
ORIGINAL RESEARCH
published: 17 August 2021

doi: 10.3389/fnagi.2021.717344

Frontiers in Aging Neuroscience | www.frontiersin.org 1 August 2021 | Volume 13 | Article 717344

Edited by:

Axel Montagne,

University of Edinburgh,

United Kingdom

Reviewed by:

Berislav Zlokovic,

University of Southern California,

United States

Donna M. Wilcock,

University of Kentucky, United States

*Correspondence:

Gary A. Rosenberg

grosenberg@salud.unm.edu

Received: 30 May 2021

Accepted: 22 July 2021

Published: 17 August 2021

Citation:

Erhardt EB, Adair JC, Knoefel JE,

Caprihan A, Prestopnik J,

Thompson J, Hobson S, Siegel D and

Rosenberg GA (2021) Inflammatory

Biomarkers Aid in Diagnosis of

Dementia.

Front. Aging Neurosci. 13:717344.

doi: 10.3389/fnagi.2021.717344

Inflammatory Biomarkers Aid in
Diagnosis of Dementia

Erik B. Erhardt 1, John C. Adair 2,3, Janice E. Knoefel 2,3, Arvind Caprihan 4,

Jillian Prestopnik 3, Jeffrey Thompson 3, Sasha Hobson 3, David Siegel 5 and

Gary A. Rosenberg 2,3*

1Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM, United States, 2Department of

Neurology, University of New Mexico, Albuquerque, NM, United States, 3Center for Memory and Aging, Albuquerque, NM,

United States, 4 The Mind Research Network, Albuquerque, NM, United States, 5Department of Anesthesiology, University of

New Mexico, Albuquerque, NM, United States

Dual pathology of Alzheimer’s disease (AD) and vascular cognitive impairment and

dementia (VCID) commonly are found together at autopsy, but mixed dementia (MX) is

difficult to diagnose during life. Biological criteria to diagnose AD have been defined, but

are not available for vascular disease. We used the biological criteria for AD and white

matter injury based on MRI to diagnose MX. Then we measured multiple biomarkers

in CSF and blood with multiplex biomarker kits for proteases, angiogenic factors, and

cytokines to explore pathophysiology in each group. Finally, we used machine learning

with the Random forest algorithm to select the biomarkers of maximal importance;

that analysis identified three proteases, matrix metalloproteinase-10 (MMP-10), MMP-3

and MMP-1; three angiogenic factors, VEGF-C, Tie-2 and PLGF, and three cytokines

interleukin-2 (IL-2), IL-6, IL-13. To confirm the clinical importance of the variables, we

showed that they correlated with results of neuropsychological testing.

Keywords: Alzheimer’s disease, vascular cognitive impairment and dementia, inflammation, diffusion tensor

imaging, cerebrospinal fluid, white matter disease, machine learning

HIGHLIGHTS

- Multimodal biomarkers facilitate biological classification of mixed dementia in cognitively
impaired patients with Alzheimer’s disease and vascular disease.

- Machine learning model aids in classification of this diverse group of patients by narrowing
down a large number of biomarkers to those that are most important.

- Relevance of this approach is shown by correlation of those important biomarkers with
neuropsychological test results.

- Proteases, angiogenic factors and cytokines in various patient groups suggest pathophysiology.

INTRODUCTION

The need to identify patients with dementia and to determine the cause of cognitive decline during
life has greatly increased as a consequence of the increase in dementia due to the aging of the
world’s populations. Alzheimer’s disease (AD) and vascular cognitive impairment and dementia
(VCID) are the major causes of dementia (Snyder et al., 2015). While the need for earlier diagnosis
to facilitate treatment is generally recognized, the overlapping of symptoms, beginning in midlife,
has confounded attempts at early diagnosis, promoting a search for biomarkers to aid this process
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(Jorgensen et al., 2020). While AD and VCID are the most
common single forms of dementia, autopsy series show that
mixed dementia (MX) due to dual pathologies is most common,
making it important to be able to diagnose MX during life
(Schneider et al., 2007; Toledo et al., 2013; Karanth et al., 2020).

Biomarkers facilitate the detection of multiple pathological
processes that accumulate with aging; they provide a window
on the earliest events at a time when separation of patients
from effects of aging using clinical criteria alone is challenging
(Sonnen et al., 2011). Biological criteria for diagnosing AD have
been published in the National Institute of Aging-Alzheimer’s
Association (NIA-AA) research framework, which is based
on the use of pathological proteins, amyloid-β (Aβ) and
phosphorylated tau (pTau) in either the CSF or brain as shown
by positron emission tomography (PET) along with evidence of
neurodegeneration; the authors predicted that other pathological
processes, such as vascular disease, could be added to the formula
at a later time as new biomarkers are discovered (Jack et al.,
2018). We adopted this approach to diagnose patients with MX
involving dual pathology by combining white matter injury on
MRI with the biological diagnosis of AD obtained from CSF.
Then, to better understand the underlying pathophysiology in
the expanded groups of AD, VCID, and MX, we used multiplex
assays of biomarkers in CSF and blood (Craig-Schapiro et al.,
2011; Pillai et al., 2019; Whelan et al., 2019; Elahi et al.,
2020; Winder et al., 2020). Because of the large amount of
information obtained from the multiplex assays, we used a
machine-learning algorithm, Random Forests, to identify the
variables of maximal importance for classifying patients into
the three dementia groups. Finally, we demonstrated that the
important variables had clinical relevance by correlating them
with neuropsychological test results.

METHODS

Patients and Biomarkers
The study was approved by the University of New Mexico
Human Research Review Committee. All patients gave informed
consent to study procedures including a lumbar puncture.
Patients were recruited from neurology clinics at the University
of New Mexico Hospital and the Albuquerque Veterans
Administration Hospital. Patients underwent neurological
examinations, neuropsychological tests, a lumbar puncture to
collect CSF, a venipuncture to collect blood plasma, and a MRI.
All subjects were at least 50 years old. Controls for the imaging
studies were recruited from community-based volunteers.
Control CSF came from patients undergoing spinal anesthesia
for orthopedic surgery. ApoE genotyping was not performed.

Cognitive Testing
Cognitive tests were administered by a trained research
psychologist (JP) or trained research coordinators and scored
according to standard procedures. Standardized (T) scores were
calculated for each test. Averaged composite T-scores were
calculated for separate cognitive domains: memory (Hopkins
Verbal Learning Test-Delay, Rey Complex Figure Test-Long
Delay), executive function [Digit Span Backwards, Trail Making

Test B, Stroop, Controlled Oral Word Association (FAS)],
attention (Digit Span Forward and Trial Making Test A),
language [Boston Naming 60 item test, Controlled Oral Word
Association (Animal)], and processing speed (Digit Symbol and
Symbol Search, both based on WAIS-III). An overall cognitive
composite score was derived as the mean of individual domain
T-scores. Control participants for the MRI studies underwent the
same neuropsychological test battery.

Blood and CSF Studies
Phosphorylated Tau and Aβ

A number of biomarkers were measured in CSF and blood
plasma. CSF biomarkers were obtained by lumbar puncture
performed in the morning after fasting by one of the authors
(JCA). Blood draws were performed during the same patient visit.
Samples were centrifuged, aliquoted, and stored at −80◦C for
later analysis.

Levels of CSF Tau protein phosphorylated at threonine
position 181 (pTau) were measured using the Innotest Phospho-
Tau (181P) ELISA (Fujirebio US; Malvern PA). Prior to analysis,
all CSF underwent one freeze-thaw cycle. Assays were performed
according to manufacturer protocols and were read with a Bio-
Tek multimodal plate reader with absorbance at 450 nm. The
output data were used to quantify the concentrations based
on the supplied in-assay standard curve. We measured β-
amyloid1−42 (Aβ1−42) and β-amyloid1−40 (Aβ1−40) to calculate
the Aβ1−42/Aβ1−40 ratio (V-PLEX Aβ Peptide Panel 1–6E10;
MesoScale Discovery MSD, Rockville, Maryland). The output
data were used to quantify the concentrations based on the 2-fold
sample dilation and the supplied in-assay standard curve. All data
were expressed as pg/mL, though the ratio is unitless.

Matrix Metalloproteinase, Angiogenesis, and

Proinflammatory Assays
The biomarkers we selected were based on the MesoScale
Discovery (MSD) multiplex assay kits. These have been adapted
for use by the MarkVCID consortium. Matrix metalloproteinases
(MMP-1, MMP-2, MMP-3, MMP-9, MMP-10) were measured
with two ELISA kits (MSD; MMP 2-Plex and MMP 3-Plex).
Angiogenic growth factors were measured by ELISA (MSD;
Angiogenesis Panel 1). Similarly, multiple proinflammatory
factors were measured with the Proinflammatory Panel 1 (MSD).
For these assays, all CSF samples were run undiluted while all
plasma samples were diluted 2-fold except for the MMP 3-Plex,
in which case the plasma samples were diluted 10-fold. All data
were expressed as pg/mL.

Fluid Sample Analyses
Assays were performed using established protocols on an MSD
Quickplex SQ 120 plate reader, followed by analysis performed
in the MSD Discovery Workbench 4.0 software that was used
to quantify analyte concentrations and all data were expressed
as pg/mL. Protein markers measured with MSD assays were
subjected to intra-plate variability tests which calculated the
coefficient of variation (CV), as determined by duplicate runs
for each sample. Samples with a CV ≥ 15% were removed
from further analysis. Another assessment involved two CSF
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and two plasma pooled control samples run in duplicate on
the same plate in all assays. These control samples were held
to the same intra-plate CV (≥15%) and were also assessed for
plate-to-plate variability.

MRI Studies
To obtain information on the integrity of the white matter, we
used MRI scans that were performed on a Siemens 3T scanner.
Initial scans were performed on a 12-channel radio frequency
(RF) coil and later scans were acquired with a 32-channel RF
coil. The imaging parameters with the two RF coils were closely
matched. The 3D MPRAGE sequence had TR = 2530ms, four
echoes, and TI = 1200ms with an acquisition time of 6.5min.
The 3D FLAIR sequence had a TR= 6000ms, TE= 427ms, and
TI = 2000ms. The diffusion data were collected with a FOV =

224, 2mm isotropic resolution, and 72 slices for both RF coils.
On the 12-channel coil, the diffusion protocol had a single-shell
of b-value= 800 s/mm2 with 30 volumes collected with different
gradient directions and five volumes with b = 0. The acquisition
time was 6.5min. The experiments done on the 32-channel coil
used a CMRR multi-band sequence, which enabled us to collect
more gradient directions. On the 32-channel coil, we collected
three shells with amaximum b-value= 3000 s/mm2, 155 volumes
with different gradient directions, and eight volumes with b = 0.
The acquisition time was 12.5 min.

White matter hyperintensity (WMH) volume was calculated
from FLAIR images based on JIM software (www.xinapse.com).
The diffusion images were corrected for motion, distortion,
and mean diffusivity (MD), and fractional anisotropy (FA) was
calculated (www.fmrib.ox.ac.uk).

Statistical Methods
Patient data underwent transformation, outlier detection,
selection, and missing value imputation. Fluid variables
measuring concentration were transformed to the log2 scale
to mitigate right skewness; the resulting roughly symmetric
distributions satisfy statistical assumptions and afford
straightforward visual comparisons. Univariate outliers were
identified by visual inspection and replaced with a missing value
code (to be imputed later) if it was likely due to measurement
error by outlying from the majority of points by roughly greater
than twice the range of the majority of points on the variable’s
original scale. This resulted in removing roughly one or two
values from about half of the features, a total of 54 values over
55 features. Observations were filtered to include patients who
did not have missing values for more than 30% of the features,
retaining 86 observations for our three primary diagnosis groups
and controls. Missing values were imputed using the method
“Multivariate Imputation by Chained Equations” via the mice R
package (van Buuren and Groothuis-Oudshoorn, 2011).

Patient classification based on fluid features used Random
forests (RF), a supervised ensemble machine learning algorithm
that is based on classification trees (Breiman, 2001) in which
many classification trees (a “forest”) are fit on bootstrapped
samples of the original observations and randomly selected
subsets of features. Each tree partitions the data based on a
random subset of predictor variables in such a way as to obtain

optimal separation between the diagnosis groups. RF provides a
measure of variable importance (VIMP) for prediction accuracy,
which is interpreted as the increase in prediction accuracy for
decision trees within the forest with a given feature (variable)
compared to decision trees without that feature; VIMP can be
negative. RF also provides the marginal probability of group
identity for values of each variable, and the bootstrap aggregating
(bagging) technique keeps RF from overfitting. Furthermore,
RF can perform multiclass prediction, automatically employs
external cross-validation by predicting a patient diagnosis
based on trees estimated without that patient, has minimal
distributional model assumptions and is easy to implement.
Variable selection improves classification and the reducedmodels
based on classification accuracy are presented. RF was performed
in R software using the package “randomForestSRC” function
“rfsrc” with 10,000 trees (Ishwaran and Malley, 2014).

RESULTS

The three neurologists arrived at a consensus clinical diagnosis
based on clinical history, neuropsychological tests and MRI
FLAIR results. Initially, the results of the diffusion tensor
MRI and some results of the CSF and blood studies were
not available: AD CSF biomarkers were done initially, and
the subsequent biomarkers in CSF and plasma were from the
proteases, angiogenic factors and cytokines. Since VCID includes
a number of forms of vascular disease, we focused on the small
vessel form, subcortical ischemic vascular disease (SIVD), which
can be detected by MRI and has a progressive course, making it
more amenable to clinical trials (Pantoni, 2010). The diagnoses
used were: (1) SIVD, indicating normal CSF AD proteins and
abnormal white matter on FLAIR; (2) AD patients had abnormal
CSF AD proteins and normal white matter; (3) MX patients
had both AD proteins and white matter injury. We excluded
large vessel infarcts and single strategic strokes without white
matter injury. We also excluded several patients with abnormal
FLAIR MRI without a cognitive deficit; they were considered
white matter changes of aging.

Demographic and Cognitive Features
Eighty-six (86) subjects had complete data permitting a full
analysis; the numbers in each category are shown in Table 1.
Forty-five percent of the patients were female. The median
patient age was 72 years; MX patients were 7 years older than
either the SIVD or AD groups (p = 0.010) (Table 1). Controls
performed significantly better across cognitive domains than all
patient groups. Memory function in the AD group was lower
than in SIVD and MX (30.0 vs. 44.0 and 36.0, p < 0.001).
There were no significant between-group differences for other
cognitive domains (T-executive, T-attention, T-language, and
T-processing) and composite cognitive score (T-overall).

For the biomarkers, we performed several analyses. First, we
compared the controls against the three patient groups combined
using each of the CSF and plasma features; this showed that there
were significant differences in the CSF Aβ1−42/Aβ1−40 ratio and
pTau. In addition, CSF values for MMP-1, MMP-9, and MMP-
10, VEGF-D, Flt-1, PlGF, IL-8, IL-10, and IL-13 were significantly
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TABLE 1 | Features that are significant between diagnosis groups with Control reference values.

Features SIVD Mixed AD Control

Demographics (N = 17) (N = 15) (N = 19) p (N = 35)

Age at baseline 68.0 [60.0;74.0] 76.0 [73.0;79.5] 70.0 [66.0;74.0] 0.010 65.0 [62.0;68.5]

Sex 0.039

Female 11 (64.7%) 3 (20.0%) 9 (47.4%) 24 (68.6%)

Male 6 (35.3%) 12 (80.0%) 10 (52.6%) 11 (31.4%)

Neuropsychological

T-memory 44.0 [38.0;60.5] 36.0 [25.0;41.0] 30.0 [21.0;35.5] 0.000 **56.0 [46.5;61.5]

Alz disease proteins

A Beta 42/40 ratio* 7.30 [3.45;9.30] 3.30 [2.85;4.10] 4.70 [4.00;6.15] 0.010 8.70 [6.80;10.40]

P-Tau 52.0 [44.0;56.0] 97.0 [64.0;121.0] 71.0 [53.0;100.5] 0.001 54.0 [42.0;64.0]

Protease

MSD CSF MMP-10 52.8 [43.1;69.2] 98.9 [91.1;119.6] 81.6 [75.6;101.9] 0.001 46.5 [34.1;67.8]

MSD Plasma MMP-3* 14.4 [11.7;20.7] 23.7 [17.0;34.2] 20.8 [12.0;26.7] 0.054 15.1 [11.4;21.2]

Angiogenesis

CSF VEGF-C 25.3 [14.2;40.6] 25.1 [18.6;34.8] 12.7 [5.0;15.2] 0.008 19.8 [13.4;28.3]

CSF Flt-1 67.9 [60.6;87.8] 110.8 [81.9;125.4] 82.4 [67.5;93.4] 0.051 68.9 [52.2;87.7]

CSF PlGF 28.5 [16.7;41.3] 33.4 [23.9;59.7] 21.4 [18.5;23.3] 0.018 16.0 [12.1;22.0]

Cytokine

CSF IL-2* 7.94 [6.30;9.75] 4.81 [4.50;9.63] 4.50 [4.11;7.23] 0.075 4.50 [4.50;5.95]

Plasma IL-13 0.914 [0.395;1.995] 2.529 [1.391;7.923] 1.636 [0.606;4.795] 0.043 2.552 [1.070;4.842]

Numeric summaries are median and IQR bounds [Q1, Q3] (25th and 75th percentiles), or categorical frequencies and percentages. Three values were scaled for presentation in the

table [*, A Beta 42/40 ratio (value*100), MSD Plasma MMP-3 (value/1000), CSF IL-2 (value*100)]. Note that the Controls with neuropsychological measurements (**, N = 199) were

distinct from those with fluid measurements analyzed in the manuscript and are included as an external reference. P-values reported from the Kruskal-Wallis test for continuous data

and from the chi-square test with continuity correction for categorical data to compare between the three diagnosis groups.

different from controls (Figure 1). In plasma, MMP-1, VEGF-
A, VEGF-C, PlGF, bFGF, IL-8 and TNF-α were significantly
different from controls (Figure 1). Comparing controls with
each patient group revealed many differences in both CSF and
plasma (Figure 1). Comparing between the three groups revealed
a number of significant differences between the groups in both
the CSF and plasma, which tended to be much more prominent
in CSF (Figure 1).

Alzheimer’s Biomarker Features
The Aβ1−42/Aβ1−40 ratio was lower in MX than in SIVD or
AD (p = 0.010), while pTau was higher in the MX than in
SIVD or AD (p = 0.001) (Table 1; Supplementary Figure 2).
The Aβ1−42/Aβ1−40 ratio was negatively correlated with age but
not with any of the cognitive features, while pTau was positively
correlated with age, attention, executive function, and processing
speed (Figure 2).

Protease Features
CSF MMP-10 was highest in MX and AD relative to SIVD (p
= 0.001) (Table 1; Supplementary Figure 3). No other median
differences between patient groups were observed, including CSF
MMP-1,−2,−3, and−9, and Plasma MMP-1,−2,−9, and−10.
CSF MMP-10 positively correlated with age and negatively
with memory scores. There were no significant between-group
differences in plasma MMPs except plasma MMP-3, which
showed a trend toward significance (p < 0.054). Plasma MMP-
2 negatively correlated with most of the cognitive measures

(attention, executive function, language, and overall), and plasma
MMP-3 positively correlated with age (Figure 2). CSF MMP-3
and MMP-10 correlated with plasma values for both proteases
(Figure 2).

Angiogenesis Features
CSF Placental growth factor (PlGF) was elevated in MX relative
to AD (p = 0.018) and CSF VEGF-C was lower in AD relative to
SIVD and MX (p = 0.008) (Table 1; Supplementary Figure 4).
No other median differences between patient groups were
observed in CSF for the angiogenic features VEGF-A, VEGF-
D, Tie-2, Flt-1, and bFGF. In addition, there were no significant
between-group differences in plasma angiogenesis features
(VEGF-A, VEGF-C, VEGF-D, Tie-2, Flt-1, PlGF, and bFGF). CSF
PlGF was the only angiogenesis factor correlated (positively) with
age. CSF VEGF-A was positively correlated with language, and
CSF VEGF-C is positively correlated with memory (Figure 2).
Plasma Tie-2 is positively correlated with language and memory
and Plasma Flt-1 is negatively correlated with the overall
cognitive features. CSF VEGF-D and PlGF correlated with
plasma values (Figure 2).

Cytokine Features
None of the CSF cytokine features showed median differences
(IFN-γ, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, and
TNF-α). Plasma IL-13 was lower in SIVD relative to MX (p
= 0.043) (Table 1; Supplementary Figure 5). No other median
differences between patient groups were observed for plasma.
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FIGURE 1 | Differences in medians for all CSF and Plasma features between patient and control groups indicated by p-value. The first set of two panels (left) compare

the combined patients groups with the control group for CSF and Plasma. The next sets of panels compare the Control group with each patient group then AD group

vs. MX and SIVD and MX vs. SIVD. Some of the data is included in Table 1 and plots of all comparisons are in Supplementary Figures 1–5.

CSF IL-1β was positively correlated with executive function,
language, and overall cognition, CSF IL-2 was positively
correlated with memory, TNF-α was positively correlated with
language, memory, and overall cognition, and CSF IL-13 was
negatively correlated with attention, executive function, and
processing speed (Figure 2). Plasma IL-1β, IL-2, IL-4, and IL-
10 were positively correlated with language, plasma IL-4 alone
was positively correlated with overall cognition, while plasma IL-
6 was negatively correlated with memory. Plasma TNF-α was
positively correlated with age.

Biomarker Stratification of Patients Into
SIVD, MX, and AD
We performed supervised classification using Random Forests
with subsets of features fromCSF and plasma to classify diagnosis
groups in three ways (SIVD vs. AD, SIVD vs. AD and MX, and
SIVD vs. MX vs. AD). We considered three broad scenarios.
First, we considered “All Factors” of CSF and plasma together,
as well as CSF and plasma features separately. Second, we
considered the separate “CSF Factors” of AD Proteins, Proteases,

Angiogenesis, and Cytokines. Third, we considered the separate
“Plasma Factors” of Proteases, Angiogenesis, and Cytokines. To
improve classification accuracy, each model is first fit using the
complete set of features and then we perform manual stepwise
backward selection based on variable importance (VIMP) until
all remaining variables have reliably positive VIMP values. The
classification accuracy results for all scenarios are summarized in
Figure 3 with associated ROC curves for two-group models in
Figure 4, then the variable importance values for the “All Factors”
scenario are in Table 2.

In the “All Factors” scenario the All features (CSF and Plasma)
and CSF alone features have similar accuracies of roughly 77%,
88%, and 67% for the three diagnosis groups, while Plasma
alone features had much lower accuracies (56%, 73%, and
47%). Therefore, the Plasma features do not add additional
classification benefits to the CSF features (Figure 3, left; Table 2,
top row). Additionally, a sensitivity analysis was performed by
excluding the CSF Aβ1−42/Aβ1−40 ratio and pTau from the
modeling; accuracies were similar for both All features (75%,
84%, and 70%) and CSF features (75%, 84%, 67%). The ROC
Curves indicate the optimal threshold (Figure 4, circle) and the
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FIGURE 2 | (A) Spearman correlation of CSF and Plasma features with Age and Cognitive features for SIVD, Mixed, and AD patients. Selected scatterplots illustrate

relationships at the p ≤ 0.01 significance level: (B) same fluid features CSF vs. plasma, (C) fluid features with Age, and (D) fluid features with cognitive features.

area under the curve (AUC) as an indication of the quality of the
classifier, with values closer to 1 being better. For the two two-
group models, the All Factor and CSF Factor models have AUC
values between 0.83 and 0.88, but the Plasma Factor model has
AUC values between 0.70 and 0.74 (Figure 4). Additionally, the
sensitivity analysis excluding the CSF Aβ1−42/Aβ1−40 ratio and
pTau from the modeling were similar, between 0.84 and 0.86.

Variable importance (VIMP) values for the “All Factors”
scenario for the three diagnosis group definitions are

given in Table 2. The features contributing the most to
accurate classification are similar for the All features and
CSF alone features, with the most important being CSF
MMP-10, pTau, and VEGF-C. Less important CSF features
also include CSF PlGF, Tie-2, VEGF-D, IL-2, IL-13, and
IL-1β. When CSF variables are in the model, demographic
features of Age and Sex actually worsen classification accuracy
(negative VIMP values). The most important Plasma-only
features are Plasma Tie-2, MMP-1, and MMP-10. Less
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FIGURE 3 | Classification accuracy by feature list considered and diagnosis grouping.

important Plasma features include Age, MMP-3, IL-13,
and IL-6.

In the “CSF Factors” scenario, separate models were
considered for each set of features. The classification accuracy
indicates that AD biomarkers and Angiogenesis factors are
more predictive of diagnosis category than Proteases, with the
Cytokines being the least predictive (Figures 3, 4). In the “Plasma
Factors” scenario, Proteases added some predictive ability, with
Angiogenesis and Cytokines providing almost no predictive
ability (Figures 3, 4).

Features that did not improve classification (Table 2) because
they contributed a classification of <0.3% for any diagnostic
groups included Sex; Protease CSF MMP-1,−2, and−3, and
Plasma MMP-9; Angiogenesis CSF VEGF-D, Flt-1, bFGF, and
Plasma VEGF-A, VEGF-C, VEGF-D, Flt-1, and PlGF; and
Cytokine CSF IFN-γ, IL-4, IL-6, IL-8, and IL-10, and Plasma
IL-1β, IL-2, IL-4, IL-8, IL-12p70, and TNF-α.

DISCUSSION

Using the biological diagnosis to diagnose AD and MRI white
matter injury to indicate vascular disease, we identified during
life a group of cognitively impaired patients with dual pathology.
Having separated patients into AD, VCID, and MX, we then
used a large number of biomarkers determined in CSF and
plasma with multiplex assay kits to determine the biomarkers of
maximal importance. Finally, we used neuropsychological testing
to validate the biomarkers identified. An important part of the

study was the use of a statistical machine learning method to
determine the relative importance of the biomarkers. In this
manner, our study was a step in the realization of precision
medicine for dementia studies.

We studied the variable importance of biomarkers in a
diverse group of cognitively impaired patients classified into AD,
SIVD, and MX. We included the MX group by expanding the
AD biological research criteria to include a vascular factor to
identify dual pathology patients (Jack et al., 2018). Commercially
available multiplex assays identified proteases, angiogenic growth
factors, and cytokines in CSF and plasma. A machine learning
method, Random Forests, showed that the CSF variables of
maximal importance, were MMP-1, MMP-3, MMP-10, VEGF-C,
PlGF, IL-2, IL-6, and IL-13. By initially classifying patients into
diagnostic groups, we were able to determine the levels of the
biomarkers in each group, and showed that the highest values
tended to be in the dual pathology patients. Our results show
that the availability of multiplex assays to measure biomarkers
in CSF and plasma during life provides data to compare
with neuropathological studies, confirming the importance of
multiple neuropathological processes in cognitively impaired
patients (Toledo et al., 2013; Karanth et al., 2020).

The classes of biomarkers that we studied had
inflammation and repair in common. We found that
those with dual pathology had the highest values for the
biomarkers, which is consistent with studies that show an
acceleration of cognitive decline suspected to be due to the
cumulative effects of the different pathological processes
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FIGURE 4 | Receiver Operator Characteristic (ROC) Curves for the two-group classification scenarios by feature list and groups classified. Three-group ROC Curves

are not available. The optimal threshold is indicated with a circle and the area under the curve (AUC) statistic is provided for each set of features.

(Snowdon et al., 1997; Karanth et al., 2020). To obtain this data,
we expanded the biological formula for AD to include a vascular
factor, permitting the identification of patients with relatively
pure AD and VCID as well as a group with dual pathology
(Jack et al., 2018). Our results concur with other pathological
and CSF studies that have identified proteolytic, angiogenic and
inflammatory biomarkers as central features of the pathobiology
of both AD and VCID (Tarkowski et al., 2002; Desai et al., 2009;
Biron et al., 2011). Our results suggest that the MMPs and the
angiogenic factors act together. The three MMPs that were
most prominent, MMP-1, MMP-3, and MMP-10, are inducible
enzymes with transcription factors, AP-1 and NF-kB, that would
be important in inflammation; MMP-2, which was identified
in plasma, but not CSF, is a constitutive enzyme that may have
other roles (Candelario-Jalil et al., 2009).

Angiogenic factors have been identified in a number of
studies in AD, but it is unclear whether they participate in
injury or repair. It is possible to conceptualize a pathological
scenario in which the growth of blood vessels begins with the
proteolytic disruption of the extracellular matrix by one or
more of the MMPs, which is analogous to vessel growth in
tumors where the proteases remove pericytes and breakdown
extracellular matrix proteins to prepare the vessels for sprouting
under the control of angiogenic factors (Rundhaug, 2005). The
angiogenic factors, VEGF, PlGF, and their receptors, Flt-1 and

Tie-2, were identified: Flt-1 (elevated in CSF for MX compared
to the other three groups) (Supplementary Figure 4), and Tie-
2 (important in classification in plasma) (Table 2); they initiate
vessel growth controlled by hypoxia-inducible factor-α under
hypoxic conditions, which are present in both AD and VCID due
to reduced cerebral blood flow as found in both conditions, but
for different underlying mechanisms (Tomimoto, 2011; Iadecola,
2013).

Correlating biomarkers with neuropsychological testing was
important in that it showed their clinical relevance. The
relationship between fluid biomarkers and cognition is complex
and, given modest correlations and small sample size, our
data should be considered as hypothesis-generating rather than
instructive. Positive correlations between cognitive performance
and CSF levels of inflammatory cytokines pose a paradox if
inflammation precedes injury to brain structure. Scatterplots in
Figure 2 suggest that elevated CSF cytokines (e.g., CSF IL-2)
and VEGF-C may differentially affect cognition by patient group.
For example, higher cognitive scores in SIVD with elevated
inflammatory factors might indicate they play a reparative role
in this group.

Our results reveal the role of the angiogenic factors. It is
interesting that Flt-1 besides being the receptor for VEGF, is a
signaling factor for microglia (Ryu et al., 2009). Similarly, the
proteases probably have multiple roles; high levels of MMP-10
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TABLE 2 | Variable Importance (VIMP) for important features used to classify each definition of diagnostic groups for the all factors classification scenario; cells are

shaded darker for larger VIMP.

All CSF Plasma

Accuracy: 77.8% 88.2% 68.6% 75.0% 88.2% 66.7% 55.6% 72.5% 47.1%

Feature SIVD vs. AD SIVD vs. AD

and Mixed

SIVD vs.

Mixed vs. AD

SIVD vs. AD SIVD vs. AD

and Mixed

SIVD vs.

Mixed vs. AD

SIVD vs. AD SIVD vs. AD

and Mixed

SIVD vs.

Mixed vs. AD

Age at baseline 0.3% −0.1% 2.8% 0.5% 2.6%

CSF A Beta 42/40 ratio 1.0% 1.2% 1.4% 1.4%

CSF P-Tau 3.3% 2.9% 2.3% 4.0% 4.0% 2.8%

CSF MSD MMP-9 0.4%

CSF MSD MMP-10 3.4% 5.3% 4.6% 4.9% 6.8% 5.6%

Plasma MSD MMP-1 1.4% 1.3% 0.8% 4.3% 3.0% 1.8%

Plasma MSD MMP-2 1.0% 0.5% −0.4%

Plasma MSD MMP-3 0.2% 0.1% 0.5% 0.7%

Plasma MSD MMP-10 0.2% 2.3% 1.2% 0.5%

CSF VEGF-A 0.3% 0.5%

CSF VEGF-C 4.3% 0.7% 3.1% 3.4% 1.1% 3.8%

CSF Tie-2 1.1% 0.4% 0.5% 0.6% 0.8%

CSF PlGF 0.0% 1.8% 0.4% 1.8%

Plasma Tie-2 5.2% −0.3% 1.6%

Plasma bFGF 0.4%

CSF IL-1B 0.1% 0.0% −0.1% 0.2% 0.6% −0.1%

CSF IL-2 0.7% 0.5% 1.6% 1.2% 0.7%

CSF IL-12p70 0.4%

CSF IL-13 1.6% 0.4% 0.7% 0.4%

CSF TNF-a 0.1% 0.4% −0.1%

Plasma IFN-g 0.7%

Plasma IL-6 0.6% −0.1% 0.3% 0.0% 0.9%

Plasma IL-10 0.3%

Plasma IL-13 0.4% 0.3% 0.7% 1.5%

were found in CSF and plasma, and it correlated with pTau,
suggesting importance in AD by a mechanism that remains
to be determined. Others have reported MMP-10 elevations in
patients with AD (Stomrud et al., 2010; Craig-Schapiro et al.,
2011; Whelan et al., 2019). Several of the biomarkers showed a
correlation between values in the CSF and plasma, suggesting that
plasma may be able to be used instead of CSF, particularly with
the ultra-sensitive assay platforms (Janelidze et al., 2016).

Random Forests, a machine learning method, selected several
of the cytokines as variables of importance for distinguishing
patient groups, including IL-2, IL-6, and IL-13. These may
influence the inflammatory response: IL-2 amplifies Treg cells
that are linked to chemokines, CCL1 and CCL20, which
suppress astrocytosis, contributing to repair (Ito et al., 2019);
in animals with traumatic brain injury, IL-13 impacts microglia
by converting M1/M2 microglia into anti-inflammatory M2
phenotype (Miao et al., 2020); IL-13 is found in resilient AD
patients that have reduced glial activation, increased neuronal
survival, and preserved cognition (Barroeta-Espar et al., 2019).

There are several caveats with our data. First, patients
were from a single center and only a subset had complete
CSF/plasma and MRI datasets, reducing the numbers available

for statistical analysis. Second, biomarkers selected were those
available from MesoScale Discovery and had been used by
the MarkVCID consortium, which included our group; other
biomarkers and platforms with different biomarkers could have
been used. Furthermore, the study was cross-sectional rather
than longitudinal, precluding inferences about the temporal
dynamics of analyte levels. A major caveat is the small sample
size, which was further hindered by forming an additional MX
group. However, despite the small numbers, the results were
statistically significant. A follow-up study on a larger population
is necessary to further validate the results of this present study.

In conclusion, we expanded the biological definition of AD
by adding vascular factors, allowing the identification of patients
with dual pathology prior to autopsy. Using Random Forests,
a machine learning method, we have determined the major
proteases, angiogenic factors, and cytokines of importance in
classification in a diverse group of dementia patients. Following
an initial classification into diagnostic groups, we identified the
proteases, MMP-1, MMP-3 and MMP-10, the angiogenic factors,
VEGF-C, PlGF, Flt-1, Tie-2, and the cytokines, IL-2, IL-6, and IL-
13. Our results suggest that the combined action of proteases and
angiogenic growth factors may be important in dementia with
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cytokines fueling the inflammatory processes. Further studies in
larger numbers of patients will be needed to confirm these results.
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