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Overlapping pandemics of lifestyle-related diseases pose a substantial threat to

cardiovascular health. Apart from coronary artery disease, metabolic disturbances

linked to obesity, insulin resistance and diabetes directly compromise myocardial

structure and function through independent and shared mechanisms heavily involving

inflammatory signals. Accumulating evidence indicates that metabolic dysregulation

causes systemic inflammation, which in turn aggravates cardiovascular disease. Indeed,

elevated systemic levels of pro-inflammatory cytokines and metabolic substrates

induce an inflammatory state in different cardiac cells and lead to subcellular

alterations thereby promoting maladaptive myocardial remodeling. At the cellular level,

inflammation-induced oxidative stress, mitochondrial dysfunction, impaired calcium

handling, and lipotoxicity contribute to cardiomyocyte hypertrophy and dysfunction,

extracellular matrix accumulation andmicrovascular disease. In cardiometabolic patients,

myocardial inflammation is maintained by innate immune cell activation mediated by

pattern recognition receptors such as Toll-like receptor 4 (TLR4) and downstream

activation of the NLRP3 inflammasome and NF-κB-dependent pathways. Chronic

low-grade inflammation progressively alters metabolic processes in the heart, leading to a

metabolic cardiomyopathy (MC) phenotype and eventually to heart failure with preserved

ejection fraction (HFpEF). In accordance with preclinical data, observational studies

consistently showed increased inflammatory markers and cardiometabolic features in

patients with HFpEF. Future treatment approaches of MC may target inflammatory

mediators as they are closely intertwined with cardiac nutrient metabolism. Here, we

review current evidence on inflammatory processes involved in the development of

MC and provide an overview of nutrient and cytokine-driven pro-inflammatory effects

stratified by cell type.
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INTRODUCTION

Lifestyle-related diseases have reached pandemic proportions and contribute greatly to human
suffering and excess mortality. By the year 2030, more than 2.1 billion people will be overweight
or obese and 0.5 billion will have diabetes worldwide, with cardiovascular disease remaining
the leading cause of death in these patients (1–4). While the burden of coronary artery disease
and hypertension is declining in high-income countries, glucometabolic perturbations linked
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to obesity and diabetes have emerged as key determinants
of myocardial remodeling and dysfunction in the past two
decades (5, 6). It is now recognized that metabolic disturbances
induce a systemic inflammatory state, which in turn impacts
myocardial structure and function. The pro-inflammatory milieu
created by circulating cytokines, excess metabolic substrate
availability, and paracrine signals from activated immune cells
in the heart triggers maladaptive myocardial remodeling and
its clinical sequelae. Indeed, cytokines and nutrient metabolites
activate inflammatory programs in different cardiac cell types
through shared pathways causing a disruption of cardiac tissue
homeostasis. The resulting subcellular alterations progressively
lead to a metabolic cardiomyopathy (MC) phenotype which can
become clinically evident as heart failure (HF) with preserved
ejection fraction (HFpEF).

Collectively, cellular abnormalities in obesity and diabetes
overlap considerably with those observed in HFpEF including
inflammation-induced oxidative stress, mitochondrial
dysfunction, lipotoxicity, cardiomyocyte hypertrophy and
impaired calcium handling, extracellular matrix (ECM)
accumulation, and microvascular disease (7). Both obesity and
type 2 diabetes (T2D) associate with increased inflammatory
markers and are present in the majority of patients with HFpEF
(7–9). Given the prominent role of obesity and associated
comorbidities in HFpEF, systemic inflammation has emerged
as major culprit in disease development (7, 10). Randomized
controlled trials in obese HFpEF patients with elevated C-reactive
protein (CRP) have shown decreased N-terminal pro-B-type
natriuretic peptide (NT-proBNP) levels and improved exercise
capacity upon interleukin (IL)-1 blockade (11–13). Yet, recent
clinical trials with anti-inflammatory agents have failed to
demonstrate a benefit in terms of survival or hospitalization
in patients with HF, thus highlighting the unmet need for a
better understanding of the underlying pathobiology (11–13).
In the present review we provide an overview of inflammatory
processes involved in the development of MC stratified by
cell type.

DEFINING METABOLIC
CARDIOMYOPATHY

Along with the growing burden of lifestyle diseases, the term
“metabolic cardiomyopathy” has been increasingly used in
the literature to reflect deleterious effects of glucometabolic
perturbations on the myocardium unrelated to coronary
artery disease, hypertension, valvular heart disease and other
traditional risk factors for myocardial remodeling (14–18). As
a pathophysiological entity, MC embraces the broad spectrum
of metabolic disturbances that compromise myocardial structure
and function in patients with obesity, insulin resistance and
diabetes (14, 17). In fact, these conditions associate with a distinct
form of cardiomyopathy marked by early diastolic dysfunction,
interstitial fibrosis and myocellular lipid accumulation (17, 19,
20). Beyond traditional causes of myocardial disease, adverse
remodeling is mediated by systemic metabolic dysregulation
including circulating metabolic substrates [e.g., free fatty acids

(FFAs)] and inflammatory cytokines [e.g., tumor necrosis
factor-alpha (TNF-α) and IL-6] (14). Importantly, there is
substantial overlap in the molecular mechanisms underlying
diabetic cardiomyopathy, obesity-related cardiomyopathy and
those observed in patients with a metabolic HFpEF phenotype
(7). Considering that pathological alterations in the myocardium
linked to obesity and diabetes commonly occur before the onset
of HF symptoms, MC may represent a precursor of HFpEF
(21). In line with experimental evidence, obesity and T2D confer
increased risk for incident HF even after adjustment for known
risk factors including coronary artery disease (22–24).

THE EMERGING ROLE OF
METAINFLAMMATION IN CARDIAC
REMODELING

A growing body of evidence indicates that alterations in
myocardial structure and function in cardiometabolic patients
result from a multi-organ disease process involving systemic
inflammatory cytokines, circulating metabolic substrates and
immune dysregulation (21, 25). As a general model, nutrient
overload activates inflammatory responses in extracardiac tissues
with release of pro-inflammatory mediators and subsequent
systemic and cardiac inflammation (Figure 1) (14, 25, 26). In
parallel, circulating inflammatory cytokines (e.g., TNF-α and IL-
6) impair systemic and cardiac insulin sensitivity via activation
of evolutionary conserved regulators of inflammation such as
nuclear factor (NF)-κB (27, 28) and c-Jun N-terminal kinase
(JNK) (29, 30). This state of chronic low-grade inflammation—
primarily caused by obesity and associated metabolic conditions
has been termedmetabolic inflammation or “metainflammation”
(25). Unlike acute inflammatory responses to cardiac tissue
damage, which represent crucial regenerative processes,
chronic inflammation leads to metabolic reprogramming of
the heart and contributes to adverse remodeling and functional
impairment (14).

The initial event in obesity-induced systemic inflammation
is the secretion of specific chemokines such as C-C motif
chemokine ligand 2 (CCL2) and leukotriene B4 (LTB4) from
adipocytes which promote monocyte trafficking into the adipose
tissue (26, 31). Once recruited to adipose tissue via the C-
C motif chemokine receptor 2 (CCR2), monocytes polarize
toward a pro-inflammatory macrophage phenotype and secrete
their own chemotactic and pro-inflammatory cytokines to
attract additional monocytes, thus amplifying local and systemic
inflammation (26, 32). In particular, visceral adipose tissue has
a prominent role in metabolic dysregulation since it recruits
more pro-inflammatory macrophages, secretes larger amounts
of inflammatory cytokines and causes more pronounced
peripheral insulin resistance than subcutaneous white adipose
tissue (26, 33, 34). Once a systemic pro-inflammatory state
has been initiated, inflammatory triggers (e.g., IL-1β, IL-6,
and IL-8) originate from a variety of extracardiac cell types
including fibroblasts and vascular cells (7). In the heart,
inflammatory cytokines are implicated in several important
processes of cardiac remodeling, including cardiomyocyte
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FIGURE 1 | Overnutrition drives metabolic inflammation and promotes a low-grade inflammatory state in the heart. Chronic nutrient overload induces adipose tissue

expansion, which enhances the secretion of chemotactic signals, such as chemokine-ligand 2 (CCL2) from enlarging adipocytes. Transmigration of chemokine-ligand

receptor 2 (CCR2)+ circulating monocytes into the adipose tissue represents a key event in the development of systemic inflammation in response to nutrient

overload. Given the pro-inflammatory milieu, recruited monocytes assume an inflammatory M1 macrophage phenotype, a process that is further accelerated by

activated CD8+ T cells and CD4+ TH1 cells. The release of inflammatory cytokines causes insulin resistance, commonly associated with hyperglycemia, dyslipidemia

and immune dysregulation. These processes contribute to the activation of inflammatory pathways in the myocardium which are linked to enhanced ROS formation

and mitochondrial dysfunction, cardiomyocyte growth and extracellular matrix deposition. Collectively, these alterations on both systemic and myocardial levels drive

microvascular dysfunction, interstitial fibrosis and diastolic dysfunction, key features of metabolic cardiomyopathy. CCL2 denotes chemokine ligand 2; IL, interleukin;

LB4, leukotriene B4; ROS, reactive-oxygen species; TNF-α, tumor necrosis factor alpha.
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hypertrophy (35), cardiomyocyte apoptosis (36), microvascular
endothelial activation, and myocardial fibrosis (37). Looking
beyond the heart, cardiac signs and symptoms in patients with
obesity and T2D result from a complex pro-inflammatory inter-
organ cross-talk involving the adipose tissue, kidney, lung,
spleen, bone marrow, skeletal muscle, and gut (13).

An additional feature of metabolic inflammation is the
increased substrate availability. Aside from circulating cytokines,
high levels of glucose and saturated FFAs were found to directly
promote a pro-inflammatory state in different cardiac cell types
(38–40). Importantly, high glucose levels modulate multiple
intracellular signaling pathways in cardiomyocytes, fibroblasts
and cardiac macrophages that converge toward NF-κB activation
and promote the expression of TNF-α and IL-6 (38, 41–46).
Although less well-studied, other nutrients such as high fructose
corn syrup, contained in a Western diet, may also lead to
low-grade myocardial inflammation (suggested by increased
expression of macrophage markers) and have recently been
included in some animal models for HFpEF (47, 48).

Metabolic inflammation leads to the recruitment of
macrophages into the myocardium (25). Animal models
for diet-induced obesity (49, 50), pre-diabetes (51), T2D (52–
55), and lipotoxic cardiomyopathy (56) conclusively showed
upregulation of vascular adhesion molecules [e.g., intercellular
adhesion molecule (ICAM)-1 and vascular cell adhesion
molecule (VCAM)-1] and infiltration of macrophages into the
heart—a phenomenon similarly observed in obese patients
with HFpEF (10, 57). In fact, glucometabolic disturbances are
tightly coupled with dysregulation of innate immune cells.
Saturated fatty acids induce the secretion of inflammatory
mediators (e.g., TNF-α, IL-1β, IL-6, and CCL2) by macrophages
through mechanisms depending on pattern recognition
receptors, such as Toll-like receptor (TLR)4, thus maintaining
myocardial inflammation (58–61). In patients with obesity and
T2D immune-dysregulation and macrophage recruitment are
also promoted by the overproduction of adipocyte-derived
aldosterone and neprilysin, leading to accelerated natriuretic
peptide degradation (62). In concert, these substances mediate
renal sodium reabsorption and contribute to low-grade
myocardial inflammation (62, 63). Of note, augmented secretion
of aldosterone from the adrenal glands is closely linked to
increased body fat mass as it can be directly induced by the
adipokine leptin (62).

Next, activation of the renin-angiotensin-aldosterone system,
evidenced by pronounced secretion of angiotensinogen by the
liver and adipose tissue, contributes to myocardial remodeling
and inflammation in cardiometabolic patients (64, 65). Cleavage
of circulating Angiotensin (Ang) I by the angiotensin converting
enzyme (ACE) yields Ang II, which along with aldosterone,
activates NF-κB in cardiac endothelial cells and fibroblasts,
thus leading to upregulation of vascular adhesion molecules,
recruitment of immune cells, and increased ECM production
(65, 66). In the counterregulatory RAAS pathway, ACE2 converts
Ang I to Ang-(1-7) which mitigates leukocyte migration, pro-
inflammatory cytokine release, fibrosis, and insulin resistance via
activation of the Mas receptor (67, 68).

Another mechanism coupling systemic glucometabolic
disturbances with myocardial inflammation and hypertrophy is
the formation of advanced glycation end products (AGEs) (50).
As a result of chronic hyperglycemia AGEs can accumulate in the
cardiac ECM and enhance the expression of pro-inflammatory
mediators (e.g., TNF-α, IL-6, ICAM-1, and CCL2) via the
receptor for AGEs (RAGE) (50). Of note, AGEs also promote
myocardial inflammation by direct activation of macrophages
via the RAGE/NF-κB pathway (69, 70).

Collectively, systemic cytokines, paracrine signals from
recruited immune cells, increased substrate availability and
alterations of the ECM all contribute to an inflammatory milieu
in the myocardium and disrupt cardiac tissue homeostasis.
Maladaptive myocardial remodeling in patients with obesity
and T2D therefore can be framed as a chronic inflammatory
condition of the heart that is closely intertwined with nutrient
metabolism (25).

Inflammation Drives Cardiac Insulin
Resistance and Lipotoxicity
Under physiological conditions, the myocardium is able to
switch between metabolic substrates, mainly fatty acids and
carbohydrates, in response to changes in nutrient availability
(71). However, systemic low-grade inflammation goes along with
cardiac insulin resistance which is accompanied by a shift in
substrate utilization toward fatty acid metabolism favoring the
accumulation of toxic lipid metabolites (29).

TNF-α causes cardiac insulin resistance by activation of both
NF-κB- and the JNK-dependent signaling pathways converging
toward serine phosphorylation and proteasomal degradation
of the insulin response substrate (IRS)1 (29). Moreover, IL-
6 interferes with insulin signal transduction through signal
transducer and activator of transcription (STAT)3-dependent
suppressor of cytokine signaling (SOCS)3 upregulation, which
impairs the coupling of IRS1 with the insulin receptor (72).
In line with this notion, genetic knockout of IL-6 attenuates
cardiac insulin resistance and inflammation in obese mice (49).
At the myocardial level, insulin resistance is further promoted by
inflammation-induced oxidative stress (73).

Contrasting reduced cardiac glucose uptake via the insulin-
dependent glucose transporter 4 (GLUT4) in insulin resistant
states, metabolic stress promotes increased cardiac fatty acid
uptake through upregulation of cluster of differentiation (CD)36,
the main fatty acid transporter in cardiomyocytes. CD36 is
regulated by the peroxisome proliferator-activated receptor
(PPAR)-γ/retinoid X receptor (RXR) complex allowing for its
enhanced expression in response to nutrient excess (Figure 2)
(29, 74). Paired with high levels of circulating FFAs, increased
abundance of CD36 on the sarcolemmal membrane raises
intracellular fatty acid availability and turnover (75).

FFA overload leads to mitochondrial dysfunction and
uncoupling of fatty acid oxidation from ADP phosphorylation
in cardiomyocytes (17). As a result of deranged cardiac lipid
metabolism, cardiac triacylglycerols and toxic intermediate
products such as diacylglycerols and ceramides are formed (17)
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FIGURE 2 | Metabolic inflammation promotes myocardial remodeling. High levels of circulating inflammatory cytokines and metabolic substrates activate inflammatory

cascades in different cardiac cell types linked to cellular dysfunction. Endothelial activation facilitates leucocyte adhesion and transmigration into the myocardium

thereby aggravating the low-grade inflammatory state. Both free fatty acids (FFAs) and high glucose levels modulate the polarization of monocyte-derived

macrophages (MDM) which secrete inflammatory and profibrotic cytokines. Cardiac insulin resistance is promoted by inflammatory cytokines, including tumor necrosis

factor alpha (TNF-α), and goes along with down-regulation of the insulin-dependent glucose transporter 4 (GLUT4) and upregulation of the fatty acid transporter

cluster of differentiation (CD)36 thus contributing to lipotoxicity, mitochondrial dysfunction and accumulation of reactive oxygen species (ROS). In addition, direct

effects of circulating inflammatory mediators lead to endothelial ROS formation and microvascular dysfunction. IL denotes interleukin; IL-1RI, IL-1 receptor type I;

IL-6R, IL-6 receptor, TNF-R, TNF receptor; STAT3, signal transducer and activator of transcription 3; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B

cells; HtrA2, HtrA serine peptidase 2; Smac, second mitochondria-derived activator of caspase; t-Bid, truncated BH3 interacting domain death agonist; CHOP,

C/EBP homologous protein; Bak, BCL2-antagonist/killer; Bcl-xL, BCL-extra-large; Casp3, caspase 3; TGF-β, transforming growth factor beta; VCAM-1, vascular cell

adhesion molecule 1; ICAM, intercellular adhesion molecule; RAGE, receptor for advanced glycation end products; IL-R, interleukin receptor; CM, circulating

monocyte; MDM, monocyte derived macrophage; F, fibroblast; MF, myofibroblast; SMC, smooth muscle cell; ROS, reactive oxygen species; NO, nitric oxide; ECM,

extracellular matrix.

and accumulate in the heart of obese and diabetic patients (76–
78). Cardiac lipotoxicity has been implicated in the generation
of reactive oxygen species (ROS), cell apoptosis, defective insulin
signaling, and impaired calcium handling (79–83). While the

exact mechanisms underlying cardiac lipotoxicity remain elusive
and are subject of ongoing investigations, the combination of
myocardial inflammation, insulin resistance and excess supply of
FFA emerges as a decisive factor (17).
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Direct Pro-inflammatory Effects of
Nutrients on Cardiomyocytes
Nutrient overload activates different inflammatory signaling
cascades in cardiomyocytes which contribute to cell hypertrophy,
apoptosis, and mechanical dysfunction (38). The regulation of
inflammatory programs in cardiomyocytes is closely linked to
intracellular ROS accumulation resulting from deranged cardiac
substrate utilization in diabetes and obesity (17, 38). Excess
availability of lipids and glucose favors the production of ROS
(17, 84) which in turn enhances the transcription and functional
activity of NF-κB (85–89). Cardiomyocyte-specific inhibition of
NF-kB signaling through overexpression of inhibitor of NF-κB
(IκB)-α mitigates cardiac alterations in hyperglycemic mice—
highlighting the importance of this axis (90).

In addition, high glucose concentrations directly activate
a number of pro-inflammatory pathways in cardiomyocytes
converging toward NF-κB. Exposure to high glucose levels
enhances the expression of high-mobility group box 1 (HMGB1)
protein in cardiomyocytes thereby activating mitogen-activated
protein kinase (MAPK) and NF-κB which leads to TNF-α and
IL-6 secretion (41). High glucose also induces upregulation of
TNF-α, IL-1β, IL-6, and IL-12 through activation of JNK and
NF-κB (45). Another mechanism linking glucose metabolism to
inflammation is histone 3 lysine 9 trimethylation (H3K9me3)
at the IL-6 promoter under high glucose conditions favoring
its upregulation (91). Moreover, posttranslational modification
of the NF-κB p65 subunit by O-linked N-acetylglucosamine
(O-GlcNAc) enhancing its transcriptional activity under
hyperglycemic conditions may also apply to cardiomyocytes
(92). Likewise, hyperglycemia-induced epigenetic changes that
increase p65 expression may be of relevance in cardiomyocytes
(38, 44, 93).

Excess availability of FFAs contributes to deranged substrate
utilization of the heart in high metabolic states leading to
lipotoxicity and ROS formation (17). Exposure of human
cardiomyocytes to saturated fatty acids enhances NF-κB binding
activity and raises nuclear p65 protein levels leading to enhanced
expression of TNF-α, IL-6, and CCL-2 (94). Similar findings were
reported in hearts from mice fed a high-fat diet (94). Direct
activation of the NOD-, LRR- and pyrin domain-containing
protein (NLRP) 3 inflammasome by accumulating ceramides has
been demonstrated in other cell types including adipocytes and
may also be of importance in cardiomyocytes.

Direct Pro-inflammatory Effects of
Nutrients on Endothelial Cells
Endothelial cells are a central component of the cardiac
vasculature forming a barrier between blood and myocardial
tissue. Aside from their regulatory function in substrate
exchange, endothelial cells control myocardial blood flow, and
immune cell recruitment (95–97). Endothelial nitric oxide (NO)
production regulates the vascular tone and hinges on functional
insulin signaling in endothelial cells (98). In metabolic disorders,
such as obesity and T2D, coronary endothelial cell function is
markedly impaired by high levels of circulating inflammatory
mediators (e.g., TNF-α, IL-1β, and IL-6) contributing to insulin

resistance (99). In addition, excess metabolic substrates, namely
glucose and FFA, exert a rage of detrimental effects on endothelial
cell function linked to ROS formation and inflammatory pathway
activation (98).

Exposure of endothelial cells to high glucose levels activates
IκB kinase (IKK)β and NF-κB signaling which leads to
upregulation of inflammatory cytokine expression, reduced
insulin sensitivity and diminished NO production (100, 101).
Excess glucose also leads to tight junction disruption—a hallmark
of endothelial barrier dysfunction—through activation of the
NLRP3 inflammasome (102). In line, high glucose levels associate
with increased inflammatory markers in the circulation and
in endothelial cells in the setting of acute coronary syndrome
(103, 104).

High levels of circulating FFAs disrupt endothelial cell
function via induction inflammatory signaling cascades
and increased ROS formation (105). FFAs induce vascular
inflammation via TLR4-dependent activation of IKKβ and
NF-κB which has been linked to endothelial insulin resistance
and decreased NO availability (105–108). It has also been
reported that FFAs selectively stimulate NF-κB and activator
protein (AP)1 transcriptional activation leading to enhanced
expression of inflammatory mediators such as TNF-α, CCL-2,
and ICAM-1 (105, 109). Conversely, genetic inhibition of NF-κB
in endothelial cells blocks ROS formation, improves insulin
sensitivity, downregulates vascular adhesion molecules and
increases the expression of endothelial NO synthetase (eNOS)
in obesity (110). Moreover, palmitic acid, a long-chain saturated
fatty acid, activates the NLRP3 inflammasome and increases the
expression of IL-1β in endothelial cells thereby contributing to
endothelial dysfunction (111).

Direct Pro-inflammatory Effects of
Nutrients on Fibroblasts
Fibroblasts are one of the largest non-cardiomyocyte cell
populations in the heart and regulate the ECM composition,
structure, and turnover (112). Expansion of the cardiac
interstitium through accumulation of ECM proteins (i.e.,
interstitial and perivascular fibrosis) in patients with obesity
and diabetes reflects a maladaptive response to glucometabolic
disturbances (112, 113). Exposure to high glucose increased
the expression of transforming growth factor (TGF)-β, the
main fibrogenic cytokine in the heart, and promotes fibroblast
proliferation and ECM protein synthesis in vitro (113–118). High
glucose levels also activate the phosphatidylinositol 3-kinase
(PI3K)/protein kinase B (Akt)/MAPK signaling pathway and
leads to upregulation of pro-inflammatory IL-17 synthesis and
IL-17 receptor (IL-17R) expression, thus stimulating increased
collagen synthesis (119). Apart from the MAPK pathway,
these effects may be partially favored by a pro-inflammatory
state in cardiac fibroblasts under high glucose conditions
manifest from activation of NF-κB and enhanced expression
of TNF-α, IL-6, and IL-1β (41, 114, 117, 120). A key event
in myocardial remodeling is the conversion of fibroblasts to
activated myofibroblasts, the main ECM producing cells (112).
Due to differences in study conditions, conflicting data have
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been reported on the effect of high glucose on myofibroblast
transition with the majority of studies pointing toward increased
myofibroblast conversion under high glucose conditions (102,
115, 118, 121, 122). Interestingly, obese diabetic (db/db) mice,
characterized by increased body weight, hyperglycemia and
hyperlipidemia, display cardiac fibrosis in the absence of
myofibroblast conversion, suggesting the activation of alternative
matrix-synthetic programs in fibroblasts (112, 123).

Direct Pro-inflammatory Effects of
Nutrients on Macrophages
Macrophages are the predominant immune cell type in the
resting heart and have an important role in the regulation
of tissue homeostasis (124). In response to chronic nutrient
overload, resident macrophages expand and interact with other
cardiac cell types via paracrine mechanisms (49–51, 124, 125).
In fact, myocardial remodeling observed in patients with
obesity or diabetes is largely mediated and amplified by cardiac
macrophages (69). Increased levels of circulating nutrients (i.e.,
glucose and FFAs) alter macrophage function favoring their
polarization from a regulatory (M2) toward a pro-inflammatory
(M1) phenotype through different mechanisms (60, 126, 127).

First, overnutrition leads to global insulin resistance
accompanied by chronic hyperglycemia, which promotes
increased glucose uptake by macrophages via the insulin-
independent GLUT1. In contrast to cardiomyocytes,
macrophages are not sensitive to insulin and maintain glucose
uptake in insulin resistant states (69, 128). Elevated intracellular
glucose availability shifts the macrophage metabolism toward
glycolysis and away from oxidative phosphorylation leading to
increased pro-inflammatory gene expression (129). In parallel,
the pentose phosphate pathway is activated and generates
nicotinamide adenine dinucleotide phosphate (NADPH) which
supports the synthesis of inflammatory prostaglandins and
leukotrienes, thus activating NF-κB (69, 129).

Second, obesity and diabetes are both associated with elevated
circulating and cardiac lipid levels which act as extra- and
intracellular pro-inflammatory signaling molecules (17, 69,
130). Saturated fatty acids drive inflammatory responses in
macrophages mediated by TLR4 on the cellular surface (14, 59).
Multiple studies have demonstrated that long-chain saturated
fatty acids (e.g., palmitic acid), but not short-chain saturated
fatty acids or long-chain unsaturated fatty acids, induce the
expression of inflammatory cytokines in macrophages (e.g.,
TNF-α) via the JNK signaling pathway in a TLR4-dependent
manner (59–61, 126). Mechanistically, it is uncertain whether
this effect is mediated by direct binding of FFAs to TLR4
or by an indirect TLR4-dependent mechanism—with a recent
systematic study indicating the latter (61). Within the cell,
saturated fatty acids also activate the NLRP3 inflammasome
via an AMP-activated kinase (AMPK)-dependent pathway
hinging on mitochondrial ROS production and cause IL-1β
and IL-18 synthesis (131). In addition, excess intracellular fatty
acid availability promotes anabolic pathways in macrophages
including triacylglycerol, phospholipid, and ceramide synthesis
(69, 132). Fatty acid-derived ceramide production activates

the NLRP3 inflammasome thereby promoting lipotoxicity and
M1 polarization (132, 133). Moreover, oxidized low-density
lipoprotein (LDL) induces CD36-dependent mitochondrial ROS
production in macrophages which facilitates NF-κB activation
and inflammatory cytokine generation (69, 134). In aggregate,
inflammatory processes in macrophages are tightly coupled to
nutrient metabolism and therefore dictated by the availability of
energetic substrates.

Pro-inflammatory Cytokines Impair
Cardiomyocyte Function
Cardiomyocytes are exposed to a broad range of cytokines
originating from other cardiomyocytes, non-cardiomyocyte
cardiac cells, and extracardiac tissues (135). Inflammatory
cytokines such as TNF-α and IL-6, highly abundant in obesity
and T2D, bind to receptors on the cardiomyocyte surface
which triggers downstream activation of NF-κB and other
central regulators of cell metabolism with differential impact
on cardiomyocyte function (7–9, 86, 136–138). A number of
deleterious effects of inflammatory cytokines on cardiomyocytes
have been documented, namely cardiomyocyte hypertrophy,
progressive cardiomyocyte loss through apoptosis, activation of
fetal gene programs, impaired contractility, and increased passive
tension (Table 1) (35, 36, 137, 139–141).

TNF-α exerts intracellular effects via binding to two
different cell surface receptors, TNF receptor (TNFR)1 and
TNFR2, both of which are expressed in cardiomyocytes
(204). Exposure to TNF-α stimulates protein synthesis and
blunts protein degradation in cardiomyocytes leading to cell
hypertrophy (35, 142) via Akt/NF-κB and JNK activation
(205). IL-1β induces cardiomyocyte hypertrophy through (1)
direct interaction with cardiomyocytes (154), and (2) signal
transducer and activator of transcription (STAT)3-dependent
induction of insulin-like growth factor (IGF)1 by cardiac
fibroblasts (155). IL-6 induces cardiomyocyte hypertrophy
through Ca2+/calmodulin-dependent protein kinase (CaMK)II-
dependent activation of STAT3 (160). IL-18, another upregulated
pro-inflammatory cytokine in patients with obesity and T2D,
induces cardiomyocyte hypertrophy via PI3K/Akt/GATA
binding protein (GATA)4 signaling (167). In line with in
vitro results, a number of studies have confirmed the role of
pro-inflammatory cytokines in cardiac hypertrophy in vivo.
Administration of TNF-α (35, 206) and IL-1β (141, 207)
leads to left ventricular (LV) hypertrophy and dysfunction in
rodents. Conversely, genetic deletion of TNF-α (208) and IL-1β
(155) reduces LV hypertrophy and dysfunction in response
to pressure overload. Marked LV hypertrophy and impaired
diastolic relaxation and can be induced by infusion of IL-6
(209). Conclusively, IL-6 knockout attenuates myocardial
hypertrophy and improves diastolic function in response to
pressure overload (160).

Inflammatory cytokines modulate a range of processes
controlling cardiomyocyte apoptosis. Sustained TNF signaling
induces apoptosis via activation of intrinsic and extrinsic
cell death pathways leading to activation of caspases-9
and−3 via cytosolic upregulation of cytochrome c, second
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TABLE 1 | Overview of effects on different cardiac cell types mediated by selected cytokines upregulated in cardiometabolic patients.

Cardiomyocytes Endothelial cells Fibroblasts Macrophages

TNF-α Hypertrophy (35, 142)

Negative inotropy (143)

Apoptosis (144)

Endothelial cell activation (145, 146)

NO depletion (147, 148)

Apoptosis (149)

Cardiac fibrosis in vivo (112)

Increased proliferation (150) and TGF-β

production (151) in vitro

Decreased collagen

synthesis in vitro (152)

M1 polarization (153)

IL-1β Hypertrophy (154, 155)

Negative inotropy (37)

Apoptosis (156, 157)

Endothelial cell activation (146) Cardiac fibrosis in vivo (112)

Inhibition of proliferation (141), myofibroblast

transition (158), and collagen synthesis (152)

in vitro

M1 polarization (159)

IL-6 Hypertrophy (160)

Negative inotropy (143)

Increased passive tension (161)

Inhibition of Apoptosis (162)

NO depletion (147, 148)

Endothelial cell activation (163)

Cardiac fibrosis in vivo (112)

Increased TGF-β and collagen synthesis (164)

M2 polarization

(165, 166)

IL-18 Hypertrophy (167)

Negative inotropy (37)

Endothelial cell activation (168, 169)

Apoptosis (170)

Proliferation (171)

Collagen synthesis (171)

M2 polarization (172)

TGF-β Hypertrophic growth response to

Angiotensin II (173)

Apoptosis (174, 175)

Endothelial to mesenchymal transition

(176)

Inhibition of endothelial cell activation (177)

Induction of NOS (178)

Apoptosis (179, 180)

Cardiac fibrosis in vivo (112)

Myofibroblast transition (181) and collagen

synthesis (182) in vitro

M2 polarization (183)

Leptin Hypertrophy (184)

Negative inotropy (185)

Inhibition of apoptosis (186, 187)

NO depletion (147, 148, 188)

Proliferation (189)

Inhibition of apoptosis (170)

ECM synthesis (190) M1 polarization (191)

Elevated circulating levels of each cytokine have been reported in both, obesity and T2D (192–203).

mitochondria-derived activator of caspase (Smac), and HtrA
serine peptidase (HtrA)2, and to cleavage of BH3 interacting
domain death agonist (Bid) to truncated (t-)Bid, respectively
(144). IL-1β promotes cardiomyocyte apoptosis (1) by induction
of inducible nitric oxide synthase (iNOS) and subsequent
generation of oxygen free radicals that alter the cellular balance of
BCL2-antagonist/killer (Bak) and BCL-extra-large (Bcl-xL), and
(2) by increasing endoplasmatic reticulum stress which promotes
interleukin 1 receptor associated kinase (IRAK)2/C/EBP
homologous protein (CHOP) signaling (156, 157). In addition,
activation of the NLRP3 inflammasome induces cardiomyocyte
cell death via caspase-1 (210).

Activation of the NLRP3 inflammasome/caspase-1 has
also been liked to LV diastolic dysfunction. In diabetic
cardiomyopathy, inhibition of caspase-1 leading to diminished
IL-1β and IL-18 synthesis improves diastolic function and
reduces myocardial fibrosis (54). Likewise, inhibition of IL-1β
and IL-18 synthesis by knockdown of NLRP3 improves diastolic
LV function in diabetic rats (211).

Alongside LV diastolic dysfunction, impaired systolic LV
function is common in diabetic cardiomyopathy and obese
patients with HFpEF (212, 213). In parallel, negative inotropic
effects in vivo and in vitro have been reported for TNF-α,
IL-1β, IL-6, and IL-18 (37). Cytokines mediate a rapid and
reversible reduction of cardiomyocyte contractility by activating
myocardial iNOS (143). Moreover, IL-1β and IL-6 decrease
the expression of sarcoplasmic/endoplasmic reticulum calcium
ATPase (SERCA)2a, which in turn may impair cardiomyocyte
contractility through altered calcium handling (38).

Low-Grade Inflammation and Coronary
Microvascular Dysfunction
Structural and functional abnormalities of the coronary
microvasculature are propagated by chronic metabolic
inflammation and can occur in the absence of macrovascular
coronary artery disease (21, 213–217). The combination of
systemic inflammation, hyperglycemia, and hyperlipidemia
alters the release of vasoactive substances, such as NO, from
the vascular endothelium leading to impaired smooth muscle
relaxation and decreased myocardial perfusion (21, 147, 213–
215, 217). Attenuated vasodilator response irrespective of
macrovascular alterations is observed in subjects with diabetes
(214, 218, 219), obese subjects with or without diabetes (220–
223), subjects at increased risk to develop HFpEF (224) and
patients diagnosed with HFpEF (213, 225, 226). Over the
past two decades, the strong link between inflammation and
microvascular dysfunction has been substantiated by a number
of clinical studies (227–230). Notably, reduction in coronary
flow reserve correlates with the degree of systemic inflammation
assessed by CRP, IL-6, and white blood count (231). Likewise, in
obese patients without coronary artery disease high circulating
inflammatory markers (e.g., high sensitivity [hs]CRP, TNF-α,
IL-6, and Leptin) associate with reduced coronary flow reserve
(232, 233).

On a cellular level, TNF-α, IL-6, and leptin activate
the NADPH-oxidase in the vessel wall leading to enhanced
production of hyperoxide anion which in turn decreases NO
availability and impairs vasodilation (147, 148). Moreover,
obesity and diabetes-related microangiopathy is accompanied
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by microvascular rarefaction (222, 234–238). Reduction of
coronary capillary density relative to cardiomyocyte surface area
in turn promotes cardiomyocyte hypertrophy by decreasing
NO-dependent protein kinase (PK)G activity (238). Depressed
endothelial NO generation due to systemic inflammation has also
been proposed as a leading cause of reduced cGMP-dependent
PKG signaling in adjacent cardiomyocytes and impaired diastolic
relaxation (7, 215).

Microvascular Endothelial Activation and
Myocardial Fibrosis
Inflammatory processes in the myocardium of patients with
the metabolic syndrome are amplified by endothelial activation
and recruitment of circulating immune cells (38). Diet-induced
obesity and diabetes alike enhance the expression of endothelial
transmembrane proteins in the heart, such as VCAM-1 and
ICAM-1, which facilitate leucocyte adhesion to the vascular wall
and endothelial transmigration (50, 54, 239). Accordingly, both
conditions are accompanied by increased abundance of cardiac
macrophages and greater propensity of macrophages to assume
a pro-inflammatory (M1) phenotype (47, 49, 50, 52, 53, 240).
Mechanistically, circulating inflammatory cytokines (e.g., TNF-
α, IL-1β) and, in advanced stages of myocardial functional
impairment, elevated levels of Ang II induce upregulation of
vascular adhesion molecules on the endothelial surface (215,
241–243).

During inflammatory states, cardiac cells secrete
inflammatory and profibrotic cytokines which stimulate
maladaptive remodeling through direct activation of fibroblasts
and indirect effects (38, 112). TNF-α exerts multiple profibrotic
effects including fibroblast activation and increased expression of
TGF-β, the main profibrotic cytokine in the heart (38, 119, 151).
Direct upregulation of collagen production by TNF-α via
activation of WNT1 inducible signaling pathway protein (WISP)
1 has been reported (119, 151). Accordingly, pharmacological
inhibition of TNF-α by monoclonal antibodies markedly reduces
myocardial collagen I and III content and attenuates cardiac
fibrosis in diabetic rats (54). Of note, TNF-α also activates
matrix-degenerating programs in fibroblasts, such as the
expression of matrix metalloproteinases (MMPs), suggesting
that TNF-α mediated fibrosis may partly represent a response
to ECM degradation (152). Another fibrogenic inflammatory
mediator, upregulated under glucometabolic challenge by
NF-κB activation, is IL-6 (14, 50). Abundant evidence indicates
profibrotic effects of IL-6, mainly attributed to STAT3-dependent
induction of collagen synthesis by cardiac fibroblasts and to
enhancement of TGF-β expression (112, 164, 244). Genetic
deletion of IL-6 mitigates cardiac fibrosis and dysfunction in
diabetic mice (164). The inflammatory cytokine IL-1β is released
upon activation of NLRP3/caspase 1 and is present in increased
abundance in diabetic hearts (55). Il-1β has been implicated
in cardiac fibrosis by exerting indirect profibrotic effects on
fibroblasts via generation of ECM fragments and by induction
of TGF-ß (112). Inhibition of caspase 1 reduces the biologically
active form of IL-1β thereby improving cardiac fibrosis and LV
function in diabetic rats (54).

Another process linking metabolic inflammation to
myocardial fibrosis is endothelial-to-mesenchymal-transition.
When exposed to inflammatory cytokines (e.g., TNF-α, IL-1β,
IL-6, IL-13) or oxidized LDL endothelial cells adopt a fibroblast-
like phenotype displaying mesenchymal cell morphology and
function (245, 246). It has been suggested that endothelial-
to-mesenchymal transition represents a general response to
intracellular inflammation and may have a major role in cardiac
ECM remodeling (245, 246).

Advanced Glycation End Products
Propagate Myocardial Inflammation
AGEs are heterogenous molecules formed in a non-enzymatic
reaction between the carbonyl group of a reducing sugar and
the amino group of proteins, lipids, and nucleic acids. Chronic
hyperglycemia leads to enhanced endogenous production and
accumulation of AGEs in the cardiac ECM. Binding of
AGEs to their cell surface receptor RAGE that is expressed
in cardiomyocytes, fibroblasts, endothelial cells, and cardiac
immune cells triggers the activation NF-κB via PI3K/Akt/MAPK
(247, 248). The resulting pro-inflammatory state associates
with enhanced intracellular ROS generation and alteration of
cellular protein function (249). Overall, NF-κB activation by
AGE-RAGE interaction leads to enhanced transcription and
secretion of TNF-α, IL-1β, IL-2, and IL-6 contributing to
the inflammatory milieu in the myocardium of hyperglycemic
patients (250).

Pro- and Anti-inflammatory Actions of
Adipokines
Several lines of evidence suggests that endocrine actions
of pro- and anti-inflammatory adipokines in the systemic
circulation along with paracrine effects of the epicardial
adipose tissue contribute to myocardial inflammation
(251, 252). Adipocyte hypertrophy promotes the secretion
of leptin which has been linked to inflammatory effects in the
myocardium and cardiomyocyte hypertrophy (14, 30, 253–
255). In contrast, plasma levels of anti-inflammatory
adiponectin are inversely correlated with body fat mass
leading to reduced antagonism of inflammatory pathways
in cardiometabolic patients (256). Adiponectin blocks TNF-
α mediated activation of NF-κB through a protein kinase
(PK)A-dependent mechanism (257). In addition, adiponectin
potently stimulates ceramidase activity in cardiomyocytes and
enhances ceramide catabolism thereby protecting from lipotoxic
damage (258).

The Epicardial Adipose Tissue Amplifies
the Local Inflammatory Burden
Given its anatomical intimacy with the underlying heart muscle
and a shared microcirculation, the epicardial adipose tissue
(EAT) is a pivotal regulator of myocardial inflammation (255).
Unhindered passage of pro- and anti-inflammatory cytokines
secreted by the EAT to the neighboring myocardium allows
for paracrine interactions (251). At baseline, the EAT protects
the myocardium form pro-inflammatory and hypertrophic
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stimuli through secretion of adiponectin (257–259). Along
with growing body fat mass, macrophages are recruited to
EAT where they foster local adipose tissue inflammation
through upregulation of TNF-α, IL-6, IL-1β, and leptin while
blunting the secretion of adiponectin (251, 260). Owed to
its close proximity to the heart, EAT amplifies the effects
of systemic metabolic disturbances on the myocardium (261).
Clinically, EAT expansion correlates with elevated systemic
inflammatory markers, increased LV mass index, abnormal
coronary microcirculation (262), worsened parameters of
diastolic function, and left atrial dilation—all features of the
metabolic HFpEF phenotype (263–265). Besides, inflammation-
induced invasion of pluripotent stem cells from the EAT to the
outer myocardial layer and subsequent conversion to fibroblasts
has also been proposed as mechanism of maladaptive myocardial
remodeling (251).

CLINICAL PERSPECTIVE

Abundant observational data support the clinical relevance of
inflammation in myocardial remodeling and HF development
in cardiometabolic patients. Obesity and T2D associate with
elevated biomarkers of inflammation including hsCRP (136),
IL-6 (136), TNF-α (7–9), and other markers of metabolic
inflammation such as Leptin (192) and TGF-β (193, 194). High
hsCRP, TNF-α, and TGF-β levels increase the susceptibility to
cardiac damage in hypertensive patients with the metabolic
syndrome, in whom they are independently related to the LV
mass index and diastolic LV dysfunction (65). In accordance,
elevated TNF-α and IL-6 independently predict incident HFpEF,
the predominant type of HF in obesity and diabetes, but not
HF with reduced ejection fraction (HFrEF) (266, 267). Subjects
with obesity or diabetes account for the majority of the HFpEF
patient population in which pathophysiological pathway analyses
demonstrated a close link to vascular cell adhesion, leucocyte
migration and inflammation (268). In line, among patients
with established HF, subjects with HFpEF display higher levels
of inflammatory markers than those with HFrEF (268, 269).
While the majority of clinical trials on direct anti-inflammatory
agents were performed in HFrEF and have had neutral
results, two randomized controlled trials on IL-1 blockade in
HFpEF patients with high hsCRP levels showed a decrease
in NT-proBNP levels and improved exercise performance—
holding promise for individualized anti-inflammatory treatment
approaches (11–13).

CONCLUSION

Myocardial remodeling in the setting of obesity and diabetes
results from a multifaceted disease process involving metabolic
dysregulation and systemic inflammation. While the underlying
cellular crosstalk within and beyond the heart remains poorly
understood, remarkable overlap in subcellular alterations within
the spectrum of glucometabolic disturbances has been reported.
Nutrients and pro-inflammatory cytokines are intricately linked
to the regulation of inflammatory processes in the heart through
conserved signal transduction pathways. Recent advances in
the field are shedding light on the interplay between lipid
metabolites and immune dysregulation underlining their role
as key modulators of myocardial hypertrophy and fibrosis.
Disentangling the inflammatory programs involved in adverse
myocardial remodeling in cardiometabolic patients and their
regulation by systemic mediators may help to identify potential
drug targets and personalized approaches in this setting.
Overnutrition is on the rise worldwide (270) calling for dedicated
research on the myocardial sequelae to decipher molecular
pathways and improve clinical outcomes.
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