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Inflammatory processes are important in the pathogenesis of Alzheimer’s disease and in response to amyloid-b immunotherapy.

We investigated the expression of multiple inflammatory markers in the brains of 28 non-immunized patients with Alzheimer’s

disease and 11 patients with Alzheimer’s disease immunized against amyloid-b42 (AN1792): microglial ionized calcium-binding

adaptor Iba-1, lysosome marker CD68, macrophage scavenger receptor A, Fc� receptors I (CD64) and II (CD32); and also

immunoglobulin IgG, complement C1q and the T lymphocyte marker CD3 using immunohistochemistry. The data were analysed

with regard to amyloid-b and phospho-tau pathology, severity of cerebral amyloid angiopathy and cortical microhaemorrhages. In

non-immunized Alzheimer’s disease cases, amyloid-b42 correlated inversely with CD32 and Iba-1, whereas phospho-tau correlated

directly with all microglial markers, IgG, C1q and the number of T cells. In immunized Alzheimer’s disease cases, amyloid-b42 load

correlated directly with macrophage scavenger receptor A-positive clusters and inversely with C1q. The severity of cerebral

amyloid angiopathy and microhaemorrhages did not relate to any of the analysed markers. Overall, the levels of CD68, macro-

phage scavenger receptor A, CD64, CD32 and the number of macrophage scavenger receptor A-positive plaque-related clusters

were significantly lower in immunized than non-immunized cases, although there was no significant difference in Iba-1 load,

number of Iba-1-positive cells, IgG load, C1q load or number of T cells. Our findings indicate that different microglial populations

co-exist in the Alzheimer’s disease brain, and that the local inflammatory status within the grey matter is importantly linked with

tau pathology. After amyloid-b immunization, the microglial functional state is altered in association with reduced amyloid-b and

tau pathology. The results suggest that, in the long term, amyloid-b immunotherapy results in downregulation of microglial

activation and potentially reduces the inflammation-mediated component of the neurodegeneration of Alzheimer’s disease.
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Introduction
Alzheimer’s disease accounts for 460% of all dementia cases

(Albanese et al., 2007). The disease is characterized by the pres-

ence of cortical extracellular plaques of amyloid-b protein and

intraneuronal phospho-tau protein aggregates (Lowe et al.,

2008). Both amyloid-b and tau have been hypothesized as initi-

ators of the tissue damage in Alzheimer’s disease (Gray et al.,

1987; Hardy and Higgins, 1992). Neuroinflammation, manifested

by activation of microglia, is an important component of

Alzheimer’s disease pathology with evidence to suggest that it is

both a reaction to the disease process and a contributor to the

neuronal damage (Akiyama et al., 2000; Perry et al., 2010; Zotova

et al., 2010). Recent genetic studies provide further evidence that

inflammatory processes are important in the pathogenesis of

Alzheimer’s disease (Harold et al., 2009; Lambert et al., 2009;

Guerreiro et al., 2013; Jonsson et al., 2013).

Microglial cells play a key role in the innate immune system re-

sponse within the CNS. In Alzheimer’s disease, microglia have been

implicated in the generation of chronic low-grade neurotoxic inflam-

mation around amyloid-b plaques, while being unable to clear them

effectively (McGeer et al., 1987; Rogers et al., 1988; Griffin et al.,

1989; Rozemuller et al., 1989; Mattiace et al., 1990; Paresce et al.,

1997; Overmyer et al., 1999). In vivo imaging of microglia (by use of

PK11195-PET) and fibrillar amyloid (Pittsburgh compound B-PET)

show higher levels of both markers in the cortex in patients with

Alzheimer’s disease compared with non-demented control subjects

(Cagnin et al., 2001; Edison et al., 2007, 2008). Increasing microglial

activation correlates with progression of cognitive decline without

further changes in the amyloid load (Edison et al., 2008). Although

the exact functional state of the microglia is not clear from these

studies, they support a role for persistent neuroinflammation in dis-

ease progression.

Based on the amyloid cascade hypothesis, suggesting that amyl-

oid-b accumulation is the trigger for Alzheimer’s disease pathogen-

esis (Hardy and Higgins, 1992), active immunization against amyloid-

b42 peptide was proposed as a treatment. This approach was shown

to result in the removal of amyloid plaques from the brains of human

amyloid-b precursor protein (APP) transgenic mice (Schenk et al.,

1999; Bard et al., 2000; Janus et al., 2000; Morgan et al., 2000),

and the plaque clearance was associated with behavioural improve-

ments (Janus et al., 2000; Morgan et al., 2000; Dodart et al., 2002).

Microglial activity was implicated in this effect (Bard et al., 2000;

Wilcock et al., 2001, 2003, 2004a, b). In the active amyloid-b42 im-

munization clinical trial that followed (Elan Pharmaceuticals,

AN1792), most aspects of cognitive change did not differ signifi-

cantly between immunized patients and control subjects (Hock

et al., 2003; Bayer et al., 2005; Gilman et al., 2005), with longer

term clinical follow-up revealing continuing cognitive decline despite

removal of plaques (Holmes et al., 2008). In addition, the develop-

ment of side-effects including ‘meningoencephalitis’ with infiltration

by T lymphocytes, and ‘amyloid-related imaging abnormalities’,

associated with cerebral amyloid angiopathy and cortical microhae-

morrhages in a proportion of patients with Alzheimer’s disease immu-

nized against amyloid-b has been problematic (Nicoll et al., 2003;

Orgogozo et al., 2003; Boche et al., 2008; Sperling et al., 2011).

In this study, we explored in detail the inflammatory processes

in the brain in Alzheimer’s disease and compared the results with

those in patients with Alzheimer’s disease following active amyl-

oid-b42 immunization (Elan Pharmaceuticals, AN1792). We

assessed the microglial load by quantifying immunostaining for

ionized calcium-binding adaptor molecule 1 (Iba-1), which has

been reported to be an effective marker of both resting and acti-

vated microglia (Imai et al., 1996; Ahmed et al., 2007; Streit

et al., 2009). In an attempt to define not only their activation

level but also their functional status, we have investigated the

expression of macrophage scavenger receptor-A (MSR-A) involved

in microglial endocytosis of extracellular material, including fibrillar

amyloid-b (El Khoury et al., 1996; Chung et al., 2001), the micro-

glial lysosomal protein CD68 as an indicator of phagocytic activity

(Rabinowitz and Gordon, 1989, 1991; Zotova et al., 2011), and

the microglial cell surface receptors that bind IgG and immune

complexes (Fc� receptors I and II) (Ravetch and Bolland, 2001;

Nimmerjahn and Ravetch, 2006). The level of C1q was assessed to

investigate the role of the complement system in relation to

Alzheimer’s disease pathology, microglial activation, and immun-

ization status (Eikelenboom and Veerhuis, 1996). As we previously

found that anti-amyloid-b IgG persisted in the blood of immunized

patients with Alzheimer’s disease for many years (Holmes et al.,

2008), we also investigated whether there were changes in the

overall amount of IgG antibody in the brain. T lymphocytes were

previously identified in some immunized patients with Alzheimer’s

disease (Nicoll et al., 2003; Orgogozo et al., 2003; Ferrer et al.,

2004) and were also analysed. We explored the relationships of

these inflammatory markers to amyloid-b and phospho-tau load,

the severity of cerebral amyloid angiopathy and cortical

microhaemorrhages.

Materials and methods

Immunized Alzheimer’s disease cases
We performed a follow-up study of patients who were enrolled in the

Phase I Elan Pharmaceuticals Inc. active amyloid-b42 immunization

(AN1792) clinical trial for Alzheimer’s disease (Bayer et al., 2005;

Holmes et al., 2008). As part of the study, participants were invited

to consent to post-mortem neuropathology. The study received ethical

approval from Southampton and South West Hampshire Local

Research Ethics Committees (Reference No: LRC 075/03/w). In the

study reported here, we investigated brain tissue from 11 patients who

took part in the clinical trial and had confirmation of the diagnosis of

Alzheimer’s disease by post-mortem neuropathology (Table 1).

Neurodegenerative pathology was assessed by standard methods

including analysis of paraffin sections stained with haematoxylin and

eosin, Luxol fast blue/Cresyl violet, and modified Bielschowsky silver

impregnation, and immunostained for amyloid-b, tau, �-synuclein and

TAR-DNA binding protein 43 (TDP43). All immunized Alzheimer’s dis-

ease cases were Braak stage V/VI, indicating an advanced stage of

Alzheimer’s tau pathology (Table 1). Two of the 11 cases had con-

comitant Lewy body pathology (one neocortical and nigral, one nigral

only). No TDP43 inclusions and no argyrophilic grains were identified.

In terms of cerebrovascular disease, none had macroscopic infarcts;

one had an old frontal cortical haemorrhage (2-cm diameter);
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all had varying degrees of arteriolosclerosis, most marked in the cere-

bral white matter where it was moderate or severe.

Non-immunized Alzheimer’s disease
controls
Post-mortem material from sufficient numbers of placebo patients in

the immunotherapy trial was not available, therefore paraffin sections

from 28 cases with Alzheimer’s disease from the South-West

Dementia Brain Bank (Frenchay Hospital, Bristol, UK) were used as

non-immunized controls (Table 1) (Research ethics committee refer-

ence: 08/H0106/28). All control Alzheimer’s disease cases had a clin-

ical diagnosis of dementia made during life by an experienced clinician,

a Mini-Mental State Examination score of 517 before death and

satisfied post-mortem neuropathological Consensus Criteria for

Alzheimer’s disease (Hyman and Trojanowski, 1997). The immunized

and control Alzheimer’s disease cases were matched as closely as pos-

sible for age, gender, duration of dementia and APOE genotype.

The most common causes of death cited from all listed causes, in

addition to dementia, were bronchopneumonia (immunized

Alzheimer’s disease, 27%; non-immunized controls, 46%), myocardial

infarction (immunized Alzheimer’s disease, 9%; non-immunized con-

trols 7%) and cerebrovascular accident (non-immunized controls, 7%).

Other causes of death included: immunized Alzheimer’s disease—a

ruptured aortic aneurysm, pulmonary embolism; non-immunized con-

trols—pyelonephritis, sigmoid volvulus. One immunized Alzheimer’s

disease case and six non-immunized control cases have unknown

cause of death.

Immunohistochemistry
For the purposes of this study, the following regions of cerebral cortex

usually markedly affected by the Alzheimer’s disease process were

used: superior and middle temporal gyrus, medial frontal gyrus and

inferior parietal lobule. Four micrometre-thick sections of formalin-

fixed paraffin-embedded tissue from these areas were used for

immunohistochemistry.

Primary antibodies

Sections were immunostained with the following antibodies: mouse

anti-human specific for amyloid-b42 (clone 21F12) provided by Elan

Pharmaceuticals Inc. (Johnson-Wood et al., 1997); mouse anti-human

phospho-tau (clone AT8, Autogen Bioclear); mouse anti-human CD68

(Dako); goat anti-human CD64 (Fc� receptor I), goat anti-human

CD32 (Fc� receptor II), goat anti-human MSR-A (all from R&D

Systems); rabbit anti-human Iba-1 (Wako Laboratories); rabbit anti-

human IgG (Dako); rabbit anti-human C1q (Dako); mouse anti-

human CD3 (Abcam). Table 2 specifies the functions associated with

each of the microglial markers.

Immunohistochemistry

Sections from immunized Alzheimer’s disease and non-immunized

control cases were immunostained together in batches for each anti-

body to ensure comparability of labelling. Immunohistochemistry was

performed using the appropriate antigen retrieval methods for each

primary antibody. Biotinylated secondary antibodies (rabbit anti-

mouse, swine anti-rabbit, and rabbit anti-goat) were from Dako,

normal serum and avidin–biotin complex were from Vector

Laboratories. Bound antibody was visualized using the avidin–biotin-

peroxidase complex method (Vectastain Elite ABC) with 3,3’ diamino-

benzidine as chromogen and 0.05% hydrogen peroxide as substrate to

produce a brown reaction product. All sections were dehydrated

before mounting in DePeX (BDH Laboratory Supplies). Sections incu-

bated in the absence of the primary antibody were included as

negative controls.

Quantification
All quantification was performed blind to the experimental group and

identity of the cases. Images of the slides were taken from the same

anatomical regions in every case. For a given antibody, a minimum of

20 fields of cortical grey matter at magnification �10 (for amyloid-

b42, CD64, CD32, Iba-1, MSR-A, and IgG) or 30 fields of cortical

grey matter at magnification �20 (for AT8 and CD68) that covered

a similar area, were analysed to ensure representative detection of

immunostaining for image analysis. Images were acquired in a

Table 1 Clinical characteristics of immunized Alzheimer’s disease (iAD) and non-immunized (control) Alzheimer’s disease
(cAD) subjects

ID Gender Age Braak stage Dementia
duration
(years)

APOE
genotype

Mean antibody
response
(ELISA units)

Survival time from
first immunization
dose (months)

iAD1 F 74 VI 6 3.4 1:119 20

iAD2 M 83 V 11 3.3 51:100 4

iAD3 M 63 VI 6 3.3 51:100 41

iAD4 F 71 VI 10 3.3 1:4072 44

iAD5 M 81 VI 7 3.4 1:1707 57

iAD6 M 82 VI 6 3.4 1:4374 60

iAD7 M 63 VI 10 3.4 1:6470 64

iAD8 M 81 VI 11 4.4 1:491 63

iAD9 F 88 VI 11 3.3 1:137 86

iAD10 M 88 VI 12 3.4 1:142 94

iAD11 F 89 VI 15 3.4 1:142 111

cAD (n = 28) 15F:13M 63–88 V/VI 3–17 21"4+ : 6 "4� – –

Inflammation in Alzheimer’s disease Brain 2013: 136; 2677–2696 | 2679
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zigzag sequence along the cortical ribbon to ensure that all cortical

layers were represented in the quantification.

Images were analysed using ImageJ version 1.41 software

(developed by Wayne Rasband NIH, USA). Each image was split

into channels (red, green and blue). The eight-bit blue channel

image was corrected for background illumination using the eight-bit

blue channel of a brightfield image and applying a correction method

adopted from Landini (2006–2010) to produce an evenly illuminated

image. A threshold was then applied to the image to measure the total

amount of specific immunostaining. The same threshold was main-

tained for all images (immunized Alzheimer’s disease and non-immu-

nized control cases) of slides stained together in the same batch. The

percentage of the area examined for each antibody was used to

indicate the corresponding protein load.

Counting of Iba-1-positive microglia and MSR-A-positive microglial

clusters was performed in 30 fields of each of the three brain areas at

magnification �20, aided by an ocular morphometric grid inserted into

one of the eyepieces. The rationale for the additional quantification of

Iba-1 and MSR-A was based on the reported detection of all microglia

(resting and activated) with Iba-1 antibody (Streit et al., 2009), and the

marked clustering pattern of the MSR-A immunostaining we observed.

The CD3-positive T lymphocytes were counted in the entire tissue

section of each brain area analysed, at magnification �10, and

expressed as the number of cells per 100 fields. Parenchymal and peri-

vascular T lymphocytes were included in the quantification.

The grading of cerebral amyloid angiopathy was performed as

described by Chalmers et al. (2003). Briefly, amyloid-b42-immunos-

tained sections were examined and assigned a grade ranging from

zero (no amyloid-laden blood vessels) to four (blood vessels having

a heavy deposit of amyloid that also extends into the surrounding

parenchyma). Cortical and leptomeningeal cerebral amyloid angiopa-

thy in the three brain areas was assessed separately and a median

combined grade was calculated for each case.

Haematoxylin and eosin-stained sections of the three brain areas

were examined for cortical microhaemorrhages (i.e. collections of

haemosiderin-laden macrophages) and microvascular lesions (micro-

scopic foci of parenchymal haemorrhage or infarction) which might

influence the microglial status. Entire sections were assessed at mag-

nification �10 and the sum of microhaemorrhages and microvascular

lesions in the three brain areas was used for the subsequent analyses.

The immunostaining and quantification of amyloid-b42 and phospho-

tau in the brains of 10 of the 11 immunized patients with Alzheimer’s

disease and the 28 non-immunized Alzheimer’s disease control subjects

were previously described (Boche et al., 2010). The data set for this study

was augmented by one extra immunized case and re-analysed using the

same image analysis method as for the microglial markers.

Statistical analysis
The data on antigen load (% area immunostained), sum counts of Iba-

1 or CD-3-positive cells, MSR-A-positive clusters, microhaemorrhages/

microvascular lesions, and the cerebral amyloid angiopathy severity for

the three areas were analysed. The continuous outcome variables were

assessed for normality using one-sample Kolmogorov-Smirnoff tests

and through examination of Q-Q plots. In view of the skewed distri-

bution of the data, the non-parametric Mann-Whitney U-test was

used for comparisons between the two groups (non-immunized con-

trol versus immunized Alzheimer’s disease cases), with median values

reported. Similarly, Spearman’s Rank correlation was used to assess

measurements of inflammatory markers in relation to amyloid-b42
and tau load. The data of the three areas combined were analysed

using SPSS 19 software (SPSS, Inc). P-values 50.05 were considered

statistically significant.

Results

Microglial markers

Iba-1

Immunostaining with Iba-1, which has been reported to label all

microglia, active and resting (Streit et al., 2009), revealed micro-

glial cells with both ramified and amoeboid morphology (Fig. 1A

and B), although most cells displayed ramified morphology regard-

less of the Alzheimer’s disease group (non-immunized controls or

immunized Alzheimer’s disease patients). Quantification showed

no significant difference in the Iba-1 load between the immunized

Alzheimer’s disease and non-immunized control cases, although

there was a trend towards less Iba-1 in the immunized group

(Fig. 1C). Similarly, the total number of Iba-1-positive microglial

cells in 90 fields was not significantly different between immunized

Alzheimer’s disease and non-immunized control groups (Fig. 1D).

Macrophage scavenger receptor A

Immunostaining for MSR-A demonstrated microglia, including

their processes, in a pattern consistent with cell surface membrane

expression of this receptor (Fig. 2A and B). A striking feature, not

observed so markedly with the other microglial antibodies, was

clustering of labelled cells, often associated with amyloid plaques,

which prompted us to undertake manual counting of clusters in

addition to the quantification of the total antigen load. The total

Table 2 Details of microglial markers used

Antibody Associated function or marker of

Iba-1 (ionized calcium-binding adaptor molecule 1) Resting and activated microglia/macrophages, upregulated during activation (Imai et al.,
1996; Ahmed et al., 2007; Streit et al., 2009)

CD64 (Fc� RI) High affinity receptor for human IgG, main role in mounting an immune response
(Ravetch and Bolland, 2001; Nimmerjahn and Ravetch, 2006)

CD32 (Fc� RII) Low affinity receptor for human IgG, phagocytosis of immune complexes (Ravetch and
Bolland, 2001; Nimmerjahn and Ravetch, 2006)

MSR-A Lipoprotein receptor involved in direct ligand recognition, including that of amyloid-b
(El Khoury et al., 1996)

CD68 Activated/phagocytic macrophages/microglia (Rabinowitz and Gordon, 1989, 1991;
Zotova et al., 2011)

2680 | Brain 2013: 136; 2677–2696 E. Zotova et al.
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MSR-A load was significantly lower in the immunized Alzheimer’s

disease (0.01%) than the non-immunized control group (0.10%,

P50.001, Fig. 2C). Similarly, the sum number of MSR-A-positive

clusters was also significantly lower (immunized Alzheimer’s dis-

ease = 22 compared with non-immunized controls = 70,

P50.001, Fig. 2D).

Fc� receptor I (CD64)

Antibody to CD64 strongly labelled microglial cells, including their

processes, consistent with the expected pattern for a cell surface

membrane receptor (Fig. 3A and B). The CD64 load was significantly

lower in the immunized Alzheimer’s disease (0.36%) than the non-

immunized control group (0.82%, P = 0.001, Fig. 3C). The CD64

load was several-fold higher than any of the other microglial anti-

gens. In both immunized and non-immunized Alzheimer’s disease

cases the CD64 load was �10 times that obtained for Iba-1, which

has been reported to be expressed by all microglia.

Fc� receptor II (CD32)

Immunostaining for CD32 demonstrated microglial cells, although

the cell processes were less strongly defined than with CD64 anti-

body (Fig. 3D and E). The CD32 load was also significantly lower

in the immunized Alzheimer’s disease (0.02%) than the non-

immunized control group (0.04%, P = 0.002, Fig. 3F).

CD68

CD68 was distributed in an intracytoplasmic dot-like pattern con-

sistent with the labelling of lysosomes within microglia, as previ-

ously shown (Zotova et al., 2011) (Fig. 3G and H). The CD68 load

was lower in the immunized (0.02%) than the non-immunized

group (0.05%, P = 0.018, Fig. 3I).

Amyloid-b42 and phospho-tau load

As previously described (Boche et al., 2010), the amyloid-b42 load

was 82% lower in the immunized (0.72%) than the non-immu-

nized Alzheimer’s disease cases (4.06%; P50.001, Fig. 4),

reflecting the removal of amyloid-b as a consequence of amyl-

oid-b immunization. The phospho-tau load was 40% lower in

the immunized (0.46%) than the non-immunized group (0.77%,

P = 0.034, Fig. 4), reflecting a reduction of phospho-tau mainly in

neuronal processes (Boche et al., 2010).

Correlations between microglial
markers and amyloid-b42 and
phospho-tau pathology

Correlations between the microglial antigen load and amyloid-b42
and phospho-tau load were examined in the non-immunized con-

trol and immunized Alzheimer’s disease groups (Tables 3 and 4).

Figure 1 Illustrations of immunostaining for microglial Iba-1 in non-immunized control (cAD) and immunized Alzheimer’s disease (iAD)

cases (A and B), with inset of higher magnification. Quantification results of Iba-1 protein load (C) and the number of Iba-1-positive cells

(D) expressed as scatter plots with lines indicating median values, and Mann-Whitney P-values included. Scale bars = 100mm;

insets = 10 mm.
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Correlations with amyloid-b42
Inverse correlations were observed between the amyloid-b42 load

and two microglial markers in the non-immunized control group:

Iba-1, both the load (Spearman’s � = �0.6, P = 0.001, Fig. 5A)

and the number of cells (Spearman’s � = �0.4, P = 0.026,

Fig. 5B), and the CD32 load (Fc� receptor II, Spearman’s

� = �0.6, P50.001, Fig. 5C). Within the immunized

Alzheimer’s disease group, a positive correlation was noted

between the amyloid-b42 load and the number of MSR-A-positive

clusters (Spearman’s � = 0.7, P = 0.024, Fig. 5D). No other correl-

ations between microglial markers and amyloid-b42 load were

observed within the immunized Alzheimer’s disease and non-

immunized control groups (Tables 3 and 4).

Correlations with tau

Correlations were observed between the phospho-tau load and all of

the microglial markers in the non-immunized control group (Fig. 6

and Table 3): Iba-1 load (Spearman’s � = 0.4, P = 0.046, Fig. 6A),

Fc� receptor II load (Spearman’s � = 0.4, P = 0.032, Fig. 6B), MSR-A

load (Spearman’s � = 0.4, P = 0.045, Fig. 6C), Fc� receptor I load

(Spearman’s � = 0.5, P = 0.010, Fig. 6D), and CD68 load

(Spearman’s � = 0.4, P = 0.036, Fig. 6E). No correlations between

microglial markers and phospho-tau load were observed within the

immunized group (Table 4). The number of Iba-1-positive cells and

MSR-A-positive clusters did not correlate with the phospho-tau load

in either of the Alzheimer’s disease groups (Tables 3 and 4).

Immunoglobulin G

Human IgG was detected in amyloid-b plaques, on microglia

surrounding plaques, and within neurons (often adjacent to

plaques), in both immunized Alzheimer’s disease and non-immu-

nized control cases (Fig. 7A–F). It should be noted, however, that

extensive areas of cortex did not contain immunodetectable IgG,

even where abundant plaques were present. Some cortical and

meningeal blood vessels immunopositive for IgG were also

noted, particularly those with amyloid-b in their walls (i.e. with

cerebral amyloid angiopathy; Fig. 7D and E). Quantification of the

IgG load showed no significant difference between the immunized

Alzheimer’s disease and non-immunized control groups (Fig. 7G).

A correlation between the IgG load and the phospho-tau load was

noted within the non-immunized controls (Spearman’s � = 0.4,

P = 0.030, Fig. 7H, Table 3), but not the immunized Alzheimer’s

disease group (Table 4). In addition, within the non-immunized

control group the IgG load correlated with the load of all micro-

glial antigens examined (Table 3): Iba-1 (Spearman’s � = 0.4,

P = 0.036, Fig. 8A), Fc� receptor II (CD32) load (Spearman’s

Figure 2 Illustrations of immunostaining for microglial MSR-A in non-immunized control (cAD) and immunized Alzheimer’s disease (iAD)

cases (A and B), with inset of higher magnification. Quantification results of MSR-A protein load (C) and the number of MSR-A-positive

clusters (D) expressed as scatter plots with lines indicating median values, and Mann-Whitney P-values included. Scale bars = 100mm;

inset = 10mm.
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� = 0.5, P = 0.003, Fig. 8B), MSR-A load (Spearman’s � = 0.6,

P = 0.001, Fig. 8C), Fc� receptor I (CD64) load (Spearman’s

� = 0.7, P50.001, Fig. 8D), and CD68 load (Spearman’s

� = 0.7, P = 0.001, Fig. 8E). Within the immunized Alzheimer’s

disease group, similar trends between the IgG load and microglial

markers MSR-A, CD32, and CD64 were observed, but not with

Iba-1 or CD68 (Table 4). No correlation was observed between

the IgG load and the amyloid-b42 load in either of the Alzheimer’s

disease groups (Tables 3 and 4).

Complement C1q

Antibody to the complement element C1q labelled neurons,

amyloid plaques, glia, and occasional blood vessels (Fig. 9A–D),

similarly to anti-IgG antibody. Quantification of C1q also showed

no difference between the immunized Alzheimer’s disease and

non-immunized control groups (Fig. 9E). Within the non-immu-

nized control group, the C1q load correlated only with the phos-

pho-tau load (Spearman’s � = 0.6, P = 0.003, Fig. 9F and Table 3),

whereas in the immunized group, only an inverse correlation be-

tween the C1q load and the amyloid-b42 load was noted

(Spearman’s � = -0.6, P = 0.047, Fig. 9G and Table 4). As for

IgG, the C1q load correlated with the load of all microglial anti-

gens examined within the non-immunized control group (Table 3):

Iba-1 (Spearman’s � = 0.5, P = 0.017, Fig. 10A), CD68

(Spearman’s � = 0.5, P = 0.012, Fig. 10B), CD64 (Fc�RI,

Spearman’s � = 0.6, P = 0.001, Fig. 10C), CD32 (Fc�RII,

Spearman’s � = 0.7, P50.001, Fig. 10D), and MSR-A

(Spearman’s � = 0.4, P = 0.036, Fig. 10E). No such correlations

were observed in the immunized Alzheimer’s disease group

(Table 4). Correlations between the C1q load and the IgG load

were found in both the non-immunized control group (Spearman’s

� = 0.7, P50.001, Table 3) and the immunized Alzheimer’s dis-

ease group (Spearman’s � = 0.6, P = 0.035, Table 4).

CD3-positive T lymphocytes

The number of CD3-positive T lymphocytes did not differ signifi-

cantly between the immunized and non-immunized groups

(Fig. 11A). Parenchymal (Fig. 11E) and perivascular (Fig. 11F) T

lymphocytes were included in the quantification. A correlation be-

tween the number of CD3-positive cells and the IgG load was

Figure 3 Illustrations of immunostaining for microglial markers in non-immunized control (cAD) and immunized Alzheimer’s disease (iAD)

cases using antibody against: CD64 (Fc� RI) (A and B), CD32 (Fc� RII) (D and E), and CD68 (G and H) with inset of higher magnification.

Quantification results of protein load for each microglial marker is expressed as scatter plots with lines indicating median values, and

Mann-Whitney P-values included (C, F and I). Scale bars = 100mm; insets = 10mm.
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observed in both the non-immunized controls (Spearman’s

� = 0.4, P = 0.030, Fig. 11C and Table 3) and immunized

Alzheimer’s disease groups (Spearman’s � = 0.8, P = 0.007,

Fig. 11D and Table 4). The number of CD3-positive T cells corre-

lated with the phospho-tau load within the non-immunized

controls (Spearman’s � = 0.4, P = 0.026, Fig. 11B and Table 3)

but not the immunized Alzheimer’s disease group (Table 4). No

relationships between the CD3 data and any of the microglial

markers, amyloid-b42, or complement C1q were noted in either

of the Alzheimer’s disease groups (Tables 3 and 4).

Cerebral amyloid angiopathy

The assessment of cerebral amyloid angiopathy in the cerebral

cortex and leptomeninges demonstrated more severe cerebral

amyloid angiopathy in the immunized Alzheimer’s disease

(median score = 2.0) than the non-immunized control group

(median score = 1.0, P = 0.044), in accordance with previously re-

ported findings (Boche et al., 2008). However, no relationships

were observed between the cerebral amyloid angiopathy severity

and the microglial markers, amyloid-b42 load, phospho-tau load or

any other parameters investigated in this study.

Microhaemorrhages and microvascular
lesions

The assessment of the haematoxylin and eosin-stained sections

for the number of microhaemorrhages and microvascular lesions

did not reveal any significant differences between the immunized,

and the non-immunized group. No relationships were noted

between the number of microhaemorrhages and microvascular

lesions and the level of microglial markers, amyloid-b42 load, phos-

pho-tau load or any other parameters assessed in the two groups.

Discussion
Microglial activity is closely linked to the development of

Alzheimer’s disease, but the precise role of microglia in disease

pathogenesis and the response to amyloid-b immunization is

Table 3 Results of correlation analyses within non-immunized Alzheimer’s disease control group – Spearman’s � and
P-values

cAD Phospho-tau
load

CD68
load

CD64
load

CD32
load

MSR
load

MSR
clusters

Iba-1
load

Iba-1 +
cells

IgG
load

C1q
load

CD3+
cells

Amyloid-b42
load

� = �0.2 � = �0.3 � = �0.1 � = �0.6 � = �0.2 � = 0.1 � = �0.6 � = �0.4 � = �0.2 � = �0.2 � = �0.1
P = 0.428 P = 0.091 P = 0.477 P_ 0.001 P = 0.438 P = 0.660 P = 0.001 P = 0.026 P = 0.370 P = 0.258 P = 0.553

Phospho-tau
load

� = 0.4 � = 0.5 � = 0.4 � = 0.4 �5 0.1 � = 0.4 � = 0.3 � = 0.4 � = 0.6 � = 0.4
P = 0.036 P = 0.010 P = 0.032 P = 0.045 P = 0.936 P = 0.046 P = 0.151 P = 0.030 P = 0.003 P = 0.026

CD68 load � = 0.7 � = 0.7 � = 0.6 � = 0.2 � = 0.5 � = 0.1 � = 0.7 � = 0.5 � = 0.2
P_ 0.001 P_ 0.001 P_ 0.001 P = 0.441 P = 0.004 P = 0.586 P_ 0.001 P = 0.012 P = 0.244

CD64 load � = 0.6 � = 0.5 � = 0.2 � = 0.5 � = 0.2 � = 0.7 � = 0.6 � = 0.3
P = 0.001 P = 0.003 P = 0.387 P = 0.007 P = 0.444 P_ 0.001 P = 0.001 P = 0.095

CD32 load � = 0.4 �5 0.1 � = 0.7 � = 0.5 � = 0.5 � = 0.7 � = 0.1
P = 0.052 P = 0.912 P_ 0.001 P = 0.011 P = 0.003 P_ 0.001 P = 0.446

MSR load � = 0.5 � = 0.4 � = �0.1 � = 0.6 � = 0.4 �5 0.1
P = 0.002 P = 0.054 P = 0.725 P = 0.001 P = 0.036 P = 0.899

MSR clusters � = 0.1 � = �0.1 � = 0.1 �5 0.1 � = �0.2
P = 0.750 P = 0.524 P = 0.459 P = 0.801 P = 0.208

Iba-1 load � = 0.7 � = 0.4 � = 0.5 �5 0.1
P_ 0.001 P = 0.036 P_ 0.017 P = 0.818

Iba-1 + cells � = �0.1 � = 0.3 � = 0.1
P = 0.701 P = 0.165 P = 0.750

IgG load � = 0.7 � = 0.4
P_ 0.001 P = 0.030

C1q load � = 0.3
P = 0.141

cAD = non-immunized Alzheimer’s disease control.

Significant correlations are highlighted in bold.

Figure 4 Results of the amyloid-b42 and phospho-tau

quantification summarized in a scatter plot with lines indicating

median values and Mann-Whitney P-values included.

cAD = non-immunized Alzheimer’s disease controls;

iAD = immunized Alzheimer’s disease cases.
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unclear. The poor cognitive outcome of patients in the AN1792

clinical trial suggested that clearance of amyloid-b plaques alone is

not sufficient to halt the progression of dementia (Holmes et al.,

2008), raising the possibility that persistent microglial activation

results in continuing neurodegeneration. In the current study, we

have investigated microglial receptors involved in direct and anti-

body-mediated ligand recognition and clearance in human post-

mortem Alzheimer’s disease tissue, their relation to amyloid-b and

phospho-tau pathology and other inflammatory processes, and

how these relationships are altered after active amyloid-b42

immunization.

Microglial markers and pathological
features of Alzheimer’s disease,
amyloid-b42 and tau

Consistent with previously reported findings, we observed signifi-

cantly lower amyloid-b42 and phospho-tau loads after amyloid-b

immunization (Boche et al., 2010). In conjunction with these

alterations in the pathology of the disease, we observed significant

changes in microglial receptors and markers of the CNS innate

immune response.

Correlations between amyloid-b42 and
microglial markers

With respect to amyloid-b42, inverse correlations were observedwith

Iba-1 and Fc� receptor II in non-immunized Alzheimer’s disease only.

Iba-1 is expressed constitutively by microglia in the brain, with

increased expression upon activation (Imai et al., 1996; Imai and

Kohsaka, 2002). It was proposed that Iba-1 is involved in cytoskeletal

reorganization, membrane ruffling and actin cross-linking in micro-

glia, necessary for phagocytosis (Ohsawa et al., 2000; Sasaki et al.,

2001; Kanazawa et al., 2002). The Fc� receptors expressed bymicro-

glia are important players in phagocytosis, transport and clearance of

antibodies and immune complexes from the brain, and antibody-

dependent cell-mediated cytotoxicity (Ulvestad et al., 1994a;

Deane et al., 2009). The ability of anti-amyloid-b antibodies to

cross the blood–brain barrier has been reported in animal models

(Bard et al., 2000; Deane et al., 2005). Anti-amyloid-b autoantibo-

dies were detected in the plasma of patients with Alzheimer’s disease

(Hyman et al., 2001), consistent with the detection of Fc� receptors

in the non-immunized Alzheimer’s disease brains. One explanation

for the inverse correlations between amyloid-b and the microglial

Iba-1 and Fc� receptor II may be that in Alzheimer’s disease, the

expression of these receptors limits the accumulation of amyloid.

Alternatively, the inverse relationship could reflect a mechanism

whereby amyloid-b aggregation and, presumably, amyloid-b

immune complexes, downregulate microglia as a means of minimiz-

ing neuronal damage in the context of a prolonged inflammatory

reaction. It was suggested that activation of Fc� receptors leads to

increased levels of intracellular Ca2+ (Ravetch and Kinet, 1991), pos-

sibly indicating a link with the calcium adapter protein Iba-1.

Immunization alters the relationship between amyloid-b42 and

these microglial receptors. This may contribute to a change in

microglial function that facilitates amyloid-b clearance, as sug-

gested by the correlation between the cell surface scavenger

receptor MSR-A-positive clusters and amyloid-b42 in immunized

Alzheimer’s disease cases. MSR-A was reported to be involved

in the activation of microglia for uptake of extracellular matter,

including amyloid (Christie et al., 1996). We observed no relation-

ship between microglia and vascular amyloid-b (cerebral amyloid

Table 4 Results of correlation analyses within the immunized Alzheimer’s disease group – Spearman’s � and P-values

iAD Phospho-tau
load

CD68
load

CD64
load

CD32
load

MSR
load

MSR
clusters

Iba-1
load

Iba-1+
cells

IgG
load

C1q
load

CD3+
cells

Amyloid-b42
load

� = 0.4 � = 0.2 � = 0.5 � = 0.3 � = 0.4 � = 0.7 � = 0.1 � = 0.2 � = �0.2 � = �0.6 � = �0.2
P = 0.212 P = 0.484 P = 0.151 P = 0.326 P = 0.272 P = 0.024 P = 0.689 P = 0.650 P = 0.537 P = 0.047 P = 0.555

Phospho-tau
load

� = 0.2 � = 0.2 � = 0.5 � = 0.4 � = 0.5 � = 0.2 �5 �0.1 � = �0.1 � = �0.2 � = �0.3
P = 0.484 P = 0.574 P = 0.110 P = 0.201 P = 0.098 P = 0.612 P = 0.915 P = 0.811 P = 0.502 P = 0.433

CD68 load � = 0.8 � = 0.4 � = 0.6 � = 0.3 � = �0.1 � = �0.6 � = 0.5 � = 0.3 � = 0.5
P = 0.004 P = 0.180 P = 0.060 P = 0.377 P = 0.770 P = 0.051 P = 0.177 P = 0.450 P = 0.125

CD64 load � = 0.5 � = 0.7 � = 0.4 � = 0.2 � = �0.2 � = 0.6 � = 0.3 � = 0.5
P = 0.102 P = 0.016 P = 0.174 P = 0.593 P = 0.593 P = 0.077 P = 0.417 P = 0.170

CD32 load � = 0.6 � = 0.5 � = 0.5 �5 0.1 � = 0.6 � = 0.1 � = 0.5
P = 0.071 P = 0.141 P = 0.096 P = 0.979 P = 0.066 P = 0.770 P = 0.110

MSR load � = 0.4 � = 0.6 �5 �0.1 � = 0.6 � = 0.3 � = 0.4
P = 0.264 P = 0.051 P = 0.915 P = 0.066 P = 0.417 P = 0.201

MSR clusters � = 0.4 � = 0.2 � = �0.1 � = �0.1 � = �0.1
P = 0.194 P = 0.492 P = 0.709 P = 0.852 P = 0.884

Iba-1 load � = 0.6 � = 0.4 � = 0.3 � = 0.3
P = 0.056 P = 0.285 P = 0.340 P = 0.340

Iba-1 + cells � = �0.3 � = �0.1 � = �0.3
P = 0.450 P = 0.750 P = 0.370

IgG load � = 0.6 � = 0.8
P = 0.035 P = 0.007

C1q load � = 0.6
P = 0.077

iAD = immunized Alzheimer’s disease.

Significant correlations are highlighted in bold.
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angiopathy) in Alzheimer’s disease brains. Even after the immun-

ization, which results in a transient increase in cerebral amyloid

angiopathy (Boche et al., 2008), no association between microglial

markers and the severity of cerebral amyloid angiopathy was

noted. Similarly, microglial activity was not related to the

number of microhaemorrhages and microvascular lesions, al-

though the lack of apparent relationship may simply reflect the

relatively infrequent occurrence of these lesions in the present

cohort.

Correlation between tau and microglial markers

In the non-immunized Alzheimer’s disease cases, phospho-tau

load, but not amyloid-b, correlated with the levels of all of the

microglial markers assessed. There is evidence for a connection

between microglial activation and tau pathology in Alzheimer’s

disease and other tauopathies (DiPatre and Gelman, 1997;

Ishizawa and Dickson, 2001; Streit et al., 2009; Serrano-Pozo

et al., 2011). Chronic microglial activation resulting in the release

of pro-inflammatory cytokines (e.g. IL-1�, IL-1b and TNF�) and

other molecules (e.g. quinolinic acid) may cause tau hyperpho-

sphorylation (Iqbal and Grundke-Iqbal, 2002; Li et al., 2003), sug-

gesting that microglia may contribute to the ongoing

neurodegeneration (Serrano-Pozo et al., 2011). Conversely, micro-

glial activity may be a response to the synaptic loss associated with

tau pathology (Iqbal and Grundke-Iqbal, 2002), supporting the

concept that microglia are losing their protective capacities with

ageing (Streit et al., 2009).

Our observations of correlations between microglia and tau, and

between microglia and amyloid-b, but not between tau and amyl-

oid-b in Alzheimer’s disease, suggest that microglia may play a

pivotal role in Alzheimer’s disease. We did not observe any rela-

tion between the tau pathology and microglial markers in the

immunized Alzheimer’s disease group, in keeping with a change

in the microglial profile after immunization focusing on amyloid-b

clearance (Zotova et al., 2011). The exact pathway and sequence

of events that involve microglia, amyloid-b and phospho-tau, in

the pathogenesis of Alzheimer’s disease are still not deciphered.

Microglial activation may represent a response that is aimed at

limiting amyloid-b deposition (inverse correlation between some

microglial markers and amyloid-b42), as observed by in vivo ima-

ging of transgenic mice (Bolmont et al., 2008) but that causes

secondary neuronal damage (direct correlation between all micro-

glial markers and phospho-tau). Alternatively, microglial activation

may be triggered by the neuronal damage in Alzheimer’s disease,

Figure 5 Correlation plots between microglial and amyloid-b42 (21F12) within non-immunized control (cAD) (A–C) and immunized

Alzheimer’s disease (iAD) groups (D) with linear regression lines and Spearman’s � and P-values included. Within the non-immunized

control group, the amyloid-b42 load inversely correlated with Iba-1 load (A), the number of Iba-1-positive cells (B), and CD32 (Fc� RII)

load (C). Within the immunized Alzheimer’s disease group, the amyloid-b42 load correlated with the number of MSR-A-positive microglial

clusters (D).
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with amyloid-b deposition serving as an attempt to control the

inflammation (Soscia et al., 2010). The possibility that plaque-

associated amyloid-b is not directly involved in neurodegeneration

in sporadic Alzheimer’s disease is consistent with our observations

of continued decline in cognitive function, despite the removal of

amyloid-b plaques by immunotherapy (Holmes et al., 2008).

Immunoglobulin G

We quantified IgG to assess the extent of opsonization of amyl-

oid-b plaques before and after immunization, but found no

significant difference in total load of IgG within the cortex. This

is despite evidence that anti-amyloid-b antibodies persist for many

years in the blood of patients immunized with AN1972 (Holmes

et al., 2008). It should be noted that the immunohistochemistry

did not differentiate between host-generated antibodies of differ-

ent specificities (e.g. anti-amyloid-b) that might be present in the

brain. It is possible that an increase in amyloid-b-specific antibody

level and immune complex formation within the brain takes place

in Alzheimer’s disease brain immediately after the treatment, as

observed in animal studies using passive immunization (Bard et al.,

2000). If so, our observations of lower levels of Fc� receptors I

Figure 6 Correlation plots between microglial and phospho-tau (AT8) within the non-immunized control group with linear regression

lines and Spearman’s � and P-values included. Phospho-tau load correlated with Iba-1 load (A), CD32 (Fc� RII) load (B), MSR-A load

(C), CD64 (Fc� RI) load (D), and CD68 load (E).
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and II in immunized cases by the time of autopsy suggest that the

deployment of these receptors for the clearance of amyloid-b is

followed by their downregulation.

There was a correlation between IgG and phospho-tau within

the non-immunized but not the immunized Alzheimer’s disease

group. A link has been proposed between changes in brain–

blood barrier permeability in Alzheimer’s disease and the influx

and localization of IgG within neurons, leading to tau-mediated

reorganization of neuronal microtubules (Bouras et al., 2005). Our

findings would be consistent with the presence of IgG in the brain

influencing the extent of the tau pathology. This is in keeping with

the strong correlations between the amount of IgG and the levels

of all microglial receptors, and between these receptors and phos-

pho-tau, as discussed above. Similarly, T cell numbers correlated

with the IgG load and phospho-tau pathology in the non-immu-

nized Alzheimer’s disease group, supporting the involvement of

humoral immunity, in addition to cellular immunity in the patho-

genesis of Alzheimer’s disease (Bouras et al., 2005). Immunization

against amyloid-b42 seems to alter these relationships, perhaps

reflecting alteration in the type of IgG present in the brain follow-

ing the treatment. However, the relationship between T cells and

IgG was still present in the immunized cases and at a stronger

level. Consistent with this observation, the ability of microglia-

mediated antibody-dependent phagocytosis involving Fc�

receptors to stimulate T cells has been demonstrated in vitro

(Ulvestad et al., 1994b).

C1q

Although no changes were observed in the total C1q load be-

tween both groups, the differences in correlations between C1q

and microglial markers, and C1q and amyloid-b42/tau support a

role for C1q in Alzheimer’s disease pathogenesis and immuniza-

tion-related changes. Consistent with the recent identification of

complement gene variation as risk factor for Alzheimer’s disease

(Lambert et al., 2009), and the suggested ability of C1q to acti-

vate microglial cells (Veerhuis et al., 2003), C1q correlated with all

microglial markers in the non-immunized Alzheimer’s disease

group. The findings are also in accordance with the in vitro dem-

onstrations of microglial C1q-mediated Fc receptor-dependent

phagocytosis of immune complexes (Webster et al., 2000,

2001). In the non-immunized group there was also a relationship

between C1q and phospho-tau, supporting a view that C1q ex-

pression is related to the degeneration of neurons in Alzheimer’s

disease (Fonseca et al., 2004; D’Andrea, 2005). The ability of tau

to activate complement through C1q was previously demonstrated

in vitro and in situ (Shen et al., 2001). In the immunized group,

this relationship was no longer present. Instead, an inverse

Figure 7 Illustrations of IgG immunostaining: amyloid-b plaque (A); amyloid-b core (B); glial cell (C); IgG within blood vessel wall

(D) capillary angiopathy (E); and neuron (F). Scale bar = 10 mm. (G) Quantification results of IgG load in non-immunized controls and

immunized Alzheimer’s disease cases expressed as scatter plot with lines indicating median values, and Mann-Whitney P-values included.

(H) Correlation plot between the IgG load and phospho-tau (AT8) load within the non-immunized control group with linear regression line

and Spearman’s � and P-values included. cAD = non-immunized Alzheimer’s disease controls; iAD = immunized Alzheimer’s disease cases.
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relationship between amyloid-b42 and C1q was observed, suggest-

ing a different role for C1q after immunization, perhaps related to

the clearance of amyloid-b, as increased uptake of C1q-coated

fibrillar amyloid-b particles and immune complexes by rodent

microglia in vitro has been reported (Brazil et al., 2000; Webster

et al., 2001). Overall, our observations indicate that C1q is likely

to be a mediator in the microglia-amyloid-b-tau network in

Alzheimer’s disease and that its role in this network is altered by

immunization.

Effect of immunization on microglial
receptors, cell number and distribution

Human data on the detailed microglial profile in chronic neurode-

generation and in response to stimulation of the immune system

are scarce. Animal studies suggest that induction of an immune

response in the brain leads to acutely elevated levels of microglial

receptors (Herber et al., 2006, 2007, Malm et al., 2008, Ryu

et al., 2009), and alterations in an inflammatory gene profile

Figure 8 Correlation between microglial markers and IgG load in non-immunized controls with linear regression lines and Spearman’s

� and P-values included. Correlations were observed between the IgG load and Iba-1 load (A), CD32 (Fc� RII) load (B), MSR-A load

(C), CD64 (Fc� RI) load (D), and CD68 load (E).
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towards classical activation associated with reduced brain amyloid-

b levels (Wilcock et al., 2011).

Our quantitative analysis of the microglial markers MSR-A,

CD64, CD32 and CD68 revealed significantly lower levels of

these receptors in immunized Alzheimer’s disease cases, perhaps

surprisingly suggesting downregulation of microglial activity after

immunization, at least by the time of post-mortem examination,

which in almost all cases was several years after treatment. In the

immunized group, we observed an 89% lower load of the scav-

enger receptor MSR-A and a 68% lower number of MSR-A-posi-

tive clusters, consistent with the degree of plaque removal seen in

these cases. The Fc� receptors I and II, expected to be involved in

the CNS innate immune response to immunotherapy, were 56%

and 66% lower after immunization. The marker of intracellular

microglial lysosomes, CD68, was also 60% lower in the immu-

nized group. Although in our previous study we reported a

higher load of CD68 in immunized cases (Zotova et al., 2011),

the current non-immunized Alzheimer’s disease cohort is larger

and better matched for age, gender, duration of dementia and

APOE genotype to the immunized group, which includes some

additional cases with longer post-immunization times. Our current

finding of an overall lower CD68 load in the immunized cases is in

accordance with our findings for all other microglial markers, and

highlights the necessity of using large and well-matched control

cohorts for studies of human tissue (Boche et al., 2013). It should

be noted that the findings on analysis of post-mortem tissue sev-

eral years following the immunization may not necessarily reflect

those immediately after receiving the treatment, and instead rep-

resent the late effects after plaque removal has occurred. Although

all of the markers of microglial activation were lower after immun-

ization, we detected no difference in Iba-1 load or the number of

Iba-1-positive cells between the groups. Iba-1 antibody is reported

to label all microglia, whether resting or active (Streit et al., 2009).

In accordance with this we expected, but did not observe, a higher

Iba-1 load than that of the other microglial markers. Simard et al.

(2006) showed that blood-derived monocytes can be recruited

into the brain of transgenic mice and differentiate into microglia-

like cells, which are more efficient at clearing amyloid-b plaques.

The lack of increase in total microglia number after the immun-

ization provides no evidence for immunization-induced recruit-

ment of monocytes from the periphery or in situ proliferation of

microglia.

Figure 9 Illustrations of C1q immunostaining demonstrating positively stained neurons (filled triangle, A), amyloid-b plaques (hash

symbol, B and C); glial cell (asterisk, B and D), blood vessels (� , C), and other cells (possibly astrocytes, 5, D). Scale bar = 50 mm.

(E) Quantification results of C1q load in non-immunized controls and immunized Alzheimer’s disease cases expressed as scatter plot with

lines indicating median values, and Mann-Whitney P-values included. (F) Correlation plot between the C1q load and phospho-tau (AT8)

load within the non-immunized control group with linear regression line and Spearman’s � and P-values included. (G) Correlation plot

between the C1q load and amyloid-b42 load within the immunized Alzheimer’s disease group with linear regression line and Spearman’s

� and P-values included.
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Our observation of a strong clustering pattern of MSR-A-posi-

tive microglia is in accordance with other studies that looked at

expression of macrophage scavenger receptors in Alzheimer’s dis-

ease and non-demented brains (Christie et al., 1996; Honda et al.,

1998) suggesting that these clusters are related to amyloid-b pla-

ques and consistent with the function of MSR-A (Chung et al.,

2001). We previously reported clustering and co-localization of

microglial markers HLA-DR and CD68 around amyloid-b plaques

(Zotova et al., 2011). We did not observe any obvious amyloid-b-

related clustering of cells expressing Fc� receptors, in keeping with

a previous report that these cells are distributed throughout the

cortex of normal and Alzheimer’s disease brains (Peress et al.,

1993). The variability in the distribution of microglial markers

that we observed in human disease suggest that microglia may

be present in different functional states in the same brain in

Alzheimer’s disease, with further alterations in microglial activation

and function following amyloid-b immunization. The distinct dis-

tribution of MSR-A immunostaining may be explained by the se-

lective immobilization of the MSR-A-positive cells when they

encounter plaques. Indeed, in vitro studies using murine microglial

cells showed that the murine homologue of MSR-A was the first

receptor to engage in phagocytosis of amyloid-b fibrils (El Khoury

et al., 1996; Paresce et al., 1996), resulting in immobilization of

microglia and release of neurotoxic cytokines and reactive oxygen

species (El Khoury et al., 1996; Husemann et al., 2002). Similar

observations were made on cultured human microglia from

Figure 10 Correlation between microglial markers and C1q load in non-immunized controls with linear regression lines and Spearman’s

� and P-values included. Correlations were observed between the C1q load and Iba-1 load (A), CD68 load (B), CD64 (Fc� RI) load

(C), CD32 (Fc� RII) load (D), and MSR-A load (E).
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Alzheimer’s disease and non-demented cases (Lue and Walker,

2002).

Together, our data on the levels of microglial receptors involved

in antigen recognition and uptake suggest that, in the long term,

immunotherapy has a downregulating effect on the expression of

these receptors, while keeping the overall number of microglia

unaltered. These findings are counter to the observations in

animal models, challenging the fidelity of animal models as

mimics of the complexity of the human disease. Importantly, the

time-course also differed: in the experimental models the response

was typically studied after a matter of days or few months,

whereas we are investigating the brains of patients with

Alzheimer’s disease almost all of whom were studied several

years following immunization. However, individual data on micro-

glial markers from the immunized Alzheimer’s disease cases exam-

ined shortly after the immunization (e.g. Patient iAD2, 4 months

following the treatment), was similar to the rest of the cases

within the immunized Alzheimer’s disease group, despite signs of

Figure 11 Quantification results of CD3-positive T cells in non-immunized controls and immunized Alzheimer’s disease cases expressed

as scatter plot with lines indicating median values, and Mann-Whitney P-values included (A). Correlation plots between the number of

CD3-positive T cells and the phospho-tau (AT8) load within the non-immunized control group with linear regression line and Spearman’s

� and P-values included (B). Correlation plots between the number of CD3-positive T cells and the IgG load within the non-immunized

control group (C) and the immunized Alzheimer’s disease group (D) with linear regression line and Spearman’s � and P-values included.

Examples of CD3 immunostaining in parenchyma (E) and perivascular (F). Scale bar = 30mm.
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active clearance of amyloid-b plaques (Nicoll et al., 2006; Zotova

et al., 2011). In addition, no correlations were observed between

the inflammatory markers and survival time post-immunization.

The mechanisms of amyloid-b removal may vary according to

the different treatment protocols in clinical trials, of which there

are currently 440 in progress worldwide (Menendez-Gonzalez

et al., 2011). We previously found elevated microglial phagocyt-

osis in patients with Alzheimer’s disease (Zotova et al., 2011), with

evidence of amyloid-b within microglia (Nicoll et al., 2006), but

also elevated soluble amyloid-b (Maarouf et al., 2010) and

increased severity of cerebral amyloid angiopathy, interpreted as

a reflection of enhanced exit of soluble amyloid-b from the brain

by the perivascular pathway (Boche et al., 2008). Although based

on few cases, the data suggested that, once the brain was cleared

of amyloid-b plaques, all these features fell below the level seen in

non-immunized Alzheimer’s disease brain. Our current findings

further confirm that microglial markers of activation and other

inflammatory processes are all reduced following the

immunization.

Conclusion
Overall, our data reveal antigenically and probably functionally dif-

ferent populations ofmicroglia in the Alzheimer’s disease brain: some

are predominantly located in and around plaques (e.g. MSR-A-posi-

tivemicroglia) and therefore presumably responding in a specific way

to plaque components, whereas others are diffusely distributed

through the cortex, perhaps responding or contributing to neuronal

damage. This reinforces the concept of specific phenotypes of micro-

glia, with different functions as defined in animal studies (Perry et al.,

2010), and confirms its relevance to human neurodegenerative dis-

ease. Interestingly, for the first time in Alzheimer’s disease, a link was

observed between all the inflammatory processes (microglia, IgG and

C1q) and tau, supporting an active role for immune functions in the

pathogenesis of Alzheimer’s disease. The recent genetic data to

emerge from the genome-wide association studies indicates that at

least a component of the inflammation contributes towards disease

pathogenesis and may be amenable to early intervention.

Our findings provide no evidence of a broad-spectrum long-

term increase in microglial activation after immunotherapy despite

the enhanced microglial phagocytosis of plaque-associated amyl-

oid-b. Instead, we suggest that the microglial downregulation is

likely to minimize bystander damage at least in the longer term.

These observations highlight the complex nature of microglial re-

actions and the importance of attempting to assess not just the

presence but also the functional state of microglia. The details

revealed in this study highlight the importance of conducting

neuropathological follow-up as part of clinical trials of new thera-

pies in Alzheimer’s disease.
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