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Abstract 
Aims: Thymic stromal lymphopoietin (TSLP) plays an important role in inflammatory 
diseases and is over-expressed in human atherosclerotic artery specimens. The present study 
investigated the role of TSLP in platelet activation and thrombosis models in vitro and in 

vivo, as well as the underlying mechanism and signaling pathway. Methods and Results: 
Western blotting and flow cytometry demonstrated that the TSLP receptor was expressed on 
murine platelets. According to flow cytometry, platelet stimulation with TSLP induced platelet 
degranulation and integrin αIIbβ3 activation. A TSLPR deficiency caused defective platelet 
aggregation, defective platelet secretion and markedly blunted thrombus growth in perfusion 
chambers at both low and high shear rates. TSLPR KO mice exhibited defective carotid artery 
thrombus formation after exposure to FeCl

3
. TSLP increased Akt phosphorylation, an effect 

that was abrogated by the PI3K inhibitors wortmannin and LY294002. The PI3K inhibitors 
further diminished TSLP-induced platelet activation. TSLP-mediated platelet degranulation, 
integrin αIIbβ3 activation and Akt phosphorylation were blunted in platelets that lacked the 
TSLP receptor. Conclusion: This study demonstrated that the functional TSLPR was surface-
expressed on murine platelets. The inflammatory cytokine TSLP triggered platelet activation 
and thrombus formation via TSLP-dependent PI3K/Akt signaling, which suggests an important 
role for TSLP in linking vascular inflammation and thrombo-occlusive diseases.
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See Erratum on last page of this article.
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Introduction

Platelet adhesion and subsequent aggregation at the vascular injury site are key events 
required for hemostasis [1, 2]; however, they are also critical for the development of acute thrombotic occlusion at regions of atherosclerotic plaque rupture, which reflect the major 
pathophysiological mechanism underlying ischemic diseases, such as myocardial infarction 
or stroke [3]. Platelet activation is induced by platelet agonists, such as ADP, collagen or thrombin [4]. The agonists lead to platelet degranulation, shape changes, integrin αIIbβ3 
activation and adhesion to the vascular wall [5]. Apart from thrombosis, there is increasing evidence that platelets are critically involved in the pathogenesis of inflammatory diseases [6, 7] via interactions with a variety of inflammatory cells [8]. During inflammatory stimulation, 
platelets rapidly adhere to the endothelium or subendothelial extracellular matrix at sites of vascular endothelial injury [6].

Cytokines, including tumor necrosis factors, interleukins, interferons, and colony 
stimulating factors, are produced by macrophages, T-cells and monocytes, as well as 
platelets, endothelial cells and vascular smooth muscle cells. Additionally, they are central players in vascular inflammation processes via the recruitment of leukocytes, which leads 
to the progression of atherosclerosis and plaque destabilization [9]. Accumulating literature 
suggests a delicate role of cytokines in atherothrombosis, and members of the cytokine 
family have been shown to activate platelets via their receptors [10, 11]. However, the exact signaling mechanisms of platelet activation by inflammatory cytokines remain unknown.Thymic stromal lymphopoietin (TSLP) is a newly identified interleukin-7–like 
cytokine, which was originally isolated from a murine thymic stromal cell line [12] and 
characterized as a lymphocyte growth factor [13]. Substantial progress has been made in the understanding of the biological responses mediated by TSLP because this cytokine was first cloned. Previous studies have demonstrated TSLP has important actions in inflammation and allergy diseases, including rheumatoid arthritis, colonic inflammation and asthma [14-20]. In general, TSLP is produced by epithelial cells and epidermal keratinocytes, and recent studies have demonstrated that several inflammatory cells, including dendritic cells (DC

S
), 

smooth muscle cells, and cancer or cancer-associated cells, also express TSLP [19, 21-25]. 
Recently, we demonstrated that TSLP could be induced to express in vascular endothelial and smooth muscle cells by angiotensin II and oxidized-low-density lipoprotein [26] and 
over-expressed in human atherosclerotic artery specimens [27], which indicated that TSLP/
TSLPR might play roles in atherosclerosis. Therefore, TSLP is not only associated with inflammatory and allergy diseases but also plays important roles in atherosclerosis, which has been linked to platelet activation and the probability of thrombosis [28-31]. 

TSLP activates its unique receptor TSLPR, which is expressed in numerous cells, which 
predominantly include a variety of hematopoietic cells, such as T cells, B cells, monocytes and 
DC

S 
[21, 22]. Several groups have demonstrated that TSLPR participated in the development of inflammation and tumors [23-25]. Signaling followed by an activation of TSLPR by TSLP has been shown to involve phosphatidylinositide 3-kinase (PI3K) and its downstream 

effector Akt [32, 33]. Platelets are also derived from megakaryocytes of hematopoietic cells 
and are known to be the major players in atherothrombosis pathogenesis [7]. Whether platelets express functional TSLPRs and whether the inflammatory cytokine TSLP plays a role in platelet function are largely unknown. In our preliminary study, we demonstrated that 
the TSLPR was surface-expressed on human platelets. We also demonstrated that compared 
with the control group, platelets expressed higher levels of TSLPRs in patients with acute 
coronary syndrome; [34] thus, we thought that the TSLPR might play important roles in 
mediation of platelet activation in this thrombotic disease. However, the exact role and the 
mechanism of the TSLP/TSLPR signaling pathway in platelet activation and thrombosis 

formation remain unknown.
The purpose of this study was to determine whether murine platelets expressed TSLPR and the functional significance of TSLP for platelet activation. Moreover, the role of PI3K/

Akt signaling that is the downstream of the TSLP/TSLPR in the regulation of TSLP-sensitive 
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platelet functions was addressed, and the underlying mechanism of TSLP-induced platelet 
activation and thrombosis was examined.

Materials and Methods

EthicsThis study was approved by the Ethics Committee of Tongji Medical College, Huazhong University of 
Science and Technology, China. For research, that involved human participants, written informed consent 

was obtained in accordance with the Declaration of Helsinki. 

Animals. TSLPR knockout (TSLPR KO) mice (on C57BL/6 background) (TSLPR-/-) were kindly supplied by Professor Nicola L. Harris (Swiss Vaccine Research Institute, Lausanne, Switzerland) with the permission of Dr James N. Ihle (St. Jude Children's Research Hospital, USA). Wild-type (WT) C57BL/6 mice (TSLPR+/+) were obtained from Peking University. The investigation conforms to the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH Publication, 8th Edition, 2011). 
Human platelet preparation

Human platelets were isolated as previously described [35]. Blood from healthy volunteers was 

collected in ACD-buffer and centrifuged at 200 g for 20 minutes. The obtained platelet-rich plasma was added to modified Tyrode-HEPES buffer (137 Mm NaCl, 2.8 mM KCL, 12 mM NaHCO3, 5 mM glucose, 0.4 mM Na2HPO4, 10 mM HEPES, 0.1% bovine serum albumin, pH 6.5). After centrifugation at 900 g for 10 minutes 
and the removal of the supernatant, the resulting platelet pellet was resuspended in Tyrode-HEPES buffer (pH 7.4, supplemented with 1 mM CaCl

2
).

Mouse platelet preparation and transfusionMice (8–10 weeks old) were anesthetized by pentobarbital (100 mg/kg) and bled from the retroorbital plexus with the use of heparin-coated glass capillary tubes. Blood was collected into tubes that contained 3% 
ACD (1/9 vol/vol). Platelet rich plasma (PRP) was obtained by centrifugation at 300 g for 7 minutes. The PRP was subsequently centrifuged at 640 g for 5 minutes to pellet the platelets. After two further washing steps, the pellet of the washed platelets was resuspended in modified Tyrode-HEPES buffer (pH 7.4, supplemented with 1 mM CaCl

2
). Platelets from the suspension were then diluted with PBS to a concentration of 200×106 

platelets in 0.15 mL and transfused via jugular vein into recipient mice immediately prior to TSLP or saline 

administration.

Western blot analysis

Platelets or DCs were resuspended in lysis buffer that contained a protease inhibitor cocktail (Sigma-Aldrich). Following a 30 minute centrifugation with 16,000 g at 4°C, the supernatant was collected for 
Bradford assay (Biorad) to determine the protein concentration. After boiling the samples for 10 minutes at 95°C in Roti®-Load1 (Roth), the cell lysates were separated by 10% SDS-PAGE and blotted on nitrocellulose or PVDF membrane. The membranes were blocked for 1 hour with 10% nonfat-milk or 5% BSA in TBS-0.1% Tween 20 (TBST). The membranes were subsequently incubated with primary antibody against TSLP (1:500; eBioscience, USA) or Thr308 or Ser473 pAkt (1:1000; Cell Signaling) at 4°C overnight. After washing 
with TBST, the blots were incubated with the adequate secondary antibody conjugated with horse radish 

peroxidase (HRP) (1:2000; Cell Signaling) for at least 2 hours. Antibody binding was detected with the ECL detection reagent, and the bands were quantified with Quantity One Software (Biorad).
Flow cytometry P-selectin expression was measured using an FITC-labeled mouse anti-human P-selectin monoclonal antibody (BD Biosciences). Activated integrin αIIbβ3 was quantified through the binding of the FITC-

labeled mouse anti-human monoclonal antibody PAC-1 (BD Biosciences). The platelets were activated using 

recombinant human or murine TSLP (R&D Systems). TSLPR expression was analyzed using a PE-conjugated mouse anti-human TSLP receptor antibody (eBioscience, USA) or a PE-conjugated anti-mouse TSLPR antibody (eBioscience, USA). Corresponding isotype controls were used for each antibody. A two-color 
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analysis of mouse platelet activation was conducted using fluorophore-labeled antibodies for P-selectin expression (Wug.E9-FITC) (BD Biosciences) and the active form of αIIbβ3 integrin (JON/A-PE) (BD) as previously described [6].
Aggregometry Light transmission aggregometry (Chrono-Log Corp, USA Havertown, PA) was performed with isolated human platelets (2.5x105/μl). After calibration, the agonists were added at the indicated concentrations, and aggregation was measured for 6 minutes with a stir speed of 1000 rpm at 37°C. The extent of aggregation was quantified as the % of light transmission. The data analysis was performed with AGGRO/LINK8 software (Chrono-Log).
Dense-granule secretion

ATP release was monitored in parallel with platelet aggregation. To examine the effects of TSLP on ATP release, washed platelets were incubated with TSLP (200 ng/ml) or thrombin (0.01U/ml), and ATP in the supernatant was measured by the addition of luciferin-luciferase reagent. Quantification was performed 
using the ATP standard. Murine PRP was incubated for 30 minutes at 37°C with 3H-serotonin (2 µCi[0.074 MBg]/mL), washed once with HEN buffer, and then resuspended in HEPES-Tyrode buffer that contained 1 µM imipramine and 1 mM CaCl

2
. The platelets were stimulated with thrombin for 6 minutes at 37°C. The reactions were stopped with an equal volume of 0.1 M EDTA/2% formaldehyde and centrifuged for 5 minutes at 10,000 g. 3H in the supernatants and pellets was counted, and the percentage of 5-HT secretion was defined as the agonist-

related increase in extracellular 3H divided by the total intracellular 3H at the start of the experiment.

Perfusion flow chamber assays
The ex vivo perfusion flow chamber thrombosis model was performed at high (1800 s-1) and low  (600 s-1) shear rates, as described in previous studies.[36] We used the rectangular parallel plate flow chamber (Glycotech, Rockville, MD). Briefly, rectangular (0.1×1 mm) glass capillary microslides were coated with 100 µg/mL type-I collagen fibrils (Sigma-Aldrich, Saint Louis, USA) overnight at 4°C. Murine blood was perfused over the collagen-coated surface under a controlled flow rate with the use of a syringe pump (Harvard Apparatus, Holliston, MA). The blood was perfused for 4 minutes followed by 2 minutes of perfusion with a rinsing buffer (NaCl 130 mM, KCl 2 mM, NaHCO3 12 mM, CaCl

2
 2.5 mM, MgCl

2
 0.9 mM, glucose 5 mM, pH 7.4) at 37°C. Ex vivo thrombus formation was monitored using WT and TSLPR KO platelets 

in the concentration of 200 ng/ml TSLP. Platelet aggregation and thrombus formation were recorded in real-time over the course of perfusion under a bright field with a Zeiss Axiovert 135 inverted microscope and computer (IBM IntelliStation Z Pro) using the Slidebook program (Intelligent Imaging Innovations). 
Ferric chloride carotid artery thrombosis model[37] The WT and TSLPR KO mice (8-10 weeks old) were anesthetized via the administration of pentobarbital 

(100 mg/kg) and secured supine under a dissecting microscope. The right carotid artery was exposed by blunt dissection. A miniature Doppler flow probe was placed on the surface of the artery, and the flow was measured to ensure proper placement of the probe. A 2.5-mm strip of filter paper was saturated with 10% 
FeCl

3
 (Sigma-Aldrich) and applied to the adventitial surface of the exposed artery for 2.50 minutes to induce vessel damage. The groups comprised the WT, TSLPR KO and TSLPR KO+WT washed platelet transfusion 

groups. Saline or TSLP (200 ng/ml) was injected into the jugular vein of the mice prior to the initiation of the carotid artery injury. The blood flow in the carotid artery following the FeCl
3
-induced injury was monitored until complete vessel occlusion was observed. Arterial flow rate was monitored for 30 minutes. 

Statistical analysisThe data are presented as the means ± SD or SEM, and n represents the number of experiments. The data were analyzed by Student t-test or one-way ANOVA coupled with the Student-Newman-Keuls multiple comparison tests or one-way ANOVA with Dunnets post-hoc test. Differences were considered statistically significant if P<0.05. All statistical analyses were performed with the SPSS 17.0 statistical package. 
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Results

TSLPR protein expression in human and murine platelets
To investigate whether the TSLPR is expressed on human platelets, we examined it via flow cytometry and western blot. Western blotting and flow cytometry of human and murine 

platelets indicated that the TSLPR was expressed on platelets (Fig. 1). Because DC
S
 have been 

well known for TSLPR expression [21, 22, 25], DC
S
 served as positive control.

Fig. 1. TSLPR protein expression in human and murine platelets. A&B. Representative western blot of TSL-

PR in human platelets (n=4). DC
S
 served as a positive control, and β-actin served as a loading control. Arith-metic means ± SEM (n=4) and representative overlay of flow cytometry of TSLPR membrane expression in human platelets. **(p<0.01) indicates a significant difference. C&D. Representative western blot of TSLPR in murine platelets (n=4). Arithmetic means ± SEM (n=4) and representative overlay of flow cytometry of TSLPR membrane expression in murine platelets. *(p<0.05) indicates a significant difference.

Fig. 2. Expression of P-selectin and activated integrin αIIbβ3 in human platelets after TSLP treatment. A. Flow cytometry of P-selectin expression in human platelets after TSLP stimulation (ng/ml). ADP (5 μM) and thrombin (0.01U/ml) served as positive controls. Arithmetic means ± SEM (n=8) are shown. *(p<0.05) and **(p<0.01) indicate significant differences compared with resting platelets. B. Flow cytometry of activated integrin αIIbβ3 (PAC-1) expression in human platelets after TSLP stimulation (ng/ml). ADP (5 μM) and thrombin (0.01U/ml) served as positive controls. Arithmetic means ± SEM (n=8) are shown. **(p<0.01) indicates a significant difference. 
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Expression of P-selectin and activated integrin αIIbβ3 in human platelets after TSLP 
treatmentIt is unknown whether TSLP can directly affect platelet activation or indirectly affect 

the platelet activation process via actions on other molecules in blood plasma. Therefore, we examined P-selectin and active integrin αIIbβ3 expression on washed platelets. According to the flow cytometric analysis, the stimulation of platelets in vitro with TSLP (50, 100 and 200 ng/ml) significantly enhanced the expression of P-selectin (200 ng/ml: 20.9 ± 5.1 vs. 5.4 ± 2.4, p<0.01) and activated integrin αIIbβ3 (200 ng/ml: 15.6± 5.1 vs. 3.4 ± 2.5, p< 0.01) at the platelet surface (Fig. 2A,B). In the previously described experiments, stimulation with low dose ADP (5 μM) or thrombin (0.01U/ml) was used as a positive control. However, the extent of platelet stimulation triggered by TSLP was significantly weaker compared with the 
stimulation after treatment with ADP or thrombin (Fig. 2 A,B). 

Effects of TSLP on the potentiation of platelet degranulation, integrin αIIbβ3 activation 
and aggregation in response to different agonists
TSLP potentiated platelet activation in response to low dose ADP stimulation (P-selectin: 76.2 ± 12.4 vs. 55.8 ± 9.4, p<0.01; PAC-1: 45.9 ± 10.0 vs. 20.4 ± 7.6, p<0.01) and also exhibited 

Fig. 3. Effects of TSLP on potentiating platelet degranulation, integrin αIIbβ3 activation and aggregation in 
response to different agonists. TSLP stimulates platelet secretion of dense granules. A, B. Flow cytometry of P-selectin (left) and activated integrin αIIbβ3 (PAC-1; right) expression in human platelets after preincuba-tion with or without TSLP (200 ng/ml) followed by stimulation with ADP (2.5 μM) or thrombin (0.001 U/ml; Thr). Arithmetic means ± SEM (n=6) are shown. *(p<0.05) and **(p<0.01) indicate significant differen-ces compared with resting platelets; ##(p<0.01) indicates significant differences compared with platelets pretreated with Tyrode buffer instead of TSLP. C. Arithmetic means ± SEM (n=6) of platelet aggregation after preincubation with or without TSLP (200 ng/ml) followed by stimulation with ADP (2.5 μM and 10 μM) or thrombin (0.001 U/ml; Thr) are shown. **(p<0.01) indicates a significant difference compared with plate-

lets pretreated with Tyrode buffer instead of TSLP. D. Representative tracings of platelet aggregation after 

stimulation with TSLP (200 ng/ml) and after preincubation with or without TSLP followed by stimulation with ADP (2.5 μM). E. Human washed platelets were incubated with TSLP (200 ng/ml) or thrombin (0.01U/
ml). The release of ATP into the platelet supernatant was determined by a luciferin/luciferase assay. Values represent the mean ± SEM (n=10), ** (p<0.01) compared with the control.
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a potentiating effect in response to stimulation with low doses of thrombin (P-selectin: 85.9 ± 17.1 vs. 51.1 ± 11.2, p<0.01; PAC-1: 52.6 ± 12.5 vs. 33.8 ± 5.9, p<0.01) (Fig. 3 A,B). 
To determine whether TSLP directly induces platelet activation, we used washed human 
platelets to examine the effects of TSLP on platelet aggregation. TSLP alone induced a weak platelet aggregation; however, it significantly amplified aggregation following stimulation 

Fig. 4. Effects of TSLPR deficiency on platelet aggregation and secretion and in vitro thrombus formation under flow. A. Arithmetic means ± SEM (n=5) of platelet aggregation after preincubation with TSLP (200 ng/ml) followed by stimulation with thrombin (0.01U/ml; Thr) are shown. **(p<0.01) indicates a significant 
difference compared with WT platelets. B. Representative tracings of platelet aggregation after preincuba-tion with TSLP (200 ng/ml) followed by stimulation with thrombin (0.01U/ml; Thr). C. Arithmetic means ± SEM (n=5) of platelet serotonin release after preincubation with TSLP (200 ng/ml) followed by stimulation with thrombin (0.01U/ml; Thr) are shown. *(p<0.05) indicates a significant difference compared with WT 
platelets. D. Ex vivo thrombus formation was monitored on type-I collagen at 600 s-1 or 1800 s-1 using WT and TSLPR KO platelets in 200 ng/ml TSLP. Platelet aggregation and thrombus formation were recorded in real-time over the course of perfusion under a bright field with a Zeiss Axiovert 135 inverted microscope 
and computer using the Slidebook program. Surface coverage and thrombus size were calculated from the light microscope images using Image J software. Values represent the mean ±SEM. *(p<0.05) and **(p<0.01) indicate significant differences.
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with low dose ADP (44.6 ± 11.8 vs. 21.1± 6.8, p<0.01) or low dose thrombin (47.7 ± 5.8 vs. 24.0± 7.6, p<0.01); this effect was not identified after stimulation with high dose ADP 
(Fig. 3 C,D). Thus, TSLP can directly interact with platelets and plays a stimulatory role that 
synergizes with low concentrations of platelet agonists to induce platelet aggregation.

Effects of TSLP on platelet dense granule secretion 
Platelet secretion plays a critical role in the potentiation of platelet activation induced 

by low dose agonists. To determine whether platelet secretion accounted for the potentiating 
effect of TSLP on platelet aggregation, we examined TSLP-induced ATP release, which indicates the secretion of dense granules in human platelets. TSLP alone is sufficient to 
induce the release of ATP (ATP concentrations were 451.2± 51.9 nmol/L (basal level) versus 657.8 ± 72.4 nmol/L for TSLP.) (Fig. 3 E); however, the amount of ATP release induced by 
TSLP alone stimulation was substantially lower than the release induced by platelet agonists, such as thrombin (thrombin, at 0.01 U/ml, induced approximately 33-fold increase of ATP 
release compared with the basal level).

Fig. 5. A. Thrombus formation in the carotid artery after FeCl
3
 treatment. Thrombus formation in the caro-

tid artery after FeCl
3
 treatment. Mice were injected with saline or TSLP (200 ng/ml) prior to the initiation of carotid artery injury. Values represent the mean ± SEM (n=15). **(p<0.01) indicates a significant difference. B. Effects of TSLPR deficiency on platelet quantity. Blood from the retroorbital plexus was drawn directly 

into plastic tubes that contained EDTA, and the platelet counts were detected using an automated hemato-logy analyzer (COULTER LH 750, BECKMAN). Values represent the mean ±SEM (n=10). (P>0.05) compared with the WT. C. Effects of TSLPR deficiency on thrombus composition. Stable occlusive thrombi were collec-ted following the complete cessation of blood flow, which remained for the 30-minute duration of the assay. There was no significant difference in thrombus composition in the TSLPR KO mice compared with the WT (n=20), (P>0.05) compared with the WT.
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Effects of TSLPR deficiency on platelet aggregation, secretion and in vitro thrombus 
formation 
To evaluate whether the absence of TSLPR affected platelet function, we employed the platelet aggregometry and the perfusion chamber model. TSLPR KO platelets exhibited a 

markedly defective aggregation following stimulation with low dose thrombin compared with WT platelets (47.0 ± 8.2 vs. 64.2 ±8.1, p<0.01). Platelet aggregation exhibited a 25% reduction in the TSLPR KO relative to WT platelets (Fig. 4 A, B). Consistent with platelet aggregation, platelet serotonin release was significantly reduced in the TSLPR KO platelets in response to low dose thrombin (41.2 ±8.0 vs. 28.9 ± 7.1, p<0.05) (Fig. 4 C). To assess the effects of TSLPR deficiency on platelet thrombus formation under flow conditions, we performed perfusion experiments that used glass coverslips coated with type I collagen fibrils. Consistent with the data from the in vitro platelet aggregation, in this ex vivo experiment, we observed significantly defective thrombus formation in the TSLPR KO mouse stimulation with TSLP at both low (600 s-1) and high (1800 s-1) shear rates compared with 
the WT mice (Fig. 4D). 

Effects of TSLPR deficiency on FeCl3-induced carotid artery thrombosis 
To evaluate whether the absence of TSLPR affected thrombus formation in the carotid 

artery, we employed the ferric chloride carotid artery thrombosis model. We demonstrated 
that TSLP stimulation shortened the vessel occlusion time of the WT mice. Following 

Fig. 6. Involvement of the PI3K/Akt pathway in TSLP-dependent platelet activation. A. Arithmetic means ± SEM (n=4) and representative western blot of Akt phosphorylation at Ser473 (left) and Thr308 (right) following stimulation with TSLP (200 ng/ml) in the presence or absence of the PI3K inhibitors LY294002 (LY, 25 μM) (Cayman Chemical) and Wortmannin (Wm, 100 nM) (Cayman Chemical). DMSO (vehicle) was added as a solvent control. **(p<0.01) indicates a significant difference compared with the resting platelets, ## (p<0.01) compared with the TSLP-stimulated platelets in the absence of a PI3K inhibitor. B. Arithmetic means ± SEM (n=8) of flow cytometry of P-selectin (left) and activated integrin αIIbβ3 (PAC-1; right) ex-pression in platelets after stimulation with TSLP (200 ng/ml) in the presence or absence of LY (25 μM), Wm (100 nM) or DMSO (vehicle) as the solvent control. **(p<0.01) indicates a significant difference compared with the resting platelets, ## (p<0.01) compared with the TSLP-stimulated platelets in the absence of a PI3K 
inhibitor.
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stimulation with TSLP, compared with the WT mice, we determined that the vessel occlusion time was significantly delayed in the TSLPR KO mice (P<0.01), but the occlusion times were not significantly different in the TSLPR KO mice plus WT washed platelet transfusion group 
(P>0.05) (Fig. 5 A). 

Involvement of the PI3K/Akt pathway in TSLP-dependent platelet activation.To determine whether TSLP affected platelet function through the PI3K/Akt signaling pathway, we detected the platelet p-Akt levels following stimulation with thrombin. In the western blot analysis, TSLP significantly increased Akt phosphorylation at Thr308 and Ser473, which could be prevented by preincubation with the PI3K inhibitors wortmannin (100 nM) and LY294002 (25 μM) (Fig. 6A). Consistent with these findings, the effects of TSLP on platelet activation (e.g., degranulation and integrin αIIbβ3 activation) were abolished after preincubation with the PI3K inhibitors wortmannin (P-selectin: 18.1±2.9 vs. 8.6±2.4, p<0.01; PAC-1: 17.8±5.1 vs. 8.9±3.0, p<0.01) and LY294002 (P-selectin: 18.1±2.9 vs. 10.2±2.2, p<0.01; PAC-1: 17.8±5.1 vs. 10.0±2.8, p<0.01) (Fig. 6 B). 
TSLPR-dependency of TSLP-induced platelet Akt phosphorylation and activation.
To determine if the effects of TSLP on platelet activation were attributed to the activation 

and downstream signaling of its receptor TSLPR, we analyzed TSLP-dependent platelet 

Fig. 7. TSLPR-dependency of TSLP-induced platelet Akt phosphorylation and activation. A. Arithmetic me-ans ± SEM (n=4) and representative western blot of Akt phosphorylation at Ser473 (left) and Thr308 (right) in WT (black bars) and TSLPR KO (grey bars) platelets after stimulation with TSLP (200 ng/ml) or ADP (10 μM). **(p<0.01) indicates a significant difference compared with the resting WT platelets, ##(p<0.01) compared with the TSLP-stimulated WT platelets. B. Arithmetic means ± SEM (n=8) of flow cytometry of P-selectin expression (left) and integrin αIIbβ3 activation (right) in WT (black bars) and TSLPR KO (grey bars) platelets after stimulation with TSLP (200 ng/ml) or ADP (10 μM). ** (p<0.01) indicates a significant diffe-rence compared with the resting WT platelets, #(p<0.05) compared with the TSLP-stimulated WT platelets.
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degranulation and integrin αIIbβ3 activation, as well as Akt phosphorylation in WT and TSLPR KO platelets (Fig. 7). As shown in Fig. 7 A, TSLP-dependent Akt phosphorylation was abrogated in the TSLPR KO platelets compared with the WT platelets. Thus, TSLP-induced platelet degranulation (22.2 ± 7.1 vs. 14.5 ± 6.5, p<0.05) and integrin αIIbβ3 activation (42.3 ± 11.0 vs. 25.6 ± 10.6, p<0.05) were significantly reduced in the TSLPR KO platelets compared 
with the WT platelets, whereas ADP-dependent platelet activation was unaffected (Fig. 7B).

Discussion

Although there have been numerous studies examining the effects of TSLP in allergies and inflammation, TSLP may play a role not only in allergic disease but also in other diseases. Although classified as a hematopoietin receptor based on its structural homology, the TSLPR 
subunit contains notable differences compared with the canonical hematopoietin receptors. Our previous study demonstrated that the inflammatory cytokine TSLP was over-expressed 
in human atherosclerotic artery specimens [27]. 

T cells, B cells, basophils, monocytes, eosinophils, and DCs that are derived from the 
hematopoietic cells express functional TSLPRs [21, 22]. Platelets are also derived from the 
megakaryocytes of hematopoietic cells. Whether platelets also express TSLPR is unknown. Whether platelets express functional TSLPR and whether the inflammatory cytokine TSLP 
plays a role in platelet function are completely unknown. Our previous study demonstrated that the TSLPR was expressed on human platelets 
[34]. Our data demonstrated that the TSLPR was expressed on murine platelets (Fig. 1). 
Therefore, it is important to further examine the effects of TSLP/TSLPR on platelet function. 
We determined whether TSLP/TSLPR could alter platelet aggregation and secretion, as well 
as in thrombosis models in vitro and in vivo. 

Platelets can sense different signals during activation and selectively release their 
granules, such as P-selectin. P-selectin may translocate to the cell surface when platelets are activated. Platelet activation also results in the conversion of αIIbβ3 integrin to an active conformation, which enables it to bind ligands, including fibrinogen and other proteins. 
The translocation and conformational changes of these proteins after platelet activation 
facilitates the interactions of platelets with their environment, which are important processes for hemostasis and thrombosis, as well as inflammation and atherosclerosis. We therefore measured the α-granule secretion marker (P-selectin) and integrin αIIbβ3. Our 
data demonstrated that TSLP increased the expression of P-selectin and activated integrin αIIbβ3 (Fig. 2 A, B), whereas the quantity of the expression was minimal. The finding that TSLP induces the activation (degranulation and integrin αIIbβ3 activation) of circulating platelets, which, in turn, could promote the release of platelet-derived inflammatory mediators that result in enhanced leukocyte recruitment [38], suggests a vicious circle that 
potentially aggravates the progression of atherogenesis.  

Furthermore, the present study demonstrated that TSLP alone was unable to trigger potent aggregation of resting platelets; however, it significantly amplified platelet aggregation, P-selectin expression and integrin αIIbβ3 activation following stimulation with 
a low concentration of platelet agonists (Fig. 3). We proposed that TSLP potentiated platelet activation and exhibited a magnified effect via co-stimulation with platelet agonists. These 
data also indicated that TSLP and platelet agonists might use the same signaling pathway to 
promote platelet activation and aggregation.TSLP alone is sufficient to induce the release of ATP; however, the amount of ATP 
release induced by TSLP stimulation is substantially lower compared with thrombin (Fig. 3 
E). Similarly, TSLP alone induced P-selectin expression in human platelets, which indicates 
TSLP also stimulated a-granule secretion. Thus, TSLP stimulates platelet secretion of both dense and α-granules and amplifies secretion-dependent platelet aggregation. The low level secretion and minimal activation of the integrin αIIbβ3 induced by TSLP stimulation may 
explain why TSLP alone induces a very low level of platelet aggregation.
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The TSLPR KO platelets exhibited a markedly defective aggregation response to 
thrombin compared with the WT platelets (Fig. 4 A, B). We also demonstrated that platelet serotonin release was markedly reduced in the TSLPR KO platelets response to thrombin 
(Fig. 4C). Aggregation and secretion defects at low concentrations of agonists for thrombin 
receptors are frequently indicative of a defect in secretion or secretory granule content. 

Although platelet aggregometry is commonly employed to assess platelet function, it cannot be used to examine platelet aggregation under flowing, pathophysiological 
conditions. The perfusion chamber is an ex vivo model of thrombosis that has a number of 
important advantages over aggregometry, including the ability to assess thrombus formation on a pathophysiologically relevant substrate and under flow conditions with different shear 
stresses. Therefore, we employed the perfusion chamber model and monitored the effects of TSLPR deficiency on thrombus formation. We clearly demonstrated that thrombus formation was markedly decreased in the TSLPR KO mice at both low and high shear rates (Fig. 4D). These 
data suggest that TSLP/TSLPR may promote thrombosis at both venous and arterial shear 
rates. The late stages of atherosclerosis are often associated with thrombotic complications 
caused by vascular injury and compromised endothelial integrity [39]. To study the role of 
TSLP/TSLPR in the mediation of thrombus formation at the site of vascular injury using 
intravital microscopy, we observed defective thrombus formation in FeCl

3
-injured carotid arteries in TSLPR KO mice. To exclude the contribution of a TSLPR deficiency in the vessel wall, WT washed platelets were transfused into the TSLPR KO mice. We determined that the 

occlusion time clearly recovered. Compared with the WT mice, the occlusion time was not significantly different in the TSLPR KO mice plus WT platelet transfusion group (Fig. 5 A). Some inflammatory cytokines can affect platelet count. Raffaele Strippoli et al. reported that IL-6-transgenic mice treated with lipopolysaccharide showed a quantitative difference 
in platelets compared with wild-type mice.[40] Regarding whether the absence of TSLPR 
affected the platelet quantity, our data demonstrated that there was no obvious difference in the platelet count in the TSLPR KO mice (Fig. 5B). Furthermore, we determined that there was also no significant difference in thrombus composition in the TSLPR KO mice (Fig. 5C). 
This observation indicates that defective thrombus formation is predominately because of a TSLPR deficiency on platelets. Our results enable us to speculate that TSLP expression in atherosclerotic lesions and release from inflammatory cells could represent an additional local proadhesive stimulus 
for circulating platelets that results in increased platelet adhesion and aggregation at the 
sites of vascular injury. Therefore, data from our experiments in ex vivo perfusion chambers 
and the in vivo thrombosis models are consistent with our results from the in vitro platelet 
aggregation assays. Our data demonstrated obviously defective expression of P-selectin and JON/A (activated integrin αIIbβ3) in the TSLPR KO platelets after stimulation with TSLP compared 
with the WT (Fig. 7B). These data indicate that TSLP-dependent platelet activation critically 
depends on the binding to and signaling via the platelet TSLP receptor. Thus, we propose 
that the effects of TSLP/TSLPR on platelets may be to the result of the promotion of platelet activation, which subsequently increases platelet α-granule release, as well as promotes integrin αIIbβ3 activation and ligand binding. TSLP exerts broad and significant biological effects in various cell populations by 
binding to its receptors, which results in downstream signaling. However, TSLP-mediated cell signals remain poorly defined because their effects vary greatly between cell types. It has been demonstrated that the activation of the PI3K/Akt pathway occurred following TSLP stimulation [32, 33]. Therefore, we conclude that TSLP stimulates platelets via the PI3K/AKT pathway. PI3K, as well as its downstream effector Akt play a decisive role in the regulation of platelet function [41]. PI3K synthesizes D3-phosphoinositides, which regulate many important platelet responses, such as platelet shape changes, integrin αIIbβ3 activation, 
and irreversible platelet aggregation [42, 43]. Akt phosphorylation appears to function to 
direct irreversible platelet aggregation via the modulation of the continued activation of αIIbβ3 [44]. In addition, multiple agonists are known to stimulate PI3K in platelets, which 
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subsequently activates Akt via phosphorylation [45].Both Thr308 and Ser473 phosphorylation are required for full enzymatic activity [46]. In the present study, we demonstrated that TSLP significantly increases Akt phosphorylation, an effect that was completely abrogated in TSLPR-deficient platelets (Fig. 7A). This effect could also be observed in the preincubation of human platelets with LY294002 or wortmannin (Fig. 6 A). These results indicate that TSLP activates Akt in platelets in a TSLPR- and PI3K-dependent manner. Moreover, we identified a significant reduction of TSLP-induced platelet degranulation and integrin αIIbβ3 activation after preincubation with the PI3K inhibitors LY (25 μM) and Wm (100 nM) (Fig. 6B). We also demonstrated that PI3K inhibitors could not 
completely down-regulate P-selectin expression and integrin activation. We suggest there may be other specific signaling pathways which require further investigated.In conclusion, this study demonstrated that functional TSLPRs were expressed on murine platelets. TSLP triggered platelet TSLPR-dependent PI3K/Akt signaling, which led to degranulation and integrin αIIbβ3 activation. TSLP and platelet agonists via co-stimulation exhibited a magnified effect. We demonstrated that a TSLPR deficiency caused defective 
platelet aggregation and secretion and markedly attenuated thrombus growth in perfusion chambers at both low and high shear rates in the blood of TSLPR KO mice. TSLPR KO mice 
exhibited reduced carotid artery thrombus formation after exposure to FeCl

3
. Thus, the TSLP/TSLPR signaling system could play an important role in linking inflammatory vascular 

diseases and thrombosis.
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