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Abstract

Background: Portal hypertension is a clinical syndrome that manifests as ascites, portosystemic
encephalopathy and variceal hemorrhage, and these alterations often lead to death.

Hypothesis: Splanchnic and/or systemic responses to portal hypertension could have
pathophysiological mechanisms similar to those involved in the post-traumatic inflammatory
response.

The splanchnic and systemic impairments produced throughout the evolution of experimental
prehepatic portal hypertension could be considered to have an inflammatory origin. In portal vein
ligated rats, portal hypertensive enteropathy, hepatic steatosis and portal hypertensive
encephalopathy show phenotypes during their development that can be considered inflammatory,
such as: ischemia-reperfusion (vasodilatory response), infiltration by inflammatory cells (mast cells)
and bacteria (intestinal translocation of endotoxins and bacteria) and lastly, angiogenesis. Similar
inflammatory phenotypes, worsened by chronic liver disease (with anti-oxidant and anti-enzymatic
ability reduction) characterize the evolution of portal hypertension and its complications
(hepatorenal syndrome, ascites and esophageal variceal hemorrhage) in humans.

Conclusion: Low-grade inflammation, related to prehepatic portal hypertension, switches to high-
grade inflammation with the development of severe and life-threatening complications when
associated with chronic liver disease.

Introduction
Portal hypertension is a clinical syndrome defined by a
pathological elevation of blood pressure in the portal sys-
tem [1-3]. It manifests clinically as ascites, portosystemic
encephalopathy and variceal hemorrhage, and often leads
to death [4].

Nowadays, a fundamental objective of both experimental
and clinical research is the knowledge of the molecular

mechanisms underlying this complex syndrome. How-
ever, the integration of these pathophysiological mecha-
nisms in trying to understand their possible meaning is
also of great interest.

Knowing the final meaning of the alterations associated
with portal hypertension could help to understand the
meaning of the mechanisms involved in its production
and maintenance. Therefore, it would be justified to spec-
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ulate about the hypothetical purpose of the splanchnic
and systemic responses to portal hypertension [5] since
the keys for understanding the true meaning of the diverse
etiopathogenic factors involved in its production could be
obtained.

We have, therefore, proposed an inflammatory etiopatho-
genic hypothesis of the complications of portal hyperten-
sion [6]. If so, the inflammation of the splanchnic system
could be the basic mechanism that drives the essential
nature of the different complications of portal hyperten-
sion. Likewise, inflammation could facilitate the integra-
tion of the pathophysiological mechanisms involved in
the different complications of portal hypertension [5,6].

As science grows more complex it is also converging on a
set of unifying principles that link apparently disparate
diseases through common biological pathways and thera-
peutic approaches [7]. Thus research tactics and strategies
may become very similar across diseases [7,8]. In this way,
by integrating the mechanisms that govern the inflamma-
tory response with the complications related to the evolu-
tion of portal hypertension could enrich their pathogenic
knowledge.

The inflammatory response to injury by 
mechanical energy
Mechanical energy represents an old stimulus that causes,
by cell mechanotransduction, responses considered both
physiological and pathological [9]. Specifically, this type
of energy can stimulate the endothelium which, owing to
its strategic position, plays an exceedingly important role
in regulating the vascular system by integrating diverse
mechanical and biochemical signals and by responding to
them through the release of vasoactive substances, chem-
okines, cytokines, growth factors and hormones [9-11].

Mechanical energy is obviously involved in the etiopa-
thology of mechanical traumatisms and can produce
either local or generalized acute inflammation [12-15].

The successive pathophysiological mechanisms that
develop in the interstitial space of tissues when they
undergo acute post-traumatic inflammation are consid-
ered increasingly complex trophic functional systems for
using oxygen [12-15]. Although their length would be
apparently different, the hypothetical similarity of the
local and systemic responses to mechanical injury could
be attributed to the existence of a general response mech-
anism to the injury in the body that is based on the suc-
cessive and predominant expression of the nervous,
immune and endocrine pathological functions [12-14]
(Figure 1).

The nervous or immediate functional system presents
ischemia-reperfusion and edema, which favor nutrition
by diffusion through injured tissue. This trophic mecha-
nism has a low energy requirement that does not require
oxygen (ischemia) or in which the oxygen is not correctly
used, with the subsequent development of reactive oxygen
and nitrogen species (ROS/RNS) (reperfusion). The
intense activation of the hypothalamic-pituitary-adrenal
axis and the adrenomedullary system with glucocorticoids
secretion, the release of epinephrine into the circulation
and the activation of the renin-angiotensin-aldosterone
system, makes the selective accumulation of these sub-
stances in the interstitial space of the tissues and organs
that suffer ischemia-reperfusion possible because their
endothelial permeability is increased [12,14]. Distur-
bances in organ blood flow, by vasomotor alterations and
systemic redistribution of the blood flow, are suggested to
play a pivotal role in the development of progressive
organ dysfunction. Furthermore, the splanchnic organs
are considered to be one of the key components in the
pathogenesis of multiple organ failure [16,17] (Figure 1).

The immune or intermediate functional system activates
the coagulation-fibrinolisis system and produces infiltra-
tion of the injured tissue by inflammatory cells, especially
by leukocytes and bacteria. Also, the immune cell resi-
dents in the interstitial space of the affected tissues and
organs are activated. Hence, symbiosis of the inflamma-
tory cells and bacteria for extracellular digestion by
enzyme release (fermentation) and intracellular digestion
by phagocytosis, could be associated with a hypothetical
trophic capacity [12-14]. Improper use of oxygen persists
in this immune phase [14]. Also during this phase the
lymphatic circulation continues to play an important role
[14,15]. Macrophages and dendritic cells migrate to
lymph nodes where they activate T lymphocytes, which
could be another link in the leukocytic trophic chain [18].
Furthermore, in this phase an Acute Phase Response
(APR), that includes the stimulation of acute-phase pro-
tein release by the liver [19-22], is established and part of
this response includes the Systemic Inflammatory
Response Syndrome [20]. Most of these changes are sig-
naled by cytokines [20,21]. More specifically, the expres-
sion of inducible genes leading to the synthesis of
cytokines, chemokines, chemokine receptors, adhesion
molecules, enzymes and autacoids relies on transcription
factors NF-κB and AP-1, that play a central role in the reg-
ulation of these inflammatory mediators [23,24]. The
maximum intensity of the immune response may be
reached when an associated systemic infection is pro-
duced. The excessive consumption of coagulation factors
with hyperproduction of anticoagulant factors can induce
a state of hypocoagulability or Disseminated Intravascular
Coagulation (DIC) that, ultimately, favors bleeding [25]
(Figure 1).
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During the evolution of the nervous and immune phase
of the inflammatory response, the body loses its more spe-
cialized functions and structures. In this progressive
deconstruction, depletion of the hydrocarbonate, lipid
and protein stores occurs [26], as well as multiple or suc-
cessive dysfunction and posterior failure, apoptosis or
necrosis of the specialized epithelium, i.e. the pulmonary,
renal, gastrointestinal and hepatic ones [27]. Although
these alterations are considered a harmless consequence
of the systemic inflammatory response, they are also a
mechanism through which there is a redistribution of
immediate constituents in the body. In this case, the redis-
tribution of metabolic resources responds to the different
trophic requirements of the body as the inflammation
progresses [12,14]. It has been proposed that the host is
destroying itself [28] which would correspond to
autophagy [29-31].

However, consumption of the substrate deposits and the
dysfunction or failure of the specialized epithelia of the
body could also represent an accelerated process of epi-
thelial dedifferentiation [12,14,32]. The hypothetical
ability of the body to involute or dedifferentiate could
represent a return to early stages of development. There-
fore, it could constitute an effective defense mechanism
against injury since it could make retracing a well-known
route possible, i.e. the prenatal specialization phase dur-
ing the last or endocrine phase of the inflammatory
response [14]. This specialization would require a return
to the prominence of oxidative metabolism, and thus ang-
iogenesis, in the affected epithelial organs to create the
capillary bed that would make regeneration of the special-
ized epithelial cells possible or otherwise to carry out
repair through fibrosis or scarring [12,14,15,32].

Thus, the endocrine functional system facilitates the
arrival of oxygen transported by red blood cells and capil-

Post-traumatic acute inflammatory responseFigure 1
Post-traumatic acute inflammatory response. During the first, immediate or nervous phase (N) of the acute inflamma-
tory response ischemia-revascularization is produced with edema and oxidative stress. In the second, intermediate or immune 
phase (I) coagulation and infiltration of the interstitium is produced by leukocytes and bacteria. During the nervous and 
immune phases lymphatic circulation plays a major role. In the third, final or endocrine phase (E), nutrition mediated by the 
blood capillaries is established due to angiogenesis. SC: Stem cell; SPC: Stem pleiotropic cell; SHC: Stem hematopoietic cell; Eo: 
Eosinophil; MC: Mast cell; EC: Epithelial cell; P: Plasma; Pt: Platelets; L: Lymph; MN: Monocytes; N: Neutrophils; TC: T cells; 
MØ: Macrophage; BC: B cells; IL: Intraepithelial lymphocyte; RBC: Red blood cells; C: Capillary; F: Fibroblast; V: postcapillar 
venule
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laries. It is considered that angiogenesis characterizes this
last phase of the inflammatory response, so nutrition
mediated by the blood capillaries is established. The abil-
ity to use oxygen in the oxidative metabolism is recovered
when patients recover their capillary function. This type of
metabolism is characterized by a large production of ATP
(coupled reaction) which is used to drive multiple special-
ized cellular processes with limited heat generation and
which would determine the onset of healing. In the con-
valescent phase, the dedifferentiated epithelia specialize
again, the energy stores that supplied the substrate neces-
sary for this demanding type of metabolism are replete,
and complete performance is reached, thus making active
life possible [12-14,18] (Figure 1)

Nevertheless, angiogenesis could have other functions in
the phases prior of the inflammatory response. The earli-
ness of endothelial proliferation, as well as the ability of
these cells to express antioxidant and anti-enzymatic phe-
notypes [9,11] suggests that early angiogenesis could have
a defensive role [18]. If so, in the phases prior to the devel-
opment of capillaries, the endothelial cells could have the
function of reducing oxidative and enzymatic stress that
the inflamed tissues and organs suffer.

The expression of the nervous, immune and endocrine
functional systems during the inflammatory response,
makes it possible to differentiate three successive phases
which progress from ischemia, through a metabolism that
is characterized by defective oxygen use (reperfusion, oxi-
dative burst and heat hyperproduction or uncoupled reac-
tion) up to an oxidative metabolism (oxidative
phosphorylation) with a correct use of oxygen (coupled
reaction) that produce usable energy. If so, it is also tempt-
ing to speculate on whether the body reproduces the suc-
cessive stages from which life passes from its origin
without oxygen [33] until it develops an effective,
although costly, system for the use of oxygen every time
we suffer inflammation [12-15,18].

The sequence in the expression of progressively more
elaborated and complex nutritional systems could hypo-
thetically be considered the essence of the inflammation,
regardless of what is etiology (traumatic, hypovolemic or
infectious) or localization may be. Hence, the incidence
of harmful influences during their evolution could
involve regression to the most primitive trophic stages, in
which nutrition by diffusion (nervous system) takes place
[12,14]. Thus, the incidence of noxious factors during the
evolution of the systemic inflammatory response pro-
duces severe hemodynamic alterations again, and lastly,
vasodilatory shock with tissue hypoxia and lactic acidosis
is established [34]. This mechanism of metabolic regres-
sion is simple, and also less costly. It facilitates temporary
survival until a more favorable environment makes it pos-

sible to initiate more complex nutritional ways to survive
(immune and endocrine system) [14,18] (Figure 1).

Portal hypertension
Portal hypertension (PH) is characterized by an increase
in portal vein pressure as a result of the obstruction to por-
tal flow [35,36]. Depending on the level of the obstruc-
tion, PH is classified as either prehepatic, intrahepatic or
posthepatic [37].

Intrahepatic portal hypertension is most often caused by
chronic liver disease, with the majority of preventable
cases attributed to excessive alcohol consumption, viral
hepatitis, or non alcoholic fatty liver disease [38]. There-
fore, in these patients the pathology related to PH is asso-
ciated to that associated with chronic liver disease.
Perhaps this is the reason why the complications suffered
by these patients, i.e. hepatorenal syndrome, hepatic
encephalopathy, ascites and variceal bleeding, are indis-
tinctly attributed to hepatic disease [38,39] and PH [37].

Prehepatic portal hypertension is most often caused by a
cavernoma of the portal vein. This cavernoma is related to
acute portal-vein thrombosis and it is developed concom-
itantly with splenomegaly, portosystemic shunts and the
reversal of flow in the unaffected intrahepatic portal veins
[40]. It is accepted that these patients have no underlying
liver disease and their liver function is expected to remain
normal throughout their life [35,40].

Post-hepatic portal hypertension, as the intrahepatic type,
is also associated with hepatocellular dysfunction [41].
Therefore, for the experimental study of portal hyperten-
sion, the prehepatic type is usually chosen since it has the
least degree of hepatic impairment. Particularly, the most
frequently used experimental model of prehepatic portal
hypertension is that which is achieved by partial portal
vein ligation in the rat [42-44].

Experimental prehepatic portal hypertension
Partial portal vein ligation in various animals, but partic-
ularly in the rat, has been widely used for portal hyperten-
sion studies [42-45].

The surgical technique most frequently used in the rat was
described by Chojkier and Groszmann in 1981 [42]. In
brief, the rat is anesthetized and after laparotomy, the por-
tal vein is dissected and isolated. A 20-gauge blunt-tipped
needle is placed along-side the portal vein and a ligature
(3-0 silk) is tied around the needle and the vein. The nee-
dle is immediately removed, yielding a calibrated stenosis
of the portal vein.

If it is taken into account that the intensity of the portal
hypertension is determined by the resistance to the inflow
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produced by the constriction of the portal vein condition-
ing its posterior evolution, this experimental model of
prehepatic portal hypertension could be improved by
increasing the initial resistance to the blood flow. With
this objective in mind, we have modified the surgical tech-
nique by increasing the length of the stenosed portal tract
with three equidistant stenosing ligations since, according
to the Poiseuille equation (R = 8 μL/πr4), the resistance
(R) to the flow of a vessel depends of the length (L) on the
radius (r), and the coefficient of viscosity of the blood (μ).
In brief, three partial ligations were performed in the
superior, medial and inferior portion of the portal vein,
respectively and maintained in position by the previous
fixation of the ligatures to a sylastic guide. The stenoses
were calibrated by a simultaneous ligation (3-0 silk)
around the portal vein and a 20-G needle. The abdominal
incision was closed on two layers [46,47].

The mechanisms which contribute to the development
and maintenance of portal hypertension change along
time in the portal vein ligated (PVL) rat [48,49]. In the
first days after portal stenosis, hypertension is attributed
to the sharp increase in resistance to the flow caused by
the portal stenosis. However, 4 days after portal stenosis,
the partial development of portosystemic collaterals
reduces the portal venous resistance, and portal hyperten-
sion is maintained because of an increased splanchnic
venous flow, which is related to intestinal hyperdynamic
circulation, established completely at 8 days of evolution
[48]. Two weeks after the operation, the animals develop
splanchnic and systemic hyperdynamic circulation with
derivation of 90% of the portal blood flow through the
portosystemic collaterals, which means that there is a
decrease in the portal flow that reaches the liver [50,51].
The portal pressure in this evolutive stage is about 15
mmHg, which means an approximate increase of 50%
regarding its value in control rats [48].

Portal pressure can be measured by a direct or indirect
method. In the first case, it is done by cannulation of the
mesenteric vein through the ileocecal vein or a small ileal
vein with a PE-50 catheter placing its tip in the distal part
of the superior mesenteric vein [52]. The indirect meas-
urement of portal pressure is performed by determining
the splenic pulp pressure by intrasplenic puncture insert-
ing a fluid-filled 20-gauge needle into the splenic paren-
chyma [48]. It has been demonstrated that there is an
excellent correlation between splenic pulp pressure and
portal pressure [48,50].

It has been considered that at two weeks of evolution por-
tal hypertension is a consequence of a pathological
increase in the portal venous inflow ("forward" hypothe-
sis) and resistance ("backward" hypothesis) [48,49] (Fig-
ure 2). The increase in blood flow in the portal venous

system is established through splanchnic arteriolar
vasodilation that produces hyperdynamic splanchnic cir-
culation or splanchnic hyperemia [50,51]. In turn, the
increase in vascular resistance to the portal blood flow is
found in the presinusoidal (partial portal ligation)
hepatic circulation, as well as in the portal collateral circu-
lation (enhanced portal collateral resistance) [50,51,53].
Therefore, it is accepted that normalization of elevated
portal pressure can only be achieved by attempting to cor-
rect both, elevated portal blood flow and elevated portal
resistance [52]. However, the splanchnic lymphatic flow
could influence the intensity of portal hypertension.
Indeed, the gastrointestinal tract could become edema-
tous in portal hypertension, and associated with lymph
vessels dilation [54]. It is possible that dilation of lymph
vessels is related to the absorption of excess interstitial
fluid, resulting from congestion [54]. Therefore, the inter-
stitial edema and the ability to be drained by the lymph
vessels could constitute conditioning factors of the inten-
sity of portal hypertension. Thus, the increased splanchnic
lymphatic flow would reduce the interstitial edema and
would favor the blood flow through the portal venous sys-
tem.

Hyperdynamic circulation in short-term PVL rats has been
principally attributed to two mechanisms: Increased circu-
lating vasodilators and decreased response to vasocon-
strictors [53,55], like nitric oxide (NO), carbon monoxide
(CO), alpha tumoral necrosis factor (TNF-α), glucagon,
prostacycline (PGI2), endothelium-derived hyperpolariz-

Mechanisms underlying the pathophysiology of short-term prehepatic portal hypertension in the ratFigure 2
Mechanisms underlying the pathophysiology of short-term 
prehepatic portal hypertension in the rat.
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ing factor, endocannabinoids, adrenomedullin and
hydrogen sulfide (H2S) [56]. In turn, the hyperactivity to
the vasoconstrictors, that is, to endogenous (norepine-
phrine, endothelin, vasopressin) or exogenous (alpha
agonists) ones reflect the impaired vasoconstrictor
response, which contributes to vasodilation [57]. Further-
more, it is conceivable that there might be different mech-
anisms underlying the hypereactivity to vasoconstrictors
in portal hypertension.

In this evolutive phase of prehepatic portal hypertension
in the rat, mainly two types of portosystemic collateral cir-
culation are established: splenorenal and paraesophageal
[58]. The development of the portal collateral venous sys-
tem is not only due to the opening of preexisting vessels,
but also to new vessel formation, which is a very active
process. Particularly, it has been shown that portal hyper-
tension in the rat is associated with vascular endothelial
growth factor (VEGF) induced angiogenesis [59] (Figure
3).

It is considered that portal vein stenosis does not produce
liver damage [43]. However, partial portal vein ligation in
the rat produces hepatic atrophy with loss of the hepatic
sinusoidal bed and it is the cause of elevated resistance to

portal blood-flow [52]. However, the degree of hepatic
atrophy at 6 weeks post-stenosis of the portal vein is not
homogenous and there are some cases in which the
hepatic weight increases in regards to the control rats [58].
The different evolution in hepatic weight in the rats with
prehepatic portal hypertension is an interesting finding
since it demonstrates the existence of a heterogeneous
hepatic response in this experimental model.

Evolutive phases of experimental prehepatic 
portal hypertension and the splanchnic 
inflammatory response
It has been suggested that the rat model of gradual portal
vein stenosis is much more homogenous than human
portal vein obstruction, because it has a narrow range of
portal hypertension, degree of portosystemic shunts and
hepatic atrophy [60]. However, PVL rats are far from hav-
ing a uniform evolution, since they can present a wide var-
iability in both hepatic weight (degree of liver atrophy)
[58] as well as in the type and degree of portosystemic col-
lateral circulation developed [49,58]. Furthermore, the
variability of this experimental model of prehepatic portal
hypertension is not only observed in short-term evolution
(14 to 28 days) which is where it is studied most, but also
in chronic evolutive stages (6 to 14 months) [61].

All of the variations presented by the animals after PVL,
aside from invalidating the experimental model and thus
disappointing the investigator, probably add complexity
and even more importantly, pose problems that are
tempting challenges for the investigator. It is also possible
that the knowledge of the etiopathogenic mechanisms
involved in the evolutive variability of this experimental
model will make it easier to understand the evolutive
characteristics of human portal hypertension [62].

The different mechanisms that contribute to the develop-
ment of prehepatic portal hypertension in the rat make it
possible to attribute different evolutive phases to this dis-
ease [48,49]. The study of the late evolutive phases could
be considered of greater interest since the mechanisms
involved in its production as well as the disorders that it
causes, would be more similar to those that have been
described in the human clinical features, since they are
related to the chronicity of portal hypertension, among
other factors [61].

One of the reasons that this prehepatic portal hyperten-
sion experimental model presents great evolutive variabil-
ity could be based on its inflammatory nature. If so, it
would be the individual variability of the inflammatory
response intensity, inherent to portal hypertension, which
would condition the different evolution in the animals. In
this way, the pathogenic mechanisms proposed for the
post-traumatic inflammatory response as phylogeny uni-

Types of portosystemic collateral circulation in rats with par-tial portal vein ligationFigure 3
Types of portosystemic collateral circulation in rats with par-
tial portal vein ligation. ML: middle lobe; LLL: left lateral lobe; 
RLL: right lateral lobe; CL: caudate lobe; AHV = Accesory 
Hepatic Vein; PP: paraportal; SMV: superior mesenteric vein; 
PR: pararectal; SV: splenic vein; ISR: inferior splenorenal; SSR: 
superior splenorenal; PE: paraesophageal; LK: left kidney; SR: 
suprarenal gland; LRV: left renal vein.
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fiers, and therefore for the category of generics [15], could
also participate in the production of the alterations asso-
ciated with portal hypertension.

Portal hypertension is essentially a type of vascular
pathology resulting from the chronic action of mechani-
cal energy on splanchnic venous circulation. This kind of
energy can stimulate the endothelium which, owing to its
strategic position, plays an exceedingly important role in
regulating the vascular system by integrating diverse
mechanical and biochemical signals and by responding to
them through the release of vasoactive substances,
cytokines, growth factors and hormones [9-11]. Mechani-
cal energy may also act in the vascular endothelium as a
stress stimuli, generating a inflammatory response [63]. If
it is considered, in the case of portal hypertension, that
there is an endothelial inflammatory response induced by
mechanical energy that affects the splanchnic venous cir-
culation and, by extension, the organs into which its
blood drains, it could be speculated that there is a com-
mon etiopathogeny that integrates the pathophysiological
alterations presented by these organs [18,62].

Several of the early as well as the late morphological and
functional disorders presented by the splanchnic organs
in experimental prehepatic portal hypertension make it
possible to suspect that inflammatory type mechanisms
participate in their etiopathogeny [5,6,18,62].

The evolution of portal hypertension as an inflammatory
response would be comprised of three phenotypes with a
trophic meaning, as previously proposed for the post-
traumatic inflammatory response [12-14]. In this
response, the ischemia-reperfusion phenotype (nervous
functional system) causes edema and oxidative and nitro-
sative phenotype (immune functional system), inflamma-
tory cells and bacteria are involved in the metabolic
activity through the development of enzymatic stress.
Lastly, the angiogenic phenotype (endocrine functional
system) would be predominated by angiogenesis and its
objective is tissue repair [5,6,18,62].

Enteropathy and encephalopathy are between the most
important splanchnic and systemic manifestations
derived from experimental portal hypertension. In both
anatomical sites, gastrointestinal tract and liver, inflam-
matory pathophysiological mechanisms come together to
produce complications characteristic of the PVL rats [18].

Portal hypertensive enteropathy
The gastrointestinal tract immediately and directly suffers
the sudden increase in venous pressure produced by the
PVL. In an early evolutive period, portal venous hyper-
pressure is highest [48,49] when portosystemic collateral
circulation has not yet developed, and the mucosa

ischemia is an immediate consequence of intestinal
venous stasis. The increase in mesenteric venous pressure
alters the distribution of blood flow within the bowel
wall, decreasing mucosal blood flow and increasing mus-
cularis blood flow. Mucosal hypoxia is related to the con-
striction of mucosal arterioles, meanwhile the dilation of
arterioles in the muscularis increases the blood flow in
this layer [64].

Ischemia/reperfusion injury is an important mechanism
of mucosal injury in acute and chronic intestinal ischemic
disorders [65]. Hypoxia in the intestinal mucosa causes
oxidative and nitrosative stress, but also through hypoxia
inducible factor-1 (HIF-1), it enhances the expression of
hypoxia responsive genes, and therefore improves cell sur-
vival in conditions of limited oxygen availability [63].

Two days after PVL in the rat, portal hyperpressure is asso-
ciated with intraperitoneal free exudates, peripancreatic
edema, hypoproteinemia and hypoalbuminemia. The
inflammatory nature of these alterations can be hypothe-
sized, since the oral administration of budesonide pre-
vents these early exudative changes [66]. The acute
inflammatory endothelial response can cause exudation
related to an endothelial permeability increase, which is
the cause of swelling and production of peritoneal exu-
dates in this early evolutive phase of portal hypertension
in the rat [66]. The inhibition of this inflammatory
response by budesonide would indicate the efficacy of this
steroid in the prophylaxis of this early acute response. It
could be speculated that budesonide produces a down-
regulation of the pro-inflammatory mediators partially
due at least to an inhibitory effect on the transcription fac-
tors that regulates inflammatory gene including AP-1 and
NF-κB, that is, through mechanisms similar to those that
also act with great efficiency on the allergic inflammatory
response to allergens [67,68].

And so we have shown that prophylaxis with Ketotifen, an
anti-inflammatory drug that stabilizes mast cells [69],
reduces portal pressure, the number of degranulated mast
cells in the cecum and the concentration of rat mast cell
protease II (RMCP-II) in the mesenteric lymphatic nodes
of rats with early prehepatic portal hypertension [70]. His-
tamine and serotonin stand out among mediators
released by mast cells and cause vasodilation and edema
due to increased vascular permeability [71]. Neutral pro-
teases may also regulate the tone of the splanchnic vascu-
lar bed and provoke edema and matrix degradation.
Particularly RMCP-II, considered a specific marker of rat
mucosal mast cell degranulation, can modulate the vascu-
lar function through their ability to convert Angiotensin I
to Angiotensin II. It also may promote epithelial permea-
bility. Angiotensin II is a powerful vasoconstrictor that
produces mucosal ischemia and also increases vascular
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permeability and promotes recruitment of inflammatory
cells into tissues [71]. Furthermore, both Angiotensin II,
which produces vasoconstriction and mucosal ischemia,
and RMCP-II, which increases intestinal permeability and
enhanced antigen and bacteria uptake, consequently
induced bacterial translocation to the mesenteric lymph
nodes where they would activate a "chemotactic call" to
mast cells and worsen inflammatory responses [71,72].
Therefore, Ketotifen could inhibit mast cell migration and
activation in the mesenteric lymph nodes and thus reduce
the release of mediators involved in the development of
the increased portal venous inflow that causes portal
hypertension in short-term PVL rats [70].

The intestinal effects of portal hypertension are not only
harmful, since in this case the sudden obstruction of the
portal venous flow would possibly cause death, which
normally does not occur [61,62]. So, in this early evolu-
tive phase, rats have reduced serum concentrations of
mediators considered pro-inflammatory, as are PGE2 and
LTC4 [73]. The migration of mast cells from the intestinal
mucosa to the lymph nodes can also be beneficial in order
to avoid the development of an "inflammatory battle"
mediated by mast cells in the intestinal mucosal layer
[18,73].

In a later evolutive phase (4 days) portal hypertension is
associated with features of hyperdynamic circulation. In
the first 24 hours after the operation, hypoxia in the
mucosa may stimulate the upregulation of e-NOS in the
intestinal microcirculation with NO hyperproduction.
This increase in eNOS expression occurs through VEGF
upregulation and subsequent AKT/proteinkinase B activa-
tion in highly vascularized areas of the mucosa, and might
initiate the cascade of events leading to hyperdynamic
splanchnic circulation in prehepatic portal hypertension
[74,75]. Therefore, the development of hyperdynamic cir-
culation occurs gradually from the initial stages of prehe-
patic portal hypertension in the rat and is associated with
the development of portosystemic shunting [74].

In prehepatic portal hypertension in the rat, bacterial
translocation is an early event. Two days after the PVL, it
has been demonstrated that a significant greater portion
of rats had positive mesenteric lymph node cultures [76]
(Figure 4) and coincides with the establishment of hyper-
dynamic and portosystemic splanchnic circulation [18].
Bacterial translocation to the superior mesenteric lymph
nodes is attributed to a bacterial overgrowth, disruption
of the gut mucosal barrier and impaired host defenses [77-
79]. In portal hypertensive rats related to other models of
portal hypertension, like CCL4, CBDL or TAA, the event of
bacterial translocation is also produced.

A microscopic splanchnic alteration that is usually present
in stenosed portal vein ligated rats is dilation and tortuos-
ity of the branches of the upper mesenteric vein. We have
called this alteration "mesenteric venous vasculopathy"
[61]. In early stages, four weeks postoperatory, mesenteric
venous vasculopathy could be attributed to the hyperdy-
namic splanchnic circulation [62].

Since 1985, when McCormack et al. [80] described hyper-
tensive gastropathy in patients with portal hypertension,

Microscopic images from mesenteric lymph node (1) corre-sponding to: AFigure 4
Microscopic images from mesenteric lymph node (1) corre-
sponding to: A. Control; B: Portal-hypertensive rats at 1 
month of evolution. In portal hypertensive-rats microorgan-
isms infiltrate significantly the lymph nodes (arrows). Gram 
stain ×100.
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successive histological studies on the remaining portions
of the gastrointestinal tract have demonstrated that alter-
ations similar to gastric ones are found in the duodenum,
jejunum, ileum, colon and rectum [81,82]. Since the basic
structural alteration found in the gastrointestinal tract is
vascular and consists of increased size and number of the
vessels, the very appropriate name of "hypertensive portal
intestinal vasculopathy" has been proposed [83]. How-
ever, in addition to vascular alterations, histological evi-
dence of non-specific inflammation has been described in
the gastropathy, enteropathy and colopathy associated
with portal hypertension [80-82]. The chronic inflamma-
tory infiltration found in the small bowel predominantly
consists of mononuclear cells and it is associated with
atrophy, a decreased villous/crypt ratio, edema of the lam-
ina propria/bowel wall, fibromuscular proliferation and
thickened muscularis mucosa [81,84]. Because most of
the aforementioned characteristics can be explained on
the basis of increased levels of mast cell mediators [71],
these cells could be involved in the pathogenesis of portal
hypertensive enteropathy [5] (Figures 5, 6 and 7).

Portal hypertensive rats at six weeks of evolution show
increased mast cell infiltration in the duodenum, jeju-
num, ileum and superior mesenteric lymph node com-

Etiopathogenic mechanisms in the successive phases of the hypertensive portal enteropathy in the ratFigure 7
Etiopathogenic mechanisms in the successive phases of the 
hypertensive portal enteropathy in the rat. Angiogenic phe-
notype.
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Etiopathogenic mechanisms in the successive phases of the hypertensive portal enteropathy in the ratFigure 5
Etiopathogenic mechanisms in the successive phases of the 
hypertensive portal enteropathy in the rat. Ischemia/Reper-
fusion phenotype.
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Etiopathogenic mechanisms in the successive phases of the hypertensive portal enteropathy in the ratFigure 6
Etiopathogenic mechanisms in the successive phases of the 
hypertensive portal enteropathy in the rat. Leukocytic phe-
notype.
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plex [85,86]. Mast cells are selectively found in relatively
large numbers adjacent to blood or lymphatic vessels but
are most prominent immediately beneath the epithelial
surface of the skin and in the mucosa of the genitourinary,
respiratory and gastrointestinal tracts, the latter having
greater density. This selective accumulation at tissue sites
where foreign materials attempt to invade the host sug-
gests that mast cells are among the first cells to initiate
defense mechanisms [87]. This function of mast cells,
especially in the gastrointestinal tract, which provides a
barrier against infection, could explain their increase in
the small bowel in rats with prehepatic portal hyperten-
sion [86]. Mast cells have the unique capacity to store pre-
synthesized TNF-α and thus can release this cytokine
spontaneously after their activation [88]. Therefore, the
excess number of mast cells in the small bowel and in the
mesenteric lymph node complex of rats with portal hyper-
tension could be related to their ability to release the
stored TNF-α when the appropriate stimulus is acting. It
has been hypothesized that TNF-α causes vasodilation
through both the prostaglandin and nitric oxide pathways
[88]. If so, the release of the stored TNF-α by activated
mast cells may be involved in the development of the
hyperdynamic circulatory syndrome [89]. To be specific,
hyperdynamic splanchnic circulation that increases portal
venous inflow would help to maintain long-term portal
hypertension which in turn produces dilation and tortu-
osity of the branches of the upper mesenteric vein, that is,
mesenteric venous vasculopathy [82].

The activation of the mast cells in the mesenteric lymph
nodes in rats with portal hypertension, would not only
collaborate in the production of mesenteric adenitis, but
also would constitute a source of mediators for the
inflammatory response between the intestine and sys-
temic blood circulation [86]. The lymph tissue associated
with the intestine constitutes the largest lymphatic organ
of the body and its activation in portal hypertensive enter-
opathy would produce the release of inflammatory medi-
ators. These would be transported by the intestinal lymph
vessels to the pulmonary circulation -inducing an inflam-
matory phenotype- and later to the systemic circulation.
The priority of mesenteric lymph node circulation with
respect to portal circulation for transporting pro-inflam-
matory mediators released in the intestinal wall in differ-
ent pathologies related to intestinal ischemia, such as
hemorrhagic shock or serious burns [90], suggests that in
other pathologies that also produce intestinal ischemia,
like prehepatic portal hypertension, the mesenteric lymph
is a regional pro-inflammatory mediator vehicle, that is, a
splanchnic one, but with a systemic effect [62] (Figure 6).

The ability of the mast cells for the synthesis and selective
or dedifferentiated release of different mediator molecules
of the inflammatory response would explain their partici-

pation in multiple and different pathological processes, as
well as in the different evolutive phases of prehepatic por-
tal hypertension. With respect to the splanchnic inflam-
matory response induced by portal hypertension, the
mast cells could participate in the initial or acute phases,
producing vasodilation, increased endothelial and epithe-
lial permeability, edema, increased lymphatic flow and
mesenteric adenitis, as in the more advanced, late or
chronic phases. In the last phases, the chemotactic factors
derived from the mast cells stimulate the proliferation of
fibroblasts and the synthesis of collagen. Meanwhile, his-
tamine and heparine promote the formation of new
blood vessels. Both fibrogenesis and angiogenesis are
responsible for fibromuscular and vascular proliferation
in the intestinal wall, respectively [62].

In portal hypertensive rats six weeks after the operation,
the increase in diameter and number of blood vessels in
the submucosa has already been shown in the duodenum,
which at the same time is correlated with the infiltration
by the mast cells [85]. Therefore, vasodilation and angio-
genesis which are responsible for the increase in size and
number of vessels, and in turn, for vascular structural
alterations that characterizes portal hypertensive enterop-
athy [81,83] can be attributed to, among other factors, the
pathophysiological effects produced by the excessive
release of mast cell mediators [85,86] (Figure 7).

Splanchnic hyperemia, increased splanchnic vasculariza-
tion and the development of portal-systemic collateral cir-
culation in portal hypertensive rats are partly a VEGF-
dependent angiogenic processes [59,91]. This angiogenic
hyperactivity that occurs in the prehepatic portal hyper-
tensive model could be mediated by mast cells [85,86].

There are multiple factors involved in the development
and enlargement of portosystemic collaterals, which regu-
late the collateral flow [5]. At two weeks of the postopera-
tory period, portal hypertensive rats develop splanchnic
hyperdynamic circulation with a derivation of 90% of the
portal blood flow through the portosystemic collaterals
[50]. Extrahepatic portosystemic collateral circulation per-
sists in the long-term [3, 6 and 12 months] [47,58]. How-
ever, in these chronic evolutive phases, although the
animals present collateral circulation, this is not always
associated with portal hypertension [61,62]. It has been
proposed that long-term vasculopathy in portal hyperten-
sive rats constitutes a remodeling process not associated
with portal hypertension [92].

The structural changes that are produced in the long-term
in prehepatic portal hypertension in the rat could be sim-
ilar to those described in other chronic inflammatory
processes. These morphological alterations would not
only be vascular, both macro- and microscopic, but also
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the rest of the intestinal structures would participate in
greater or lesser intensity [93]. In particular, the morpho-
logical vascular alterations stand out in chronic portal
hypertensive enteropathy. However, we have also
described epithelial remodeling, which consists in goblet
cell hyperplasia [94]. Goblet cell hyperplasia with mucus
hypersecretion is an alteration characteristic of epithelial
remodeling of the respiratory tract in chronic inflamma-
tory processes, as are asthma and chronic obstructive pul-
monary disease [95-97]. And so, goblet cell hyperplasia
could be attributed to chronic hypertensive portal enter-
opathy in the rat. [94].

Steatosis related to portal hypertension
One of the reasons why the prehepatic portal hyperten-
sion experimental model in the rat is far from having a
uniform evolution, is because it presents a wide variability
in hepatic weight [78,81].

The wide variation of hepatic weight presented by the por-
tal vein ligated rats in both early as well as late evolutive
phases suggests that the liver could be one of the factors
that determine the evolutive heterogeneity of this experi-
mental model [58]. If the animals are distributed accord-
ing to their hepatic weight in each evolutive phase, from
more to less, in three groups called A, B and C, a cluster
analysis shows that in early evolutive phases (6 weeks) of
experimental prehepatic portal hypertension, the percent-
age of animals with less hepatic weight is greater (group
C). On the contrary, in the late evolutive phases (6, 12 and
14 months) the percentage of animals with greater hepatic
weight (group A) increases progressively [61]. Thus, it
could be considered that the hepatic atrophy (group C)
that characterizes the early evolutive stages of prehepatic
portal hypertension in the rat may be a reversible altera-
tion in the long-term. It is significant that the animals
belonging to group A, although they are characterized by
the increase in hepatic weight, also present portosystemic
collateral circulation [58,61].

A histological study of the liver, performed in order to ver-
ify if the existence of a liver pathology could justify this
wide spectrum of liver weight, has demonstrated that
hepatocytic fatty infiltration exists in portal prehepatic
hypertensive rats [98]. It has also been verified in this
study that the fat accumulation in the hepatocytes pro-
gressives from a short- (1 month) to a long-term (1 year)
evolutive stage of portal hypertension, and thus the per-
sistence of etiopathogenic mechanisms involved in its
production could be considered [98]. Liver steatosis could
also be the cause of the hepatomegaly which characterizes
portal prehepatic hypertensive rats belonging to group A.
If so, it could be considered that partial portal ligation not
only makes it possible to obtain an experimental model of
portal hypertension but also a steatosis model (Figure 8).

Hepatic steatosis alone is thought to be the most common
form of nonalcoholic fatty liver disease (NAFLD) and is
considered "benign", but not quiescent. In this way, the
NAFLD spectrum is wide and ranges from simple fat accu-
mulation in hepatocytes (fatty liver), without biochemical
or histological evidence of inflammation or fibrosis, to fat
accumulation plus necroinflammatory activity with or
without fibrosis (steatohepatitis) to the development of
advanced liver fibrosis or cirrhosis (cirrhotic stage)
[99,100]. However, although a progressive hepatocytic
fatty infiltration during their chronic evolution is pro-
duced in partial portal vein ligated rats, this is not associ-
ated with histological signs of inflammation or fibrosis.
The hepatic steatosis could therefore be considered a
"benign" type of the larger spectrum of NAFLD in these
rats with prehepatic portal hypertension [98].

The mechanisms by which portal hypertension could
induce liver steatosis are not fully understood. In prehe-
patic portal hypertensive rats at 6 weeks of evolution, the
increase of TNF-α, IL1β and NO in the liver is associated
with megamitochondria [101]. The reduced portal flow
produced related to the portal stenosis could be involved

Liver steatosis in experimental prehepatic portal hyperten-sion (superior: 1 month after the operation; inferior: 1 year after the operation; H&E; ×40)Figure 8
Liver steatosis in experimental prehepatic portal hyperten-
sion (superior: 1 month after the operation; inferior: 1 year 
after the operation; H&E; ×40).
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in megamitochondria formation because hypoxia and
anoxia are known to induce magamitochondria [102] and
the mitochondrial function is impaired early by the extra-
hepatic portal obstruction in the rat [103]. Also, TNF-α
and TNF-related cytokines can contribute to the liver stea-
tosis because they stimulate hepatic lipogenesis and
increase the plasma levels of free fatty acids and triglycer-
ides [104]. Mitochondrial alterations are also produced by
NO. The increased synthesis of NO associated with reac-
tive oxygen species (O2 

-) induces peroxynitrite (ONOO-)
formation, which in turn inhibits various mitochondrial
respiratory chain complexes [105].

Possible factors involved in fat accumulation in the hepa-
tocytes also include components of the neuroendocrine
response to portal hypertensive stress, among others. Spe-
cifically, corticosterone and glucagon, which increase in
this experimental model, promote lipolysis in fat tissue
and a plasma increase of free fatty acids. Therefore, both
hormones could produce an excess "input" of fatty acids
to the liver [101]. Insulin resistance is the most constant
pathogenic factor in patients with a liver disease by fat
storage [106,107]. In portal hypertension, this resistance
can be induced by both glucocorticoids and TNF-α. Both
mediators would contribute to hepatic steatosis by this
mechanism because they would favor peripheral lipolysis
and the uptake and mass deposition of free fatty acids in
the liver [101].

Prehepatic portal hypertension in the rats, both in the
short- (1 month) and in the long-term (1 year) produce
hepatic accumulation of triglycerides and cholesterol
[108]. In the long-term (2 years), the plasmatic increase of
low density lipoprotein (LDL) and lipopolysaccharide
binding protein (LBP) is associated with the reduction of
high-density lipoproteins (HDL) and triglycerides. The
increased influx of free fatty acids beyond the metabolic
requirements leads to their storage as triglycerides, which
results in steatosis and provides substrate for lipid peroxi-
dation [109]. Since the accumulation of triglycerides and
cholesterol in the hepatocytes persisted in the long-term
evolutive stage of prehepatic portal hypertension, possi-
bly, the etiopathogenic mechanisms involved in its pro-
duction could also persist [108]. This persistence in the
alterations of lipid metabolism has characteristics that
could be related to the existence of a chronic inflamma-
tory hepatic state [100]. The association of fatty liver and
liver inflammation supports the etiopathogenis of other
diseases, such as type II diabetes, dyslipidemias, obesity
and metabolic syndrome [109]. In particular, the meta-
bolic syndrome consists of a cluster of metabolic condi-
tions, such as hyper-LDL, hypo-HDL, insulin resistance,
abnormal glucose tolerance and hypertension [110].
Interestingly enough, most of these metabolic conditions

have also been described in prehepatic portal hyperten-
sive rats.

Furthermore, the mechanisms that have been proposed in
order to explain the pathogeny of the fatty liver disease
also correspond with those expressed for the inflamma-
tory response [12-15]. The excess cellular oxidative and
nitrosative stress, mediated by ROS/RNS [110], the hyper-
activity of inflammatory cells in the liver, such as Kupffer
cells [111] and mast cells [112] and pro-inflammatory
cytokines stand out [113]. As a result, it could be consid-
ered that in prehepatic portal hypertension, as in obesity
and in the metabolic syndrome, the NAFLD represent the
result of a low-grade chronic inflammatory state
[100,113]. The establishment of a fatty liver could have a
similar meaning to what is proposed for the inflammatory
response. This would mean a regression to the periods of
evolution with metabolic characteristics that are similar to
those imposed by steatosis.

From an embryological point of view, the liver can be
thought of as a substitute of the yolk sac. In all vertebrates,
the liver develops in close association with the yolk sac
[114,115]; in cyclostomata and amphibia it develops
directly from it. In mammals the liver develops in close
association with the non-functional yolk sac, the placenta
temporarily takes the place of the intestine and the umbil-
ical vein assumes the role of the portal vein for some time
[114]. A major function of the yolk sac is associated with
the accumulation of fat [116]. The yolk sac plays a vital
role in providing lipids and lipid-soluble nutrients to
embryos during early phases of development [116,117].
Particularly, the yolk sac uses HDL and VLDL as carriers to
incorporate cholesterol from the maternal circulation and
to transfer it to the embryonic side [116]. In experimental
prehepatic portal hypertension, the liver could constitute
as a kind of yolk sac in which the animal carries out a
pathological deposit of lipids. In this hypothetical situa-
tion, through the expression of inflammatory mediators,
the liver would be able to regress to evolutive phases in
which the metabolic characteristics were suitable.

It has been proposed that the failure to upregulate fatty
acid oxidation systems and the ensuing burning of energy
in the liver may play a role in the modulation of hepatic
steatosis [118]. The liver could respond to portal hyper-
tensive stress with a transcriptional response that causes a
shift or transition to lipid metabolism by reducing burned
energy which leads to lipid storage [118]. In poikilother-
mic animals, with large fluctuations in their core temper-
ature, transcript profiles of liver also showed cold-induced
transitions to lipid metabolism [119]. Poikilotherms also
stored lipids in several storage organs, including the liver
[120]. Perhaps, by remembering the old poikilothermic
metabolism, through reorganization the lipid metabo-
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lism, the liver would develop a metabolic strategy in por-
tal hypertension.

Extra-splanchnic alterations in portal 
hypertension
Extra-splanchnic alterations are circumstantial in prehe-
patic portal hypertension and constitute the clearest argu-
ment in favor of its systemic nature.

* Portal hypertensive encephalopathy

Prehepatic portal hypertension in humans is associated
with neuropsychological and brain magnetic resonance
changes consistent with minimal hepatic encephalopathy
[121]. Since intrinsic hepatocellular disease does not exist
in this type of portal hypertension, the existence of a por-
tal-systemic bypass is the principal cause of minimal
hepatic encephalopathy. Consequently, this hepatic
encephalopathy is categorized as type B [122].

The partial portal vein ligated rat model could be appro-
priate for the experimental study of the minimal hepatic
encephalopathy related to prehepatic portal hypertension
because portal-systemic shunting is developed. Hence, it
should be considered that an associated hepatic pathol-
ogy exists [98].

The important role that inflammation has on the modu-
lation of the molecular pathogenesis of hepatic encepha-
lopathy has recently been highlighted [123,124].
Inflammation, however, may not only be limited to mod-
ulating the severity of hepatic encephalopathy but also
could indeed be its own pathophysiological mechanism
[125]. If so, inflammation of the central nervous system,
when related to prehepatic portal hypertension, could be
the basic mechanism that drives the essential nature of
minimal hepatic encephalopathy.

At one month of evolution, prehepatic portal hyperten-
sive rats present increased SDF-1 alpha levels in the hip-
pocampus and cerebellum associated with increased TNF-
α and CXCR4 levels in the hippocampus and decreased
RANTES levels in the striatum [126]. The increase of the
chemokine system CXCR4/SDF-1 alpha in the hippocam-
pus could be related to a remodeling structural process
since SDF-1 alpha is a pro-inflammatory cytokine that reg-
ulates neurodevelopmental processes in the central nerv-
ous system as well as neuronal migration [127].
Furthermore, the increase of SDF-1 alpha in the cerebel-
lum could regulate the neuronal rearrangement or neuro-
genesis [126].

Chemokines have a dual role as neurodegenerative or
neuroprotective molecules in the central nervous system.
In experimental portal hypertensive encephalopathy,
chemokines can contribute to creating an immune phase

in the hippocampus and cerebellum that does not neces-
sarily involve just harmful phenomena, but rather exerts a
beneficial remodeling effect. The objective would be to
adapt cerebral areas to the new metabolic state created by
portal hypertension [125]. At the same time, the brain
changes demonstrated in this experimental model of por-
tal hypertension could be related to the development of a
minimal hepatic encephalopathy [126].

It is now generally accepted that mast cells are present in
the normal brain in many mammalian species, including
humans and rodents. Since these cells, when activated,
could translocate from the splanchnic area to the central
nervous system [128] we have hypothesized that mast
cells would be involved in a splanchnic-brain chemokine-
mediated crosstalk [126].

Other alterations that have been described in this experi-
mental model could also be related to the establishment
of a low grade cerebral inflammatory response. These
include, for example, an altered blood-brain barrier per-
meability [129], neuro-endocrine alterations
[46,130,131] with a decreased uptake and an increased
release of norepinephrine [130], an upregulation of tyro-
sin hydroxilase activity [132], as well as astrogliosis and
angiogenesis in the hippocampus [133]. These functional,
biochemical and morphological alterations may possibly
help characterize portal hypertensive encephalopathy. In
the early evolutive phases, portal hypertension and porto-
systemic collateral circulation are important pathogenic
factors for the production of the encephalopathy. How-
ever, in later phases, both factors lose their initial leading
role, as the progression of hepatic steatosis is more and
more influential [134].

Cardiovascular and metabolic derangements in prehe-
patic portal hypertensive rats are related to pathologic
changes in regulatory mechanisms in the central nervous
system. Central deregulation, i.e. brain stem cardiovascu-
lar nuclei, contributes to blunted cardiovascular respon-
siveness in prehepatic portal hypertension [135]. Also the
anomalous metabolic response, characterized by steatosis
[98] can be attributed to altered homeostatic responses by
the brain-splanchnic axis [136-139].

* Hepatopulmonary syndrome

Two pulmonary vascular disorders can occur in liver dis-
ease and/or portal hypertension: the hepatopulmonary
syndrome, which is characterized by intrapulmonary vas-
cular dilations, and portopulmonary hypertension, in
which pulmonary vascular resistance is elevated [140].
The exact pathophysiological mechanisms of these pul-
monary vascular disorders are unknown. However, as
hepatopulmonary syndrome and portopulmonary hyper-
tension have been reported in patients with extrahepatic
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portal hypertension, the common factor that determines
their development must be portal hypertension
[140,141].

It is accepted that partial portal vein ligation in the rat
does not result in the development of hepatopulmonary
syndrome [142]. However, exogenous administration of
endothelin-1 to partial portal vein ligated rats increased
TNF-α levels, increased pulmonary cNOS production and
pulmonary intravascular macrophage accumulation, and
led to the development of hepatopulmonary syndrome.
These findings support an important role for increased cir-
culating endothelin-1 in the development of experimental
hepatopulmonary syndrome and suggest that endothelin-
1 and TNF-α have synergistic effects on the pulmonary
microvasculature in portal hypertension [143]. Taking
into account that these results have been obtained from
early stages of the hepatopulmonary syndrome, perhaps
there are other factors that condition its evolution in the
long-term.

The hepatopulmonary syndrome is a consequence of
abnormal angiogenesis of the pulmonary microcircula-
tion induced by portal hypertension [140]. Therefore, a
remodeling process is produced. Pulmonary remodeling
involves distal vessels and the vascular abnormalities
include increased numbers of dilated precapillary and
capillary vessels and precapillary arteriovenous communi-
cations [144]. Thus, the study of the implications of
abnormal angiogenesis in the pulmonary circulation of
long-term portal hypertension in rats, would contribute
very interesting information for evaluating this complica-
tion in the experimental model.

* Portal hypertensive kidney

Sodium retention along with peripheral vasodilation are
features of prehepatic portal hypertension. However, in
portal vein ligated rats, sodium retention occurs only
when a factor that produces decompensation is involved,
for example, a liver function-dependent factor [145].

The existence of peripheral vasodilation is an important
predisposing factor for developing prerenal failure in rats
with prehepatic portal hypertension. A factor that causes
extreme underfilling of the arterial circulation and there-
fore renal hypoperfusion in this experimental model
would favor the production of acute renal failure (pre-
ischemic state) [146]. If so, the hemodynamic alterations
affecting the kidney parenchyma associated with sodium
retention could represent a functional impairment similar
to that which affects other organs in Multiorgan Dysfunc-
tion Syndrome (MODS).

Portal hypertensive metabolic syndrome
In rats with prehepatic portal hypertension, the sum of the
splanchnic (hepato-intestinal) and extra-spanchnic (sys-
temic) alterations allows for proposing a hypothetical
portal hypertensive syndrome. During the evolution of
this syndrome, the hemodynamic changes that play the
leading roles in the early evolutive phases are replaced
later by the metabolic alterations.

Hyperdynamic splanchnic and systemic circulation are
early hemodynamic alterations in this experimental
model, and are associated with the development of porto-
systemic collateral circulation [48-50]. Hyperdynamic cir-
culation can achieve two objectives: the first, the
modulation of relative hypoxia that the tissues can suffer
when the blood flow is increased, thus reducing the time
needed for extracting oxygen. And second, the production
of a "splanchnic steal" phenomenon, progressive and
unyielding vasodilation [147] that leads to sodium and
water retention and increased blood volume. The body
essentially becomes salinized and hydrated.

Both objectives of hyperdynamic circulation could be
considered the result of an ischemia-revascularization
phenomenon, but a "masked" one since it essentially
would produce oxidative and nitrosative stress related to
the relative tissue hypoxia, and consequently hydration or
swelling [13,14]. Since the ischemia-revascularization
phenomenon has been considered the initial phase of the
systemic inflammatory response in serious injuries [13-
15], the pathogenic mechanisms involved in the splanch-
nic and systemic hyperdynamic circulation could repre-
sent triggering mechanisms of the systemic inflammatory
response, whether low or high grade, in experimental pre-
hepatic portal hypertension [62].

This systemic inflammatory response progresses through
the induction by oxidative stress to an acute response
phase. Since in these initial phases of prehepatic portal
hypertension, there is no significant degree of hepatic or
intestinal failure, both organs are capable of carrying out
an acute phase response that offers the suitable mediators
for continuing the inflammatory response already under-
way and for regulating the enzymatic tissue stress associ-
ated with this phase [62,148]. The hyperproduction of
chemokines, cytokines, cytokine receptors and adhesion
molecules in this phase, should also be modulated by the
acute phase splanchnic response [148-150]. The persist-
ence of oxidative and enzymatic stress makes the inflam-
matory response chronic.

The chronicity of such inflammatory response is perhaps
the fundamental factor so that more metabolic alterations
progressively develop. And as a result, the body adapts to
the new situation or state created by portal hypertension.
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Thus, in rats with prehepatic portal hypertension, tissue
remodeling processes are established in the long-term by
angiogenesis and fibrogenesis [93]. One of the most
important metabolic changes is hepatic steatosis
[98,101,108]. The impairment of the lipid metabolism in
this experimental model of portal hypertension confirms
the name that has been proposed for this system, since it
has certain similarities to the Metabolic Syndrome
[108,109]. In this sense, prehepatic portal hypertension,
in addition to the alterations of inflammatory nature pro-
duced in the hippocampus and cerebellum [126], is asso-
ciated with the impairment of spatial reference memory
[151]. All these alterations that have been described in the
Central Nervous System of this experimental model
[126,129,130,151] suggest that there is subclinical or
minimal encephalopathy [151]. The alterations in atten-
tion and memory that characterize this kind of encepha-
lopathy have also been described in human depression, a
physical and psychological disorder that affects every
aspect of human physiology [109]. The exact relationships
between lipid metabolism and immune abnormalities in
depression are still unknown [109,152] although it has
been suggested that patients with NAFLD and patients suf-
fering a depression are characterized by a low-grade sys-
temic inflammation [153].

Furthermore, the inflammatory response participates in
all stages of prehepatic portal hypertension in the rat, not
only during the initiation and first weeks of evolution, but
also in the long-term stages. In this hypothetical situation,
steatosis and dyslipidemia are thought to represent a com-
mon underlying factor of this syndrome, which features a
chronic low-grade inflammatory state.

This chronic inflammatory state in the rat with portal
hypertension could have splanchnic origin. In early evol-
utive stages, an increase in Fractalkine is produced in the
mesenteric lymph nodes, associated with increased intes-
tinal CX3CL1 [126]. Fractalkine (FKN/CX3CL1) is a
chemokine that combines a dual function and acts as an
adhesion and chemotactic molecule [154]. FKN is
involved in the pathogenesis of numerous chronic inflam-
matory conditions including inflammatory bowel disease
[155] and allergic asthma and rhinitis [156]. Considering
that levels of pro-inflammatory cytokines are high in the
mesenteric lymph nodes in portal hypertension, this
could explain the increased production of FKN, with the
recruitment of leukocytes and mast cells. Increased accu-
mulation and activation of mast cells in the mesenteric
lymph nodes could result in heightened and persistent
chemokine production and mast cell recruitment, and
therefore contribute to the chronicity of inflammation
[85,86].

FKN could play a crucial role in the initiation and progres-
sion of inflammation in portal hypertensive rats. And so,
the intestinal increase of CX3CL1, the unique receptor for
FKN, is likely to be implicated in stimulating angiogen-
esis. FKN stimulates angiogenesis by activating the Raf-1/
MEK/ERK and PI3K/Akt/eNOS/NO signal pathways via
the G protein-coupled receptor CX3CR1 [157]. By this
angiogenic activity, FKN could develop an important role
in the pathogenesis of the angiogenesis-associated inflam-
matory process, which characterizes hypertensive enter-
opathy [81-83].

Decompensation of the experimental portal 
hypertensive syndrome
Liver disease could be the most frequent factor for decom-
pensating portal hypertension. Particularly, chronic liver
disease and cirrhosis aggravate the portal hypertensive
syndrome exceedingly.

The most studied models of cirrhosis in the rat are those
achieved by extrahepatic cholestasis [44,158,159], by
administration of carbon tetrachloride (CCl4) [44,160] or
by administration of thioacetamide (TAA) [92,161].
Hepatic fibrogenesis is the common result of injury to the
liver. Furthermore, fibrosis is believed to be a critical fac-
tor that leads to hepatic dysfunction [162].

Hepatic dysfunction related to fibrosis or cirrhosis in the
rat would aggravate the grade of systemic inflammation
characteristic of prehepatic portal hypertension and as a
result would increase the incidence of complications.
Consequently, the vascular dysfunction or hyperdynamic
circulation with increased mesenteric blood flow would
get worse [163,164] and intestinal lymph flow would be
favored with and increased number of lymph vessels in
the small bowel [163]. The incidence of ascites (44), renal
failure [145], hepatopulmonary syndrome [142,165] and
hepatic encephalopathy [166,167] would also increase.

The disturbance of splanchnic blood flow may contribute
to an impairment of the intestinal barrier function and
thus bacterial translocation is produced [168] with
increased susceptibility to bacterial infections
[158,159,168].

A decreased anti-oxidant capacity of the liver plays an
important role in the pathogenesis of liver fibrosis or cir-
rhosis and portal hypertension [169-172]. That is why
anti-oxidants have been proposed as an adjunctive ther-
apy in the treatment of portal hypertension [170,172].
However, the deficient anti-oxidant capacity of the liver
when suffering from fibrosis or cirrhosis could also induce
the production of a systemic pathology. In this hypothet-
ical situation, in prehepatic portal hypertensive rats with
chronic oxidative stress and a low-grade inflammatory
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state, the reduction of the hepatic anti-oxidant capacity
would increase the intensity of the inflammatory systemic
response and add severity to this syndrome. Therefore, the
relationship between the liver anti-oxidative capacity and
the severity of the systemic complications could be more
important than the grade of splanchnic and systemic oxi-
dative stress. Aside from the degree of oxidative stress, the
reduction of the hepatic anti-oxidant capacity would
aggravate the intensity of the inflammatory response [18].

It is possible that another organ, like the endothelium,
associated with the progressive reduction of the anti-oxi-
dant capacity of the liver in the evolution of cirrhosis, tries
to make up for the deficit. In this case, the objective of
angiogenic systemic hyperactivity could be to reduce oxi-
dative and enzymatic stress associated with inflammation
[18].

Anti-inflammatory angiogenesis and chronic 
liver disease
Mammals, along with other aerobic organisms, have
evolved an array of mechanisms to protect themselves
from the potential harmful effects of reactive oxygen spe-
cies [173]. Oxidants are products of a normal aerobic
metabolism and the inflammatory response [173], so
their formation can't be avoided. The formation of reac-
tive oxygen species is, therefore, prevented by an efficient
anti-oxidant system made up of a group of compounds
with different properties and mechanisms [173,174].
These include enzymes, such as catalases, peroxidase and
superoxide dismutase, and repair enzymes, such as DNA
glycosylases, as well as water and lipid-soluble anti-oxi-
dants such as ascorbic acid (vitamin C), α-tocopherol
(vitamin E) and β-carotene [173,174]. Other molecules
that also have anti-oxidant properties are glutathione
[174] and albumin [175,176].

Multiple enzymes expressed in vascular cells are involved,
not only in the production but also in the elimination or
scavenge of reactive oxygen species, including superoxide
dismutases, catalase, thioredoxin reductase, glutathion,
peroxidase, NAD(P)H oxidase, xanthine oxidase, mye-
loperoxidase and endothelial oxide synthase [177]. Anti-
oxidants can modulate endothelium-dependent vasodila-
tion responses, the balance between pro- and anti-throm-
botic properties, the homeostatic endothelium leukocyte
interactions and the vascular apoptotic responses [178].
All of these functions are altered in the cirrhotic stage
[62,75]. That is why it can be considered that chronic liver
disease has a type of "endothelial dysfunction." This term
has been used to refer to a number of pathological condi-
tions involving the vascular endothelium, for example,
impairment of endothelium-dependent vasorelaxation,
altered anticoagulant-antithrombotic functions, anti-
inflammatory properties of endothelium and impaired

modulation of vascular growth with deregulation of vas-
cular remodeling [75,179]. This group of alterations have
been described in clinical and experimental cirrhosis
[41,75]. They are associated with portal hypertension and
[5,48,59,62], in essence, make up the pathophysiological
mechanisms that play the leading role in the evolutive
phases of the inflammatory response [12-15].

In the cirrhotic stage, the impaired modulation of vascular
growth with deregulation of vascular remodeling is a
pathophysiological mechanism that not only participates
in the production of splanchnic alterations (cirrhotic
liver, splenomegaly, enteropathy, portosystemic collateral
circulation) but also in different systemic alterations
(hepatic encephalopathy, hepatopulmonary syndrome,
portopulmonary hypertension, vascular spiders, digital
clubbing) [125,140,180,181]. The angiogenic response in
chronic liver disease contributes significantly to structural
splanchnic and systemic remodeling. Under physiological
conditions, endothelial cells are normally quiescent. They
replicate at a very slow rate. However, in pathological sit-
uations, endothelial cells can proliferate rapidly with a
turnover time of less than 5 days [179].

Angiogenesis associated with inflammation when the
anti-oxidant capacity of the cirrhotic liver fails could also
reflect the establishment of a substitute anti-oxidant
mechanism, which would explain its excessive response
and the extensive diffusion. The anti-oxidant, anti-enzy-
matic and anti-inflammatory properties of endothelium
[178] allow for suggesting that angiogenesis is a defensive
mechanism when the liver fails to produce anti-oxidant
molecules due to cirrhosis. In this sense, perhaps it may be
interesting to remember that the origin of vasculogenesis
relies on the yolk sac during embryonic development
[182]. In the embryo, the blood islands consist of hemat-
opoietic cells surrounded by endothelial cells and form
the distal part of the yolk sac. These endothelial cells of
the blood islands expand to cover the entire yolk sac form-
ing a vascular network, known as the capillary plexus
[182]. Interestingly enough, the yolk sac membrane is a
highly vascularized structure that transfers lipids from the
yolk sac to the embryo [183].

Inflammatory phenotypes in chronic hepatic 
disease in the cirrhotic patient
The study of experimental prehepatic portal hypertension
and its decompensation when associated with "hepatic
failure" offers results that could be extrapolated with cau-
tion to the evolution of patients with chronic liver disease
related to cirrhosis [38,39]. At the same time, the evolu-
tion and complications that these patients suffer suggest
the participation of the mechanisms characteristic of the
inflammatory response in their pathogeny. That is why
three pathological phenotypes could be distinguished
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during the evolution of chronic hepatic failure in human
clinical trials.

• Ischemia-revascularization phenotype, which has
hemodynamic alterations and oxidative and nitrosative
stress

• Leukocytic phenotype with predominant enzymatic
stress and acute phase inflammatory response.

• Angiogenic phenotype, that evolves early, and whose
objective is tissue remodeling

Ischemia-Revascularization phenotype
Splanchnic venous stasis related to increased intrahepatic
resistance could be the initiating factor of this phenotype.
This would be the origin of reflex responses within the
brain-splanchnic axis, mediated by the autonomic nerv-
ous system, the renin-angiotensin-aldosterone system and
the hypothalamic-pituitary-adrenal axis [34,41]. The acti-
vation of these systems would explain most of the hyper-
dynamic alterations related to splanchnic venous stasis
and therefore, also related to hypoxia, which imposes
blood stasis on the organs and tissues that drain the
splanchnic venous system [18,62].

The hyperdynamic circulatory syndrome that is produced
in chronic liver diseases has recently been called "Progres-
sive Vasodilatory Syndrome" because vasodilation is the
factor that brings about all the vascular changes and
finally leads to the multi-organ involvement observed as
a consequence of this hemodynamic change [56,184].

The mechanisms promoting vasodilation in the Progres-
sive Vasodilatory Syndrome are complex [56,184]. How-
ever, most of the mediators involved in their production
are shared by other systemic vasodilatory conditions as for
example, congestive heart failure and vasodilatory shock
[185-187]. This vasomotor systemic response is common
to several pathological conditions, and it has been pro-
posed that it could represent the first phase of the systemic
inflammatory response, since the establishment of an
ischemia-reperfusion phenomenon with blood flow
redistribution would be reflected [6,12-14].

In polytraumatized patients, prolonged and severe hypo-
tension are also the cause of vasodilatory shock [186] with
related or late multiple organ dysfunction or failure
[22,188]. Interestingly, it has also been suggested that the
gastrointestinal tract often represents the source for the
development of related multiple organ failure [189].

During the evolution of chronic hepatic disease, the fac-
tors that produce its decompensation and aggravate
hypoxia [1,190,191] (acute-over-chronic hepatic failure)

are also inducers of the hyperexpression of the ischemia-
revascularization phenotype. Thus, the hepatorenal syn-
drome is produced, which is characterized by sodium and
water retention with renal vasconstriction, resulting in
decreased renal blood flow, glomerular filtration rate, and
urinary output, which contribute to azotemia [39].
Another major complication includes ascites [192]. The
ascitic fluid total protein level typically has been used in
defining ascitic fluid as transudative (protein content less
than 2.5 g per dL) or exudative (protein content of 2.5 g
per dL or greater) [39](Figure 9).

Leukocytic phenotype
The alterations associated with this phenotype have
driven experts in chronic hepatic disease to support the
inflammatory nature of this disease [193-195].

Inflammatory phenotypes in the evolution of chronic liver diseaseFigure 9
Inflammatory phenotypes in the evolution of chronic liver 
disease.
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The immune response underlying the expression of the
leukocytic phenotype could also have a gastrointestinal
origin. The gastrointestinal tract mucosa contains the larg-
est reservoir of macrophages in the body. As effector cells,
intestinal macrophages, together with mast cells [86,87]
are part of the first-line defense mechanisms [196]. These
first-line mechanisms represent an ancient defense system
that arose perhaps a billion years ago in early multi-cellu-
lar organisms and are still used today in protozoa, insects,
plants and mammals [197]. Resident intestinal macro-
phages do not express innate response receptors but in the
inflamed mucosa, display a different phenotype and func-
tional pro-inflammatory profile [196]. Also epithelial
cells could be involved in the initiation and propagation
of intestinal inflammation in response to pathophysio-
logical stimuli in the cirrhotic patient since they alter the
permeability of the mucosa barrier [198]. The activation
of the splanchnic endothelium system by hypoperfusion/
hypoxia [190] would aggravate intestinal epithelium
injury and may favor the release of pro-inflammatory
mediators that can amplify the Systemic Inflammatory
Response Syndrome.

At the same time, a compensating response is produced
through the induction of a systemic acute and chronic
phase reaction, where the liver and intestine mainly par-
ticipate [199-202]. In this response, positive acute phase
proteins are produced which have the following proper-
ties: anti-oxidant (scavenging free radicals); anti-enzy-
matic (α1-anti-trypsin and α1-anti-chymotrypsin) and
anti-bacterian (opsonization and trapping of micro-
organisms and their products) properties [203].

If this defense capacity of the Systemic Acute and Chronic
Phase Reaction is overtaken, the intestine, as in the criti-
cally ill surgical patient, becomes an "undrained abscess"
[204,205] and the pathological gastrointestinal coloniza-
tion is associated with the development of infection
[39,193], sepsis and disseminated vascular coagulation
[206-208]. Also during the hyperexpression of this
immune response the lymphatic circulation would
acquire increasing importance and in the mesenteric
lymph nodes, cells able to present antigens (dendritic
cells, macrophages and mast cells), would broaden or
modulate the systemic splanchnic inflammatory response
[18] (Figure 7).

Angiogenic phenotype
Angiogenesis is defined as the growth of new vessels from
preexisting ones [209]. Although the final objective of
endothelial growth is to form new vessels for oxygen, sub-
strates and blood cells (vascular phase) other functions
could also be carried out before the new vessels are
formed (prevascular phase).

In the initial phases of the inflammatory response, the
new endothelial cells formed could have a function asso-
ciated with anti-inflammatory effects. That is, with anti-
oxidative and anti-enzymatic stress properties, favoring
the resolution as well as the progression of the inflamma-
tion [18].

Angiogenesis is essential for embryogenesis, tissue growth
and tumorigenesis. Also, it is been found to be central to
the progression of various chronic inflammatory condi-
tions including chronic hepatic disease [62,182,209]. In
particular, when inflammation is produced, endothelial
proliferation begins early and is controlled by a wide vari-
ety of positive and negative regulators, which are com-
posed of neurotransmitters, cytokines, chemokines,
adhesion molecules and growth factors [210]. Therefore,
all the mediators that characterize the three proposed
phases of the inflammatory response are regulators of the
endothelial growth. The tight overlapping between the
inflammation mediators and the newly formed endothe-
lial cells could reflect the functional importance of these
last phases in the progression of the inflammation. There
is considerable evidence to suggest that angiogenesis and
chronic inflammation are codependent [211].

In chronic hepatic disease, endothelial proliferation could
be associated with anti-inflammatory effects. In this hypo-
thetical situation, endothelial growth would represent an
ancient mechanism that the body uses to protect cellular
structures against oxidative and enzymatic stress [212].
This could mean the relation between angiogenesis, non
alcoholic fatty liver disease and metabolic syndrome in
portal hypertension.

Angiogenesis is critically dependent on the VEGF action,
but VEGF also plays a critical role in macrophage recruit-
ment and infiltration. Also, in concert with angiopoietin
1, VEGF may act to help maintain vascular integrity in adi-
pose tissue in a paracrine manner [213]. Therefore, in
lipid accumulation (metabolic switch), considered patho-
logical, a defense mechanism could arise that reduces the
harmful effects of oxidative stress in the body [214]. If
endothelial growth and intracellular lipid accumulation
are considered effective anti-oxidant mechanisms, their
inhibition in different pathological processes, including
portal hypertension, could have detrimental results if they
are not associated with an efficient anti-oxidant therapy
substitute. So, lipid replacement therapy administered as
a nutritional supplement with anti-oxidants can prevent
excess oxidative membrane damage, restore mitochon-
drial and other cellular membrane functions and reduce
fatigue [215].

This precarious balance between oxidative/enzymatic
stress and anti-oxidant/anti-enzymatic abilities that could
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characterize chronic liver disease, is difficulty decompen-
sated. Mainly the liver, due to its important anti-oxidant/
anti-enzymatic capacity when suffering functional dam-
age from fibrosis or cirrhosis, would aggravate the compli-
cations characteristic of portal hypertension and
consequently, would increase morbidity and mortality
[18].

Factors that are secreted mainly from the liver counteract
obesity and related insulin resistance, acting as endocrine
signals in the peripheral tissues to regulate metabolic
homeostasis [216]. On the contrary, its deregulation as
well as the increased levels of angiopoyetina 13, might be
involved in inducing hypertriglyceridemia and insulin-
resistance [215]. Therefore, hepatocyte-derived circulating
factors that regulate lipid metabolism might be involved
in the pathogenesis of the metabolic syndrome in portal
hypertension. It is important that angiopoietins play roles
not only in lipid metabolism, but also in hematopoiesis
and in angiogenesis [212,213,215], three functions that
are successively expressed by the liver during its embry-
onic development.

Angiogenesis participates actively in the remodeling proc-
ess that cirrhotic patients suffer, in which macrocircula-
tory (portosystemic collateral circulation) and
microcirculatory changes are produced in all tissues and
organs of the body. Increasing the catabolism of glycogen,
adipose fat and muscle proteins, the redistribution of
materials for remodeling is achieved. In this organic
restructuring, there could be more autophagic activity
[217]. Autophagic lipolisis and proteolisis would allow
for getting materials for the disproportionate systemic
angiogenesis, although at a high cost for the normal func-
tioning of the body. Thus, the patients, even in an early
and well-compensated stage of cirrhosis, can manifest
anorexia and weight loss, weakness and fatigue [38] (Fig-
ure 7).

These three phenotypes, ischemia-revascularization, leu-
kocytic and angiogenic, could represent the pathological
functions that are predominantly expressed during the
evolution of chronic liver disease. If the three phenotypes
are compared to the three pathological systemic functions
suggested to make up the systemic inflammatory response
[12-15], it could also be considered that they constitute
increasingly complex trophic functional phenotypes.
Thus, during the expression of the ischemia-revasculariza-
tion phenotype, a savings in energy and sodium through
hydration would be produced, which enhances nutrition
by diffusion (nervous functional system). The leukocytic
phenotype would favor tissue nutrition mediated by leu-
kocytes through symbiosis with bacteria (immune func-
tional system) and, finally the objective of the angiogenic
phenotype would be to reestablish nutrition mediated by

blood capillaries (endocrine functional system). Hence,
the successive expression of these phenotypes of increas-
ingly trophic functions during the evolution of chronic
liver disease would constitute the phenotypes characteris-
tic of a chronic systemic inflammatory response. In this
hypothetical situation, the incidence of harmful influ-
ences during their evolution could involve regression to
the most primitive trophic stages, where nutrition by dif-
fusion (ischemia-revascularization phenotype or func-
tional nervous system), which is simpler but also less
costly, facilitates temporary survival until a more favora-
ble environment makes it possible to initiate more com-
plex nutritional methods (leukocytic phenotype or
functional immune system and angiogenic phenotype
(functional endocrine system) [13,15]. Perhaps this is the
reason why the decompensation of cirrhotic patients
results in complications linked to the ischemia-revascular-
ization phenomenon with oxidative stress and edema, for
example acute chronic hepatic encephalopathy, ascites
and hepatorenal syndrome [39].

Hepatic fibrogenesis is the common result of injury to the
liver. This process is progressive and leads to hepatic dys-
function. In particular, the incapacity of the liver to pro-
vide the body anti-oxidant factors when the organism
returns to the metabolic stages characterized by a deficient
use of oxygen (ischemia-revascularization phenotype)
would prevent the progression of the inflammatory
response and therefore would favor the persistence of the
metabolic regression with progressive worsening of the
mentioned complications [18].

Since the phenotypes of chronic liver disease, like the
phases described for post-traumatic inflammation [13-
15] go from ischemia to a progressive oxygenation, it is
also tempting to speculate on whether the body repro-
duces some of the successive stages by which life passes
from its origin without oxygen until it develops an effec-
tive, although costly, system for the use of oxygen [218].
If so, the successive metabolic switches that the body suf-
fering chronic liver disease undergoes, allows it to survive
until a more favorable environment makes it possible to
initiate a more complex oxidative metabolism. The
hypothesized capacity of the body to involute, dedifferen-
tiate or return to early stages of development could consti-
tute an effective defense mechanism against injury since it
would make it possible to retrace a well known route,
which is, the prenatal specialization phase. However, it
has the disadvantage that it tries to develop its morpho-
functional specialization although the aggression from
harmful factors is not interrupted. Meanwhile, efficient
anti-oxidant mechanisms are established (portal hyper-
tension, cirrhotic liver) without the functional support of
the placenta [219].



Theoretical Biology and Medical Modelling 2007, 4:44 http://www.tbiomed.com/content/4/1/44

Page 20 of 25

(page number not for citation purposes)

The persistence in the expression of old metabolic states,
linked to the deficient use of oxygen, could be associated
with the accumulation of metabolites that in ancient evo-
lutive states favored life. Today, some of these metabolic
mechanisms are still used by fishes, amphibians and rep-
tiles to survive the extremes of oxygen availability [220].
And so, it has been proposed that our species evolved
under "colder, drier and higher" conditions and that is
why these adaptations may represent the "ancestral" phys-
iological condition for humans [221,222]. Therefore, in
portal hypertension and chronic liver disease, the meta-
bolic alterations that are produced could have been bene-
ficial in the past. For example, the predominance of the
lipid metabolism with the accumulation of cholesterol, a
precursor molecule of many hormones like progesterone,
corticoids, aldosterone, androgens and estrogen; the
establishment of ancient anti-oxidant mechanisms, like
sulphydryl compounds, hydrogen sulfide (H2S) and glu-
tathione [223] and the heme-oxigenase 1 system [224];
the hyperproduction of NH4, a prebiotic metabolite, and
its relation to the ancient use of the electron acceptor N to
reduce this gas to NH3 [225]; or the hyperactivity of the
fermentation pathways associated with insulin resistance
[106].

The progressive specialization in the use of oxygen can be
considered one of the pathways for understanding the
successive metabolic stages that play leading roles in life
on earth from its anaerobic origin through today. The
hypothesis that atmospheric oxygen concentrations
affected the timing of the evolution of cellular compart-
mentalization by constraining the size of domains neces-
sary for communications across membranes has been
suggested [226]. This points towards a key role for oxygen
in the increased abundance and size of receptors over time
[226]. It also adds to a growing body of literature connect-
ing atmospheric oxygen levels with macroevolutionary
changes, most recently with complexity in metabolic net-
works and cell types [226,227].

In summary, the pathology considered to be the expres-
sion of ancestral biochemical functional systems could
support the information needed for better understanding
how life evolved on earth, mainly involving five elements:
hydrogen, carbon, nitrogen, sulfur and oxygen [225,228].
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