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Abstract Inflammation is a cellular response to factors

that challenge the homeostasis of cells and tissues. Cell-

associated and soluble pattern-recognition receptors, e.g.

Toll-like receptors, inflammasome receptors, and comple-

ment components initiate complex cellular cascades by

recognizing or sensing different pathogen and damage-as-

sociated molecular patterns, respectively. Cytokines and

chemokines represent alarm messages for leukocytes and

once activated, these cells travel long distances to targeted

inflamed tissues. Although it is a crucial survival mecha-

nism, prolonged inflammation is detrimental and

participates in numerous chronic age-related diseases. This

article will review the onset of inflammation and link its

functions to the pathogenesis of age-related macular

degeneration (AMD), which is the leading cause of severe

vision loss in aged individuals in the developed countries.

In this progressive disease, degeneration of the retinal

pigment epithelium (RPE) results in the death of photore-

ceptors, leading to a loss of central vision. The RPE is

prone to oxidative stress, a factor that together with dete-

riorating functionality, e.g. decreased intracellular

recycling and degradation due to attenuated heterophagy/

autophagy, induces inflammation. In the early phases,

accumulation of intracellular lipofuscin in the RPE and

extracellular drusen between RPE cells and Bruch’s

membrane can be clinically detected. Subsequently, in dry

(atrophic) AMD there is geographic atrophy with discrete

areas of RPE loss whereas in the wet (exudative) form

there is neovascularization penetrating from the choroid to

retinal layers. Elevations in levels of local and systemic

biomarkers indicate that chronic inflammation is involved

in the pathogenesis of both disease forms.
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Introduction

Overview of inflammation

Inflammation is a rapid response mounted by the cell to a

threat of imminent danger. Inflammation is intended to

eliminate foreign or damaged material, and to signal to

other cells that there is a danger in order that they can

initiate a broader immune response. Later, it should initiate

tissue recovery. Monocyte-derived phagocytizing innate

immune cells of myeloid origin which are present in many

tissues, such as macrophages, microglia, and Kupffer cells,

play a key role in the initiation of inflammation and

recently, the capacity of granulocytes to initiate inflam-

mation has been recognized [1]. Also other cells are

involved in the induction of inflammation; e.g. epithelial

cells which until recently were thought mainly to provide a

mechanical barrier [2]. Inflammation can be induced by a

wide variety of signals, ranging from microbes and other
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foreign material to mechanical tissue injury and autoanti-

gens. A threat becomes recognized by pattern-recognition

receptors (PRRs). From the short-term point of view,

inflammation is highly advantageous, e.g. when it is a

response to microbial infection or mechanical injuries, but

long-term inflammation is detrimental. Prolonged low-

level inflammation has been linked with the development

of various chronic conditions, such as cancer, diabetes,

autoimmune diseases, as well as several obesity-related and

neurodegenerative diseases [3, 4].

Age-related macular degeneration (AMD)

AMD is a progressive eye disease that has been linked

with several pathological factors, i.e. chronic oxidative

stress, autophagy decline, and inflammation [5–10]. It is

the most common reason for irreversible vision impair-

ment in aged individuals in the developed countries where

refractive errors, cataract, and glaucoma are now effi-

ciently treated. Early AMD is usually asymptomatic,

although retinal pigment epithelium (RPE) mottling and

extracellular drusen deposits between RPE cells and

Bruch’s membrane can be clinically detected in the cen-

tral posterior pole of the eye [6] (Fig. 1). Bruch’s

membrane is a five-layered sheet lying over the highly

vascularized choroid, and it makes contacts with both

vascular endothelium and RPE. The accumulation of

drusen increases an individual’s risk of developing

advanced AMD. AMD is subdivided into two types, dry

and wet AMD forms, also known as geographic atrophy

and exudative AMD, respectively (Fig. 1). In wet AMD,

the RPE produces excessive amounts of vascular

endothelial growth factor (VEGF), and this contributes to

the breakdown of the blood-retinal barrier and sprouting

of fragile blood vessels from the choroid through Bruch’s

membrane into the retina in a process called neovascu-

larization. Leakage of blood from these abnormal vessels
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bFig. 1 a A schematic transverse section through the human eyeball.

The macula is located in the posterior pole of the eye. In the center of

the macula, a shallow depression in the retina (the fovea) marks the

area with the highest visual acuity. Light enters the eye and bends to

the sensory retina in the fovea by passing through the transparent

media including cornea, lens, and the vitreous body. The sensory

retina converts light into nerve impulses, processes the information,

and sends it along the visual pathway to the visual cortex. b A normal

human retina. A colored photograph of the fundus from the left eye of

a healthy subject. The macula is located in the center of the retina. c A

cross-section of the normal macula. An OCT scan through the fovea

of the healthy left eye reveals the normal organization of the retinal

layers. Normal anatomy of the fovea is important for accurate central

vision. Modern OCT is an important in vivo tool for ophthalmologists

since it allows them to monitor different pathologies non-invasively

in this important but tiny and cell-dense location. d A fundus

photograph from the left eye of an individual with dry AMD. This

demonstrates the presence of numerous yellow deposits, known as

drusen, in the central macula. e A cross-section of the macula from an

individual with dry AMD. The OCT scan through the fovea of the left

eye shows three drusen under the RPE layer. This eye would be

expected to suffer from image distortion, as central drusen are prone

to reshape the normal foveal pit. Large drusen are associated with

decreased visual acuity and disruption of energy homeostasis in the

retina. f A fundus photograph from the right eye of an individual with

wet AMD. Significant macular edema and exudates together with

foveal hemorrhage occur but only small sparse drusen are present

centrally. g A cross-section from the macula in the right eye of an

individual with wet AMD. An OCT scan through the location of the

fovea shows the formation of intraretinal fluid cysts in the fovea.

Edema causes the foveal pit to disappear. The local retinal swelling in

wet AMD is due to the leaky, abnormal vessels sprouting from the

underlying choroid. Intraretinal edema disrupts the normal retinal

layer organization and leads to a retinal dysfunction. The OCT scan

reveals also a potential hemorrhage and fibrotic lesion development in

the fovea. This is another typical finding in wet AMD, likely to result

in a permanent central visual field loss, if left untreated. AMD age-

related macular degeneration, OCT optical coherence tomography,

RPE retinal pigment epithelium
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causes oedema and an acute loss of vision [11, 12]. As the

world’s population ages, the global burden of AMD will

increase, posing a huge burden on the health care system

[13–15]. Therefore, efforts have been made to resolve the

pathophysiology of AMD and to develop effective treat-

ments. During the recent decade, the management of the

wet AMD has advanced dramatically due to the arrival of

anti-VEGF therapies [16]. Currently, there are several

different forms of effective intravitreal treatment avail-

able for decelerating the progress of wet AMD but

unfortunately no such advances have been made in the

treatment of dry AMD, the disease type that accounts for

the majority (up to 90 %) of cases [17–20]. A reduction of

intracellular inflammation in conjunction with the pre-

vention of RPE and photoreceptor loss all have central

roles in programmes developing novel therapy options for

AMD [21].

Retinal pigment epithelium in the pathogenesis

of AMD

The RPE, a single-cell layer at the posterior part of the eye

plays a significant role in the pathogenesis of AMD. RPE

cells are responsible for many tasks in the eye including

maintaining the functionality of the overlying photore-

ceptor cells, protection of the retina from excessive light,

formation of blood-retinal barrier in conjunction with the

vascular endothelium, and immune defence of the central

retina (macula) [22, 23]. A functional degeneration of the

RPE results in impaired maintenance of sensory retina,

which contributes to the vision loss in advanced AMD. The

photoreceptors most severely affected are located in the

macular area, which is responsible for the accurate vision

and colour detection and therefore AMD greatly impairs

the ability of an elderly patient to lead an independent life

[6, 24]. In addition, scotomas developing in the central

vision field also distort the ability to see pictures, e.g.

causing a disturbance in reading, dialing numbers and

facial recognition.

Due to its high metabolic activity and the associated

abundant oxygen consumption, its high contents of

polyunsaturated fatty acids and substantial exposure to

light, the RPE is especially sensitive to excessive oxidative

stress [25, 26]. One of the major functions of RPE is the

autophagic degradation of spent tips of photoreceptor outer

segments (POS) in a process called heterophagy [22, 25].

Continuous ingestion of POS material by non-dividing and

aging RPE cells results in the accumulation of an

undegradable and autofluorescent metabolite called lipo-

fuscin in lysosomes, which inhibits autophagy by blocking

the function of lysosomal enzymes, i.e. it combines

oxidative stress with retinal inflammation [10, 25, 27].

Pattern-recognition receptors

Cells recognize various endogenous and exogenous

pathogen- and damage-associated molecular patterns

(PAMPs and DAMPs, respectively) through their evolu-

tionarily conserved pathogen recognition receptors (PRRs)

[28]. There are several cell-associated PRRs, e.g. Toll-like

receptors (TLRs), receptor for advanced glycation end

products (RAGE) [29–32], NOD-like receptors [NLRs;

nucleotide-binding domain, leucine-rich repeat-containing

(NBD-LRR) proteins], C-type lectin receptors (CLRs),

retinoic acid-inducible gene (RIG)-I-like receptors (RLRs),

and cytosolic DNA sensors [28, 33, 34]. Once the receptor

is activated by its ligand, it rapidly induces the activation of

complex intracellular signaling pathways to produce pro-

inflammatory mediators [34]. PRR signaling also induces

the expression of co-stimulatory molecules (e.g. CD40,

CD80, or CD86) contributing to the conversion of different

types of T cells, and promoting the activation of dendritic

cells such that they become capable of presenting foreign

peptides to lymphocytes and trigger the activation of

adaptive immunity [35].

TLRs

TLRs were the first PRRs to be discovered in the mid-

1990s [33]. These are transmembrane proteins capable of

recognizing a multitude of extra- and intracellular patho-

gens [33]. TLRs 1, 2, 4, 5, 6, and 10 are expressed on the

cell surface, whereas TLRs 3, 7, 8, and 9 reside inside the

cell [34, 36]. TLRs contain a ligand-sensing leucine-rich

repeat (LRR) domain, a transmembrane domain, and a

cytoplasmic Toll/IL-1 receptor (TIR) domain, and the

receptors function as either homo- or heterodimers [33, 36]

(Fig. 2). Roughly, TLR signaling can be divided into

MyD88-dependent pathways that result in the production

of pro-inflammatory cytokines, and TRIF-dependent sig-

naling that aims at producing type I interferons in response

to viral infections [33] (Fig. 2). Although TLR signaling

results in the secretion of inflammatory cytokines,

chemokines, type I interferons, and antimicrobial peptides,

its crosstalk with other PRRs, such as membrane-bound

CLRs, and cytosolic NLRs and RLRs, is important in the

regulation of immune responses. One good example of

PRR collaboration is the activation of inflammasome sig-

naling. TLR signaling produces the pro-forms of

inflammasome-dependent cytokines IL-1b and IL-18,

which remain inactive in the cytoplasm until a second

signal is sensed, e.g. by NLRs, leading to the maturation

and secretion of these cytokines after inflammasome

assembly and caspase-1-mediated proteolysis [37].

Inflammation and its role in age-related macular degeneration 1767

123



RAGE

RAGE (receptor for advanced glycation end products) has

been compared to TLRs because of its presence on the

plasma membrane as well as its pro-inflammatory func-

tions mediated through NF-jB signaling [31]. As a

member of immunoglobulin superfamily, it also promotes

leukocyte recruitment to inflamed tissue by functioning as

an endothelial adhesion receptor [29, 30]. Originally,

RAGE was considered to be a receptor for advanced gly-

cation end products (AGEs), non-enzymatically glycated or

oxidated biomolecules [29–31]. Subsequently, also other

ligands, such as those released from dying cells or injured

tissue, have been observed to be recognized by RAGE [32].

Those factors include the normally nuclear high mobility

group box 1 protein (HMGB1) and calcium-binding S100

proteins. Interestingly, RAGE can also be activated by b-

amyloid, which is a compound closely associated with the

development of neurodegenerative disorders, such as Alz-

heimer’s disease and AMD [32, 38].

CLRs

C-type lectin receptors (CLRs) are calcium-dependent

PRRs that were originally thought to respond only to car-

bohydrates [39]. Nowadays, the CLR family also includes

proteins that do not necessarily sense carbohydrates, but

contain one or more domains homologous to the carbo-

hydrate recognition domains of traditional CLRs. CLRs

can be divided into two types of cell-associated and one

type of soluble receptors [39]. The transmembrane recep-

tors can be further divided into group I and group II CLRs

that belong to the mannose and asialoglycoprotein receptor

families, respectively. The activation of CLRs induces

complex intracellular signaling cascades and can interact

with processes mediated by other PRRs.

NLR

To date, at least 23 human NLRs have been identified [40].

NLR proteins can be divided into four subfamilies

according to their N-terminal domains. These receptors

commonly contain three main domains: (1) N-terminal

acidic transactivation domain (NLRA proteins), baculovi-

ral inhibitory repeat (BIR)-like domain (NLRB proteins),

caspase recruitment domain (CARD; NLRC proteins), or

pyrin domain (PYD; NLRP proteins) that either recruit

adaptor, intermediary, or effector components for down-

stream signaling; (2) central NBD (nucleotide-binding

domain) or NACHT (NAIP, CIITA, HET-E, and TP1)

domain that is responsible for the activation-induced

oligomerization; (3) the ligand-sensing C-terminal LRR

(leucine-rich repeat) domain [41]. There is an evidence

suggesting that at least nine human NLRs (NLRP 1, 2, 3, 6,

7, 12, NLRC4, NAIP5, and NOD2) are able to regulate

caspase-1 activation and IL-1b/IL-18 processing [40, 42–

48], and NLRP1, NLRP3, NLRC4, and NAIP5 have been

associated with the inflammasome activation in a broader

sense (Fig. 3). Other NLRs exert variable functions, e.g.

regulation of antigen presentation (NLRC5 and CIITA),

inhibition/modulation of inflammation (NLRC3, NLRPs 6

and 12, NLRX1), and embryonic development (NLRPs 2,

5, and 7) [49].

NLRP3

At present, NLRP3 [NALP3, cryopyrin, caterpillar-like

receptor 1.1 (CLR1.1), CIAS1, PYPAF1] is the best-char-

acterized inflammasome receptor (Fig. 4). In resting cells,

its expression is low at both the mRNA and protein levels,

but it is induced by several priming signals, e.g. mediated

by TLRs, NODs, or cytokine receptors [50]. NLRP3 has a

versatile recognition capacity in that it can sense both

endogenous and exogenous factors and these can be bio-

logical, chemical, or physical in their nature [37, 51].

Following the ligand sensing, NLRP3 protein changes its

conformation and becomes oligomerized (Fig. 4). There-

after, pro-caspase-1 binds the complex through the adaptor

protein ASC [52, 53]. The assembly of the active inflam-

masome results in the auto-activation of caspase-1, which

subsequently cleaves the pro-inflammatory cytokines IL-1b

and IL-18 into their mature and secreted forms (Fig. 4).

Fig. 2 Major aspects of TLR signaling. Ligand recognition by LRR

domains triggers the dimerisation of TLR proteins. MyD88 and TRIF

are the principal adaptor proteins interacting with intracellular TIR

domains and mediating the activation of transcription factors, such as

NF-jB and IRFs for the production of pro-inflammatory cytokines

and type I interferons. IRFs interferon regulatory factors, LRR

leucine-rich repeat, MyD88 myeloid differentiation-primary response

gene 88, NF-jB nuclear factor kappa B, TIR Toll/IL-1 receptor

domain, TRIF TIR-domain-containing adaptor inducing IFN-b
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Other inflammasome-related PRRs

When it was observed that all cytosolic DNA does not

become sensed by NLRP3, additional DNA sensors were

sought. In 2009, four research groups arrived at the same

conclusion, i.e. they all found that AIM2 (absent in mela-

noma 2) acted as an intracellular dsDNA sensor, whose

activation also leads to the formation of the inflammasome

[54–57]. In contrast to other DNA sensors, such as DAI

(DNA-dependent activator of IFN-regulatory factors) and

one other PYHIN protein, IFI16 (interferon gamma-in-

ducible protein 16), AIM2 does not mediate the type I IFN

production [58, 59]. IFI16 is also a DNA sensor capable of

assembling inflammasomes but it seems to specialize in

searching for nuclear intruders, whereas AIM2 detects

foreign DNA in the cytoplasm [54, 56, 57, 60, 61]. IFI16

has two HIN domains and a PYD domain, whereas AIM2

possesses only one HIN domain [62] (Fig. 3). RIG-I-like

receptors (RLRs) are intracellular sensors that recognize

cytosolic RNA derived either from viral infection or

repeated replication [63] (Fig. 3).

Inflammasomes become activated in AMD

Inflammasome activation in the RPE was reported for the

first time in 2012 [64–66]. In all studies so far, NLRP3 has

been the responsible receptor in RPE cells and it is

Fig. 3 Pro-inflammatory inflammasomes. Four NLRs, two DNA

sensors, and an RLR are currently the most well-known inflamma-

somes that promote inflammation by resulting in the release of

inflammatory mediators. Receptors lacking the CARD domain are

dependent on the adaptor protein ASC for their interaction with pro-

caspase 1, which becomes activated by autocleavage into 20 and

10 kDa subunits by the complex assembly

Fig. 4 Overview of the NLRP3

inflammasome. Ligand

recognition through LRR

domains results in a

conformational change and

oligomerization of NLRP3

receptor proteins (a).

Thereafter, the adaptor protein

ASC binds NLRP3 by PYD–

PYD interactions (b). Binding

of pro-caspase-1 to ASC

through CASP–CASP

interactions promotes

autocleavage and thereby

activation of the caspase-1

enzyme (c). Finally, caspase-1

cleaves the pro-inflammatory

cytokines IL-1b and IL-18 into

their mature and secreted forms

(d)
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activated by a variety of inducing agents including lipo-

fuscin and drusen components e.g. N-retinylidene-N-

retinylethanolamine (A2E) and amyloid-b [67, 68]. Fib-

rillar Ab1–40 can contribute to inflammasome signaling,

for example by inducing the complement activation and

MAC formation [69]. The ultimate mechanism remains to

be clarified but in primary human lung epithelial cells,

MAC triggered NLRP3 inflammasomes by increasing the

intracellular Ca2? concentration with the subsequent loss

of the mitochondrial transmembrane potential [70]. There

are many other danger signals for NLRP3 inflammasomes

in the RPE, e.g. accumulation of Alu RNA, the appearance

of the lipid peroxidation end product HNE (4-hydrox-

ynonenal), as well as the presence of intracellular protein

aggregates accompanied by a decline in the efficiency of

autophagy [9, 64, 66]. UV radiation cannot reach the adult

retina but blue light (peaking at approx. 450 nm) is a

potential inflammasome activator also at the retinal level

[71]. A recent study revealed an interesting mechanistic

link between excessive iron and AMD, showing that iron

accumulation resulted in increased levels of short inter-

spersed nuclear elements (SINEs), such as the NLRP3

agonist Alu RNA [64, 72]. Iron overload has been associ-

ated with the AMD-related tissue damage although the

previously recognized mechanism has been linked to the

induction of oxidative stress via the Fenton reaction that

produces highly reactive hydroxyl radicals [73]. Further-

more, the iron-catalysed free radical-mediated production

of 7-ketocholesterol (7KCh) from cholesterol has been

shown to be capable of activating NLRP3 inflammasomes

in the RPE [74]. Although details remain still largely

sketchy, all three main mechanisms involving P2X7-de-

pendent signaling, lysosomal destabilization, and oxidative

stress have been shown to participate in the activation of

NLRP3 also in the RPE-related inflammasome assembly

[64–67, 75–77].

In addition to RPE, the inflammasome activation in the

immune cells accumulating in the retinal area can con-

tribute to the pathogenesis of AMD [65, 74, 78, 79]. For

example, peripheral myeloid leukocytes responded by

activation of the NLRP3 inflammasome after exposure to

the C1q complement component and other drusen frag-

ments extracted from the AMD eyes [65]. Mouse

mononuclear cells deficient of cx3cr1 gene autoactivated

the inflammasome signaling in an ATP/P2X7-dependent

manner and thereby promoted photoreceptor toxicity [78].

The oxysterol 7KCh accumulating in the choriocapillaris,

Bruch’s membrane, and RPE layer induced even greater

inflammasome-mediated cytokine production in microglia

and macrophages than in RPE cells [74]. The exposure of

microglia to sublethal concentrations of 7KCh can also

lead to NLRP3 inflammasome-mediated activation and

polarization of microglia towards the M1 phenotype [79].

When those cells were transplanted into the subretinal area,

they were capable of promoting CNV (choroidal

neovascularisation).

Although RPE and retinal inflammatory cells can pro-

duce both inflammasome-dependent cytokines, the

cytokine release can be biased towards either IL-1b or IL-

18. In human ARPE-19 cells, HNE stimulated the pro-

duction of both cytokines, whereas treatment of the cells

with the proteasome inhibitor MG-132 and the vacuolar

H? ATPase inhibitor, bafilomycin A favoured the release

of IL-1b [9, 66]. Microglia and macrophages showed

preferential production of IL-1b rather than IL-18 after an

exposure to 7KCh, whereas in RPE cells the situation was

reversed [74]. When one considers the propensity of 7KCh-

treated microglia to promote CNV in the subretinal space,

it could be argued that IL-1b may be involved in the

pathological neovascularization process. This is in line

with the evidence that IL-1b promoted the production of

VEGF, whereas the release of IL-18 was inversely corre-

lated with the amount of secreted VEGF [65, 80–83]. IL-18

has been proposed to be protective in wet AMD [65, 75,

82] but detrimental for geographic atrophy [64, 84, 85], but

the overall situation needs to be fully clarified [86–89]. In

therapeutic terms, one would wish to achieve a substantial

inhibition of inflammasome activation. Some attempts have

been made to arrest the inflammasome signaling in the

RPE, e.g. by blocking the priming phase with vinpocetine,

a compound that inhibits the activity of NF-jB, or by

preventing pro-caspase-1 processing by administering a

virally transduced CARD domain of the adaptor protein

ASC [90, 91].

Soluble PRRs

In addition to many cell-associated receptors, there are also

soluble pattern recognition molecules, such as circulating

complement components and pentraxins. Activation of

complement triggers a cascade of protease reactions pro-

ducing opsonins, membrane pore complexes, and pro-

inflammatory mediators [92]. There are three different

ways to induce complement activation but all of them

result in the formation of a complex called C3 convertase

that cleaves component C3 into C3a and C3b [93]. C3b

binds to C3 convertase forming C5 convertase, which in

turn cleaves the complement component C5 into C5a and

C5b [92]. Components C5a and C3a are called anaphyla-

toxins due to their ability to promote inflammation [92].

They can attract and activate mast cells, and act directly on

blood vessels to increase their permeability and induce the

production of adhesion molecules [94, 95]. C5a also

recruits neutrophils and monocytes to the site of inflam-

mation and activates these cells once they are in position
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[93]. C3a tends to attenuate rather than inducing the LPS-

induced endotoxemia activating primarily other granulo-

cytes than neutrophils [96, 97]. In conjunction with MAC,

C3a and C5a can also contribute to inflammasome signal-

ing [98–102].

Pentraxins are evolutionarily conserved pattern recog-

nition molecules that are often divided into two groups

according to their length. Short pentraxins CRP (C-reactive

protein) and SAP (serum amyloid P) are the primary acute

phase proteins in humans and mice, respectively [103,

104]. Production of CRP and SAP in the liver results from

the systemic consequences of the actions of several potent

pro-inflammatory cytokines, such as IL-6 and IL-1. PTX-3

is an example of a long pentraxin, produced locally by

different types of cells, e.g. endothelial cells, fibroblasts,

adipocytes, chondrocytes, and mononuclear phagocytes, in

response to various pro-inflammatory signals, such as IL-

1b, TNF-a, and LPS [103, 104].

Inheritable predisposition to AMD is strongly

associated with alterations in the genes encoding

complement factors

Complement factor H polymorphism is a major

genetic risk factor for AMD

Evidence emerging from recent studies has indicated that

about half of the variation in the severity of AMD is

explained by genetic factors [105]. Interestingly, a signif-

icant proportion of the AMD heritability is associated with

the genes of the immune system, especially those coding

for complement components [105]. The Y402H (Tyr402-

His) variant of the complement factor H is the best-known

genetic risk factor for AMD [106–109]. This mutation is

related to AMD susceptibility especially in Caucasians,

whereas another missense mutation of CFH, I62V (Ile62-

Val), is more prominent in Asian populations [110]. CFH is

a glycoprotein composed of 20 short consensus repeats

(SCR), whose main function is to inhibit the activation of

the alternative complement pathway [111].

The acute phase protein C-reactive protein (CRP) is one

of the many binding partners of CFH. Previously, SCR-7

and SCR-8/11 have been proposed as being domains cap-

able of interacting with CRP but Okemefuna et al.

challenged those results when they evaluated the properties

of denatured CRP protein which had been used in earlier

studies [111]. When these workers used functionally active

proteins, they were able to confirm that SCR-6/8 could bind

to CRP, and they identified SCR-16/20 as a new domain

responsible for the CRP binding. Since the Y402H sub-

stitution is located in the SCR-6/8 domain, its presence

results in weaker binding properties of CFH to CRP [111,

112]. Therefore, RPE-choroid cells of homozygous Y402H

AMD patients are less well protected from the increased

levels of CRP. The Y402H polymorphism does not, how-

ever, affect the binding of CFH to PTX3, whose primary

and secondary binding sites are SCR19 and SCR7,

respectively [113]. Malondialdehyde (MDA) is another

binding partner of both SCR7 and SCR20 segments in

CFH. MDA is common lipid peroxidation product that

forms protein adducts capable of inducing inflammation

and RPE damage [114, 115]. There are at least three

strands of evidence for an association between oxidative

stress and complement activation in the pathogenesis of

AMD (1) phagocytosized oxidized POS material can dis-

turb the synthesis and the secretion of CFH in RPE cells,

(2) the inability of the H402Y variant to generate anti-

inflammatory iC3b components on MDA-loaded surfaces,

(3) the finding that oxidative stress can regulate the

expression of CFH and CFB [116–119]. Rohrer et al. also

showed that oxidative stress predisposed RPE cells to

complement-mediated injury and they later confirmed that

alternative pathway of complement was needed to observe

the ER stress and lipid accumulation by cigarette smoke

and oxidative stress [120, 121]. By binding MDA, CFH

could prevent the uptake of MDA-modified proteins by

macrophages and block the induction of inflammation, but

the H402Y polymorphism disturbed that binding process

[115]. A chimeric mouse model was developed by

expressing mutated SCR-6/8 of human CFH in the middle

of murine CFH SCRs. It was found that RPE cells in these

animals displayed an increased susceptibility to oxidative

stress, elevated accumulation of MDA–protein adducts in

the retina, higher amounts of activated microglia cells/-

macrophages in the subretinal space, and upregulated pro-

inflammatory genes in the RPE, microglia, and macro-

phages [122]. Activated macrophages have also been found

to be capable of regulating the expression of complement

factors in RPE cells, and especially M1-type macrophages

may promote the activation of the alternative pathway

under inflammatory conditions [123].

AMD-related variations in other complement factor

genes

AMD-related genetic variations have also been detected in

the complement factors 3 (C3), and I (CFI) [124–130].

Moreover, alterations in the gene of serpin peptidase

inhibitor, clade G, member 1 (SERPING1), that regulates

the activation of the complement system, have been asso-

ciated with an increased risk of AMD [131]. Aging, pro-

inflammatory cytokines TNF-a and IFN-c, as well as

extended exposure to POS material increase the expression

of CFB in the RPE, which can promote AMD-associated

neovascularization [118, 132, 133]. In combination with
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the accumulation of the C3 component, it has been reported

that increased production of CFB by RPE cells also con-

tributes to increased complement activation in the retina

[118]. The findings that some point mutations in the C2 and

CFB genes have been found protective against AMD

support the hypothesis that there is an association between

complement system and AMD [134–137].

The importance of complement activation has been

emphasized especially in the development of wet AMD.

The C3a, C5a, and MAC complexes found in subretinal

drusen plaques have been linked to increased expression of

VEGF and the formation of CNV [120, 138]. In addition,

the production of CFB is itself sufficient to promote neo-

vascularization, at least in the widely used animal model of

wet AMD, where laser photocoagulation of RPE and

Bruch’s membrane induces CNV [133]. It has also been

reported that this treatment not only induces the production

of VEGF and attracts leukocytes to the injured tissue but

also activates the complement cascade [138]. Consistent

with the observations of activation, the complement regu-

latory protein, CD59, a protein that prevents the MAC

formation, is capable of inhibiting the CNV process [139,

140]. In addition to highlighting the role of the drusen, it

has been postulated that oxidative stress-induced phos-

pholipid-containing neoepitopes become recognized by

autoantibodies, and the formation of these pathological

complexes can trigger the complement activation, resulting

in VEGF secretion and CNV [141].

Complement factors can promote AMD also by acti-

vating inflammosome signaling [65]. In addition to

enhancing inflammation, the C3a produced by RPE cells

can induce the formation of basal deposits [142]. Amyloid-

b which can be found in the drusen is capable of harnessing

recruited macrophages and microglia to produce cytokines

that induce CFB formation in the RPE [143]. The promo-

tion of pro-inflammatory environment is also involved in

the pathological effects of cigarette smoke when it induces

C3a and C3b, especially in the absence of Nrf2 [144]. By

regulating the production of IL-1b and IL-6, C3a and C5a

can also promote Th17 differentiation and IL-17 produc-

tion, which have recently emerged as potential players in

adaptive immunity in the pathology of both wet and dry

AMD [98, 145–149].

AMD-related genetic variation in the immune

system is not entirely restricted to complement

factor genes

There are other central immune system components asso-

ciated with the genetic susceptibility to AMD e.g. the

chemokine (fractalkine) receptor CX3CR1 and chemokine

CCL-2 (C–C motif ligand 2; monocyte chemotactic protein

1, MCP-1). CX3CR1 is a double-edged sword—it can

confer protection or cause destruction, depending on the

tissue and pathophysiologic conditions [150]. There is

convincing evidence suggesting that the normal function of

CX3CR1 would be to protect from AMD rather than to

cause the disease [151–155]. The protective role of

CX3CR1 might result from its supportive functions, such

as the regulation of retinal microglia and its tendency to

diminish the expression of CCL2 and thereby the recruit-

ment of pro-inflammatory CCR2? monocytes to the retina

[155, 156]. Cx3cr1GFP/GFP murine monocytes were shown

to contribute to photoreceptor degeneration by stimulating

the autonomous activation of P2X7 receptors and IL-1b

secretion through spontaneous ATP release [78]. These

findings suggest that CX3CR1 would play a significant role

in maintaining tissue homeostasis, a process which has

been termed as parainflammation [157, 158]. Genetic

variants V249I (Val241Ile) and T280M (Thr280Met) of

CX3CR alter the binding of fractalkine by circulating

leukocytes and along with other age-related diseases, this

defect has been associated with the development of AMD

[151, 159–162]. There are also contradictory results, i.e. no

evidence for altered function of CX3CR1 in the patho-

genesis of AMD [163–165]. A number of association

studies have been performed using double knock-out mice

lacking both Cx3cr1 and Ccl2 genes [152–155, 163] but

their findings have been questioned since many transgenic

mice carry the rd8 (retinal degeneration 8) mutation in

their Crb-1 (crumbs-like 1) gene that also results in retinal

degeneration [164, 166, 167]. Subsequent studies have

found contradictory results when using mice that do not

carry the Crb-1/rd8 mutation, although they have provided

further evidence that mice with the rd8 background still

develop an RPE-related pathology reminiscent of AMD

[154, 163, 164, 168, 169]. However, in a recent pooled

analysis from five prospective human studies, no unam-

biguous association could be detected between common

CX3CR1 variants and AMD [165]. Instead, the effect of

CX3CR1 variants was found to depend on several factors,

such as diet, obesity, and the presence of predisposing

variants of the complement components [165]. This con-

clusion is not surprising in view of the well-known

multifactorial nature of AMD pathogenesis.

In addition to the double-knockout mouse model, there

are also mice lacking only the Ccl2 gene. Several studies

performed using those animals, have indicated that the

absence of CCL2 evokes changes typical of AMD, and this

could also be an indication of a failed parainflammatory

response [170, 171]. However, a study conducted with

AMD patients and control subjects from The Netherlands

and the US, detected no associations between CCL2,

CCR2, or TLR4 and AMD [172].
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Inflammatory response

Activation of their PRRs causes cells to secrete cytokines

and chemokines, e.g. IL-1b, IL-6, TNF-a, IL-12, and IL-8

[CXCL8; chemokine (C-X-C motif) ligand 8], to which

other cells respond (Fig. 5). The local effects of IL-1b and

TNF-a include the activation of endothelial cells, which is

one of the most prominent processes at the beginning of

inflammation [173]. Endothelial cell activation is charac-

terized by increased expression of leukocyte adhesion

molecules, cytokines, growth factors, and HLA molecules

[174, 175]. Moreover, in order to prevent the spreading of a

potential pathogen, their phenotype changes from

antithrombotic to prothrombotic [174]. Subsequently, the

permeability of blood vessels increases and circulating

leukocytes begin to make contact with the adhesion

molecules expressed by endothelial cells [175] (Fig. 5).

Leukocytes reach their target location at the site of

inflammation by following the increasing chemokine gra-

dient, finally leaving the circulation and moving towards

the damaged tissue [176] (Fig. 5). It is not only white blood

cells that enter the inflamed tissue but also fluids and

various plasma proteins gain access to these sites of tissue

damage [175]. Together they induce the typical signs of

inflammation, i.e. rubor (redness), tumor (swelling), calor

(heat), and dolor (pain) [177]. Later, functio laesa (im-

paired function) and fluor (secretion) have also been

suggested as being other characteristics of inflammation

[177, 178].

IL-8 or CXCL8 was the first chemokine to be charac-

terized; this compound attracts neutrophilic granulocytes

that are the first effector cells to reach the site of inflam-

mation [173, 179, 180] (Fig. 5). Other CXC chemokines,

such as KC (keratinocyte-derived chemokine; CXCL1) and

MIP-2 (CXCL2) also participate in the recruitment of

neutrophils [180]. Neutrophils are efficient phagocytes and

important in destroying microbes if they are the cause of

the acute inflammation. Activated neutrophils kill patho-

gens in several ways (1) by producing reactive oxygen

species, (2) by releasing active peptides, and (3) by form-

ing extracellular fibers called neutrophil extracellular traps

(NETs) through the release of granule proteins and chro-

matin [181, 182]. NETs not only bind microbes, preventing

them from spreading and ensuring that there are high local

concentrations of antimicrobial agents but these fibers can

also promote adaptive immunity and function even in

sterile inflammation [181, 183]. It is this active interaction

with other immune cells that broadens the significance of

neutrophils in innate and adaptive immunity [184]. Neu-

trophils also regulate angiogenesis by producing VEGF

[180, 185].

Monocytes follow neutrophils to inflammatory foci and

once embedded in the tissues, they differentiate to mac-

rophages or dendritic cells depending on local conditions

Fig. 5 Initiation of the inflammatory response. Recognition of

PAMPs and DAMPs by PRRs triggers intracellular signaling resulting

in the production of pro-inflammatory cytokines and chemokines. The

released mediators contribute to the activation of endothelium, e.g.

elevated expression of adhesion molecules and increased vascular

permeabilization. Circulating leukocytes interact with adhesion

molecules expressed by endothelium, slow down their speed and

start rolling along the endothelial layer. The chemokine gradient

which originates from the inflamed tissue becomes sensed by

leukocytes that start expressing integrins to permit their tighter

binding to endothelial cells. Finally, leukocytes leave the circulation

to seek out the inflamed tissue where monocytes differentiate into

macrophages and dendritic cells according to the local conditions
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with cytokines, growth factors, and possible microbial

components [186, 187] (Fig. 5). Macrophages and den-

dritic cells are efficient antigen-presenting cells (APCs)

that can internalize particulate antigens e.g. derived from

pathogens or dying cells [188, 189]. After binding the

antigen, cells migrate from inflamed tissue to local lymph

nodes where they present it to other cells of the immune

system and TNF-a is involved in promoting the transition

of these antigen-presenting cells [188, 189]. The cells of

adaptive immunity assist innate immune cells in coping

with the inflammation but also make the responses more

specific in order to prevent collateral damage to healthy

cells in the vicinity of the inflamed tissue [190].

Macrophages are very flexible cells changing their

phenotype and functions depending on the environment in

which they find themselves [191]. An inflammatory

environment favors M1 macrophages that produce high

levels of pro-inflammatory cytokines, such as (pro)IL-1b,

TNF-a, IL-6, IL-12, as well as inducible nitric oxide

synthase (iNOS) leading to the Th1-type immune

response [192, 193]. The so-called classically activated

M1 macrophages become activated by IFN-c and TNF-a.

IFN-c can be produced by natural killer (NK) cells during

innate immune responses, and by T helper 1 (Th1) and

cytotoxic CD8? T lymphocytes during adaptive immune

responses, whereas antigen-presenting cells (APCs),

including macrophages themselves, are efficient in pro-

ducing TNF-a [191, 192].

Th2-type cytokines IL-4 and IL-13 are direct activators

of the M2 macrophages [194]. Those cytokines can be

secreted by many different cell types including innate and

adaptive immune cells, epithelial cells, and tumor cells. In

addition to playing important roles in physiological events,

such as homeostasis, wound healing, and tissue repair, the

actions of M2 macrophages have been implicated in

pathological processes, such as inflammation, hypersensi-

tivity, or choroidal neovascularization [191, 194, 195].

However, the inflammation associated with M2 macro-

phages is not as intense as that induced by their M1

counterparts. For example, M2 macrophages are inefficient

in antigen presentation, and they have rather poor capa-

bilities for eliminating intracellular pathogens, nor do they

evoke the production of Th1-type proinflammatory

cytokines or toxic oxygen and/or nitrogen radicals [196].

M2 macrophages are also poor at dealing with infections

caused by intracellular pathogens [191]. Moreover, while

the propensity of M2 macrophages to secrete extracellular

matrix components certainly helps in wound healing, in

chronic conditions, it also predisposes to pathological

fibrosis [191, 194]. In addition to neutrophils, the

chemokines released by M2 macrophages attract and acti-

vate also other granulocytes, i.e. basophils, eosinophils,

and mast cells. These cells are known to participate in the

typical Th2-type responses; i.e. the beneficial actions, e.g.

combatting parasite infections but also in detrimental

effects, such as evoking allergies and hypersensitivity

reactions [194].

In addition to distributing the subdivision into M1 and

M2 cells, there is a third functional class of macrophages—

so-called regulatory macrophages, which have been clas-

sified as a subgroup of M2 macrophages [196]. Similar to

the M1 cells, regulatory macrophages can produce high

levels of nitric oxide (NO), express the co-stimulatory

molecule CD86, and present antigens to T lymphocytes

[196]. However, regulatory macrophages promote the Th2-

type response by producing high amounts of IL-10,

whereas M1 cells favor Th1-type reactions by releasing IL-

12 [196]. IL-10 is an anti-inflammatory cytokine and

therefore, regulatory macrophages are thought to attenuate

inflammation [191]. A great many different signals, such as

immune complexes of antibodies and soluble antigens,

prostaglandins, glucocorticoids, apoptotic cells, and IL-10,

can contribute to the activation of regulatory macrophages

[191]. In addition to priming, a subsequent signal, e.g.

mediated through a TLR is needed for their full activation

[191].

Aging induces changes in the immune system

Immunosenescence is a term used to describe altered

immune functions during aging. Despite the apparent

slowdown of many functions, the term dysfunction with

respect to immunosenescence is somewhat misleading.

Instead of a total loss of the function, aging alters the

functions of the immune system so that it no longer

resembles the immune system of the young individuals.

Simultaneously with a reduction in the naı̈ve T cell pool,

there is an increase in the numbers of memory T cells,

especially those of CD8? T cells that have lost their CD80

and CD86-binding co-stimulatory molecule CD28 [197,

198]. The increased memory T cell numbers have been

postulated to result from an attempt to maintain the cell

count in balance, but this may lead to the exhaustion of

remaining T lymphocytes with limited replicative capacity

[199]. The loss of CD28 expression is accompanied by an

age-dependent de novo induction of prototypic NK cell

receptor CD56 on non-dividing senescent T cells [200].

In addition to quantitative and qualitative changes

appearing in T cells, age-related modifications in the B cell

pool contribute to unsuccessful vaccination responses, as

well as to the increased frequency and greater severity of

infections [198]. Other unfavorable changes include

decreased amounts of mature human B cells, diminished

reactivity to T cell-dependent antigens, and a deficiency in

class switch recombination.
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The functions of the major innate immune effector cells,

such as neutrophils, monocytes, macrophages, and den-

dritic cells also undergo age-related modifications. Those

include changes in the PRR expression, aberrant signaling

and disturbed cytokine production, as well as decreased

migration, phagocytosis, and killing of ingested micro-or-

ganisms [201]. For example, the diminished capacity of

neutrophils to phagocytize pathological particles and the

failure to induce a respiratory burst to destroy ingested

material accompanied by an inability to undergo apoptosis

can contribute to prolonged inflammation. Furthermore, it

is known that the clearance of apoptotic cells by macro-

phages is diminished [202].

Inflammation is clearly present in the AMD

pathology

Increased oxidative stress, reduced proteostasis, and ever-

increasing dysfunctionality are just some of the stress

factors that can induce inflammation in aged RPE cells.

The concurrent attenuation of protective mechanisms, e.g.

antioxidant responses and DNA repair systems, further

amplify the destructive effects and promote the conversion

of what should be a protective response into a chronic and

deleterious pathological process.

Drusen serve as inflammatory nodes

in the pathogenesis of AMD

RPE cells are the origin of numerous components found in

drusen deposits; in conjunction with pigment mottling,

these are the first clinical signs detectable in the AMD [25,

203–205]. Subretinal drusen resemble the extracellular

deposits found in Alzheimer’s disease, amyloidosis,

atherosclerosis, elastosis, and dense deposit disease [38,

206, 207]. Drusen are known to contain many potentially

damaging constituents including lipids, lipoproteins, RPE-

derived cellular debris, e.g. organelles, melanin granules,

and lipofuscin, amyloid-b, apolipoprotein E (APOE),

clusterin, serum albumin, crystallin, tissue metallopro-

teinase inhibitor 3 (TIMP-3), and oxidation by-products, as

well as numerous inflammation-related factors, such as

complement components, immunoglobulins, HLA mole-

cules, and acute phase proteins like vitronectin, fibrinogen,

a1-antichymotrypsin, and pentraxins [208–218]. Elevated

oxidative processes, stressed autophagy, and increased exo-

and transcytosis in RPE cells have been associated with the

formation of drusen between the RPE and the choroid

layers [219, 220]. Moreover, there is solid evidence sug-

gesting that chronic low-level inflammation and

complement activation play major roles in the formation of

drusen [212, 217, 221–226]. Isolated drusen material has

also been proven to be pro-inflammatory through the

activation of both traditional and the more recently dis-

covered signaling systems, such as NF-jB and the

inflammasome pathways, respectively [65, 68, 90, 227].

Leukocytes contribute to the pathogenesis of AMD

Retinal microglia and recruited macrophages play an

important role in parainflammation, i.e. the maintenance of

tissue homeostasis and the clearance of debris from the

subretinal space [158, 228, 229]. Aging induces changes in

the immune system, which also alters the function of

leukocytes. For example, the increased activity of matrix

metalloproteases (MMPs) enhances the cleavage of FasL

on the cell surfaces resulting in a limited apoptosis of

invading inflammatory cells [195, 230–233]. Soluble FasL

also recruits M2-type macrophages that promote neovas-

cularization [195, 234]. In a healthy eye, M2 macrophages

in particular confer protection from degenerative changes

but in AMD, also the proportion of pro-inflammatory M1

macrophages increases and the stress becomes over-

whelming [235, 236]. After disrupting the homeostasis of

the eye, the accumulation of immune cells causes more

harm than benefit. The altered conditions may also change

the effects of cytokines depending on the stimulant. For

example, Wu et al. have demonstrated how the anti-in-

flammatory cytokine, IL-10, can inhibit M1 but not M2

macrophage-derived VEGF production in a context-de-

pendent manner [237].

Although normally associated with healthy aging, an

inflammatory environment also alters the functionality of

senescent T cells. Increased numbers of CD56? T cells

have been detected in the blood of AMD patients when

compared to aged control subjects [238]. Elevated numbers

of CD56? lymphocytes have been associated with many

autoimmune diseases, such as rheumatoid arthritis, Beh-

çet’s uveitis, psoriasis, and systemic lupus erythematosus

[239–242]. Regardless of the numerous autoimmunity-re-

lated markers, such as anti-retinal and anti-RPE

autoantibodies and diverse contributions of IL-17, AMD

cannot simply be designated as an autoimmune disease

[145, 146, 243–248]. Changes in the CD56? T cell levels

do not only occur in autoimmune disorders but have also

been detected, e.g. in the coronary artery disease, a con-

dition that shares various risk factors and biomarkers with

AMD and may even predispose to the disease [249, 250].

Systemic inflammatory biomarkers of AMD

The multitude of inflammation-related plasma proteins in

the drusen refers to the involvement of systemic

immunological processes in the pathogenesis of AMD.

Some research has been conducted with urine samples

Inflammation and its role in age-related macular degeneration 1775

123



[251] but most putative biomarkers have been investigated

in peripheral blood, serum, or plasma. For example,

increased levels of complement components have been

assayed in the blood of AMD patients [252–255]. Elevated

levels of regulatory proteins, such as CD21 (complement

receptor 2), CD35 (complement receptor 1), CD46 (mem-

brane cofactor protein, MCP), CD55 (decay-accelerating

factor, DAF), or CD59 (protectin), may resemble increased

complement activity but a significantly lower expression

can be evidence of dysregulated control [256, 257].

Instead, the lack of association between AMD and SNPs in

CFP (properdin), CD46, CD55, and CD59 suggests that the

gene variants of those regulatory proteins do not increase

an individual’s susceptibility to AMD [258]. In contrast,

AMD patients with the homozygous CC variant of the

Y402H substitution in CFH displayed higher systemic

concentrations of central pro-inflammatory cytokines IL-6

and TNF-a when compared to heterozygous CT or non-risk

TT variants [259]. Both of these cytokines can promote

pathological changes in the RPE [260–262]. TNF-a also

reflects the activity of T lymphocytes and macrophages that

are known to be associated with the pathological changes

of AMD [263–267]. In particular, macrophage-derived

TNF-a and IL-1b might serve as biomarkers for choroidal

neovascularization [263, 264]. In addition, macrophage

activation may also result in the release of MMPs, and

increased plasma levels of these enzymes have been

detected in AMD patients [268]. The association between

elevated systemic IL-6 levels and AMD has been supported

by several other studies [269–271] although contrasting

results have also been published [272].

The acute phase protein, CRP, has been one of the most

widely studied putative blood biomarkes for AMD. Despite

the somewhat inconsistent findings, one meta-analysis

conducted by Hong et al. in 2011 from 11 studies (nine

cross-sectional and two prospective) with almost 42,000

participants revealed that those subjects with serum levels

of CRP higher than 3 mg/l had a twofold higher likelihood

of late AMD in comparison to those subjects having CRP

levels lower than 1 mg/l [273]. The pooled analysis of five

large prospective nested case–control studies reported by

Mitta et al. in 2013 supported the view that elevated serum

CRP levels could be associated with AMD [274]. In a

recent study with over 5000 aged British subjects, higher

serum CRP levels were associated with increased risk of

AMD in the longitudinal, but not in the cross-sectional

analysis [275]. There was a modest association between

high CRP levels and the 20-year cumulative risk for early

AMD in the Beaver Dam Eye Study with almost 6000

participants [271].

Significant and moderate increases in the plasma con-

centrations of inflammasome-related cytokines IL-18 and

IL-1b, respectively, in patients carrying the high risk CC

alleles of Y402H variant raises an intriguing possibility

that there is systemic or continuous inflammasome acti-

vation in patients suffering from dry AMD [259]. In

addition to those factors mentioned above, there are many

other inflammation-related factors, such as eotaxin, fib-

rinogen, IP-10, long pentraxin 3, sFasL (soluble Fas

ligand), sICAM-1 (soluble intercellular adhesion molecule-

1), sTNFRII (TNF-a receptor II), that have also been pro-

posed as biomarkers of AMD [267, 272, 276–280].

Although there has been increased research in obtaining

reliable biomarkers for AMD, no selective blood biomarker

has been found that meets the requirements of early AMD

detection. The pro-inflammatory environment may, how-

ever, nudge cellular immunity towards a pathological

phenotype with these changes becoming visible as the

subject reaches an advanced age.

Summary

Inflammation is a cellular defence mechanism, in which

foreign or damaged material becomes sensed by various

PRRs [28]. The ligand recognition process triggers the

activation of intracellular signaling pathways resulting in

the production of numerous pro-inflammatory mediators

[34]. The activated endothelium in the blood vessels pro-

motes and attracts effector cells and there is an

accumulation of soluble proteins within inflamed tissue

[174, 175]. Effector leukocytes, such as granulocytes,

monocyte-derived macrophages and dendritic cells, as well

as lymphocytes utilize a multitude of mechanisms for

meeting the challenge of restoring the tissue homeostasis

[181, 183, 184, 188–194, 196].

AMD is an ocular disease with inflammation strongly

interwoven into its pathogenesis. Several PRRs become

activated by endogenous intra- and extracellular danger

signals inducing an inflammatory response beyond the

homeostasis-maintaining para-inflammation. Degenerative

changes in RPE cells trigger a vicious circle that promotes

the development of chronic inflammation in the retina and

the choroid. Age-related changes in the immune system

contribute to this destructive process by altering the func-

tions of immune cells. Currently, there is no cure to AMD,

and changes at the cellular level are already significant

when the first symptoms appear. Various local and sys-

temic inflammatory molecules have been proposed as

being biomarkers of AMD but at present, no specific and

reliable marker has been found. If there were a selective

marker, this would help in the initial clinical diagnosis,

preferably before the disease had progressed to a symp-

tomatic phase. Moreover, biomarkers could also help to

clarify the mechanisms behind AMD as well as helping to

monitor the response to therapy.
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