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Diabetic nephropathy is the leading cause of end-stage kidney disease worldwide but current treatments remain suboptimal. This
review examines the evidence for inflammation in the development and progression of diabetic nephropathy in both experimental
and human diabetes, and provides an update on recent novel experimental approaches targeting inflammation and the lessons we
have learned from these approaches. We highlight the important role of inflammatory cells in the kidney, particularly infiltrating
macrophages, T-lymphocytes and the subpopulation of regulatory T cells. The possible link between immune deposition and
diabetic nephropathy is explored, along with the recently described immune complexes of anti-oxidized low-density lipoproteins.
We also briefly discuss some of the major inflammatory cytokines involved in the pathogenesis of diabetic nephropathy, including
the role of adipokines. Lastly, we present the latest data on the pathogenic role of the stress-activated protein kinases in diabetic
nephropathy, from studies on the p38 mitogen activated protein kinase and the c-Jun amino terminal kinase cell signalling
pathways. The genetic and pharmacological approaches which reduce inflammation in diabetic nephropathy have not only
enhanced our understanding of the pathophysiology of the disease but shown promise as potential therapeutic strategies.

1. Introduction

Diabetic nephropathy (DN) has not been traditionally
considered an inflammatory disease. However, recent studies
have shown that kidney inflammation is crucial in promoting
the development and progression of DN. Inflammation may
be a key factor which is activated by the metabolic, biochem-
ical, and haemodynamic derangements known to exist in the
diabetic kidney. In this paper, we discuss the evidence for
inflammation in DN and the lessons we have learned from
novel experimental anti-inflammatory therapies. The main
areas covered include the role of immune and inflammatory
cells, inflammatory cytokines, and stress-activated protein
kinases. We also briefly review the controversy around the
role of immune complexes and immune deposition in DN.

2. Inflammatory Cells

In human DN, macrophages and T cells accumulate in the
glomeruli and interstitium, even in the early stages of the
disease. Recruitment of leukocytes involves three steps: (a)

selectin-dependent leukocyte rolling on the endothelium,
(b) chemokine-dependent integrin activation and leukocyte
adhesion, and (c) transmigration of leukocytes across the
endothelium [1]. Proinflammatory cytokines produced by
leukocytes such as interleukin-1 (IL-1), tumour necrosis
factor-α (TNF-α), and interferon-γ (INF-γ) can induce
resident renal cells to produce a spectrum of chemokines.
Elements of the diabetic milieu such as high glucose and
advanced glycation end products (AGEs) are also potent
stimulators of chemokine production. These chemokines
include interleukin-8 (CXCL8), monocyte-chemoattractant
protein-1 (MCP-1), INF-γ inducible protein (CXCL10),
macrophage inflammatory protein-1α (MIP-1α/CCL3), and
RANTES (CCL5). The elaborated chemokines then further
direct the migration of additional leukocytes into the kidney
and set up an inflammatory cycle.

2.1. Macrophages. Macrophages are key inflammatory cells
mediating kidney inflammation in experimental and human
diabetes. Activated macrophages elaborate a host of proin-
flammatory, profibrotic, and antiangiogenic factors. These
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macrophage-derived products include but are not limited to
TNF-α, IL-1, IL-6, reactive oxygen species (ROS), plasmino-
gen activator inhibitor-1 (PAI-1), matrix metalloproteinases,
transforming growth factor-β (TGF-β), platelet-derived
growth factor (PDGF), angiotensin II, and endothelin [1]. In
experimental diabetic mice, macrophage accumulation and
activation are associated with prolonged hyperglycaemia,
glomerular immune complex deposition, increased che-
mokine production, and progressive fibrosis [2, 3]. In
human type 2 diabetes, kidney macrophage accumulation is
associated with the degree of glomerular sclerosis [4]. In
another human study, interstitial macrophage accumulation
correlated strongly with serum creatinine, proteinuria, and
interstitial fibrosis at the time of biopsy, and inversely with
the renal function decline (slope of 1/serum creatinine) over
the following 5 years [5]. These human data support animal
studies in suggesting a pathological role for macrophages in
DN.

Strategies impairing kidney leukocyte recruitment have
added evidence that macrophages mediate diabetic kidney
injury. Increased kidney expression of intercellular adhesion
molecule-1 (ICAM-1) has been noted in models of type 1
and type 2 diabetes. ICAM-1 serves as a ligand for LFA-1 on
monocytes, facilitating leukocyte adhesion and transmigra-
tion. Diabetic ICAM-1 knockout mice showed significant
reduction in albuminuria, glomerular, and tubulointerstitial
injury, in association with a reduction in macrophage
accumulation in the kidney [6]. However, ICAM-1 deficiency
affects macrophages and lymphocytes, so these studies do not
distinguish the roles of macrophages and lymphocytes.

Like ICAM-1, MCP-1 is also significantly increased in
DN and expression levels correlate with the number of infil-
trating interstitial macrophages. Studies suggest that renal
MCP-1 is involved in the direction of macrophage migration
into the diabetic kidney, while proteinuria itself may con-
tribute to this upregulation of MCP-1 [7]. Blockade of the
MCP-1 receptor (CCR-2) with a selective antagonist ame-
liorated diabetic glomerular sclerosis [8]. Similarly, diabetic
db/db mice and streptozotocin-(STZ-) induced diabetic mice
which are deficient in the gene encoding MCP-1 (Ccl2) are
protected from renal injury [9, 10]. To further test the
pathogenic role of macrophages, we used c-fms blockade to
selectively target macrophages during the progression of
experimental DN [11]. c-fms is the receptor for colony
stimulating factor-1 (CSF-1), the major cytokine promoting
macrophage accumulation, activation, and survival. We
administered a neutralizing anti-c-fms monoclonal antibody
to diabetic db/db mice with established albuminuria. This
inhibition suppressed inflammation in the diabetic kidney,
as evidenced by the reduction in macrophage accumulation,
activation, and proliferation. Along with the effects on
macrophages, there was a reduction in MCP-1, TNF-α, and
c-Jun amino terminal kinase (JNK) activation. This resulted
in a reduction in glomerular hyperfiltration, tubulointersti-
tial injury, and fibrosis.

The evidence so far indicates that infiltrating
macrophages are associated with chronic, low-grade
inflammation. Macrophages can interact with resident renal
cells to generate a proinflammatory microenvironment that

amplifies tissue injury and promotes scarring. As we have
shown, macrophage-mediated injury is amenable to novel
secondary prevention strategies.

2.2. Lymphocytes. A T cell infiltrate into diabetic kidneys has
long been appreciated but not well studied. The role of T
cells in kidney disease is better characterized in crescentic
glomerulonephritis, such as antiglomerular basement mem-
brane (GBM) disease [12]. Kidney infiltration by CD4+ and
CD8+ T cells has been noted in diabetic db/db mice and
diabetic NOD mice [2, 13]. In the latter study, glomerular B-
cells were also found to be increased. A kidney T cell influx is
common among young patients with early type 1 diabetes,
especially those with a shorter duration of diabetes, and
correlates with renal function and albuminuria [14]. This
T cell accumulation has been noted in the juxtaglomerular
apparatus of these patients but the functional role of T cells
in this compartment is unclear.

It has been reported that the homing of Th1 cells in
glomeruli is P-selectin and ICAM-1 dependent and associ-
ated with increased levels of IFN-γ and macrophage migra-
tion inhibitory factor (MIF) in crescentic Th1-mediated
glomerulonephritis [15]. Although the mechanisms of Th1
cell migration in models of DN have not been reported yet,
levels of ICAM-1 and P-selectin are increased within the
diabetic kidney. As T cells constitutively express LFA-1, and
ICAM-1 expression is found on renal endothelial, epithelial,
and mesangial cells, it is likely that this interaction plays a sig-
nificant role in T cell migration into the kidney. This is sup-
ported by a study showing that glomerular accumulation of
CD4+ T cells was decreased in ICAM-1-deficient db/db mice
[6].

Human and rat T cells also express receptors for AGEs.
The activation of CD4+ and CD8+ T cells by AGEs can
initiate INF-γ secretion by T cells, which will induce further
inflammation and oxidative stress within renal tissues [16]. T
cells also have the capacity to recruit and activate macropha-
ges through Th1-driven INF-γ production. However, the role
of T cells varies depending on the model studied. For exam-
ple, α3 (IV) collagen/RAG1 double-knockout mice were not
protected from the development of glomerulonephritis but
were protected from interstitial fibrosis [17]. On the other
hand, inhibition of regulatory T cells (Tregs) with anti-CD25
monoclonal antibody worsened renal injury in models of
ischaemia-reperfusion [18].

To further explore the role of lymphocytes, we studied
the kidney outcomes in recombination activating gene-1-
(RAG1-) deficient mice made diabetic with STZ injections
[19]. RAG1-deficient mice lack mature T and B cells and
thus lymphocytes are not recruited into the diabetic kidney.
RAG1-deficient mice were not protected from histological
injury, renal fibrosis, or reduced creatinine clearance. How-
ever, RAG1−/− diabetic mice showed significant attenuation
of albuminuria, associated with preservation of podocytes,
and a reduction in glomerular macrophage activation. This
would suggest that lymphocytes had a lesser role in inflam-
mation but were involved in the pathogenesis of albuminu-
ria. The glomeruli ofRAG1−/− diabetic mice were also devoid
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of immunoglobulin staining, in contrast to their RAG1 intact
counterparts. This led us to consider the possible role of B
cells and immunoglobulin deposition as a potential contrib-
utor to glomerular inflammation and albuminuria (see next
section).

One subset of T cells which has raised intense interest is
the Forkhead box P3 (CD4+CD25+Foxp3+) regulatory T cell
(or Treg). These cells may participate in dampening the
inflammation in the diabetic kidney, given the worsening of
renal injury when Tregs are inhibited in ischaemia-reperfu-
sion models. STZ-diabetic mice have increased peripheral
Treg in the circulation, spleen, and lymph nodes. However,
these cells appear to be dysfunctional [20]. Tregs are also
increased in the kidneys of STZ-diabetic mice [19]. When
diabetic db/db mice were depleted of Tregs, they demon-
strated enhanced kidney inflammation, leading to worsening
albuminuria and glomerular hyperfiltration. Furthermore,
adoptive transfer of Tregs significantly improved insulin
sensitivity and reduced nephropathy in the db/db mice [21].
These findings suggest that the manipulation of Treg number
or function may be useful in attenuating inflammation in
DN.

2.3. Immune Deposition. A number of modified proteins
which develop in diabetes are potentially immunogenic. This
includes human immune responses to oxidized low-density
lipoproteins (LDL), which may subsequently result in the
formation of antioxidized LDL immune complexes [22, 23].
In patients with type 1 diabetes, these immune complexes are
associated with macroalbuminuria [24]. Another study of
type 1 diabetes demonstrated significant positive correlations
between IgG antibody concentration isolated from circu-
lating immune complexes and the serum creatinine and
albumin excretion [25]. These antibodies were mostly of the
proinflammatory IgG1 and IgG3 isotypes. IgG antibodies
were proportionally greater than IgM by a ratio of 8 : 1. These
immune complexes have been shown in vitro to stimulate
production of MCP-1 and CSF-1 [26], and promote glomer-
ular fibrosis by stimulating collagen production by mesangial
cells [27]. Oxidized LDL immune complexes are also capable
of activating the classical pathway of complement and
inducing proinflammatory cytokine production by human
macrophages, including IL-1, IL-6, and TNF-α [28]. These
responses occur through the ligation of Fcγ receptors on me-
sangial cells and macrophages and may involve the activation
of the p38 mitogen-activated protein kinase (p38 MAPK),
JNK, and protein kinase C (PKC) pathways [27].

Circulating immune complexes and glomerular IgG
deposition have long been recognized in diabetic rodent
models [13, 29]. Similarly, immune deposits have also been
described in histological studies of DN [30]. In an analysis of
567 kidney biopsies from patients with type 1 and 2 dia-
betes, approximately 30% of glomerular disease present was
immune complex and secondary focal glomerulosclerosis
[31]. This does raise a valid question as to the role of these
immune complexes in the pathogenesis of DN. However,
these immune deposition and immune complexes have
usually been dismissed as concurrent or unrelated diseases.

This is reflected by the stance of the Animal Models of Dia-
betic Complications Consortium (AMDCC) on excluding
immune deposition in models of DN [32]. It may require a
major paradigm shift before researchers are able to finally lay
this issue to rest. Our study of RAG1-deficient mice suggests
the possible involvement of immune deposition in pro-
moting albuminuria. We are currently undertaking further
studies in this area.

3. Inflammatory Cytokines

As our knowledge of DN expands, a number of inflammatory
cytokines have emerged as being closely involved in the
pathogenesis of DN. Some of the major inflammatory
cytokines which are believed to play an important role in DN
are discussed here (summarised in Table 1). The role of cy-
tokines and growth factors in diabetic kidney disease has also
been specifically reviewed elsewhere [33, 34].

3.1. TNF-α. TNF-α is mainly produced by monocytes, ma-
crophages, and T cells. However, resident renal cells are also
able to produce TNF-α, including mesangial, glomerular,
endothelial, dendritic, and renal tubular cells [35–38]. TNF-
α expression is increased in the kidneys of experimental
diabetic rats [39]. The effects of TNF-α include promotion of
local reactive oxygen species (ROS) generation [40–42],
increasing albumin permeability [42], and the induction of
cytotoxicity, apoptosis, and necrosis [43, 44]. TNF-α is
implicated in the recruitment of monocyte-macrophages,
reducing glomerular filtration rate (GFR) by haemodynamic
changes [45–48], as well as altering endothelial permeability
[49]. In line with experimental data, patients with type 2
diabetes have 3-4 times greater serum levels of TNF-α
compared to nondiabetic patients, and these levels are
higher in diabetic patients with microalbuminuria compared
with those that have normoalbuminuria [50, 51]. Similarly,
urinary TNF-α excretion correlates well with the clinical
markers of DN and progression of disease [52].

3.2. MCP-1. MCP-1 promotes monocyte and macrophage
migration and activation, upregulates expression of adhesion
molecules, and promotes the expression of other proinflam-
matory cytokines [53, 54]. MCP-1 increases progressively in
diabetic kidneys in animals models [2, 55]. It is produced
by various cells in the kidney, including monocyte-ma-
crophages mesangial cells, podocytes, and tubular cells
[10, 55, 56]. Recent studies have convincingly demonstrated
the causative role of MCP-1 in experimental DN. In models
of type 1 and 2 diabetes, renal injury was attenuated in
MCP-1-deficient animals [9, 10]. Patients with type 2
diabetes and nephropathy excrete high levels of MCP-1 in
the urine, which correlates with albuminuria and N-acetyl-β-
D-glucosaminidase (NAG) excretion as a marker of tubular
injury [7]. Interestingly, inhibition of ACE or the mineralo-
corticoid receptor also suppresses renal MCP-1 production
[57, 58]. However, it remains to be determined if direct
inhibition of MCP-1 will be more effective.
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Table 1: Cytokines involved in Diabetic Kidney Inflammation.

Cytokine Role in Diabetic Kidney Inflammation

ICAM-1 Adhesion molecule facilitating leukocyte-endothelial adhesion and infiltration into diabetic kidneys

VCAM-1 Adhesion molecule facilitating leukocyte-endothelial adhesion and infiltration into diabetic kidneys

MCP-1 Chemoattractant which promotes macrophage recruitment into diabetic kidneys

TNF-α Promotes production of reactive oxygen species, induces cell injury, and increases endothelial permeability

IL-1 Stimulates expression of cell adhesion molecules and profibrotic growth factors and increases endothelial permeability

IL-6 Promotes mesangial proliferation, glomerular hypertrophy, fibronectin production and increases endothelial permeability

IL-18 Increases production of other cytokines (ICAM-1, IL-1, TNF-α) and induces apoptosis of endothelial cells

Adiponectin Reduces oxidative stress, production of TNF-α, and leukocyte-endothelial adhesion

Leptin
Induces oxidative stress, inflammation, hypertrophy, and proliferation of vascular smooth muscle cells, and impairs
endothelial function

Resistin Promotes expression of MCP-1, VCAM-1, endothelin-1, and proliferation of vascular smooth muscle cells

3.3. ICAM-1. ICAM-1 is a cell surface glycoprotein involved
in leukocyte attachment to the endothelium as the ligand for
LFA-1(integrin) on leukocytes. ICAM-1 is also present on the
membranes of macrophages and lymphocytes. ICAM-1
expression is increased in models of type 1 and 2 diabetes
[59, 60]. It can be induced by hyperglycaemia, AGEs, oxida-
tive stress, hyperlipidaemia, hyperinsulinaemia, and proin-
flammatory cytokines [1]. Recent studies have demon-
strated that mice deficient in ICAM-1 are protected against
macrophage accumulation and nephropathy in models of
type 1 and 2 diabetes [6, 61]. A soluble form of ICAM-1 has
been described as increased in patients with type 2 diabetes
and DN [62]. However, there is a lack of data from human
studies on the role of ICAM-1 in DN.

3.4. VCAM-1. Vascular cell adhesion molecule-1 (VCAM-1)
is another molecule involved in leukocyte-endothelial adhe-
sion, which facilitates leukocyte recruitment into the kidney
during inflammation. VCAM-1 expression is increased in the
kidneys of patients with DN [63] and in diabetic rodents
[64, 65]. During diabetes, VCAM-1 expression is detected on
vascular endothelium and infiltrating cells in the kidney [64].
Increasing plasma levels of soluble VCAM-1 are associated
with the progression of albuminuria in patients with type 1
and type 2 diabetes [66, 67], suggesting that sVCAM-1 may
be a useful biomarker of diabetic renal injury. However, it is
unclear whether circulating sVCAM-1 levels correlate with
inflammation in diabetic kidneys.

3.5. Interleukin-1. Increased expression of IL-1 is found in
experimental DN [68, 69]. IL-1 is able to enhance ICAM-1,
(VCAM-1), and E-cadherin expression [70, 71]. Further-
more, IL-1 is able to induce endothelial cell permeability,
alter glomerular haemodynamics by affecting prostaglandin
synthesis, stimulate mesangial and fibroblast proliferation,
and induce TGF-β1 production [72–74]. Polymorphisms of
the IL-1 β and IL-1 receptor genes were found to be asso-
ciated with an increased risk of end-stage kidney disease in
Korean patients with type 2 diabetes [75]. However, poly-
morphisms in the IL-1 gene cluster were not found to
contribute to the genetic susceptibility of DN in Caucasian

patients with type 1 diabetes [76]. Further investigation is
required to determine the importance of IL-1 in human DN.

3.6. Interleukin-6. IL-6 is produced by endothelial cells,
leukocytes, adipocytes, and mesangial cells. Experimental
studies have shown IL-6 overexpression in diabetic kidneys,
which correlate with kidney hypertrophy and albumin
excretion [68, 77]. IL-6 has been suggested to mediate endo-
thelial permeability, mesangial proliferation, and increased
fibronectin expression [78–81]. IL-6 is increased in patients
with type 1 and 2 diabetes with DN, and IL-6 levels are higher
in patients with overt proteinuria compared to microalbu-
minuria or normoalbuminuria [82, 83]. Increased IL-6 is
also associated with GBM thickening in type 2 diabetes
patients and mesangial expansion in kidney biopsies of
diabetic patients [79, 84].

3.7. Interleukin-18. IL-18 is a potent inflammatory cytokine
that induces IFN-γ [85] and the production of other proin-
flammatory cytokines (IL-1 and TNF-α), upregulation of
ICAM-1, as well as apoptosis of endothelial cells [86–88].
Tubular epithelial cells are the major source of IL-18 but
recent studies have also demonstrated IL-18 production from
infiltrating monocyte-macrophages and T cells [89, 90].
Serum and urinary IL-18 are increased in type 2 diabetes
patients and correlate with urinary albumin excretion
[50, 91].

3.8. Adipokines. Adiponectin, leptin, and resistin are cytoki-
nes produced by adipose tissue. Adiponectin regulates
insulin sensitivity, and also has anti-inflammatory and
antioxidant properties. Adiponectin suppresses TNF-α-
induced upregulation of endothelial cell adhesion molecules
and interferes with leukocyte rolling and adhesion [92].
Adiponectin also suppresses leukocyte colony formation and
reduces TNF-α secretion by macrophages [93, 94].
Adiponectin may also interfere with receptor activation
for platelet-derived growth factor (PDGF), fibroblast growth
factor (FGF), and epidermal growth factor (EGF) [95].
In diabetic db/db mice, ezetimibe treatment normalized
adiponectin levels and enhanced kidney expression of
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adiponectin receptor 1 [96]. With this, there was a 50%
reduction in albuminuria and improved glomerular
hypertrophy. STZ-induced diabetic rats overexpressing
adiponectin showed improvements in markers of endothe-
lial function, including lower levels of endothelin-1, plas-
minogen activator inhibitor-1, and inducible nitric oxide
synthase [97]. This was associated with preservation of
nephrin, lower TGF-β levels and a reduction in proteinuria.
In human type 1 and 2 diabetes, serum adiponectin levels are
already elevated and positively correlated with both albu-
minuria and serum creatinine [98–100]. Thus, it is unclear
if further manipulation of adiponectin levels would be
beneficial in humans.

In contrast to adiponectin, leptin exerts proinflammatory
effects. Experimentally, these effects include stimulation of
inflammatory signalling pathways and oxidative stress,
impairment of endothelial function and platelet aggregation,
and hypertrophy and proliferation of vascular smooth
muscle cells [101]. The data in humans is less clear. In type 2
diabetes, both low and high serum leptin levels were risk fac-
tors for declining renal function. Furthermore, lower serum
leptin levels were associated with progression of albuminuria
[102]. Another study noted micro- and macroalbuminuria
patients with type 2 diabetes had higher leptin levels than
normoalbuminuric patients [103]. However, leptin levels
may also be elevated in end-stage kidney disease due to re-
duced degradation.

Resistin promotes expression of endothelin-1, VCAM-1,
and MCP-1. Resistin also promotes proliferation of vascular
smooth muscle cells via extracellular regulated kinase (ERK)
and Akt signalling pathways and inhibits insulin signalling
and endothelial nitric oxide synthase (eNOS) activation
[101]. The role of resistin in human DN is unclear. In type 2
diabetes patients, resistin was elevated in patients receiving
loop diuretics but not thiazides. Serum resistin levels also
increase in advanced CKD [104].

4. Stress-Activated Protein Kinases (SAPKs)

p38 MAPK and JNK are stress-activated protein kinases
(SAPKs). Receptor activation by various stress stimuli on the
cell surface trigger intracellular signalling involving a cascade
of phosphorylation by MAP kinase kinase kinase (MAP3K),
a MAP kinase kinase (MAP2K), and finally the MAPK/SAPK
[105]. There is overlap and redundancy in the ability of
different MAP3K’s to activate p38 MAPK or JNK. However,
direct activation of p38 MAPK and JNK can only occur
through MKK3/6 and MKK4/7, respectively.

4.1. p38 MAPK. p38 MAPK has four isoforms (p38α, β, γ,
and δ) which are all expressed by kidney cells. However, acti-
vation of p38α is most strongly associated with renal inflam-
mation and injury. Recent clinical studies have demon-
strated that kidney p38 MAPK activity is increased and
associated with the development of DN [106, 107]. Renal
biopsies from patients with established type 2 diabetes dis-
play prominent glomerular and tubulointerstitial p38 MAPK
signalling despite treatment with angiotensin inhibitors

[106]. In diabetic animal models, p38 MAPK activity rapidly
increases in glomeruli and tubules after the induction of
hyperglycaemia, and is also found in the accumulating kid-
ney interstitial cells associated with advanced nephropathy.
Studies of nondiabetic kidney disease have shown that phar-
macological inhibition of p38 MAPK suppressed inflamma-
tion and fibrosis [108, 109].

In vitro studies have identified specific kidney cells and
mechanisms of renal injury that may be affected by p38
MAPK signalling during diabetes. Exposure to high glucose
activates p38 MAPK in human mesangial cells [110], mouse
podocytes [111], and rat proximal tubular cells [112].
Similarly, glycated albumin can stimulate p38 MAPK phos-
phorylation in cultured fibroblasts [113]. Activation of p38
MAPK has been shown to promote apoptosis of rat mesan-
gial cells exposed to methylglyoxal [114] and apoptosis of
mouse podocytes following stimulation with TGF-β [115]
and AGEs [116, 117]. In addition, p38 MAPK signalling can
contribute to proinflammatory and profibrotic responses.
p38 MAPK activation enhances production of MCP-1 by vas-
cular endothelial cells [118], induces local angiotensinogen
production in rat tubular cells [112], stimulates TGF-β-
induced fibronectin accumulation in renal interstitial fibrob-
lasts [119] and collagen production in mouse mesangial cells
[120], increases TGF-β expression in renal tubular cells
[121], and promotes synthesis of vascular endothelial growth
factor (VEGF) induced by angiotensin II [122, 123]. Studies
have also shown that p38 MAPK signalling mediates high-
glucose-induced tubular hypertrophy [121] and transactiva-
tion of the epidermal growth factor receptor required for
dedifferentiation of proximal tubular epithelial cells follow-
ing oxidant injury [124].

Functional blocking studies are required to determine the
pathogenic role of p38 MAPK signalling in diabetes and its
complications. Inhibitors of p38α and p38β have been used
in a number of nondiabetic models to reduce proteinuria and
inflammation [105]. In rats with STZ-induced diabetes, a
p38 MAPK inhibitor (FR167653) ameliorated the increased
glomerular fibronectin mRNA and protein and reduced
mesangial cell apoptosis. Similar results were obtained in
high-glucose stimulated cultured rat mesangial cells [125].
However, the investigators did not study the effects of p38
MAPK inhibition on kidney inflammatory cells, albumin
excretion, tubulointerstitial injury, or renal function.

We utilized a genetic approach to studying the p38
MAPK pathway in DN. As genetic deletion of p38α is
lethal, our strategy was to target the immediate upstream
kinases that regulate p38 MAPK signalling. The MKK3 and
MKK6 kinases provide a parallel and independent mecha-
nism of phosphorylating p38 MAPK but their relative con-
tribution to the increased p38 MAPK activity associated with
DN was unknown. MKK3 appeared to be the most attractive
target because MKK3-p38 MAPK signalling has been shown
to be nonredundant in some pathological processes in vitro
[126, 127]. We studied the effects of MKK3-p38 MAPK inhi-
bition on kidney outcomes in Mkk3-gene-deficient diabetic
db/db mice [128]. In the absence of MKK3 signalling, we
noted an attenuation of Ccl2 expression (hence MCP-1
levels) and interstitial macrophage accumulation. The
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Figure 1: The inflammatory amplification loop in the diabetic kidney. Circulating immune cells such as monocytes are recruited into the
diabetic kidney due to upregulation of adhesion molecules such as ICAM-1. Chemokines such as MCP-1 act as chemoattractants which
promote accumulation of the immune cells in the kidney. These immune cells are activated by numerous signals such as the ligation of c-fms
by CSF-1, receptor for AGE by AGEs, and the Fcγ receptors by antioxidized LDL immune complexes. CSF-1 also promotes the maturation,
proliferation, and survival of monocyte-macrophages. Activated immune cells act as inflammatory cells and elaborate proinflammatory
cytokines and reactive oxygen species (ROS), which trigger a cell signalling cascade mediated by the stress-activated protein kinases, p38
MAPK, and JNK. These kidney cells then respond by the production of chemokines such as MCP-1 and CSF-1, and profibrotic factors such
as TGF-β which increase extracellular matrix production by mesangial cells and interstitial fibroblasts. Ultimately, there is cellular injury and
progressive fibrosis within the diabetic kidney.

result was a reduction in albuminuria with concomitant
podocyte preservation and reduced mesangial cell activation.
Glomerular sclerosis and tubulointerstitial injury were also
attenuated. This study demonstrated a pathogenic role of the
MKK3-p38 signalling pathway in the progression of DN and
may be a viable target for intervention. There are also non-
redundant functions of the upstream kinases which confirm
previous in vitro findings.

4.2. JNK. There are three main JNK isoforms. JNK1 and
JNK2 are expressed in the kidney but JNK3 is limited to the
nervous system [129]. Phosphorylated JNK translocates into
the nucleus and activates transcription factors and cellular
responses such as inflammation or apoptosis. For example, in
vitro studies have demonstrated that inhibition of JNK
ameliorates the induction of apoptosis by oxidative stress in
tubular epithelial cells [130]. A unique JNK target is the
phosphorylation of Ser63 and Ser73 in the NH2-terminal
domain of c-Jun, which can be used as a surrogate marker of
JNK activity [131]. JNK-dependent signalling is important in
normal development because genetic deficiency of both
JNK1 and JNK2 are foetal lethal. JNK can be activated
by various elements of the diabetic milieu, including
hyperglycaemia, AGEs, angiotensin II, ROS, and proinflam-
matory cytokines (IL-1, TNF-α) [132].

JNK may be important in CSF-1 signalling through c-
fms, thus promoting monocyte-macrophage differentiation,
development, survival, and function [133, 134]. In animal
models of anti-GBM disease and unilateral ureteric obstruc-
tion, treatment with the JNK inhibitor CC-401 reduced
renal injury through modulation of macrophage activation
[135, 136]. In biopsy samples of human DN, JNK activa-
tion correlated with interstitial macrophage accumulation,
kidney injury molecule-1 (KIM-1) expression, interstitial
fibrosis, and loss of renal function [137, 138].

We examined the effects of JNK blockade in a STZ
model of diabetes in spontaneously hypertensive rats by
administering a JNK inhibitor (CC-930) at the onset of
detectable kidney JNK activation (phosphorylated-JNK) and
albuminuria [139]. JNK inhibition resulted in a reduction in
macrophage accumulation and Ccl2 mRNA (encoding MCP-
1). However, JNK inhibition exacerbated albuminuria in
association with accelerated loss of glomerular nephrin and
podocin. Similar negative outcomes were reported in db/db
mice treated with a TAT-JNK inhibitor peptide, which
exacerbated albuminuria and nephrin loss despite improve-
ments in insulin sensitivity [140]. Together, these studies
demonstrate that blockade of JNK signalling causes sig-
nificant injury to podocytes while also suppressing kidney
inflammation in animal models of early DN. Whether the
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benefits of JNK inhibition outweigh its effects on podocyte
damage in more advanced stages of diabetic renal injury
remains to be determined.

4.3. Kidney Inflammation in Type 1 versus Type 2 Diabetic
Nephropathy. Analysis of renal biopsies from type 1 and
type 2 diabetic patients who develop DN indicates that the
inflammatory infiltrate is similar in both groups [5], which
is consistent with studies in diabetic animal models [2, 3].
In both type 1 and type 2 models, kidney inflammation in
diabetic rodents correlates strongly with the development of
hyperglycaemia and glycated haemoglobin, and is driven by
an increased kidney production of chemokines and proin-
flammatory cytokines [2, 3], and induction of kidney SAPK
signalling [106]. In addition, the coexistence of hypertension
or hyperlipidaemia exacerbates kidney inflammation in both
type 1 and type 2 diabetes [137, 141–144].

5. Conclusion

Inflammation plays an essential role in the progression of
DN. Recent evidence indicates that innate immunity, rather
than adaptive immunity, is the major driving factor in
the inflammatory response in diabetic kidneys. The main
components of this immune response (infiltrating cell types,
cytokines, signalling pathways) are described in this paper
(summarized in Figure 1). Our current knowledge indicates
that elements of the diabetic milieu (hyperglycaemia, AGEs,
immune complexes) can activate kidney cells via induction of
SAPK signalling, resulting in the release of chemokines and
upregulation of cell adhesion molecules. These events facil-
itate the kidney infiltration of monocytes and lymphocytes,
which become activated in the diabetic kidney and secrete
injurious molecules, such as proinflammatory cytokines and
reactive oxygen species. This leukocyte activity amplifies
the inflammatory response and promotes cell injury and
the development of fibrosis. Better understanding of the
inflammatory response in diabetic kidneys is expected to
identify novel anti-inflammatory strategies for the potential
treatment of human DN.
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