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Preterm birth is the leading cause of neonatal morbidity and mortality worldwide. 

Inflammation is causally linked to preterm birth; therefore, finding an intervention that damp-

ens maternal and fetal inflammatory responses may provide a new strategy to prevent 

adverse pregnancy and neonatal outcomes. Using animal models of systemic maternal 

inflammation [intraperitoneal injection of lipopolysaccharide (LPS)] and fetal inflammation 

(intra-amniotic administration of LPS), we found that (1) systemic inflammation induced 

adverse pregnancy and neonatal outcomes by causing a severe maternal cytokine storm 

and a mild fetal cytokine response; (2) fetal inflammation induced adverse pregnancy and 

neonatal outcomes by causing a mild maternal cytokine response and a severe fetal cytokine 

storm; (3) exendin-4 (Ex4) treatment of dams with systemic inflammation or fetal inflamma-

tion improved adverse pregnancy outcomes by modestly reducing the rate of preterm birth; 

(4) Ex4 treatment of dams with systemic, but not local, inflammation considerably improved 

neonatal outcomes, and such neonates continued to thrive; (5) systemic inflammation facil-

itated the diffusion of Ex4 through the uterus and the maternal–fetal interface; (6) neonates 

born to Ex4-treated dams with systemic inflammation displayed a similar cytokine profile 

to healthy control neonates; and (7) treatment with Ex4 had immunomodulatory effects by 

inducing an M2 macrophage polarization and increasing anti-inflammatory neutrophils, as 

well as suppressing the expansion of CD8+ regulatory T cells, in neonates born to dams 

with systemic inflammation. Collectively, these results provide evidence that dampening 

maternal systemic inflammation through novel interventions, such as Ex4, can improve the 

quality of life for neonates born to women with this clinical condition.

Keywords: amniotic fluid, clinical chorioamnionitis, fetal inflammatory response syndrome, intra-amniotic 

infection/inflammation, M2 macrophages, neutrophils, regulatory T cells, preterm labor and birth
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inTrODUcTiOn

Preterm birth is one of the most common, yet harmful, obstetri-
cal syndromes (1) and is the leading cause of perinatal morbidity 
and mortality worldwide (2–4). Up to 70% of all preterm birth 
are preceded by spontaneous preterm labor (5, 6), a syndrome 
comprised of multiple pathological processes (1). While many 
putative causes are associated with spontaneous preterm labor, the 
only one that is causally linked to preterm birth is inflammation/
infection (7, 8). Inflammation can be due to microorganisms (i.e., 
intra-amniotic infection) or danger signals derived from necrosis 
and cellular stress (i.e., sterile intra-amniotic inflammation) 
(9–14). Systemically, intra-amniotic infection can be manifested as 
clinical chorioamnionitis, which refers to the presence of maternal 
fever associated with clinical signs (foul-smelling discharge and 
uterine tenderness as well as maternal and fetal tachycardia) and 
laboratory abnormalities such as leukocytosis (15–18). Locally, 
intra-amniotic infection is characterized by an increased white 
blood cell count (19–22) and elevated concentrations of cytokines 
(23) and lipid mediators (e.g., prostaglandins) (24–31) in the 
amniotic cavity. This local inflammatory response can indicate 
a systemic activation of the fetal innate immune system, a phe-
nomenon referred to as fetal inflammatory response syndrome 
(FIRS) (32, 33). Clinically, FIRS is defined by elevated cytokines 
in the fetal plasma, such as IL-6 (34), and by the presence of the 
fetus-related histopathological lesions funisitis and chorionic 
vasculitis (35–37). Fetuses with FIRS are often born to mothers 
with subclinical microbial invasion of the amniotic cavity (32). 
If the infection reaches the fetus, it may result in a systemic fetal 
infection that can progress toward multiple organ dysfunction, 
septic shock, and death (38). Finding a treatment for the preven-
tion of inflammation-induced adverse pregnancy outcomes (39, 
40), which can target both the maternal and fetal inflammatory 
responses, is critical.

Several substances with anti-inflammatory properties have 
been suggested as possible candidates for the prevention of 
inflammation-induced adverse pregnancy outcomes (41). In vivo 
studies using pregnant mice have shown that antibodies against 
cytokines (42) or their receptors (43), cytokine antagonists (44, 
45), cytokine-suppressive anti-inflammatory drugs (46), COX-2 
inhibitors (47), hormones such as progesterone (48, 49) and 
human chorionic gonadotropin (50), resveratrol (51), resolvins 
(52), PPARγ agonists (53–56), statins (57), and probiotics (58) are 
potential anti-inflammatory therapies for preterm birth preven-
tion. Yet, further investigation is still required to determine the 
efficacy and safety of such treatments (41). Herein, we propose the 
use of a peptide, exendin-4 (Ex4), as an alternative approach for 
preventing inflammation-induced preterm labor and birth and 
adverse neonatal outcomes. In general, peptides are selective and 
efficacious signaling molecules that bind to a specific cell-surface 
receptor, which triggers intracellular effects (59). Because of their 
attractive pharmacological profile and intrinsic properties as well 
as their specificity, peptides represent an excellent alternative for 
the design of novel therapeutic approaches with potential safety, 
tolerability, and efficacy in humans (59).

Exendin-4 is a glucagon-like peptide-1 receptor (GLP1R) ago-
nist, which is commonly used to treat diabetes mellitus type 2 (60). 

GLP1R is expressed in pancreatic beta cells and activation of this 
receptor stimulates the adenylyl cyclase pathway, which results in 
increased synthesis and release of insulin (61). In addition to the 
pancreas, GLP1R is expressed in several other organs including 
the intestine, lung, kidney, breast, and brain (62). The widespread 
distribution of this receptor in organs has resulted in multiple 
studies examining this receptor as a target for the treatment of 
various diseases. For example, Ex4 reduces liver damage (63) as 
well as inflammation and atherosclerosis (64). This peptide also 
has protective effects in renal injury (65) and post-myocardial 
infarction (66) by reducing inflammation. Moreover, Ex4 has 
potent immunomodulatory effects in both mice and humans 
as evidenced by the following demonstrations: Ex4 (a) prevents 
inflammation-induced migration of macrophages and their 
release of pro-inflammatory cytokines in vitro (67) and in vivo 
(64); (b) improves neutropenia and decreases the systemic levels 
of pro-inflammatory cytokines in a rat model of endotoxemia 
(68); (c) reduces the expression of iNOS and the production of 
reactive oxygen species, as well as the release of pro-inflammatory 
cytokines by in vitro M1-polarized human macrophages (69, 70); 
(d) attenuates the release of pro-inflammatory cytokines (e.g., 
TNFα, IL-1β, and IL-6) and chemokines (e.g., CCL5/RANTES 
and CXCL10/IP-10) by peripheral blood mononuclear cells 
from type 2 diabetic patients, which is likely mediated by the 
suppression of the p38 MAPK pathway (71); and (e) suppresses 
subcutaneous tumor growth in a dose-dependent manner by 
increasing Th1 pro-inflammatory responses (e.g., IFNγ and 
IL-1) and reducing CD4+ Foxp3+ regulatory T cells (Tregs) (72). 
Therefore, we propose that Ex4 could prevent adverse pregnancy 
and neonatal outcomes by exhibiting immunomodulatory effects 
and dampening maternal and fetal inflammation.

The aims of this study were (1) to evaluate the maternal 
and fetal cytokine responses in systemic and local models of 
inflammation-induced preterm birth and adverse neonatal out-
comes; (2) to determine whether an anti-inflammatory peptide, 
Ex4, can dampen the inflammation to prevent adverse pregnancy 
and neonatal outcomes; (3) to localize Ex4 in the maternal and 
fetal tissues; and (4) to investigate the anti-inflammatory proper-
ties of Ex4 on the neonatal immune response by measuring the 
plasma cytokine response, inflammation-related gene expression, 
M1–M2 macrophage polarization, pro- and anti-inflammatory 
neutrophil phenotypes, and CD4+ and CD8+ Treg subsets.

MaTerials anD MeThODs

animals
C57BL/6 (B6) mice were purchased from The Jackson Laboratory 
in Bar Harbor, ME, USA, and bred in the animal care facility at the 
C.S. Mott Center for Human Growth and Development at Wayne 
State University, Detroit, MI, USA. All mice were housed under 
a circadian cycle (12 h light/12 h dark). Females 8–12 weeks old 
were mated with males of the same background and proven fertil-
ity. Female mice were checked daily between 8:00 a.m. and 9:00 
a.m. for the appearance of a vaginal plug, which indicated 0.5 days 
post coitum (dpc). Females were then placed into new cages, and 
their weights were monitored daily. A gain of two or more grams 
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by 12.5 dpc confirmed pregnancy. All procedures were approved 
by the Institutional Animal Care and Use Committee at Wayne 
State University (Protocol No. A-07-03-15).

animal Models of Preterm Birth/Fetal 

inflammatory response
Intra-amniotic administration of lipopolysaccharide (LPS) (73): 
pregnant B6 mice were anesthetized on 16.5 dpc by inhalation 
of 2–3% isoflurane (Aerrane, Baxter Healthcare Corporation, 
Deerfield, IL, USA) and 1–2  L/min of oxygen in an induction 
chamber. Anesthesia was maintained with a mixture of 1.5–2% 
isoflurane and 1.5–2 L/min of oxygen. Mice were positioned on 
a heating pad and stabilized with adhesive tape. Fur removal 
from the abdomen and thorax was achieved by applying Nair 
cream (Church & Dwight Co., Inc., Ewing, NJ, USA) to those 
areas. Body temperature was maintained in the range of 37 ± 1°C 
and detected with a rectal probe (VisualSonics, Toronto, ON, 
Canada), and respiratory and heart rates were monitored by elec-
trodes embedded in the heating pad. An ultrasound probe was 
fixed and mobilized with a mechanical holder, and the transducer 
was slowly moved toward the abdomen. Ultrasound-guided 
intra-amniotic injection of LPS (Escherichia coli O111:B4; Sigma-
Aldrich, St. Louis, MO, USA) at a concentration of 100 ng (n = 8) 
dissolved in 25 µL of sterile 1× phosphate-buffered saline (PBS; 
Fisher Scientific Bioreagents, Fair Lawn, NJ, USA) was performed 
in each amniotic sac using a 30-G needle (BD PrecisionGlide 
Needle, Becton Dickinson, Franklin Lakes, NJ, USA). Controls 
were injected with 25 µL of sterile 1× PBS (n = 7). The syringe was 
stabilized by a mechanical holder (VisualSonics Inc., Toronto, 
ON, Canada). Following the ultrasound, mice were placed under 
a heat lamp for recovery (defined as when the mouse resumes 
normal activity, such as walking and responding), which typically 
occurred 10–20 min after removal from anesthesia. After recov-
ery, mice were video monitored.

Intraperitoneal administration of LPS (73): pregnant B6 mice 
were intraperitoneally injected on 16.5 dpc with 10  µg of LPS 
(Escherichia coli 055:B5; Sigma-Aldrich) (n =  10) in 200 µL of 
PBS using a 26-G needle. Controls were injected with 200 µL of 
sterile 1× PBS (n = 8). Mice were video monitored.

Video Monitoring
Pregnancy parameters including the rates of preterm birth and 
pup mortality were recorded via video camera (Sony Corporation, 
Tokyo, Japan). Preterm birth was defined as delivery occurring 
before 18.0 dpc, and its rate was represented by the percentage 
of females delivering preterm among the total number of mice 
injected. The rate of pup mortality for each litter was defined as 
the proportion of delivered pups found dead among the total 
litter size. Neonatal survival was recorded 1 week postpartum.

serum and Tissue collection From Dams
Pregnant B6 mice were intraperitoneally or intra-amniotically 
injected with either LPS or PBS on 16.5 dpc, as described previ-
ously. On 17.5 dpc, mice were euthanized, and peripheral blood 
was collected by cardiac puncture and placed into a 1.5 mL safe-
lock Eppendorf tube (Fisher Scientific, Hanover Park, IL, USA). 

Serum (n = 10 each) was separated from the maternal peripheral 
blood and stored at −20°C until analysis. Animal dissection 
to obtain the fetal lung (n  =  10–21 each) and amniotic fluid 
(n = 5–14 each) was performed. The amniotic fluid was also col-
lected from each amniotic sac with a 26-G needle and placed into 
a 0.5 mL safe-lock Eppendorf tube (Fisher Scientific). Amniotic 
fluid samples were centrifuged at 1,300 × g for 10 min at 4°C and 
the supernatant was separated and stored at −20°C until analysis.

ex4 Treatment
Pregnant B6 mice were intraperitoneally injected with 30  µg/
kg of Ex4 (Enzo Life Sciences, Ann Arbor, MI, USA) diluted in 
sterile 1× PBS 6 h after intraperitoneal (n = 10) or intra-amniotic 
(n  =  8) administration of LPS. Control pregnant mice were 
intraperitoneally injected with 30 µg/kg of Ex4 (n = 5) on 16.5 
dpc. Pregnant mice were also injected with LPS alone either 
intraperitoneally (10  µg/200  µL, n  =  10) or intra-amniotically 
(10 ng/25 µL, n = 8) on 16.5 dpc, and control mice received an 
intraperitoneal (200 µL, n = 8) or intra-amniotic (25 µL, n = 7) 
injection of 1× PBS alone on 16.5 dpc. Lower doses of Ex4 were 
also tested (10 and 20 µg/kg); however, these did not have protec-
tive effects (data not shown).

Fluorescent In Vivo imaging to Detect ex4
Pregnant B6 mice were injected intraperitoneally with 30 µg/kg 
of Ex4 (Fluorescein-TRP25-Exendin-4, FLEX) (cat # AS-63899, 
Anaspec Inc., Fremont, CA, USA) 6 h after the intraperitoneal 
administration of LPS (n = 3). Control mice were injected with 
LPS, FLEX, or 200 µL of PBS alone at 16.5 dpc (n = 3 each). One 
hour after the second injection, the uterus, placenta, decidua, fetal 
membranes, and fetus were collected to perform imaging using 
an IVIS Spectrum (Caliper Life Sciences, Hopkinton, MA, USA) 
in epifluorescence mode.

Plasma and Tissue collection From 

neonates
Pregnant B6 mice were injected intraperitoneally with 30 µg/kg 
of Ex4 6 h after intraperitoneal administration of LPS (n = 3). 
Control pregnant mice were injected with 200 µL of 1× PBS or 
Ex4 alone (n = 3 each). Thriving neonates (n = 12–14 per group) 
were euthanized at 15 days of age and the brain, thymus, lung, 
spleen, liver, and small and large intestine were collected. Plasma 
was also separated from the neonatal peripheral blood and stored 
at −20°C until analysis. For RNA studies, the neonatal brain, lung, 
liver, and small intestine were placed into RNAlater Stabilization 
Solution (Invitrogen by Thermo Fisher Scientific, Baltics UAB, 
Lithuania) according to the manufacturer’s instructions. For 
leukocyte isolation, the neonatal thymus, lung, spleen, liver, and 
large intestine were utilized.

chemokine/cytokine concentrations
Maternal serum, neonatal plasma, and amniotic fluid samples 
were assessed for chemokine/cytokine concentrations. The 
ProcartaPlex Mouse Cytokine & Chemokine Panel 1A 36-plex 
(Invitrogen by Thermo Fisher Scientific, Vienna, Austria) was 
used to measure the concentrations of IFNα, IFNγ, IL-12p70, 
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IL-1β, IL-2, TNFα, GM-CSF, IL-18, IL-17A, IL-22, IL-23, IL-27, 
IL-9, IL-15/IL-15R, IL-13, IL-4, IL-5, IL-6, IL-10, Eotaxin 
(CCL11), IL-28, IL-3, LIF, IL-1α, IL-31, GRO-α (CXCL1), MIP-1α 
(CCL3), IP-10 (CXCL10), MCP-1 (CCL2), MCP-3 (CCL7), MIP-
1β (CCL4), MIP-2 (CXCL2), RANTES (CCL5), G-CSF, M-CSF, 
and ENA-78 (CXCL5) in the serum, plasma, and amniotic fluid 
samples, according to the manufacturer’s instructions. Plates 
were read using the Luminex 100 SystemFill (Luminex, Austin, 
TX, USA), and analyte concentrations were calculated with 
ProcartaPlex Analyst 1.0 Software from Affymetrix, San Diego, 
CA, USA. The sensitivities of the assays were 3.03 pg/mL (IFNα), 
0.09 pg/mL (IFNγ), 0.21 pg/mL (IL-12p70), 0.14 pg/mL (IL-1β), 
0.10 pg/mL (IL-2), 0.39 pg/mL (TNFα), 0.19 pg/mL (GM-CSF), 
9.95  pg/mL (IL-18), 0.08  pg/mL (IL-17A), 0.24  pg/mL (IL-22), 
2.21  pg/mL (IL-23), 0.34  pg/mL (IL-27), 0.28  pg/mL (IL-9), 
0.42  pg/mL (IL-15/IL-15R), 0.16  pg/mL (IL-13), 0.03  pg/mL  
(IL-4), 0.32 pg/mL (IL-5), 0.21 pg/mL (IL-6), 0.69 pg/mL (IL-10), 
0.01 pg/mL (Eotaxin), 20.31 pg/mL (IL-28), 0.11 pg/mL (IL-3), 
0.28  pg/mL (LIF), 0.32  pg/mL (IL-1α), 0.45  pg/mL (IL-31),  
0.05 pg/mL (GRO-α), 0.13 pg/mL (MIP-1α), 0.26 pg/mL (IP-10),  
3.43 pg/mL (MCP-1), 0.15 pg/mL (MCP-3), 1.16 pg/mL (MIP-1β), 
0.37 pg/mL (MIP-2), 0.35 pg/mL (RANTES), 0.19 pg/mL (G-CSF), 
0.02 pg/mL (M-CSF), and 5.67 pg/mL (ENA-78). Inter-assay and 
intra-assay coefficients of variation were less than 10%.

rna isolation, cDna synthesis, and 

reverse Transcription Quantitative 

Polymerase chain reaction analysis
Total RNA was isolated from fetal (17.5 dpc) and neonatal (15 days 
of age) tissues using QIAshredders, RNase-Free DNase Sets, and 
RNeasy Mini Kits (all from Qiagen, Hilden, Germany), accord-
ing to the manufacturer’s instructions. RNA concentrations and 
purity were assessed with the NanoDrop 1000 spectrophotometer 
(Thermo Scientific, Wilmington, DE, USA), and RNA integrity 
was evaluated with the Bioanalyzer 2100 (Agilent Technologies, 
Wilmington, DE, USA). Complementary (c)DNA was synthe-
sized using SuperScript III First-Strand Synthesis SuperMix 
(Invitrogen by Thermo Fisher Scientific, Carlsbad, CA, USA). 
Gene expression profiling was performed on the BioMark™ 
System for high-throughput RT-qPCR (Fluidigm, San Francisco, 
CA, USA) with the TaqMan® gene expression assays (Applied 
Biosystems, Life Technologies Corporation, Foster City, CA, 
USA) listed in Table S1 in Supplementary Material.

leukocyte isolation
The neonatal lung, liver, and large intestine were cut into small 
pieces using fine scissors and enzymatically digested with StemPro 
Cell Dissociation Reagent (Accutase, Life Technologies, Grand 
Island, NY, USA) for 10 min at 37°C. The spleen and thymus were 
gently dissociated using two glass slides to prepare a leukocyte 
suspension as previously described (74). Leukocyte suspensions 
were filtered using a 35  µm cell strainer (Falcon, Tamaulipas, 
Mexico) and washed with 1× PBS.

immunophenotyping
Leukocyte suspensions from the neonatal tissues were stained 
using LIVE/DEAD Fixable Blue Dead Cell Stain Kit (Life 

Technologies) prior to incubation with extracellular and intracel-
lular mAbs. Leukocyte suspensions were centrifuged at 1,250 × g 
for 7 min at 4°C and cell pellets were incubated for 10 min with 
the CD16/CD32 mAb (FcgIII/II Receptor; BD Biosciences, San 
Jose, CA, USA) and subsequently incubated with specific extra-
cellular and intracellular fluorochrome-conjugated anti-mouse 
mAbs (Table S2 in Supplementary Material) for 30  min. After 
extracellular staining, the cells were washed with fluorescence-
activated cell sorting (FACS) buffer (bovine serum albumin 
0.1%, sodium azide 0.05%, 1× PBS) to remove excess Ab. For 
immunophenotyping of macrophages and neutrophils, follow-
ing the extracellular staining, the cells from the neonatal lung, 
liver, and large intestine were fixed and permeabilized using the 
BD Cytofix/Cytoperm fixation and permeabilization solution 
(BD Biosciences). For immunophenotyping of Tregs, following 
the extracellular staining, the cells from the neonatal thymus 
and spleen were fixed and permeabilized using the Foxp3/
Transcription Factor Staining Buffer Set (eBioscience, San Diego, 
CA, USA) prior to intranuclear Foxp3 staining.

Leukocyte subsets were gated within the viability gate. Immu-
nophenotyping included identification of (1) macrophages 
(CD11b+ F4/80+) and their M1/M2 phenotypes by the expression 
of IL-10 and iNOS; (2) neutrophils (CD11b+ Ly6G+) and their 
anti- and pro-inflammatory phenotypes by the expression of IL-10 
and iNOS; and (3) CD4+ and CD8+ Tregs (CD3+ CD4+ CD25+ 
FoxP3+ and CD3+ CD8+ CD25+ FoxP3+ cells, respectively).

The total number of specific leukocytes was determined 
using Count Bright absolute counting beads (Molecular Probes, 
Eugene, OR, USA). As a control for cellular autofluorescence, 
unstained cells were also treated in this same manner. Stained 
and unstained cell suspensions were re-suspended in 0.5 mL of 
FACS buffer and acquired using an LSRFortessa flow cytometer 
and FACSDiva 8.0 software (BD Biosciences). Data were analyzed 
using FlowJo software version 10 (Tree Star, Ashland, OR, USA).

statistical analysis
Observational mouse data were analyzed using IBM SPSS, ver-
sion 19.0, and all other analysis was performed with GraphPad 
Prism version 5. For rates of preterm birth and pup mortality, the 
statistical significance of group comparisons was assessed using 
Mann–Whitney U test. For RT-qPCR arrays, –ΔCt values were 
determined using multiple reference genes (Gusb, Hsp90ab1, 
Gapdh, and Actb) averaged within each sample to determine gene 
expression levels. A heat map was created for the group mean 
expression matrix (gene  ×  group mean), with individual gene 
expression level being standardized first. The heat map represents 
the Z-scores of the mean (−ΔCt) and the hierarchical clustering 
using correlation distance. For flow cytometry data, the statistical 
significance of group comparisons was assessed using Mann–
Whitney U tests. A p-value <0.05 was considered significant.

resUlTs

Models of inflammation-induced Preterm 

Birth and adverse neonatal Outcomes
We first compared our two previously established models of 
inflammation-induced preterm birth: systemic administration of 
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LPS via intraperitoneal injection (maternal inflammatory response 
model, MIR) and local administration of LPS via intra-amniotic 
injection (fetal inflammatory response model, FIR) (73). We 
injected mice intra-amniotically (100 ng/25 µL) or intraperitoneally 
(10 µg/200 µL) with LPS (or PBS controls) and observed pregnancy 
outcomes (Figure 1A). Both the MIR and FIR models resulted in 
a high rate of preterm birth (80 and 87.5%, respectively) while all 
of the controls injected with PBS delivered at term (Figures 1B,C). 
The rate of pup mortality at birth was greater than 85% in both the 
MIR and FIR models, which was significantly higher than that of 
controls (Figures 1D,E). At 1 week of age, no pups from dams that 
received either systemic or local administration of LPS survived 
(Figures 1F,G). These results demonstrate that a large LPS insult 
administered systemically or a lower dose given intra-amniotically 
induces adverse pregnancy and neonatal outcomes.

The Maternal cytokine response  

in the Mir and Fir Models
Next, we measured cytokine concentrations in the maternal circu-
lation to evaluate the systemic inflammatory response in both the 
MIR and FIR models (Figure 2A). In the MIR model, there were 
significantly higher serum concentrations of 30 cytokines compared 
with PBS controls (Figures 2B–D,F–S; Figures S1A–D,F–J,L,N–P 
in Supplementary Material). In the FIR model, however, only 
seven cytokine concentrations were higher compared with controls 
(Figures 2B,D,F,G,O,S; Figure S1O in Supplementary Material). 
Interestingly, from the 34 cytokine concentrations reported herein, 
25 of these were significantly higher in the MIR model than those 
in the FIR model (Figures 2B–D,F–S; Figures S1A,D,F,H–J,N–P in 
Supplementary Material). Therefore, the MIR model is characte-
rized by a stronger maternal cytokine response than the FIR model.
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FigUre 2 | The maternal cytokine response in the MIR and FIR models. (a) On 16.5 days post coitum (dpc), pregnant mice were intraperitoneally (MIR model) 

(10 µg/200 µL) or intra-amniotically (FIR model) (100 ng/25 µL) injected with lipopolysaccharide (LPS) or 1× phosphate-buffered saline (PBS) (200 or 25 µL), and on 

17.5 dpc maternal serum was collected for cytokine multiplex analysis. Concentrations of (B) CCL3, (c) CCL4, (D) CCL5, (e) CXCL5, (F) CXCL10, (g) G-CSF,  

(h) IL-1β, (i) IL-18, (J) IL-6, (K) IFNγ, (l) TNFα, (M) CXCL2, (n) CXCL1, (O) CCL2, (P) IL-13, (Q) IL-12p70, (r) IL-10, and (s) IL-4 in the maternal serum. n = 10 

dams per group.
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The Fetal cytokine response  

in the Mir and Fir Models
The fetal inflammatory response is associated with elevated IL-6 
in the amniotic fluid (32, 33). Therefore, we collected amniotic 
fluid from the MIR and FIR models and measured cytokine con-
centrations (Figure 3A, left panel). No apparent differences were 
found between fetuses of dams injected with LPS intraperito-
neally (MIR model) and their control counterparts; yet, fetuses of 
dams injected with LPS intra-amniotically (FIR model) seemed 
smaller and friable compared with those from PBS injected con-
trols (Figure 3A, right panel). We found higher concentrations 
of 16 cytokines in the amniotic fluid in the MIR model when 
compared with its control (Figures 3B–G,R; Figures S2B,E,H–N 
in Supplementary Material). In the FIR model, we similarly 
detected an elevation in the amniotic fluid concentrations of 
13 cytokines compared with its control (Figures  3B–M,R). 
However, the concentrations of 15 amniotic fluid cytokines were 
significantly higher in the FIR model than in the MIR model 

(Figures  3B–F,H–Q). Amniotic fluid concentrations of IL-4 
were unchanged in the MIR and FIR models compared to their 
controls, and there was no significant difference when comparing 
the two models (Figure 3S). These results indicate that the fetal 
inflammatory response is more severe when the insult is given 
intra-amniotically than when given systemically.

inflammatory gene expression in the Fetal 

lung
Intra-amniotic inflammation is associated with fetal lung dam-
age (75–77) and bronchopulmonary disorder (78–81). We then 
evaluated the expression of inflammation-associated genes in 
fetal lungs in both the MIR and FIR models (Figure  4A). No 
apparent differences were found between the lungs from fetuses of 
dams intraperitoneally injected with LPS (MIR model) compared 
with their controls; yet, the lungs from fetuses of dams with FIR 
seemed pallid compared with controls (Figure 4A). The heatmap 
array shown in Figure 4B indicated that, in the MIR model, there 
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FigUre 3 | The fetal inflammatory response in the MIR and FIR models. (a) On 16.5 days post coitum (dpc), pregnant mice were intraperitoneally (MIR model) 

(10 µg/200 µL) or intra-amniotically (FIR model) (100 ng/25 µL) injected with lipopolysaccharide (LPS) or 1× phosphate-buffered saline (PBS) (200 or 25 µL), and on 

17.5 dpc amniotic fluid was collected for cytokine multiplex analysis. Photographs of fetuses from dams with MIR or FIR are shown. Concentration of (B) CCL3,  

(c) CCL4, (D) CCL5, (e) CXCL5, (F) CXCL10, (g) G-CSF, (h) IL-1β, (i) IL-18, (J) IL-6, (K) IFNγ, (l) TNFα, (M) CXCL2, (n) CXCL1, (O) CCL2, (P) IL-13,  

(Q) IL-12p70, (r) IL-10, and (s) IL-4 in the amniotic fluid. n = 5–14 dams per group.
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is a downregulation of inflammation-related genes in the fetal 
lungs, whereas in the FIR model, there is an upregulation of such 
genes (Figure 4B). When the expression of specific inflammatory 
genes in the fetal lung was plotted, we observed that Il1b, Il6, Ccl2, 
Ccl3, Ccl5, and Cxcl1 were significantly upregulated in the FIR 
model compared with its control (Figures  4C–H). In the MIR 
model, however, only Ccl3 was upregulated in the fetal lungs com-
pared with its control (Figure 4F). Indeed, the expression of Ccl2 
and Ccl5 was downregulated in the MIR model (Figures 4E,G). 
Together, these data demonstrate that intra-amniotic microbial 
products can cause an overexpression of inflammation-related 
genes in the fetal lungs, whereas maternal systemic inflammation 
seems to have the opposite effect.

Treatment With ex4 improves adverse 

Pregnancy and neonatal Outcomes
In order to dampen the inflammation caused in the MIR and 
FIR models, we investigated whether an anti-inflammatory 

peptide, Ex4 (63–66, 69, 70), could reduce or prevent adverse 
pregnancy and neonatal outcomes (Figure 5A). Ex4 treatment 
caused a 10% reduction in the rate of preterm birth in the MIR 
model compared with dams that received only LPS (Figure 5B). 
Pups from the MIR model treated with Ex4 had a similar rate of 
mortality at birth compared with those without Ex4 treatment 
(Figure 5C). Interestingly, live-born pups from the MIR model 
which had received Ex4 treatment continued to thrive, whereas 
those born to dams without treatment died shortly after birth 
(Figure 5D).

In the FIR model, dams treated with Ex4 had a 37.5% decrease 
in the rate of preterm birth (Figure 5E). In addition, pups from 
the FIR model treated with Ex4 had a 26.3% decrease in mortality 
at birth compared with those born to untreated dams (Figure 5F); 
however, none of the pups from the FIR model survived to 1 week 
of age regardless of Ex4 treatment (Figure 5G).

In both the MIR and FIR models, treatment with Ex4 
alone did not induce adverse pregnancy or neonatal outcomes 
(Figures  5B–G). Mice that received an intraperitoneal or 
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FigUre 4 | Inflammatory gene expression in the fetal lung. (a) On 16.5 days post coitum (dpc), pregnant mice were intraperitoneally (MIR model) (10 µg/200 µL) or 

intra-amniotically (FIR model) (100 ng/25 µL) injected with lipopolysaccharide (LPS) or 1× phosphate-buffered saline (PBS) (200 or 25 µL), and on 17.5 dpc fetal lung 

was collected for gene expression analysis. Photographs of fetal lungs from dams with MIR or FIR are shown. (B) Heat map visualization of gene expression in fetal 

lung tissue. Expression of (c) Il1b, (D) Il6, (e) Ccl2, (F) Ccl3, (g) Ccl5, and (h) Cxcl1 in the fetal lung. n = 10–21 dams with litters per group.
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intra-amniotic injection of 1× PBS did not present adverse 
pregnancy or neonatal outcomes (data not shown).

Collectively, these results show that Ex4 treatment can mod-
estly reduce the rate of preterm delivery in dams with MIR or 
FIR. Importantly, Ex4 treatment can alleviate adverse neonatal 
outcomes in dams with systemic maternal inflammation but not 
in those with intra-amniotic inflammation.

ex4 is localized in the Uterus  

and Maternal–Fetal interface
Since treatment with Ex4 had beneficial effects in the MIR 
model, we next investigated the localization of this peptide in 
the maternal and fetal tissues using a fluorescence-labeled Ex4 
(FLEX), which fluoresces after binding to the GLP-1 receptor 
(82) (Figure 6A). No signal was observed in the control tissues 
from mice injected with PBS or LPS alone (Figure 6B). Ex4 was 
strongly detected in the uterus from mice injected with LPS and 
FLEX (Figure  6B). A few traces of Ex4 were also detected in 
the decidua and fetal membranes from mice injected with LPS 
and FLEX (Figure 6B). However, Ex4 was not detected in any 
of the maternal or fetal tissues in mice injected with FLEX alone 

(Figure 6B). These findings suggest that systemic inflammation 
facilitates the diffusion of Ex4 through the uterus and the mater-
nal–fetal interface.

neonates Born to Dams With systemic 

inflammation and Treated With ex4 

Display a similar cytokine Profile  

to healthy neonates
Neonates born to dams with MIR and treated with Ex4 were 
indistinguishable from neonates born to control dams injected 
with Ex4 (data not shown) or PBS alone (Figure  7A, right 
panel). However, whether the immune system of these thriving 
pups was comparable to healthy neonates was unknown. We 
therefore compared the cytokine and cellular immune responses 
between neonates born to Ex4-treated dams with MIR and 
those from control dams. First, the plasma cytokine profile of 
15-day-old neonates was determined (Figure  7A, left panel). 
Neonates born to dams with MIR which received Ex4 treat-
ment had comparable plasma cytokine concentrations (31 of 35 
cytokines) to healthy neonates (pups born to dams injected with 
PBS alone) (Figures  7B,C,E,G–K,M–P,R,S; Figures S3A–Q in 
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FigUre 5 | Treatment with Ex4 improves adverse pregnancy and neonatal outcomes. (a) On 16.5 days post coitum (dpc), pregnant mice were intraperitoneally 

(MIR model) (10 µg/200 µL) or intra-amniotically (FIR model) (100 ng/25 µL) injected with LPS and injected intraperitoneally with 30 µg/kg Ex4. Pregnant mice were 

also intraperitoneally (10 µg/200 µL) or intra-amniotically (10 ng/25 µL) injected with LPS or Ex4 alone on 16.5 dpc. Mice were monitored until delivery. (B,e) Rate of 

preterm birth in the MIR and FIR models. (c,F) Rate of neonatal mortality at birth in the MIR and FIR models. (D,g) Rate of neonatal mortality at one week of age in 

the MIR and FIR models. n = 5–10 dams with litters per group. Abbreviations: PTB, preterm birth, TB, term birth; Ex4, exendin-4; dpc, days post coitum; LPS, 

lipopolysaccharide.
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Supplementary Material). Indeed, the plasma cytokine concen-
trations of CCL5, CXCL10, TNFα, and IL-12p70 were decreased 
in neonates born to dams with MIR which received Ex4 treatment 
(Figures 7D,F,L,Q) compared with healthy pups. Healthy pups 
treated with Ex4 alone had comparable, or even lower, plasma 
cytokine concentrations to healthy pups from dams injected with 
PBS alone (Figures S4A–R in Supplementary Material).

Next, we determined the expression of inflammation-related 
genes in the neonatal brain, lung, liver, and small intestine 
(Figure  7A). The expression of Il1b, Il6, Ccl2, Ccl3, Ccl5, and 
Cxcl1 in the brain, lung, liver, and small intestine from pups born 
to MIR dams which received Ex4 treatment was comparable to 
that of healthy pups (Figures 8A–F). No differences in the expres-
sion of such genes were observed between healthy pups born to 

dams injected with PBS (controls) or Ex4 alone (Figures S5A–X 
in Supplementary Material).

Collectively, these data show that Ex4 has anti-inflammatory 
properties in dams with MIR, which results in thriving and 
healthy neonates.

ex4 Treatment induces an M1 → M2 

Macrophage Polarization in the neonate
The innate immune system has a central role in fetal and neo-
natal life (83, 84); therefore, we investigated whether neonates 
born to dams with MIR and treated with Ex4 had effects on 
lung, liver, and large intestine M1/M2 macrophage phenotypes. 
Macrophage immunophenotyping was performed in neonatal 
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FigUre 6 | Exendin-4 is localized in the uterus and maternal–fetal interface. (a) On 16.5 days post coitum (dpc), pregnant mice were intraperitoneally injected with: 

(1) 1× phosphate-buffered saline (PBS) (200 µL); (2) lipopolysaccharide (LPS) (10 µg/200 µL); (3) Fluorescein-TRP25-Exendin-4 (FLEX) (30 µg/kg) alone; and (4) LPS 

followed by treatment with FLEX (30 µg/kg). Imaging was performed 1 h after the second injection. (B) Representative images taken with the In Vivo Imaging System 

showing the fluorescence of FLEX in the uterus, decidua, placenta, fetal membranes, and fetus. n = 3 per group.
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tissues (Figure 9A). The numbers of macrophages in the neonatal 
lung and liver were significantly reduced in neonates born to MIR 
dams which received Ex4 treatment when compared with those 
from controls (Figures 9B,E). The number of macrophages in the 
large intestine from neonates born to dams with MIR and treated 
with Ex4 was comparable to that of healthy pups (Figure 9H).

Next, M1-like (CD11b+ F4/80+ iNOS+) and M2-like 
(CD11b+ F4/80+ IL-10+) macrophages were immunopheno-
typed in these tissues (Figure  9A), as previously reported (49, 
50, 54, 55). There was an increase in the number of M2-like mac-
rophages in the lung and large intestine of neonates born to MIR 
dams with Ex4 treatment compared with controls (Figures 9C,I). 
The number of M2-like macrophages in the liver from neonates 

born to dams with MIR and treated with Ex4 was comparable 
to that of healthy pups (Figure  9F). Conversely, there was a 
decrease in the number of M1-like macrophages in the liver of 
neonates born to MIR dams with Ex4 treatment (Figure 9G). The 
number of M1-like macrophages in the lung and large intestine 
from neonates born to dams with MIR and treated with Ex4 was 
comparable to that of healthy pups (Figures 9D,J). Treatment of 
dams with Ex4 alone caused an M2 macrophage polarization in 
the neonatal tissues (Figures S6A–I in Supplementary Material). 
Taken together, these results indicate that Ex4 treatment of dams 
with MIR decreases the overall number of macrophages in the 
neonatal tissues, while promoting an M1  →  M2 macrophage 
polarization.
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FigUre 7 | The cytokine profile of neonates born to dams with MIR and treated with exendin-4 (Ex4). (a) On 16.5 days post coitum (dpc), pregnant mice were 

intraperitoneally (10 µg/200 µL) injected with lipopolysaccharide (LPS) followed by treatment with Ex4 (30 µg/kg). Controls were injected with 1× phosphate-buffered 

saline (PBS, 200 µL) alone. At 15 days of age, neonatal plasma was collected for cytokine multiplex analysis. Concentrations of (B) CCL3, (c) CCL4, (D) CCL5,  

(e) CXCL5, (F) CXCL10, (g) G-CSF, (h) IL-1β, (i) IL-18, (J) IL-6, (K) IFNγ, (l) TNFα, (M) CXCL2, (n) CXCL1, (O) CCL2, (P) IL-13, (Q) IL-12p70, (r) IL-10,  

and (s) IL-4 in the neonatal plasma. n = 12–14 neonates per group.
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ex4 Treatment induces a neutrophil 

Polarization in the neonate
We next determined the total numbers of neutrophils (CD11b+ 
Ly6G+) as well as their expression of pro-inflammatory (iNOS) 
and anti-inflammatory (IL-10) cytokines in the neonatal lung, 
liver, and large intestine (Figure 10A). The total numbers of neo-
natal neutrophils were increased in the lung and large intestine of 
neonates born to MIR dams with Ex4 treatment when compared 
with PBS controls (Figures 10B,H). The number of neutrophils in 
the liver from neonates born to dams with MIR and treated with 
Ex4 was comparable to that of healthy pups (Figure 10E).

Neutrophil immunophenotyping in neonatal tissues was also 
performed (Figure 10A). There was an increase in the number of 
IL-10-expressing neutrophils in the lung, liver, and large intestine 
of neonates born to MIR dams with Ex4 treatment compared with 
controls (Figures 10C,F,I). By contrast, there was a decrease in the 
number of iNOS-expressing neutrophils in the liver of neonates 
born to MIR dams with Ex4 treatment compared with healthy 

pups (Figure 10G). The number of iNOS-expressing neutrophils 
in the lung and large intestine from neonates born to dams with 
MIR and treated with Ex4 was comparable to that of healthy 
pups (Figures  10D,J). Treatment of dams with Ex4 alone only 
caused an increase of pro- and anti-inflammatory neutrophils 
in the neonatal large intestine (Figures S7G–I in Supplementary 
Material). These results show that Ex4 treatment of dams with 
MIR increases the number of anti-inflammatory neutrophils in 
the neonatal tissues.

ex4 Treatment reduces neonatal cD8+ 

Tregs
Regulatory T cells (Tregs) play a central role in both the develop-
ing fetus and in the neonate (83, 85–89). We then determined 
whether Ex4 treatment of dams with MIR is altering neonatal 
Tregs subsets (CD3+ CD4+ CD25+ FoxP3+ and CD3+ CD8+ 
CD25+ FoxP3+ cells) in the neonatal spleen and thymus 
(Figure  11A). No differences were observed in the number of 
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FigUre 8 | Inflammatory gene expression in neonates born to dams with MIR and treated with exendin-4 (Ex4). On 16.5 days post coitum (dpc), pregnant mice 

were intraperitoneally (10 µg/200 µL) injected with lipopolysaccharide (LPS) followed by treatment with Ex4 (30 µg/kg). Controls were injected with 1× phosphate-

buffered saline (PBS, 200 µL) alone. At 15 days of age the neonatal brain, lung, liver, and small intestine were collected for gene expression analysis. Expression of 

(a) Il1b, (B) Il6, (c) Ccl2, (D) Ccl3, (e) Ccl5, and (F) Cxcl1 in the neonatal brain, lung, liver and small intestine. n = 12–14 neonates per group.
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splenic and thymic CD4+ Tregs between neonates born to Ex4 
treated dams with MIR and healthy neonates (Figures 11B,C). 
The number of CD8+ Tregs was reduced in the spleen of neonates 
born to MIR dams with Ex4 treatment when compared with 
healthy neonates (Figure  11D); however, no differences were 
observed in thymic CD8+ Tregs (Figure 11E). No differences in 
the number of CD4+ and CD8+ Tregs were observed between 
neonates born to dams treated with Ex4 alone and those from 
PBS controls (Figures S8A–D in Supplementary Material). These 
results indicate that Ex4 may reduce neonatal inflammation by 
inhibiting the expansion of splenic CD8+ Tregs, which may have 
pro-inflammatory properties (90).

DiscUssiOn

Maternal and Fetal inflammatory 

responses in Preterm labor
The intra-amniotic administration of a microbial product derived 
from Gram-negative bacteria induced preterm birth and neonatal 
death, as previously reported (73). This model is similar to the 
subclinical syndrome of preterm birth since (a) a low dose of 

LPS was injected, simulating the amniotic fluid concentrations 
of endotoxin found in women with spontaneous preterm labor 
(91); and (b) the intra-amniotic injection of low doses of LPS 
did not cause hypothermia, which is consistent with the fact that 
most of the intra-amniotic infections in women with spontaneous 
preterm labor occur in the absence of a temperature change (92, 
93). Intra-amniotic infection is commonly associated with inva-
sion of genital mycoplasmas, Gram-negative, and Gram-positive 
bacteria (15, 94–97) into the amniotic cavity. This infection can 
result in a maternal and/or fetal inflammatory response (15–17, 
32, 33, 38, 98–103). This is consistent with the findings reported 
herein, in which we observe that the intra-amniotic administra-
tion of a microbial product results in both a maternal and fetal 
inflammatory response.

The systemic administration of a microbial product induced 
a severe maternal cytokine response but a mild fetal cytokine 
response, which caused preterm birth and neonatal death. A 
systemic maternal inflammatory response is observed in women 
with clinical chorioamnionitis (18) and acute pyelonephritis 
(104, 105), both clinical conditions associated with preterm birth 
(106–109) and adverse neonatal outcomes (107, 108). However, 
clinical chorioamnionitis results from intra-amniotic infection 
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FigUre 9 | Exendin-4 (Ex4) treatment induces an M1 → M2 macrophage polarization in neonates. On 16.5 days post coitum (dpc), pregnant mice were 

intraperitoneally (10 µg/200 µL) injected with lipopolysaccharide (LPS) followed by treatment with Ex4 (30 µg/kg). Controls were injected with 1× phosphate-

buffered saline (PBS, 200 µL) alone. At 15 days of age, the neonatal lung, liver, and large intestine were collected for immunophenotyping. (a) Gating strategy for 

M1- and M2-like macrophages. Dead cells were excluded using a viability dye. Empty histograms represent the autofluorescence control and colored histograms 

represent antibody fluorescent signals. Numbers of macrophages in the neonatal lung (B), liver (e), and large intestine (h). Numbers of M2-like macrophages in the 

neonatal lung (c), liver (F), and large intestine (i). Numbers of M1-like macrophages in the neonatal lung (D), liver (g), and large intestine (J). n = 12–14 neonates 

per group.
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(15–18, 98), a condition which was not present in our model. 
On the other hand, acute pyelonephritis occurs independently of 
intra-amniotic infection and is not associated with a fetal inflam-
matory response (110), which resembles our MIR model.

The anti-inflammatory Peptide ex4 

rescues inflammation-induced adverse 

Pregnancy and neonatal Outcomes
The adverse pregnancy and neonatal outcomes observed in the 
MIR model were ameliorated by treatment with Ex4. This is con-
sistent with a previous report showing that a GLP-1 analog, such 
as Ex4, dampened inflammatory pathways in a rat model of sepsis 
(111). GLP-1 receptors are present in the maternal (112) and fetal 

tissues (112–114). Herein, we found that Ex4 was mainly localized 
in the uterus and to a lesser extent in the decidua. These findings 
suggest that treatment with Ex4 has anti-inflammatory effects 
in the MIR model by primarily targeting the maternal tissues. 
This scenario explains why treatment with Ex4 did not rescue 
the adverse neonatal outcomes in the FIR model. Treatment with 
Ex4, however, did reduce the rate of preterm birth and neonatal 
mortality at birth in the FIR model, suggesting that a combined 
approach that targets both the maternal and fetal tissues may be 
the optimal strategy.

Neonates born to dams with systemic inflammation and 
treated with Ex4 thrived and displayed plasma and tissue cytokine 
profiles comparable to healthy neonates. Previous studies have 
shown that the GLP-1 receptor is expressed in the fetal tissues 
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FigUre 10 | Exendin-4 (Ex4) treatment induces an increase in anti-inflammatory neutrophils in neonates. On 16.5 days post coitum (dpc), pregnant mice were 

intraperitoneally (10 µg/200 µL) injected with lipopolysaccharide (LPS) followed by treatment with Ex4 (30 µg/kg). Controls were injected with 1× phosphate-buffered 

saline (PBS, 200 µL) alone. At 15 days of age, the neonatal lung, liver, and large intestine were collected for immunophenotyping. (a) Gating strategy for neutrophil 

polarization. Dead cells were excluded using a viability dye. Empty histograms represent the autofluorescence control and colored histograms represent antibody 

fluorescent signals. Numbers of neutrophils in the neonatal lung (B), liver (e), and large intestine (h). Numbers of IL-10-expressing neutrophils in the neonatal lung 

(c), liver (F), and large intestine (i). Numbers of iNOS-expressing neutrophils in the neonatal lung (D), liver (g), and large intestine (J). n = 12–14 neonates per 

group.

14

Garcia-Flores et al. Ex4 Dampens Inflammation Improving Pregnancy Outcomes

Frontiers in Immunology | www.frontiersin.org June 2018 | Volume 9 | Article 1291

(112, 114), including the placenta (113). In addition, the admin-
istration of its agonists (Ex4 and liraglutide) increased the expres-
sion of surfactant protein A and B in the lung and amniotic fluid, 
which demonstrates the importance of the GLP-1 system in fetal 
development (113, 114). In the current study, we found that Ex4 
was modestly detected in the fetal membranes, suggesting that 
this peptide could have partial effects on the tissues surrounding 
the fetus, which translated into thriving neonates.

innate and adaptive immune responses 

in Thriving neonates
Neonates born to dams with MIR and treated with Ex4 were 
indistinguishable from healthy control neonates. We, therefore, 
investigated whether the immune system of these thriving pups 
was comparable to healthy neonates.

Treatment with Ex4 induced an M2 macrophage polarization 
in neonates born to dams with systemic inflammation. This is 
consistent with previous studies demonstrating that glucagon-
like peptides, such as Ex4, induce an M2 macrophage polarization 
in vitro (115) and in vivo (116). M2 macrophages are considered 
alternatively activated (117–121) and display anti-inflammatory 
properties through the production of IL-10 and upregulation of 
arginase-1 (119, 122–128). In addition, decidual M2 macrophages 
participate in maternal–fetal tolerance throughout pregnancy 
(55, 129–136), suggesting that Ex4 may also have effects at the 
maternal-fetal interface. Further studies are required to investi-
gate the effects of GLP-1 analogs in the reproductive tissues and 
maternal–fetal interface.

Although adult neutrophils are a major component of the innate 
immune system, neonatal neutrophils tend to have quantitative 
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FigUre 11 | Exendin-4 (Ex4) treatment reduces neonatal CD8+ regulatory T cells (Tregs). On 16.5 days post coitum (dpc), pregnant mice were intraperitoneally 

(10 µg/200 µL) injected with lipopolysaccharide (LPS) followed by treatment with Ex4 (30 µg/kg). Controls were injected with 1× phosphate-buffered saline (PBS, 

200 µL) alone. At 15 days of age, the neonatal spleen and thymus were collected for immunophenotyping. (a) Gating strategy for CD4+ and CD8+ T regulatory 

cells. Dead cells were excluded using a viability dye. Dotted histograms represent the autofluorescence control and colored histograms represent antibody 

fluorescent signals. CD4+ and CD8+ Tregs co-expressed CD25 and FoxP3. (B,c) Number of splenic and thymic CD4+ Tregs. (D,e) Number of splenic and thymic 

CD8+ Tregs. n = 12–14 neonates per group.

15

Garcia-Flores et al. Ex4 Dampens Inflammation Improving Pregnancy Outcomes

Frontiers in Immunology | www.frontiersin.org June 2018 | Volume 9 | Article 1291

and qualitative defects (84). For example, neonatal neutrophils 
have impaired chemotaxis, rolling adhesion, transmigration, 
and lamellipodia formation (137). Such innate immune cells 
also display impairments in anti-microbial mechanisms and are 
reduced in newborns presenting bacterial sepsis (137). In this 
study, we found that treatment with Ex4 caused an increase in anti-
inflammatory neutrophils in neonates born to dams with systemic 
inflammation. These findings are in line with a previous report 

demonstrating that Ex4 can modulate neutropenia and dampen 
pro-inflammatory cytokines (68). Together, these results indicate 
that Ex4 treatment of dams with systemic inflammation modulates 
the fetal inflammatory response, which resulted in thriving neo-
nates with increased anti-inflammatory neutrophils.

CD4+ Tregs play a central role in the immune response by 
preventing autoimmunity (inhibiting self-immune responses) 
and suppressing defensive immune responses to prevent host 
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tissue damage (138–142). In the fetus, CD4+ Tregs are generated 
during pregnancy to participate in self-tolerance and tolerance 
to non-inherited antigens on chimeric maternal cells (85, 86). 
CD4+ Tregs are also implicated in the development of neonatal 
tolerance, where they suppress the development of donor-specific 
CD8+ T  cell responses (83, 143). The fact that neonates born 
to dams with systemic inflammation and treated with Ex4 had 
normal numbers of CD4+ Tregs, which were comparable to those 
of healthy neonates, provides evidence that this peptide does not 
have deleterious effects on neonatal CD4+ Treg homeostasis.

CD8+ CD25+ T  cells expressing FoxP3 seem to share 
phenotypic, functional, and mechanistic actions with classical 
CD4+ Tregs (144–146) and therefore are termed CD8+ Tregs. 
In neonates, CD8+ Tregs modulate Th2-cell-mediated pathology 
and autoimmunity (147, 148), suggesting that such cells shape 
the development of the immune system (83). In late pregnancy, 
however, maternal/decidual CD8+ CD25+ FoxP3+ T cells seem 
to have pro-inflammatory functions (90, 149). Herein, we found 
that treatment with Ex4 suppressed the expansion of CD8+ Tregs 
in neonates born to dams with systemic inflammation. The fact 
that Ex4 reduces CD8+ Tregs in the spleen of neonates born to 
dams with systemic inflammation suggests that such cells have 
pro-inflammatory rather than immunosuppressive functions. 
Yet, a functional assessment of neonatal CD8+ Tregs in the 
context of infection requires further investigation.

Why choose ex4 for the Treatment of 

inflammation-induced adverse Pregnancy 

Outcomes?
Several substances with anti-inflammatory properties have been 
suggested as possible candidates for the prevention of inflam-
mation-induced adverse pregnancy outcomes; however, further 
investigation is still required to determine the efficacy and safety of 
such treatments (41). Herein, we provide data supporting the use 
of a peptide, Ex4, for the prevention of inflammation-induced pre-
term labor and birth and adverse neonatal outcomes. Importantly, 
we found that pregnant dams treated with Ex4 alone did not 
present adverse pregnancy and neonatal outcomes. Recent reports 
recognize the use of peptides as highly selective and efficacious 
therapeutic approaches since these are natural and are therefore 
relatively safe and well tolerated (59). Indeed, more than 60 pep-
tide drugs have reached the market and approximately 140 peptide 
therapeutics are currently undergoing evaluation in clinical trials 
(59). In addition, a case report showed that the administration 
of Exenatide, the synthetic version of Ex4, to a pregnant woman 
during the first trimester was not associated with congenital mal-
formation or other adverse pregnancy outcomes (150). Together, 
these findings suggest that peptides, such as Ex4, are well tolerated 
and safe for the mother and fetus/neonate. Yet, further research in 
larger animals is required to evaluate the safety of Ex4.

cOnclUsiOn

The findings presented herein provide evidence that Ex4 improves 
adverse pregnancy and neonatal outcomes by modestly decreas-
ing the rate of preterm birth and drastically improving neonatal 

survival in a model of maternal systemic inflammation. Moreover, 
Ex4 treatment of dams with systemic inflammation confers pro-
tective effects on the neonates by reducing the expression and 
systemic concentrations of inflammatory cytokines and promoting 
an anti-inflammatory phenotype of neonatal immune cells. These 
results provide evidence that dampening maternal systemic inflam-
mation through novel interventions such as Ex4 can improve 
the quality of life for neonates born to women with this clinical  
condition.
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