD; CARD,

caspase activation and recruitment domain; cGAS, cyclic GMP-AMP synthase; GBPs, guanylate-binding proteins; GSDMD, gasdermin D; HIN, hematopoietic

interferon-inducible nuclear domain; IFN, interferon; IRF1, IFN regulatory factor 1; IRF3, IFN regulatory factor 3; IRGB10, immunity-related GTPase family member

b10; PYD, pyrin domain; STING, stimulator of IFN genes; TBK1, TANK binding kinase 1.
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caspase-11 and caspase-4/5 via direct interactions between lipid A
of LPS and CARD of caspase, resulting in the oligomerization of
LPS–caspase complexes and the activation of noncanonical
inflammasomes (70). GBPs and IRGB10 also contribute to this
process by causing bacteriolysis via attack of the membranes of
pathogens containing vacuoles, outer membrane vesicles (OMVs)
containing LPS, and bacteria themselves; these proteins may also
function as LPS receptors for recruitment of noncanonical
inflammasome caspases (71). Bacterial escape into the cytosol and
LPS internalization by endocytosis may cause activation of
noncanonical inflammasomes without the assistance of GBPs (72,
73). Secretoglobin 3A2 may also help deliver LPS for caspase-11
activation (74). In addition to LPS, host factors, such as oxidized 1-
palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine, and
pathogenic components of parasites, such as glycolipid
lipophosphoglycan, may activate caspase-11 (75, 76). When
activated, reminiscent of caspase-1, the noncanonical
inflammasome caspases convert GSDMD into GSDMD-N to
induce pyroptosis. In contrast to caspase-1, caspase-11 is not able
to process pro-IL-1b and pro-IL-18, while caspase-4 may process
pro-IL-18 but not pro-IL-1b, and caspase-5 possesses a weak ability
to process pro-IL-1b and pro-IL-18 (24, 77, 78). These results
suggest that noncanonical inflammasomes play a more important
role in the induction of pyroptosis than in the direct maturation of
IL-1b and IL-18. However, the increased cellular stress induced by
noncanonical inflammasome activation via potassium efflux may
trigger secondary activation of the NLRP3 inflammasome and
caspase-1, thereby increasing the secretion of IL-1b and IL-18 (79,
80). This may be regarded as noncanonical NLRP3 inflammasome
activation. The AIM2 inflammasome is also involved in this process
in response to L. pneumophila infection (81). Therefore, the
crosstalk between canonical and noncanonical inflammasomes
increases the complexity and effectiveness of host defense
against infection.

Collectively, in response to PAMPs and DAMPs, canonical
inflammasomes are assembled to activate caspase-1, produce
mature IL-1b and IL-18, and induce pyroptosis. Noncanonical
caspases interact with stimuli, such as LPS, and trigger
pyroptosis, and their crosstalk with canonical inflammasomes
may cause robust secretion of IL-1b and IL-18. Pathological
inactivation of inflammasomes may lead to persistent infection,
whereas inappropriate activation may result in a pro-
inflammatory microenvironment and excessive cell lysis. This
may elicit dysregulation of host defense against PAMPs and
DAMPs, in which bone destruction is implicated.

MECHANISMS OF BONE LOSS RELATED
TO INFLAMMASOMES

In alveolar bone and other skeletal bone tissues, osteoclasts and
osteoblasts are vital players in the delicate balance between bone
resorption and formation regulated by systemic and local factors,
such as cytokines and hormones (82, 83). Inflammasome activation
may regulate the activities of osteoclasts, osteoblasts, and other cell
types, including periodontal ligament cells, macrophages,

monocytes, neutrophils, and Th17 cells, promoting a reduction in
bone mass and quality, as reviewed later. Bone matrix-derived
DAMPs related to osteolysis can trigger attenuated bone loss in
Nlrp3-deficient mice compared to that in wild-type mice, and
inhibition of bone resorption decreases inflammasome activation
(84). Hence, inflammasome activation may be not only a promotor
but also a consequence of inflammatory bone loss, indicating its role
in the positive feedbackmechanism of amplified inflammatory bone
destruction. In this section, we focus on the mechanism of
inflammasomes in bone loss, particularly in the unbalanced
interplay between osteoclasts and osteoblasts and the pro-
inflammatory effects on other bone remodeling-associated cells.

Inflammasomes and Osteoclasts
Osteoclasts act as the main player in bone resorption. The receptor
activator of NF-kB (RANK) ligand (RANKL)/RANK/
osteoprotegerin (OPG) axis plays a pivotal role in
osteoclastogenesis. Binding of RANKL to its receptor RANK
recruits tumor necrosis factor (TNF) receptor-associated factor-6
and activates nuclear factor of activated T cells (NFATc1), which is
the master transcription factor for osteoclast differentiation. Hence,
immature myeloid progenitors differentiate into giant,
multinucleated osteoclasts to resorb bone tissue properly to
maintain healthy bone turnover in physiological conditions and
cause excessive bone loss in pathological states. OPG, a decoy
receptor of RANKL with a higher affinity than RANK, negatively
regulates osteoclastogenesis. RANKL production in cells, such as
osteoblasts, osteocytes, and activated T cells, can be induced by
numerous factors, including prostaglandin E2 (PGE2), parathyroid
hormone, progesterone, IL-17, TNF-a, and vitamin D, whereas
OPG production can be induced by IL-4, estrogen, and
transforming growth factor beta (85). The RANKL/RANK/OPG
axis may also be regulated by B cells and T cells (86). Besides,
macrophage colony-stimulating factor (M-CSF) promotes the
formation of macrophage colony-forming units from
hematopoietic stem cells, which expands the reservoir of common
precursors of osteoclasts and macrophages (87). In addition, TLR
activation at different osteoclastogenesis stages may lead to distinct
outcomes. TLR2, TLR4, and TLR9 activation arrest osteoclast
differentiation in progenitors stimulated with RANKL and M-CSF
and maintain the cells at the macrophage stage (88). However, these
TLR agonists, together with M-CSF but not RANKL, enhance
osteoclastogenesis in progenitors primed with M-CSF/RANKL
(89). In synergy with RANKL, TLR-induced production of TNF-
a and IL-6 may also promote functional osteoclast differentiation
(90, 91). When mature osteoclasts are ready to function, increased
size andmultinucleation of osteoclasts and polarized organization of
the cytoskeleton facilitate their transportation to the
microenvironment, where they produce protons (H+) (for mineral
dissolution), cathepsin K, and collagenase (for organic component
degradation) using lysosome-derived vesicles from the cytosol to
resorptive sites (92, 93). RANKL and M-CSF may also play
important roles in cytoskeletal reorganization, thereby promoting
bone resorption (94). Therefore, the magnitude of bone resorption
depends on the number of mature osteoclasts and their bone
resorption capacity. In addition to their direct roles in bone
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degradation, osteoclasts can also act as antigen-presenting cells to
modulate immune responses, as they induce regulatory T cells to
inhibit osteoclast differentiation and create a negative feedback loop
in the physiological state but induce TNF-a-producing CD4+ T cells
to stimulate osteoclastogenesis under inflammatory conditions (95).

Inflammasome activation can contribute to bone resorption by
regulating osteoclast activity. Engineered mice with hyperactive
Nlrp3 (D301N) specifically in osteoclasts or myeloid cells
exhibited increased osteolysis compared to controls (96). PAMPs
and DAMPs can activate inflammasomes in osteoclasts and pre-
osteoclasts, prompting hypermultinucleation and IL-1b production
(12, 97). More precisely, inflammasome activation promotes
osteoclast activity by increasing osteoclastogenesis and bone
resorption ability in two ways: IL-1b and IL-18 maturation; and
effects of signals upstream of cytokine processing during
inflammasome activation. Unlike TNF-a, IFNs, and IL-6, pro-IL-
1b contains no N-terminal signal peptide for secretion and must be
processed into its mature form, IL-1b. Although mast cell chymase
and neutrophil proteinase 3 may also cleave IL-1b, this process is
mainly regulated by inflammasome activation, as stated above (98,
99). IL-1b promotes osteoclast differentiation both directly and
indirectly (100). IL-1b can induce the proliferation and
multinucleation of osteoclasts derived from early blasts, myeloid
blasts, and monocytes at different rates in the presence of M-CSF
and RANKL (101). IL-1 can promote functional osteoclast
differentiation synergistically with TNF-a (102). IL-1b also
increases RANKL production in osteocytes and osteoblasts,
promoting osteoclastogenesis (103–105). Moreover, IL-1b elevates
M-CSF levels and decreases OPG levels (106, 107). IL-1b-triggered
chemokines, such as CX3CL1, in osteoblasts regulate osteoclast
precursor migration and differentiation (108). Besides promoting
osteoclastogenesis, IL-1b can upregulate the expression of cathepsin
K and matrix metalloproteinases (MMPs) in periodontal tissue,
thereby increasing the capacity of extracellular matrix degradation
of osteoclasts (109, 110). However, IL-18 may simulate or inhibit
osteoclastogenesis in different cell types (111, 112). Besides their role
in innate immunity, IL-1b and IL-18 may increase
osteoclastogenesis by promoting B cell activation and T cell
differentiation (7). IL-1b and IL-18 may stimulate RANKL
production in B cells and T cells (113–115). IL-1b is required for
the stable differentiation of Th17 cells from naïve T cells, and
subsequent IL-17 production may stimulate RANKL and RANK
production in osteoclastogenesis-supporting cells (113, 116–118).
Dendritic cells, as professional antigen-presenting cells that can
activate naïve T lymphocytes, may also differentiate into osteoclasts
at the early development stage, and IL-1bmay increase the fusion of
dendritic cells into osteoclasts (119, 120). Inflammatory osteoclasts
derived from dendritic cells produce higher IL-1b compared to
steady-state osteoclasts derived from monocytes, which further
induces TNFa-producing CD4+ T cells and promotes bone
resorption (121). IFN-g induced by IL-18 from activated T helper
1 cells and natural killer cells has both direct anti-osteoclastogenic
and indirect pro-osteoclastogenic effects and may promote bone
resorption under inflammatory conditions (122). Besides the role of
IL-1b and IL-18, upstream signals during inflammasome activation
also play an important role in increasing osteoclast activity. The

increased NF-kB activity that acts as the first signal for
inflammasome activation can increase NFATc1 transcription and
promote osteoclast differentiation (123). NLRP3 signaling can cause
degradation of ADP-ribosyltransferase diphtheria toxin-like 1,
which disrupts its inhibitory effect on NF-kB signaling and acts as
a prerequisite for osteoclast maturation (124). A hyperactive NLRP3
inflammasome can enhance osteoclast bone resorption ability by
reorganizing the actin cytoskeleton (96). Together, inflammasome
activation positively regulates osteoclast activity and promotes
bone resorption.

Inflammasomes and Macrophages
In addition to osteoclasts, bone marrow macrophages
(hematopoietic stem cell niche macrophages, erythroblastic island
macrophages) and osteal macrophages (also known as osteomacs;
TRAP– and F4/80+ macrophages) are also bone-resident
macrophages (125). These macrophages can regulate bone
metabolism through their communication with osteoblasts,
osteoclasts, osteocytes, and mesenchymal stem cells (125).
Inflammasome activation in macrophages may also promote bone
destruction. NLRP3 inflammasome activation in bone marrow-
derived macrophages (BMDMs) infected with P. gingivalis or
treated with zoledronic acid increases IL-1b production (126,
127). The released IL-1b and IL-18 can then recruit more
macrophages to phagocytose cell debris and kill pathogens by
enhancing phagosome acidification, thereby amplifying
inflammatory responses and bone resorption (99). In addition to
these bone-resident macrophages that may first sense most danger-
related stimuli in the local environment, macrophages derived from
circulating mononuclear cells may also be recruited to infected bone
tissue (128). These macrophages may be activated into pro-
inflammatory M1-like macrophages or anti-inflammatory M2-like
macrophages, both of which are characterized by cytokine secretion
patterns and functional capabilities. Prolonged M1-like polarization
usually causes chronic inflammatory conditions and tissue damage
due to increased levels of ROS and pro-inflammatory IL-1b, IL-1a,
TNF-a, IL-6, IL-12, IL-23, cyclooxygenase-2 (COX-2), and
inducible nitric oxide synthase as well as low levels of anti-
inflammatory IL-10 (129). The M1-like polarization of
macrophages can be dependent on inflammasome activation,
creating a pro-inflammatory milieu that is more susceptible to
bone resorption (130, 131). M1-likemacrophages may also promote
osteocyte apoptosis in the femoral heads of a mouse model (132). In
addition, inflammasome-dependent pyroptosis of cells, including
macrophages, may also cause exposure of intracellular bacteria and
DAMPs, facilitating their clearance in a protective way, but in some
scenarios it aggravates bone inflammation (133). Hence,
inflammasome activation in bone-resident and circulating
macrophages upregulates the levels of IL-1b and IL-18 and
promotes M1-like macrophage polarization and pyroptosis,
thereby contributing to inflammatory bone loss.

Inflammasomes and Neutrophils
Polymorphonuclear neutrophils, which are also generated from
hematopoietic precursors in bone marrow and enter circulation,
from which they may be recruited into infected tissues when
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stimulated, are also responsible for creating a pro-inflammatory
environment in bone loss. Neutrophils neutralize pathogens by
secreting ROS and releasing proteases and toxic enzymes via

degranulation, killing pathogens in phagosomes via phagocytosis
and trapping them by using neutrophil extracellular traps (NETs).
Neutrophils have protective functions to maintain homeostasis and
resolve inflammation by secreting anti-inflammatory resolvins and
sequestering pro-inflammatory factors. However, their hyperactive
actions triggered by infection or injury may also cause tissue
destruction with massive upregulation of pro-inflammatory
cytokines in the circulation and tissue (134). Although
neutrophils have a short life span due to apoptosis, their
continuous replacement ensures robust capacity in host resistance
against invading microorganisms and in tissue destruction, such as
alveolar bone loss in periodontitis (2). Inflammasome activation is
observed in monocytes and neutrophils, which may increase
antimicrobial and pro-inflammatory abilities and promote bone
destruction (135). IL-1b-mediated IL-17 production can promote
granulopoiesis and neutrophil release from the bone marrow via

granulocyte colony-stimulating factor (136). IL-1R signaling is
involved in infection- and inflammation-triggered emergency
granulopoiesis (137). IL-1b can also induce neutrophil
recruitment by upregulating the production of chemokines from
other cells, such as fibroblasts, and promoting their ability to kill
pathogens by increasing NET formation, degranulation, and
phagocytosis (138–140). NET overproduction may trigger NLRP3
inflammasome activation in macrophages, and the increased
expression of NLRP3, caspase-1, ASC, and IL-1b can be
downregulated by NET digestion using DNase I (141). Proteinase
3 in neutrophils may also process pro-IL-1b in a caspase-1-
independent manner (142). Hence, inflammasomes play a key
role in increasing the bactericidal and pro-inflammatory ability of
neutrophils, and activated neutrophils can further promote
inflammasome activation.

Inflammasomes and Osteoblasts
In contrast to the osteoclasts derived from the hematopoietic/
monocyte lineage, osteoblasts, which originate from the
mesenchymal/mesodermal lineage, release critical components,
such as collagen fibers, osteocalcin (OCN), and osteonectin, for
bone deposition and mineralization. Other osteogenic markers,
such as alkaline phosphatase (ALP), runt-related transcription
factor 2 (RUNX2), and osterix, are also expressed during
osteoblast differentiation. After mineralization of the newly
formed osteoid, osteoblasts are trapped in the bone matrix and
become osteocytes, which are the most numerous cells in mature
bone. Osteocytes then contact each other, osteoblasts, and
osteoclasts, forming a network and demonstrating bone turnover
(86). Appropriate inflammasome activity is critical in bone healing
and new bone formation, as the ASC knockout mice with tibia
defect exhibit delayed osteoblast differentiation compared with their
wild-type counterparts (8). When inflammasomes are activated,
osteoblasts promote osteoclastogenesis via increased production of
cytokines and chemokines, such as RANKL and CX3CL1, or
decreased OPG levels, as described above (107). IL-1b also affects
osteoblast arrangement (143). However, production of IL-1b and

IL-18 proteins in bacteria-infected osteoblasts remains controversial
(144, 145). Besides the effects of IL-1b and IL-18, inflammasome
activation in osteoblasts can downregulate the expression of
osteogenic factors, such as ALP, RUNX2, and OCN (146).
Moreover, bone marrow mesenchymal stem cells (BMSCs), which
can differentiate intomany cell types (e.g., osteoblasts, chondrocytes,
and adipocytes in bone), also upregulate the expression of NLRP3,
ASC, caspase-1, IL-1b, and TNF-a in response to LPS, thereby
affecting the potential for osteogenic differentiation (147).
Furthermore, Wnt/b-catenin signaling, which participates in
osteoblast proliferation, differentiation, and apoptosis, may
regulate NLRP3 inflammasome activity in osteoblasts; indeed, the
Wnt/b-catenin pathway inhibitor Dickkopf-related protein 1
(DKK1) reversed the decreased expression of NLRP3 and active
IL-1b in osteoblasts (148). Hence, increased DKK1 levels generated
by osteocytes in osteolytic diseases, such as periodontitis, may also
contribute to the increased activity of the NLRP3 inflammasome in
these scenarios, although stronger, direct evidence is still needed (1).
In addition, pyroptosis triggered by inflammasome activation can
also determine the death of osteoblasts, thereby decreasing the rate
of osteogenesis (149). Inhibition of NLRP3 and caspase-1 reverses
the reduction in bone formation induced by pyroptosis in MC3T3-
E1 cells (150). Therefore, inflammasome activation can upregulate
the pro-osteoclastogenesis capacity of osteoblasts and downregulate
osteoblast activity by decreasing the bone formation ability,
differentiation, and proliferation of osteoblasts and promoting
osteoblast pyroptosis, thereby enhancing bone resorption and
decreasing new bone formation.

Inflammasomes and Periodontal
Ligament Cells
Periodontal ligament cells, mainly fibroblasts, are also involved
in alveolar bone diseases, such as apical periodontitis,
periodontitis, and orthodontic tooth movement (OTM) (151).
Cytokines induced by inflammasome activation in periodontal
ligament cells may regulate bone remodeling. IL-1b-stimulated
upregulation of PGE2 expression in periodontal ligament cells
increases RANKL production and promotes osteoclastogenesis
(152). IL-18 upregulates the mRNA and protein levels of MMP1,
MMP2, MMP3, and MMP9 in periodontal ligament cells, which
may increase the resorption activity of osteoclasts (153).
Inflammatory responses and/or pyroptosis also contribute to
periodontium inflammation associated with alveolar bone loss
(154–156). However, whether and how inflammasomes play a
role in osteoclasts and osteoblasts in the periodontal ligament on
the surface of the lamina dura and in the endosteal surfaces of the
alveolar bone is poorly understood.

Collectively, inflammasome activation promotes osteoclast
activity by upregulating the levels of mature IL-1b and IL-18
and signals upstream of cytokine processing during
inflammasome activation. Inflammasome activation and
consequent pyroptosis impair osteoblast activity and increase
the destruction of periodontium. Inflammasome activation in
other bone-resident and circulating macrophages, monocytes,
neutrophils, and adaptive immune cells, such as Th17 cells, can
contribute to creating a pro-inflammatory environment for bone
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destruction. Hence, inflammasome activation influences the
capacity and crosstalk of bone remodeling players, particularly
osteoclasts and osteoblasts, leading to increased bone
degradation and decreased bone formation, thereby resulting
in inflammatory bone loss (Figure 3).

INFLAMMASOMES IN INFLAMMATORY
OSTEOLYSIS OF THE ALVEOLAR BONE
AND JAWS

As stated above, inflammasomes have both protective and
detrimental effects on host defense and bone remodeling. In
this section, we focus on the roles of inflammasomes in the
pathogenesis and development of diseases related to dysregulated
alveolar bone remodeling, provide an update of current
knowledge of the possible effects of inflammasome activity on
different cell types (including but not limited to osteoclasts,
osteoblasts, macrophages, monocytes, and periodontal ligament
cells) in etiologically diverse diseases, and summarize current
research gaps and potential developments in the field (Table 2).
Moreover, given that the alveolar bone is part of the maxilla and
mandible bone tissue and may be affected by pathological factors
influencing the jaws, we describe several diseases associated with

inflammatory bone loss in the upper and lower jaws presented as
local osteolysis or a typical part of systemic osteolysis.

Inflammasomes in Periodontitis
Periodontitis, with an estimated 796 million severe cases globally
in 2017, is a common oral inflammatory condition that induces
periodontal bone loss and consequential tooth loss and acts as a
risk factor for systemic disorders, such as cardiovascular disease
and colorectal cancer, owing to the presence of bacteremia and
inflammation (206–208). P. gingivalis and Fusobacterium

nucleatum are frequently detected pathogens in chronic
periodontitis, as is Aggregatibacter actinomycetemcomitans in
localized aggressive periodontitis (133, 209, 210). IL-1b is a
vital player in the pathogenesis and development of
periodontitis (211). IL1B gene polymorphisms are a risk factor
for periodontitis (212). Upregulation of IL-1b expression, which
can be reversed by nonsurgical periodontal therapy, is frequently
observed in saliva, periodontal pocket, gingival crevicular fluid
(GCF), and serum in patients with periodontitis and is related to
various clinical parameters, such as bleeding on probing (BOP)
and radiographic assessment (213–215). After periodontal
treatment, increased mRNA levels of IL1B in chronic
periodontitis were also significantly reduced in peripheral
blood mononuclear cells (PBMCs) of patients with BOP ≥ 16%
but not of patients with BOP < 16% (216). Moreover, increased

FIGURE 3 | The role of inflammasome activation in the crosstalk of bone remodeling factors. Inflammasome activation promotes osteoclast activity by upregulating

their differentiation from hematopoietic stem cells and dendritic cells, and enhancing their bone resorption ability. Osteoblasts, osteocytes, macrophages, neutrophils,

PDLCs, and Th17 cells can also promote osteoclast activity in the context of inflammasome activation. The decreased osteogenesis and increased pyroptosis of

osteoblasts and periodontal ligament cells downregulate bone formation and upregulates periodontium inflammation. Upregulated processes associated with

increased inflammasome activation are marked in red, and downregulated processes are marked in green. ALP, alkaline phosphatase; MMPs, matrix

metalloproteinases; OCN, osteocalcin; PDLCs, periodontal ligament cells; ROS, reactive oxygen species; RUNX2, runt-related transcription factor 2; Th17 cells, T

helper 17 cells.
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salivary IL-1b levels may have applications as a biomarker for
evaluation of periodontal health in patients with type 2 diabetes
and coronary heart disease (217, 218). Severe acute respiratory
syndrome coronavirus may also aggravate periodontal pocket
formation by enhancing the expression of pro-inflammatory
cytokines, including IL-1b , and the dissemination of
periodontal pathogens, and increased IL-1b release may
exacerbate coronavirus disease 2019 lung infection (219, 220).
Likewise, IL18 polymorphisms are associated with susceptibility
to periodontitis, and increased IL-18 levels in chronic
periodontitis may positively correlate with periodontal
destruction (153, 221–223).

Along with increased IL-1b processing, the activation of
inflammasomes, such as NLRP3 and AIM2, is frequently
detected in chronic periodontitis and aggressive periodontitis
(170, 224). Negative inflammasome regulators, such as POP1,
POP2, and CARD18, are also downregulated in periodontitis,
further indicating increased inflammasome activity (225).
Polymorphisms in various inflammasome components,
including NLRP3, AIM2, and IFI16, may be associated with
susceptibility to periodontitis (226–229). The mRNA levels of

murine Ifi204, which has a structure and function similar to
those of human IFI16, were also increased in gingival tissues of
ligature-induced periodontitis (230). Salivary concentrations of
ASC and NLRP3 may act as indicators of periodontal damage in
periodontitis (231). ASC silencing decreases the mRNA levels of
PGE2 and its processing enzyme COX-2 in periodontitis, which
may reduce bone loss (232). The authors also found that ASC-
mediated PGE2 levels were increased in progressing periodontal
lesions but decreased in chronic periodontitis. Among these
inflammasomes, NLRP3 has been widely studied in
per iodont i t i s . NLRP3 inflammasome act ivat ion in
inflammatory periodontal tissue can be triggered by local
factors such as the crystalline structure of dental calculus,
aggravated by systemic factors such as hyperglycemic status of
type 2 diabetes mellitus and age-related oxidative stress, or
alleviated by 1,25-dihydroxyvitamin D3 (157–162). NLRP3
inflammasome activation is also required for the synergistic
effects of periodontal pathogens and cholesterol crystals on
promoting IL-1b secretion in PBMCs, suggesting its role in the
interplay between periodontal disease and cardiovascular disease
(233). NLRP3 expression in GCF and periodontal parameters

TABLE 2 | Inflammasomes in inflammatory osteolysis of the alveolar bone and jaws.

Diseases or

conditions

associated

with alveolar

bone loss

Commonly reported

PAMPs and/or DAMPs

Commonly reported inflammasome activities Main mechanisms related to

inflammasome activation in alveolar

bone loss

Periodontitis P. gingivalis, F.

nucleatum, A.

actinomycetemcomitans,

and dental calculus

NLRP3 (157–162), AIM2 (163, 164), pyrin (165), and noncanonical

inflammasomes (166–169) can be activated in a context- and cell type-

dependent way. NLRP1 (170–174), NLRP2 (172, 175), NLRP6 (172, 176), and

NLRC4 (163, 171) expressions gain controversial results. NOD1 and NOD2

may also participate in periodontitis (177, 178)

Increased osteoclast activity (179), M1-like

macrophage polarization (180, 181),

periodontium inflammation (155),

pyroptosis of osteoblasts (149),

macrophages (166, 181), and gingival

fibroblasts (176, 182), as well as

decreased osteogenesis (149)

Periapical

periodontitis

E. faecalis and P.

gingivalis

NLRP3 (135, 183), AIM2 (183), NLRP6 (184), and noncanonical

inflammasomes (185) can be activated

Affected activities of osteoclasts (186),

macrophages (183, 185), neutrophils (135),

and periodontal ligament cells (154, 184),

decreased osteoblast differentiation (146),

and increased osteoblast pyroptosis (187)

Peri-implantitis Biofilms, and release of

metal ions and particles

from implants

NLRP3 inflammasome can be activated (147, 188) Increased osteoclastogenesis and M1-like

macrophage polarization (189)

OTM Factors related to

external mechanical force

in orthodontic treatment

NLRP3 (156, 190), NLRP1 (190), and noncanonical inflammasomes (190) can

be activated

Increased osteoclastogenesis (191), M1-

like macrophage polarization (156), and

periodontal ligament cell pyroptosis (190,

192)

MRONJ Antiresorptives such as

zoledronic acid

NLRP3 inflammasome can be activated (127, 131) Increased M1-like macrophage polarization

(131) and macrophage pyroptosis (193)

iOM S. aureus and its by-

products

NLRP3 inflammasome can be activated (194, 195) Increased activity of neutrophils (196),

monocytes (195), macrophages (194,

195), and osteoclasts (150), decreased

osteoblast activity (150), and enhanced

osteoblast pyroptosis (150)

CNO/CRMO Unclear NLRP3 (197, 198) and pyrin (63) inflammasomes can be activated Imbalanced cytokine expression (199, 200)

and increased activities of osteoclasts

(201), PBMCs (197), and monocytes (199,

202)

Osteoporosis Factors related to

estrogen deficiency

NLRP3 inflammasome can be activated (148, 203, 204) Increased osteoclast activity (205),

enhanced osteoblast pyroptosis (106), and

decreased osteogenesis (204, 205)

CNO, chronic nonbacterial osteomyelitis; CRMO, chronic recurrent multifocal osteomyelitis; iOM, infectious osteomyelitis; MRONJ, medication-related osteonecrosis of the jaw.
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were increased in patients with chronic periodontitis compared
to those in healthy individuals but then decreased after 6 months
of combined periodontal-orthodontic treatment (234). Knockout
of the Nlrp3 gene or treatment with an NLRP3 inhibitor
significantly reduces the number and differentiation of
osteoclasts, thereby decreasing alveolar bone loss in mice with
ligature-induced periodontitis (179). Periodontal pathogens and
their by-products can also trigger inflammatory responses
associated with NLRP3 inflammasome signaling (180, 235,
236). NLRP3 inflammasome activation was detected in P.

gingivalis-induced periodontitis, leading to upregulation of IL-
1b and IL-18 and enhancement of bone resorption (237). The
authors also found that Nlrp3 knockout could significantly
decrease RANKL levels and increase OPG levels, indicating the
importance of NLRP3 inflammasomes in promoting
osteoclastogenesis in periodontitis. Inflammasome activation in
macrophages infected with P. gingivalis may also promote
inflammatory bone destruction. In an in vitro study, P.
gingivalis infection was found to increase NLRP3 expression in
THP-1 macrophages and human monocytic cells (Mono-Mac-6)
(163, 175). Caspase-4-dependent noncanonical NLRP3 signaling
participates in the dysregulation of immuno-inflammatory
responses in THP-1 macrophages infected with P. gingivalis

(238). Activation of ROS/TXNIP/NLRP3 signaling also causes
migration injury of mouse periodontal ligament fibroblasts
(PDLFs) treated with LPS from P. gingivalis, which may
contribute to periodontium inflammation (155). High-dose
glucose-treated P. gingivalis upregulates IL-1b and NLRP3
expression in human gingival fibroblasts (239). Notably, P.
gingivalis-induced inflammasome activation may be associated
with extracellular ATP and hypoxia in gingival epithelial cells
and fibroblasts (171, 240–243). However, conflicting evidence
shows that P. gingivalis infection may also inhibit NLRP3
inflammasome activation in gingival epithelial cells and
fibroblasts, resulting in the escape of these bacteria from host
immune defense (244–246). P. gingivalis may trigger proteolysis
of the NLRP3 protein in endothelial cells without ATP
pretreatment or LPS stimulation (247). Although the NLRP3
inflammasome is activated in cells infected with F. nucleatum

alone, it can be repressed by co-infection with P. gingivalis in
macrophages owing to suppression of endocytic pathways rather
than reduced expression of inflammasome components (248,
249). Therefore, the effect of P. gingivalis on the NLRP3
inflammasome may be context-dependent in the pathogenesis
and development of periodontitis. The exact mechanism through
which P. gingivalis suppresses inflammasome activation
remains unclear.

In addition, P. gingivalis and A. actinomycetemcomitans can
activate the AIM2 inflammasome and increase IL-1b levels in THP-
1 macrophages (163, 164). However, in BMDMs infected with P.

gingivalis, IL-1b production is dependent on NLRP3, but not AIM2
(126). In contrast, A. actinomycetemcomitans infection in THP-1
macrophages can trigger robust expression of AIM2 rather
than NLRP3, suggesting that activation of the AIM2
inflammasome may dominantly contribute to the defense against
A. actinomycetemcomitans (164). Similar evidence shows that

although NLRP3 expression is increased in RAW 264 cells
infected with A. actinomycetemcomitans, it may not be the most
vital player in promoting inflammatory bone loss in this scenario:
inhibition of ROS and cathepsin B rather than Nlrp3 knockdown
can prevent increased IL-1b secretion, and the bone resorption
activity of osteoclasts differentiated from Nlrp3-deficient
macrophages of mice with experimental periodontitis induced by
A. actinomycetemcomitans is even increased (250, 251). However,
recent studies have shown that A. actinomycetemcomitans and its
cytolethal distending toxin induce caspase-1 cleavage and persistent
expression of IL-1b and IL-18 via an NRLP3-dependent pathway in
U937 macrophages and THP-1 macrophages by increasing ROS
and ATP levels, but not in human gingival epithelial cells (252, 253).
A. actinomycetemcomitans may also upregulate NLRP3 expression
in mononuclear leukocytes, without affecting the level of AIM2
(172). Moreover, the salivary concentration of NLRP3 is higher in
patients with aggressive periodontitis than in those with chronic
periodontitis (231). Furthermore, Nlrc4-knockout mice exhibit
greater bone resorption than wild-type mice, and osteoclast
activity is increased in Nlrc4-deficient macrophages, suggesting a
protective role of NLRC4 inflammasomes in inflammatory bone
resorption in periodontitis induced by A. actinomycetemcomitans,
which may be attributed to NLRP3 inflammasome activation (254).
Therefore, whether NLRP3 or AIM2 inflammasomes are
more predominant in A. actinomycetemcomitans-induced
periodontitis remains unclear. A possible explanation is that A.

actinomycetemcomitans may differentially activate inflammasome
signaling pathways in the host cells of periodontal tissues. These
conflicting results support the complexity of the effects of
inflammasomes in the pathogenesis of periodontitis.

In addition to NLRP3 and AIM2, the effects of other canonical
inflammasomes on the pathogenesis and development of
periodontitis have also been investigated. NLRP1 inflammasomes
do not show significant activation in P. gingivalis-infected gingival
epithelial cells, A. actinomycetemcomitans-infected mononuclear
leukocytes, and gingival fibroblasts exposed to 6-species
supragingival or 10-species subgingival biofilms (171–173).
However, NLRP1 expression is significantly increased in human
periodontal ligament cells (hPDLCs) challenged by advanced
glycation end-products by activating the NF‐kB pathway,
supporting its role in the influence of diabetes on periodontitis
(174). In contrast, NLRP1 levels are decreased in the gingival tissues
of mice with ligature-induced periodontitis (170). The NLRP2
inflammasome is not activated in A. actinomycetemcomitans-
infected mononuclear leukocytes (172). However, NLRP2 mRNA
levels are increased in gingival tissues from patients with chronic
periodontitis and generalized aggressive periodontitis but reduced in
Mono-Mac-6 cells infected with P. gingivalis (175). Furthermore, A.
actinomycetemcomitans downregulates NLRP6 expression in
mononuclear leukocytes (172). As described above, NLRC4 may
have protective roles in A. actinomycetemcomitans-induced
periodontitis; however, P. gingivalis infection was shown to not
activate NLRC4 inflammasomes in THP-1 macrophages and
gingival epithelial cells (163, 171). Additionally, NOD1 and
NOD2 in the NLRC family may also participate in inflammation
in periodontitis. Mice lacking Nod1 and receiving ligature
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placement exhibit reduced alveolar bone resorption with decreased
recruitment of neutrophils and osteoclasts, whereas mice lacking
Nod2 exhibit no differences in bone destruction compared to
control mice (177). However, Nod2 knockout was shown to
decrease osteoclastogenesis and alveolar bone destruction in
mou s e p e r i odon t i t i s i ndu c ed by h e a t - k i l l e d A .
actinomycetemcomitans, which may be associated with the
affected NLRP3 inflammasome activity (178). In addition, as
stated above, mutations in MEFV, which encodes pyrin, are
involved in FMF. Patients with FMF harboring R202Q and
M694V mutations in MEFV present higher percentages of BOP,
clinical attachment levels, mean gingival indexes, and probing
pocket depths than healthy controls (165). TRIM20 mRNA levels
are also downregulated in gingival tissues of patients with gingivitis,
chronic periodontitis, and aggressive periodontitis compared to
those in healthy controls (225). These results suggest a possible
role of pyrin in the development of periodontal disease.

Inflammasome-induced pyroptosis may also cause
dysregulated bone remodeling and aggravated tissue
inflammation in periodontitis (255). Oxidative stress induces
pyroptosis of osteoblast-like MG63 cells by activating the NLRP3
inflammasome, thereby attenuating bone formation and
promoting periodontitis; in contrast, an NLRP3 inhibitor
reverses the reduction in osteoblast migration and COL1,
RUNX2, and ALP levels (149). P. gingivalis activates the
double-stranded RNA (dsRNA)-dependent kinase in
osteoblastic MC3T3-E1 cells, thereby promoting NLRP3
expression by activating NF-kB, and LPS from P. gingivalis

triggers NLRP3 inflammasome-dependent pyroptosis of
gingival fibroblasts, which can be alleviated by eldecalcitol (a
vitamin D analog) and inhibitors of ROS or NLRP3 (256, 257). P.
gingivalis and its LPS may also induce pyroptosis of gingival
fibroblasts by activating NLRP6 and NLRP3 (176, 182). A.
actinomycetemcomitans infection also triggers the death of
osteoblast-like MG63 cells via activation of the NLRP3
inflammasome, and leukotoxin from this bacterium may
induce pyroptosis of macrophages in a P2X7 receptor-
mediated and NLRP3-dependent manner (145, 258, 259).
Py rop to s i s i nduc ed by NEK7-dep enden t NLRP3
inflammasome activation is also critical in diabetes-associated
periodontitis (31). Hence, inflammasome-dependent pyroptosis
plays an essential role in alveolar bone loss in periodontitis. In
addition, there may be differences between bacteria and their
by-products with regard to their effects on metabolic
remodeling and pyroptosis in macrophages. Both P. gingivalis

and its OMVs trigger the reprogramming of metabolic gene
expression and M1-like macrophage polarization in murine
macrophages (181). Moreover, P. gingivalis OMVs induce
inflammasome complex formation in 80% of macrophages in
vivo (180). However, in one study, OMVs from P. gingivalis

were found to increase lactate dehydrogenase (LDH) release
from macrophages, indicating the occurrence of pyroptosis
induced by inflammasome activation, whereas P. gingivalis

alone did not promote LDH release; in another study, P.

gingivalis was found to increase GSDMD-N expression and
induce pyroptosis in macrophages (166, 181). In addition, P.

gingivalis can increase noncanonical caspase-11/4 expression in
macrophages (166, 167). Treponema denticola and Tannerella

forsythia activate caspase-1 and caspase-4 and trigger
pyroptosis in THP-1 macrophages (168). Td92, a surface
protein of T. denticola, and Tp92, a homolog of Treponema

pallidum surface protein, trigger caspase-4-dependent
pyroptosis in human gingival fibroblasts via activation of
cathepsin G (169). Td92 can also activate the NLRP3
inflammasome via ATP release and potassium efflux (260).
These data suggest a role for noncanonical inflammasome
activation in periodontitis.

Collectively, both canonical and noncanonical inflammasome
activation contribute to alveolar bone loss in periodontitis, and
these processes may be affected by systemic factors. More
precisely, increased osteoclast activity, M1-like macrophage
polarization, periodontium inflammation, and pyroptosis of
osteoblasts, macrophages, and gingival fibroblasts as well as
decreased osteogenesis may be involved in these processes.
Differences can be detected between different pathogens and
between pathogens and their by-products with regard to effects
on inflammasome activity, and these differences may be context-
and cell type-dependent. Further investigations are required to
obtain a comprehensive understanding of the roles and
mechanism of inflammasomes in the pathogenesis and
development of periodontitis.

Inflammasomes in Periapical Periodontitis
Periapical periodontitis, a common oral disorder with a
reported prevalence of 5% at the tooth level and 52% at the
individual level, is primarily characterized by infection of
root canals and inflammatory periapical tissues, including
the periodontal l igament and alveolar bone (261).
Enterococcus faecalis and P. gingivalis are commonly
detected pathogens in infected root canals and apical root
surfaces of periapical periodontitis, respectively (183, 262).
IL-1b may play vital roles in bone loss in periapical
periodontitis: IL1B gene polymorphisms are involved in
the risk of periapical periodontitis development (263); IL-
1b production is increased in periapical periodontitis in vivo

(264); and IL-1b levels and osteoclast differentiation are
upregulated in an in vitro coculture system of osteoblasts
and osteoclasts (186). However, the roles of IL-18 in the
pathogenesis and development of periapical periodontitis
remain unclear.

Increased IL-1b production in periapical periodontitis may be
associated with the activation of NLRP3 and AIM2
inflammasomes. NLRP3 expression is observed in macrophages,
fibroblasts, vascular endothelial cells, monocytes, and neutrophils
in diseased periapical tissue and is positively correlated with
inflammatory intensity (135). The upregulated IL-1b expression
in inflammatory periapical tissues and infected hPDLCs is
dependent on increased NLRP3 and ASC expression, and ASC

silencing reduces IL-1b levels (154). Additionally, NLRP6
expression was also detected in inflammatory periapical tissues
and was found to negatively regulate TNF-a and IL-6 levels by
inhibiting extracellular signal-regulated kinase (ERK) and NF-kB
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signal pathways, and knockdown of NLRP6 in hPDLCs may
increase NLRP3 expression (184). Bacteria and their by-products
can promote inflammasome activation and induce periapical bone
loss. LTA of E. faecalis increases the expression of NLRP3 and
caspase-1 via upregulation of ROS and activation of NF-kB in
RAW264.7 cells, and this effect can be reversed by inhibitors of
NLRP3 or NF-kB (146, 265). Moreover, E. faecalis infection triggers
atypical M1-like macrophage polarization in murine bone marrow-
derived stem cells; however, the roles of inflammasomes in this
process remain unclear (266). LPS from P. gingivalis increases the
mRNA levels of NLRP3, AIM2, ASC, and caspase-1 in THP-1
macrophages (183). Noncanonical inflammasomes may also
participate in the pathogenesis of periapical bone loss. The
increased expression of caspase-1 and caspase-11 in RAW264.7
cells treated with LPS was found to be significantly reduced by
nanosilver, and this decreased inflammasome activity may
contribute to the alleviation of canine periapical periodontitis
progression (185). In addition, estrogen deficiency can induce
activation of the NLRP3/caspase-1/IL-1b axis and aggravate
periapical bone loss in postmenopausal patients and
ovariectomized rats with periapical periodontitis (267). This
suggests a role for inflammasomes in the effect of systemic risk
factors on the development of periapical periodontitis.

Inflammasome activation also contributes to decreased
osteoblast activity in periapical periodontitis. The NLRP3
inhibitor dioscin protects osteoblast-like MC3TE-E1 cells treated
with LTA from E. faecalis frommorphological changes and reverses
the downregulation of osteogenic factors, such as ALP, RUNX2, and
OCN, thereby promoting mineralized nodule formation (146).
Moreover, inflammasome-induced pyroptosis plays vital roles in
periapical periodontitis. Along with increased expression of NLRP3,
caspase-1+/terminal deoxynucleotidyl transferase dUTP nick end
labeling+ cells were observed in apical inflammatory tissues of
chronic periapical periodontitis, indicating the occurrence of
pyroptosis. Pyroptosis was also significantly increased in rats with
acute periapical periodontitis, resulting in increased bone loss, and
this effect could be alleviated by caspase-1 inhibition, suggesting that
pyroptosis levels may be related to the degree of inflammation in
periapical periodontitis (268). E. faecalis increases GSDMD cleavage
in THP-1 macrophages, leading to pyroptosis via activation of the
NLRP3 inflammasome; this mechanism requires the P2X7 receptor
and potassium efflux (269). E. faecalis also increases LDH release
fromMG63 cells, and this process can be blocked by treatment with
a caspase-1 inhibitor or silencing of NLRP3, supporting the
occurrence of pyroptosis in osteoblasts (187). LPS from P.

gingivalis induces caspase-1-mediated pyroptosis in human
PDLFs (268). Candida albicans, another species that is frequently
isolated from endodontic infections of periapical periodontitis, was
shown to induce pyroptosis by activating the NLRP3
inflammasome in mononuclear phagocytes and macrophages
(270). Taken together, these data suggest that periapical
periodontitis pathogens may induce pyroptosis to promote
inflammation and bone destruction.

Collectively, canonical inflammasomes, such as NLRP3 and
AIM2, and noncanonical inflammasomes may be involved in the
pathogenesis and development of periapical periodontitis. In

addition to osteoclasts, macrophages, and neutrophils, periodontal
ligament cells may also be affected by inflammasome activation
induced by pathogens and their by-products, resulting in
periodontium inflammation. Inflammasome activation also
attenuates osteogenesis by decreasing osteoblast differentiation
and increasing osteoblast pyroptosis. Further investigations are
needed to elucidate the effects of inflammasomes on macrophage
polarization in periapical periodontitis.

Inflammasomes in Peri-Implantitis
Dental implants are widely used in the treatment of edentulism.
Peri-implantitis, with a prevalence ranging from 1.1% to 85% at
the implant level and a higher early failure rate in maxillary
implants than mandibular implants, occurs in the peri-implant
region and often leads to inflammatory loss of supporting bone
(188, 271, 272). Radiographic bone loss greater than or equal to
2 mm beyond the crestal bone level from the initial surgery, or
greater than or equal to 3 mm apical to the most coronal part of
the intraosseous portion of the implant is observed in peri-
implantitis, with even greater progression than that in
periodontitis (273). Similar to periodontitis, peri-implantitis
exhibits higher IL-1b levels in diseased tissues, and these
changes may persist despite nonsurgical therapy (274–276).
Genetic polymorphisms in IL1B are related to the risk of peri-
implantitis and contribute to increased clinical parameters, such
as peri-implant pocket depth, plaque index, and clinical
attachment level (277). However, the role of IL-18 in the
pathogenesis of peri-implantitis remains unclear.

The pathogenesis of peri-implantitis is associated with a series
of factors, including the action of biofilms, release of metal ions
and particles from implants, and infiltration of inflammatory
cells (e.g., polymorphonuclear leukocytes), thereby resulting in
osseointegration failure and implant rejection (278–280).
Pathogen invasion from the implant surface biofilm is a critical
inflammatory stimulus in peri-implantitis owing to a lack of
effective epithelial barriers (281). These pathogens and their by-
products can trigger inflammasome activation. Candida spp.,
frequently found in peri-implantitis lesions, can induce
activation of the NLRP3 inflammasome (282). LPS from P.

gingivalis, another peri-implantitis-related pathogen, increases
the mRNA levels of NLRP3, ASC, and caspase-1 in BMSCs,
thereby increasing IL-1b production (147). Moreover, iron and
particles from dental implants can also induce inflammasome
activation (283). Particles released by titanium implants trigger
an inflammatory response in preosteoclasts, promote M1-like
macrophage polarization, and increase osteoclastogenesis, which
can be affected by IL-1b-neutralizing antibodies (189). Titanium
ions activate the NLRP3 inflammasome by increasing the
production of ROS in Jurkat T cells, leading to immune
responses in peri-implantitis (188). However, another study
showed that titanium ions alone induced only limited mRNA
levels of NLRP3, ASC, and caspase-1 in macrophages and
demonstrated that IL-1b secretion could be enhanced by LPS
priming (284).

Overall, these findings show that metal ions and particles from
implants and pathogens induce inflammasome activation in peri-
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implantitis, thereby promoting alveolar bone loss mainly by
increasing osteoclastogenesis and enhancing inflammation.
However, the roles of noncanonical inflammasomes in peri-
implantitis are poorly understood. The possible roles of
inflammasome-induced pyroptosis and periodontium inflammation
in the pathogenesis and development of peri-implantitis should be
evaluated in further studies.

Inflammasomes in OTM
External mechanical force in orthodontic treatment can cause
stress on both the periodontal ligament and alveolar bone,
leading to bone loss on the compression side and bone
regeneration on the tension side; this results in OTM (285).
Inflammatory bone resorption in OTM often differs from that in
periapical periodontitis and periodontitis, as it is triggered by
mechanical stress rather than bacterial infection (286).
Inflammasome activation is important in alveolar bone loss
during OTM. IL-1b is frequently detected in the GCF during
OTM, and its production can be upregulated by increasing the
orthodontic force (287–289). The expression of IL-1b and
RANKL was found to be increased in patients undergoing
orthodontic treatment using injectable platelet-rich fibrin,
whereas that of OPG was found to be significantly decreased,
indicating the promotion of osteoclastogenesis (191). The levels
of NLRP3, caspase-1, and IL-1b were shown to be increased in
the periodontium tissues of rats subjected to excessive
orthodontic force, and activation of the NLRP3/caspase-1/IL-
1b axis as well as polarization of M1-like macrophages was also
detected in THP-1 cells when cocultured with force-pretreated
hPDLCs but inhibited by the NLRP3 inhibitor MCC950 (156). In
response to cyclic stretching, the levels of NLRP3, NLRP1,
cleaved caspase-1, cleaved caspase-5, cleaved GSDMD, IL-1b,
and IL-18 were shown to be increased in hPDLCs, leading to
pyroptosis; this process was partly blocked by treatment with a
caspase-1 inhibitor or knockdown of GSDMD (190, 192). These
data suggest that inflammasome activation is involved in alveolar
bone loss in the context of orthodontic mechanical force, which
is closely associated with periodontium inflammation. However,
cyclic stretching may suppress NLRP3 inflammasome activation
and IL-1b secretion in macrophages by inhibiting the activity of
caspase-1 rather than NF-kB (290, 291). Exosomes from
hPDLCs stimulated with cyclic stretching suppress IL-1b
production in macrophages by inhibiting the NF-kB signaling
pathway (292). In addition, as current studies are mostly focused
on NLRP3 inflammasomes in OTM, further studies are needed
to assess the possible roles of other forms of inflammasomes,
including noncanonical inflammasomes, in alveolar bone loss
associated with OTM.

Inflammasomes in Medication-Related
Osteonecrosis of the Jaw (MRONJ)
MRONJ, which was initially reported as bisphosphonate-related
osteonecrosis of the jaw (BRONJ) in 2003, is characterized by
necrotic bone loss of the jaw induced by antiresorptive and anti-
angiogenic drugs (293, 294). Although MRONJ can occur
spontaneously, tooth extraction, prosthetic trauma, dental surgery,

periodontal disease, dental implant, and periapical periodontitis
may act as triggering or exacerbating factors, and patients with
MRONJ may present concomitant diseases, such as diabetes
mellitus or hypertension, or be administered chemotherapeutic
drugs or corticosteroids (295, 296). The high turnover rate in the
jaw may explain the typical localization of osteonecrosis in this
region compared to other skeletal tissues (4, 294). The mechanism
ofMRONJ remains unclear andmay be attributed to impaired bone
remodeling and jaw vascularization, and increased inflammation.
Bisphosphonate treatment can promote MRONJ. Although
bisphosphonate exhibits antiresorptive effects on osteoclasts, this
drug can also cause dysregulation of osteoblast and osteoclast
coupling, eventually resulting in necrotic bone loss of the jaw
(297). More specifically, the expression of ALP in osteoblasts is
suppressed in MRONJ, and the acidic microenvironment also
increases osteoblast inhibition and decreases new bone formation
(298). Increased IL-1b levels are associated with inflammation in
MRONJ, enhancing nonvital bone tissue and decreasing newly
formed bone tissue (299, 300). The number of IL‐1b+ cells is
significantly increased in rats treated with nitrogen-containing
bisphosphonate zoledronic acid and subjected to left inferior
molar extraction, whereas that of cells positive for IL-18-binding
protein (IL-18 bp), a natural antagonist of IL-18, is increased in rats
treated with 0.04 mg/kg zoledronic acid and decreased in a dose-
dependent manner (301). Zoledronic acid increases the expression
of IL-1b in an NLRP3/caspase-1-dependent manner in LPS-primed
BMDMs from mice with diabetes mellitus, and NLRP3 inhibitors
improve oral wound healing and suppress osteonecrosis of the jaw
in these mice (127). Zoledronic acid triggers M1-like macrophage
polarization and increases the mRNA and protein levels of IL-1b by
activating the NLRP3 inflammasome and cleaving pro-caspase-1 in
LPS-primed THP-1 cells; these effects can be reversed by silencing of
ASC (131). Zoledronic acid also induces caspase-1-dependent and
GSDMD-mediated pyroptosis and secretion of IL-1b in RAW264.7
cells, by mediating methylation of histone H3 (H3k27me3) (193).
Furthermore, increased numbers of Th17 cells and IL-17 levels were
found to be correlated with elevation of the M1/M2 macrophage
ratio in human and murine BRONJ lesions (302).

Collectively, these findings show that bisphosphonates induce
bone loss by activating the inflammasome. M1-like polarization
and pyroptosis of macrophages may promote a pro-inflammatory
environment that is prone to bone destruction. However, despite
NLRP3, the roles of other canonical and noncanonical
inflammasomes in the pathogenesis of MRONJ remain unclear.
More information is also needed to elucidate the possible
relationships between inappropriate inflammasome activity and
bone loss in MRONJ induced by antiresorptive drugs.

Inflammasomes in Nonsterile or Sterile
Osteomyelitis of the Jaw
Infectious osteomyelitis (iOM) of the jaw, an entity separate from
osteonecrosis of the jaw, is an infection of the bone and bone
marrow that results in inflammatory bone loss and aberrant bone
neoformation in the jaw (303). iOM of the long bones commonly
results from hematogenous spread and local extension, whereas
iOM of the jaw may arise from local infection of the oral cavity,
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paranasal sinuses, and skin. Immune dysfunction, metabolic
abnormalities, malnourishment, alcohol consumption, and
vascular insufficiency may act as risk factors for iOM (304).
Staphylococcus aureus is the most prevalent pathogen of
hematogenous and post-traumatic iOM, and P. gingivalis may be
detected as the leading bacteria in lesions of iOM in the jaw related
to periodontitis (305, 306). Evidence has shown that inflammasome
activation is involved in S. aureus-induced iOM (307). Caspase-1
activity and IL-18 levels are upregulated in neutrophils and
monocytes in the blood of patients with S. aureus bacteremia,
which could lead to iOM, supporting the occurrence of
inflammasome activation (196). Toxic shock syndrome toxin 1
from S. aureus and ATP significantly increase IL-1b expression
through activation of TLR4 and NLRP3 in mouse peritoneal
macrophages (194). Additionally, Panton-Valentine leukocidin
from S. aureus causes the release of IL-1b and IL-18 from human
monocytes and macrophages owing to the activation of NLRP3 and
caspase-1 (195). These increased levels of IL-1b and IL-18 in
neutrophils, monocytes, and macrophages may promote
osteoclastogenesis in iOM. In addition, S. aureus internalization in
osteoblasts contributes to the pathogenesis of iOM (308).
Inflammasome activation in S. aureus-infected osteoblasts may
decrease the intracellular replication of S. aureus. S. aureus strains
defective in toxin genes encoding phenole-soluble modulins induce
lower levels of IL-1b in MG63 cells compared to strains harboring a
functional Agr system, and S. aureus-induced inflammasome
activation and intracellular S. aureus clearance require the
activation of caspase-1 (309). Similar results were observed in
phagocytic cells, in which inflammasome activity is needed to
limit S. aureus replication (310). These results suggest a positive
role for inflammasome activation in host defense against S. aureus
by limiting its replication and increasing its clearance. However,
inflammasome activation also decreases osteoblast activity in the
context of S. aureus infection. The levels of NLRP3 and GSDMD
were found to be increased in infectious bone tissue from patients
with osteomyelitis compared to those in bone fragments from
patients with fractures; moreover, caspase-1 and NLRP3
inhibitors significantly reduce S. aureus-induced osteoblast
pyroptosis, restore bone formative properties, and attenuate
osteoclast activation in bone marrow macrophages in vitro and
decrease bone loss in vivo (150). Specifically, the levels of dsRNA
were found to be increased in a chicken model and in patients with
osteomyelitis, and DICER1 (encoding endoribonuclease for dsRNA
cleavage) knockdown or Staphylococcus infection-induced dsRNA
accumulation upregulates IL-1b and IL-18 expression in and
reduces viability of human osteoblasts via activation of the
NLRP3 inflammasome, indicating that DICER1 and dsRNA
dysmetabolism is an upstream regulator of NLRP3 signaling in
infected osteoblasts as a model of osteomyelitis (311). Taken
together, these findings suggest that inflammasome activation
affects the activity of neutrophils, monocytes, macrophages,
osteoblasts, and osteoclasts and contributes to inflammatory bone
loss in iOM.

In contrast to bacteria-induced osteomyelitis, chronic
nonbacterial osteomyelitis (CNO) and the more severe
multifocal form of chronic recurrent multifocal osteomyelitis

(CRMO) are autoinflammatory bone disorders with recurrent
clinical symptoms, such as pain, local swelling, and impairment
of bone motion resulting from periosteal and/or endosteal
inflammation, osteomyelitis, and osteitis (312, 313). CNO can
affect any site in the skeleton, including the jaws, in all age
groups, with a peak onset from 7 to 12 years of age (201). CRMO
of the jaw may result in multifocal and symmetrical bony damage
in the long bones as radiographically lytic or sclerotic lesions
(314). Some adult patients with CRMO develop complex
symptoms of synovitis, acne, pustulosis, hyperostosis, and
osteitis (315). The pathogenesis of sporadic CNO/CRMO
remains unclear. Increased levels of pro-inflammatory IL-1b,
TNF-a, IL-6, and IL-20 and decreased levels of anti-
inflammatory IL-19 and IL-10 have been observed in
monocytes from patients with CNO/CRMO, and imbalances in
cytokine expression may contribute to inflammatory bone loss
(199, 200). Upregulation of IL-1b-mediated osteoclast
differentiation and activation is associated with inflammasome
activation (201). Notably, mRNA levels of caspase-1 and IL-1b
were found to be significantly increased in PBMCs from patients
with CRMO at active and remission stages compared to those in
healthy controls, and the expression of NLRP3, ASC, caspase-1,
and IL-1b was also detected in bone tissues of patients with
CRMO (197). DNA methylation of NLRP3 and PYCARD, which
encodes ASC, was decreased in monocytes from patients with
CRMO compared to that in healthy individuals, leading to
increased gene expression (198). Reduced IL-19 and IL-10
expression, which may be caused by decreased ERK1 and
ERK2 activities and impaired epigenetic remodeling, also
enhances the activation of the NLRP3 inflammasome in
CRMO monocytes, and recombinant IL-19 or IL-10
significantly reduces IL-1b levels (199, 202). In addition, three
diseases associated with chronic multifocal sterile osteomyelitis
that may result from single gene mutations, including deficiency
of IL-1 receptor antagonist (mutations in IL1RN encoding the
IL-1 receptor antagonist), Majeed syndrome (LPIN2 mutations),
and PAPA, also exhibit IL-1b-mediated bone inflammation,
highlighting the roles of inflammasomes in their pathogenesis
(316). As stated above, mutated PSTPIP1 in PAPA may increase
the activity of the pyrin inflammasome, leading to increased IL-
1b expression and aggravated autoinflammation (63). Bone
autoinflammation in mice with CRMO resulting from Pstpip2

gene mutation may be independent of AIM2 but can be
protected by deficiencies in NLRP3/caspase-1 and caspase-8
signaling, suggesting that caspase-8 plays a role in IL-1b
processing (317, 318). Hence, inappropriate inflammasome
activation is critical for sterile osteomyelitis induced by
gene mutations.

Collectively, these findings support the involvement of
inflammasome activation in host defense against extracellular
pathogens and in the recognition of endogenous DAMPs in jaw
osteomyelitis. In particular, in sporadic and familial or
monogenic CNO/CRMO, upregulation of pro-inflammatory
cytokines and downregulation of anti-inflammatory cytokines
contribute to increased osteoclast activity, in which inflammasome-
dependent IL-1b acts as a vital player. Hence, IL-1 signaling
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regulatory agents may be a therapeutic option for CNO/CRMO
treatment (319). Further studies are required to elucidate the roles
and mechanisms of noncanonical inflammasomes in nonsterile or
sterile osteomyelitis of the jaw.

Inflammasomes in Osteoporosis Related
to Alveolar Bone Loss
Osteoporosis is a metabolic skeletal problem characterized by
dysregulation of osteoclast and osteoblast activity, leading to
decreased bone density and increased bone degradation, bone
fragility, and fracture risk (320). According to a 2005–2010
survey by the Division of Health and Nutrition Examination
Surveys, the age-adjusted prevalence of osteoporosis at the femur
neck or lumbar spine in adults aged 65 and over is 24.8% in
women and 5.6% in men in the United States (321). A plethora of
factors may affect bone remodeling in osteoporosis, including
hormones such as estrogen and testosterone, sex, age,
hyperglycemia, gut microbiome, dietary intake, and loading
(322). Some patients may not be aware of osteoporosis because
they experience no symptoms until fracture occurs. Therefore,
early detection of osteoporosis is critical.

Bone remodeling of the maxilla and mandible, including the
alveolar bone, is involved in bone turnover in the skeletal system
and reflects the condition of skeletal bone. Bone loss in the jaw is
involved in osteoporosis and may act as a screening predictor for
osteoporosis and fracture risk. The mandibular cortical index,
mandibular inferior cortical width below the mental foramen,
and alveolar trabecular bone pattern of the mandible are useful
for screening of low skeletal bone mineral density (BMD) and
osteoporosis (323). The relative risk of future fracture of the
sparse trabecular pattern of the mandible is higher than that of
cortical erosion in perimenopausal and older women (324).
Moreover, evaluation of trabecular bone density in the
mandibular premolar region may also facilitate the detection of
osteoporosis (325). Owing to the high ratio of trabecular bone to
cortical bone, analysis of the trabecular bone in the maxilla may
also provide a good opportunity to screen for osteoporosis (326).
Additionally, the mean radiographic density in the interdental
and alveolar regions in the maxilla and interdental region in the
mandible was found to be lower in women with osteoporosis
than in healthy controls (327). Therefore, considering the
correlation between bone loss in the jaw and osteoporosis and
the fact that dental X-ray examinations are easier and more
convenient than skeletal BMD measuring techniques, such as
dual-energy X-ray absorptiometry, it is essential to develop
strategies for osteoporosis screening using dental radiographs
that evaluate bone loss in the jaw. Investigating the mechanisms
of osteolysis in osteoporosis may also improve our
understanding of alveolar bone loss in this scenario.

Upregulation of IL-1b, enhanced osteoclastogenesis, and
decreased osteogenesis are observed in osteoporosis, partly
because of inflammasome activation (328, 329). In fact, mice
with the humanized NLRP3 locus and disease-associated
mutations develop thinner and radiolucency cortices, consistent
with osteoporosis (203). The expression of NLRP3, ASC, and
cleaved caspase-1 is also increased in the femoral bone of

ovariectomized mice and osteoblasts derived from BMSCs of
these mice, leading to increased production of IL-1b and IL-18.
Additionally, knockdown of Nlrp3 significantly upregulates
RUNX2 and OCN in BMSCs of ovariectomized mice (148). IL-
18 bp inhibits the activation of the NLRP3 inflammasome and
increases osteoblast differentiation in vitro and reduces
osteoclastogenesis and Th17 cell differentiation in vivo, thereby
preserving cortical bone parameters and restoring the trabecular
microarchitecture in ovariectomized mice (205). The NLRP3
inflammasome can also be activated in mesenchymal stem cells
treated with LPS and palmitic acid, leading to increased
adipogenic differentiation and decreased osteogenic
differentiation; these effects may be blocked by caspase-1
inhibition (204). Moreover, increased osteoblast death
dependent on NLRP3 expression has also been observed in rats
with postmenopausal osteoporosis, leading to decreased trabecular
thickness, trabecular number, trabecular separation, and BMD
(330). Therefore, osteoblast pyroptosis induced by inflammasome
activation may play a pivotal role in osteoporosis (106). In
addition, inflammasome activation is involved in the interplay of
other systemic/local diseases with bone loss in osteoporosis. High
glucose conditions increase the levels of ROS, phospho-ERK,
phospho-JNK, phospho-p38, NF-kB, NLRP3, ASC, caspase-1,
IL-1b, and IL-18 in rat osteoclasts differentiated from bone
marrow-derived monocytes, suggesting a role of inflammasome
activation in the interaction between diabetes mellitus and
osteoporosis (331). Moreover, estrogen deficiency may aggravate
bone loss in periapical periodontitis, and osteoporosis may also
promote osteolysis in periodontitis, which may involve
inflammasome activation (332). Furthermore, as described
above, antiresorptive bisphosphonate, which can be used for
osteoporosis treatment, may also cause inflammasome-
associated bone loss in the jaw. These results highlight the roles
of the NLRP3 inflammasome in promoting bone loss
in osteoporosis.

Collectively, inflammasome activation may upregulate
osteoclast capacity and impair osteoblast activity by reducing
osteogenic differentiation and increasing osteoblast death. Owing
to the potential association of periodontitis/periapical
periodontitis with osteoporosis and the use of bisphosphonate
medication in osteoporosis, dysregulation of bone remodeling in
osteoporosis is quite complex, particularly in the jaw bone and
alveolar bone, in which symptoms of bone loss converge and
must be carefully distinguished and analyzed. The exact roles of
inflammasomes in the pathogenesis and development of
osteoporosis, particularly direct evidence of alveolar bone loss
using human biopsies and mouse models, need to be elucidated
in subsequent studies.

CONCLUSIONS AND PERSPECTIVES

Similar to other bone tissues, alveolar bone remodeling is
intricately regulated by osteoclasts and osteoblasts. A high
turnover rate and associations with the tooth and
periodontium highlight the increased complexity of alveolar
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bone remodeling. Pathogen infection, mechanical stress,
medication, and systemic pathological factors are common
causes of alveolar bone loss. Such features make alveolar bone
a typical and important site for the investigation of the
underlying mechanisms of dysregulated bone remodeling. The
rapid growth of information in osteoimmunology has improve
our understanding of the mechanisms of dysregulated alveolar
bone remodeling. As a double-edged sword, the inflammasome
exerts both protective and harmful effects on host defense and
alveolar bone remodeling. Notably, excessive inflammasome
activation may play a pivotal role in alveolar bone loss via the
following mechanisms (Figure 4). First, it can increase osteoclast
activity, e.g., by promoting osteoclastogenesis via decreasing
OPG release or increasing RANKL levels, or increase the bone
resorption capacity of osteoclasts by upregulating the expression
of cathepsin K andMMPs. These effects are attributed to elevated
levels of IL-1b and IL-18 and to other signals upstream of
cytokine processing during inflammasome activation. Second,
it can decrease osteoblast activity by reducing the bone formation
ability, proliferation, and differentiation of osteoblasts and
inducing osteoblast pyroptosis. Third, it can create a pro-
inflammatory milieu that facilitates bone resorption by causing
pyroptosis, M1-like macrophage polarization, neutrophil
infiltration, and adaptive immune responses. Finally, it can
cause periodontium inflammation by affecting periodontal
ligament cells. Since the periodontium connects tooth and
alveolar bone, and its destruction may indirectly lead to
pathological effects on both of them, the mechanisms of

excessive inflammasome activation in periodontal ligament
cells require special attention.

However, more evidence should be collected to fully unveil
the role of inflammasomes in alveolar bone loss. Although
evidence has demonstrated that inflammasome activation
promotes the direct bone resorption ability of osteoclasts,
whether it can influence osteoclast-modulated T cell activation
remains unclear. The most predominant activated or inactivated
inflammasomes involved in the pathogenesis and development
of specific diseases associated with alveolar bone loss still need to
be clarified, as do the mechanisms through which crosstalk or
interplay between different inflammasomes contribute to alveolar
bone loss. Studies on these topics may also provide insights into the
regulators modulating the activity of inflammasomes in alveolar
bone loss. The precise mechanism of inflammasome activation in
periodontium inflammation also requires further investigation. In
addition, the roles of inflammasomes in other diseases associated
with alveolar osteolysis, such as alveolar osteitis (dry socket) and
osteoradionecrosis, remain to be elucidated. Nevertheless, current
investigations of inflammasomes have provided important insights
into osteoimmunology and contribute to our understanding of the
cellular and molecular mechanisms of alveolar bone loss.

Based on these observations and considerations, it is plausible
that novel drug-based strategies for targeting inflammasome activity
may contribute to the treatment of alveolar bone loss. Accumulating
evidence has suggested that excessive inflammasome activation may
be mitigated by the following strategies: 1) regulation of
inflammasome priming, e.g., using E and D series resolvins that

FIGURE 4 | Schematic of the role of inflammasome activation in alveolar bone loss (e.g., periodontitis). Inflammasome activation is pivotal in alveolar bone loss via

the following mechanisms: 1) increasing osteoclast activity; 2) decreasing osteoblast activity; 3) creating a pro-inflammatory milieu that facilitates bone resorption; and

4) causing periodontium inflammation by affecting periodontal ligament cells. Osteoclasts, osteoblasts, osteocytes, PDLCs, macrophages, neutrophils, T cells, and

dendritic cells may be affected by inappropriately increased inflammasome activity, contributing to dysregulation of alveolar bone remodeling. DAMP, damage-

associated molecular pattern; PAMP, pathogen-associated molecular pattern; PDLCs, periodontal ligament cells; RANKL, receptor activator of NF-kB ligand. Th17

cells, T helper 17 cells.
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reduce NF-kB activity (333); 2) regulation of upstream signaling
associated with inflammasome oligomerization and activation, e.g.,
targeting intracellular ROS by using antioxidant drugs, such as SS-
31 (also known as Bendavia or MTP-131) (334); 3) regulation of
inflammasome components, e.g., targeting caspase-1 using its
inhibitors, such as VX-765, targeting NLRP3 using MCC950 and
b-hydroxybutyrate, or using P2X7 receptor antagonists, such as
AFC-5128 and GSK1482160 (211, 335); 4) regulation of the pro-
inflammatory effects of inflammasome-dependent cytokines, e.g.,
targeting IL-1b using a recombinant receptor antagonist (anakinra)
andmonoclonal antibodies (gevokizumab and canakinumab) (336);
and 5) regulation of pyroptosis. Some of these therapeutic strategies
have already been explored in studies on alveolar bone loss, such as
periodontitis and Majeed syndrome; however, most of the relevant
investigations are still in their foundational phase (230, 319). The
joint application of anti-inflammasome drugs and routine therapies
such as scaling and root planning for periodontitis and root canal
therapy for periapical periodontitis should be considered carefully.
Moreover, as most of the potential drugs are administered orally or
subcutaneously, more convenient and direct modes of access during
routine treatments such as drug delivery into deep periodontal
pockets or into periapical lesions via infected root canals could be
novel therapeutic strategies (230). Notably, although the
combination of multiple strategies and versatile drugs may help
create promising opportunities for the treatment of bone loss, much

work is still needed to assess the therapeutic inhibition of
inflammasomes, which should be subtly balanced with the
beneficial contributions of inflammasome activation in host
defense. Further studies are needed to fully elucidate the roles and
mechanisms of inflammasomes in the pathogenesis, development,
and treatment of alveolar bone loss.
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