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Abstract

Background: Sepsis, a life-threatening organ dysfunction caused by a dysregulated systemic immune response to
infection, associates with reduced responsiveness to subsequent infections. How such tolerance is acquired is not
well understood but is known to involve epigenetic and transcriptional dysregulation.

Methods: Bead arrays were used to compare global DNA methylation changes in patients with sepsis, non-
infectious systemic inflammatory response syndrome, and healthy controls. Bioinformatic analyses were performed
to dissect functional reprogramming and signaling pathways related to the acquisition of these specific DNA
methylation alterations. Finally, in vitro experiments using human monocytes were performed to test the induction
of similar DNA methylation reprogramming.

Results: Here, we focused on DNA methylation changes associated with sepsis, given their potential role in
stabilizing altered phenotypes. Tolerized monocytes from patients with sepsis display changes in their DNA
methylomes with respect to those from healthy controls, affecting critical monocyte-related genes. DNA
methylation profiles correlate with IL-10 and IL-6 levels, significantly increased in monocytes in sepsis, as well as
with the Sequential Organ Failure Assessment score; the observed changes associate with TFs and pathways
downstream to toll-like receptors and inflammatory cytokines. In fact, in vitro stimulation of toll-like receptors in
monocytes results in similar gains and losses of methylation together with the acquisition of tolerance.

Conclusion: We have identified a DNA methylation signature associated with sepsis that is downstream to the
response of monocytes to inflammatory signals associated with the acquisition of a tolerized phenotype and
organic dysfunction.
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Background
Sepsis is a life-threatening organ dysfunction caused by

a dysregulated host response to infection [1]. Sepsis can

induce acute kidney injury and multiple organ failures

and represents the most common cause of death in

intensive care units [2, 3]. The immune response during

sepsis is complex and varies over time, with the con-

comitant occurrence of both pro-inflammatory and anti-

inflammatory mechanisms [3]. Despite intense study, the

cellular and molecular basis of human sepsis remains

still unclear and effective therapies are lacking.

In many cases, sepsis survivors continue to succumb

to secondary challenges, latent infections, or malignan-

cies several years after the initial septic episode [4]. It

has been recognized that sepsis leads to the acquisition

of tolerance, a state of reduced responsiveness to
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subsequent stimulation after a primary bacterial insult

that results in reduced cytokine production by mono-

cytes and macrophages [5]. As a result, most patients

with sepsis rapidly display signs of profound immuno-

suppression, associated with an increase in hypoxia in-

ducible factor-1α expression that drives functional

reprogramming [6]. Such immune reprogramming is in

part due to disruption of homeostasis and defective cel-

lular energy metabolism which underlies the inability to

respond to secondary or further stimulation [7]. A num-

ber of mechanisms are involved in the homeostasis of

the immune system, where monocytes are pivotal. These

cells recognize pathogen patterns or intercept and

phagocytose antigens, critical steps in eliminating bacter-

ial infections, halting the increase in viral load, and

eradicating certain neoplastic growths. Several monocyte

subtypes are also crucial to the de-escalation of inflam-

mation and in wound healing [8]. In vitro experiments

mimicking septic conditions have shown that upon

endotoxin re-challenge with Gram-negative bacteria or

only lipopolysaccharide (LPS), the major component of

the outer membrane of Gram-negative bacteria, tolerized

monocytes/macrophages show a drastic downregulation

of inflammatory cytokines (e.g., tumor necrosis factor

[TNF] α, interleukin [IL]-6, IL-1β, IL-12) in parallel with

the upregulation of anti-inflammatory cytokines like IL-

10, transforming growth factor (TGF) β, and IL-1RA as

compared to non-tolerized cells challenged with the

same stimuli. These tolerant monocytes/macrophages

also show an impaired antigen presenting capacity corre-

lated with decreased expression of human leukocyte

antigen (HLA)-DR and some costimulatory molecules

[9] and upregulation of the immune checkpoint ligand

PD-L1 [10].

The acquisition of endotoxin tolerance is accompanied

by a remodeling of the epigenomic profiles [11–13].

Most studies have focused on histone modification

changes. Following LPS stimulation of macrophages,

toll-like receptor (TLR)-induced genes are categorized

into two classes: tolerized and non-tolerized genes. Tol-

erized genes, which include inflammatory genes, show

repressed expression whereas non-tolerized genes in-

crease their levels. Transcriptional activation of non-

tolerized genes is associated with high levels of histone

acetylation and H3K4me3 at their promoters [11]. In

addition, monocytes exposed to LPS showed changes in

H3K27ac, H3K4me1, and H3K4me3 [12]. It has also

been shown that during endotoxin tolerance, leukocytes

display increased levels of repressive H3K9me2 mark at

the promoter regions of the IL1B and TNF genes [14,

15]. Specifically, the H3K9 histone methyltransferase,

G9a, is essential for silencing the TNFA gene [16].

In this context, DNA methylation changes have re-

ceived less attention than histone modifications for

several reasons. It has been mainly because DNA methy-

lation has a more limited range of effects than histone

modifications [17]. Nevertheless, DNA methylation

changes are generally highly relevant for the biology of

myeloid cells [18]. On the one hand, various studies have

demonstrated the relevance of DNA (cytosine-5)-meth-

yltransferase 3A (DNMT3A) and ten-eleven transloca-

tion methylcytosine dioxygenase 2 (TET2), both

enzymes respectively essential for the de novo incorpor-

ation and oxidation/removal of methyl groups to cyto-

sines, to the function of monocytes, dendritic cells, and

macrophages [19, 20]. On the other hand, DNA methy-

lation is generally associated with the stabilization of a

transcriptional and functional state; thus, it is appealing

to hypothesize that sepsis results in prolonged acquisi-

tion of DNA methylation changes of the monocytes well

beyond the acute phase of sepsis, and perhaps contribut-

ing to stabilize the state of tolerance of monocytes. Most

importantly, TET2 has a role in resolution of inflamma-

tion by recruiting HDAC2 to repress inflammatory genes

[21] and to promote sepsis-induced emergency myelo-

poiesis [22].

In this study, we investigated DNA methylation

changes in monocytes from individuals who have experi-

enced an episode of sepsis. We performed DNA methy-

lation profiling where we compared sorted monocytes

from patients with sepsis and healthy controls. The ana-

lysis revealed the existence of significant DNA methyla-

tion differences between the two groups in CpG sites

mapping at genes relevant for monocyte-related immune

responses. Most importantly, we identified a significant

relationship between DNA methylation data and IL-10

and IL-6 cytokine levels, which are significantly in-

creased in patients with sepsis, as well as with organ dys-

function. We have determined that changes in DNA

methylation are determined by TLR stimulation and the

altered levels of inflammatory cytokines. Our findings

also highlight the implication of TLR stimulation and cy-

tokines under sepsis in establishing and perpetuating the

dysregulated epigenetic signature and phenotype of

monocytes.

Methods
Human samples

We selected and diagnosed patients with sepsis based on

the Third International Consensus Definitions for Sepsis

and Septic Shock (Sepsis-3) [1]. For each patient, we cal-

culated the Sequential [Sepsis-related] Organ Failure As-

sessment (SOFA) score. The study included 14 patients

with bacterial infections with SOFA ranging from 2 to 8.

Patients were obtained from La Paz University Hospital

and Vall d’Hebron University Hospital. Blood samples

were collected at the first 12 h of sepsis diagnosis, which

was confirmed using clinical and analytical data. The
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clinical data of the patients included in the study are

summarized in Table 1 and Additional file 1: Table S1.

We also studied a group of individuals with non-

infectious systemic inflammatory response syndrome

(SIRS), formed by 4 patients in the immediate postop-

erative period of cardiac surgery. In this group, the

blood samples were obtained in the first 24 h of the

postoperative period. Finally, we also included blood

samples from 11 healthy controls collected from the

blood donor service of La Paz University Hospital and

Vall d’Hebron University Hospital. The Committee

for Human Subjects of La Paz University Hospital

(PIE2392) and Vall d’Hebron University Hospital (PR

(ATR)122/2019) approved the study, which was con-

ducted in accordance with the ethical guidelines of

the 1975 Declaration of Helsinki. All samples were in

compliance with the guidelines approved by the local

ethics committee, and all patients (sepsis, SIRS, and

healthy controls) received oral and written informa-

tion about the possibility that their blood would be

used for research purposes and signed informed

consent.

Purification of human monocytes from patients with

sepsis, SIRS, and healthy control samples

Peripheral blood mononuclear cells (PBMCs) were ob-

tained from blood by density gradient centrifugation using

lymphocyte isolation solution (Rafer, Zaragoza, Spain).

PBMCs were stained with CD14-PE (Miltenyi Biotec,

Bergisch Gladbach, Germany), CD66b-APC (STEMCELL™

Technologies, Vancouver, Canada), and Fixable Viability

Dye eFluor™ 520 (ThermoFisher Scientific, MA, USA),

and then, cells were fixed with 2% formaldehyde

methanol-free (ThermoFisher Scientific). Pure monocytes

were isolated as CD14+CD66b− cells using flow cytometry

sorting (MoFlo Astrios EQ, Beckman Coulter Spain,

L’Hospitalet de Llobregat, Barcelona, Spain). Purified sam-

ples were pelleted and stored at − 80 °C.

For in vitro experiments, we obtained buffy coats from

anonymous donors through the Catalan Blood and Tis-

sue Bank (CBTB). The CBTB follows the principles of

the World Medical Association (WMA) Declaration of

Helsinki. Before providing blood sample, all donors re-

ceived detailed oral and written information and signed

a consent form at the CBTB. PBMCs were isolated by

density gradient centrifugation. Then, PBMCs were re-

suspended in Roswell Park Memorial Institute (RPMI)

Medium 1640 + GlutaMAXTM-1 (Gibco, Life Tech-

nologies, CA, USA) containing 10% human pooled

serum (One Lambda, ThermoFisher Scientific Brand,

Canoga Park, CA, USA), 100 units/ml penicillin, and

100 mg/ml streptomycin, and cells were non-treated

(control) or treated with 10 ng/ml LPS from Escherichia

coli (O111:B4, Sigma-Aldrich, Darmstadt, Germany),

and cultured in poly-HEMA (Santa Cruz Biotechnology,

Dallas, TX, USA)-coated plates for 4 days. After that,

monocytes were purified by cell sorting using the same

strategy as mentioned above. Alternatively, CD14+ mono-

cytes were isolated using positive selection with CD14

magnetic Microbeads (Miltenyi Biotec, Bergisch Gladbach,

Germany) and cultured in the same conditions as PBMCs.

Purified monocytes were pelleted and stored until DNA

or RNA extraction. Supernatants were collected and

stored at − 80 °C until cytokine measurement.

The endotoxin tolerance status of the septic patients

and healthy donors was evaluated by exposing whole

blood to a stimulus of 5 ng/ml LPS, collecting super-

natant after 3 h to determine the state of innate immune

system (IIS) during initial infection.

Cytokine measurements

The cytokine levels in whole blood were determined using

the cytometric bead array (CBA) Flex Set (BD Biosciences,

San Jose, CA, USA), following the manufacturer’s proto-

col. The collected data were analyzed with Flow Cytomet-

ric Analysis Program (FCAP) Array Software v3.0 (BD

Table 1 Summary of the patient cohorts in the study

Healthy controls SIRS-cardio patients Septic patients p value (sepsis vs control) p value (sepsis
vs SIRS)

p value (SIRS vs
control)

N 11 4 14

Age (mean ± SD) 51 ± 11.8 67.8 ± 5.8 74.6 ± 14.5 0.0010*** 0.3662 0.0130**

Sex (% female) 27.3 25 57.1 0.1353 0.2568 0.9299

SOFA 0 3.8 ± 2.2 3.9 ± 2.0 N/A 0.8226 N/A

Basal cytokine levels

TNFα (pg/ml) (mean ± SD)† 9.0 ± 17.0 2.7 ± 3.1 561.4 ± 2082.8 0.9774 0.7845 0.7396

IL6 (pg/ml) (mean ± SD)† 11.9 ± 13.1 123.8 ± 101.4 4273.4 ± 10,789.5 0.0002*** 0.7906 0.0050***

IL10 (pg/ml) (mean ± SD)† 5.8 ± 5.1 81.6 ± 41.4 55.6 ± 72.9 0.0005*** 0.1236 0.0050***

p values of continuous data were calculated using Mann-Whitney U test and categorical data were calculated using chi-squared test. Statistically significant tests

are represented as **p < 0.01 and ***p < 0.005
†These correspond to the basal levels of the cytokines measured in the serum
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Biosciences). For in vitro experiments, the concentration

of cytokines was measured from the cell culture superna-

tants using an enzyme-linked immunosorbent assay

(ELISA), according to the manufacturer’s instructions

(BioLegend, San Diego, CA, USA).

DNA methylation profiling using universal bead arrays,

bisulfite sequencing, and pyrosequencing

Infinium MethylationEPIC BeadChip (Illumina, Inc., San

Diego, CA, USA) array were used to analyze DNA

methylation. This platform allows > 850,000 methylation

sites per sample to be interrogated at single-nucleotide

resolution, covering 99% of reference sequence (RefSeq)

genes. The samples were bisulfite-converted using EZ

DNA Methylation-Gold™ Kit (Zymo Research, Irvine,

CA, USA) and were hybridized in the array following the

manufacturer’s instructions.

Each methylation data point was obtained from a com-

bination of the Cy3 and Cy5 fluorescent intensities from

the M (methylated) and U (unmethylated) alleles. For

representation and further analysis, we used beta and M

values. Beta value is the ratio of the methylated probe in-

tensity to the overall intensity (the sum of the methyl-

ated and unmethylated probe intensities). The M value

is calculated as the log2 ratio of the intensities of the

methylated versus unmethylated probe. Beta values

range from 0 to 1, in which 0 is no methylation and 1 is

complete methylation, and were used to derive heatmaps

and to compare DNA methylation percentages from bi-

sulfite pyrosequencing experiments. For statistical pur-

poses, the use of M values is more appropriate.

Bisulfite pyrosequencing was used to validate CpG

methylation changes. DNA was isolated using ReliaPrep™

FFPE gDNA Miniprep System (Promega, Madison, WI,

USA) for methylation array samples and with Maxwell®

RSC Cultured Cells DNA Kit (Promega, Madison, WI,

USA) for in vitro model. Bisulfite modification of genomic

DNA isolated from monocytes was performed using EZ

DNA Methylation-Gold™ Kit (Zymo Research, Irvine, CA,

USA) following the manufacturer’s protocol. Primers for

PCR amplification and sequencing were designed with the

PyroMark® Assay Design 2.0 software (QIAGEN, Hilden,

Germany). See list of primers in Additional file 2: Table S2.

PCRs were performed with the IMMOLASE™ DNA

polymerase PCR kit (Bioline Reagents Limited,

London, UK), and the success of amplification was

assessed by agarose gel electrophoresis. PCR products

were pyrosequenced with the PyromarkTM Q24 sys-

tem (QIAGEN, Hilden, Germany).

Quality control, data normalization, and detection of

differentially methylated and variable CpGs

Methylation array data were processed in the statistical

language R using methods from the Bioconductor

libraries minfi, lumi, and limma. Data quality was

assessed using the standard pipeline from the minfi

package. The data were Snoob-normalized and, after

normalization, beta and M values were calculated. To

exclude technical and biological biases, we developed a

pipeline with several filters as removing CpGs with SNPs

overlapped. To minimize the potential confounding in-

fluence of age and gender, we used these parameters as

covariates.

In this study, we considered a probe to be differentially

methylated if it had a methylation differential of 15%

(Δβ ≥ 0.15) and when the statistical test was significant

[p < 0.01 and false discovery rate (FDR) < 0.05]. In

addition, we used the iEVORA algorithm [23] to desig-

nate a probe as differentially variable. This algorithm de-

tects the homogeneity of variances using Bartlett’s test

(FDR < 0.001) and then selects those probes whose t test

is significant (p < 0.05 and FDR < 0.05) in order to

regularize the variability test which is overly sensitive to

single outliers.

Spearman’s correlation was used to correlate methyla-

tion changes with cytokine concentration. Spearman’s

correlation coefficient is a nonparametric approach to

measuring the strength of association of two variables

being more reliable with non-linear data. We used the

parameters specified in each section for Spearman’s

analysis.

Gene ontology analysis, transcription factor (TF)

enrichment analysis, and chromatin state discovery and

characterization (ChromHMM)

Gene ontology (GO) was analyzed using the Genomic

Regions Enrichment of Annotations Tool (GREAT, ver-

sion 3.0.0) (http://great.stanford.edu/public/html/).

GREAT assigns biological meaning to a set of non-

coding genomic regions by analyzing the annotations of

the nearby genes [24]. For gene identification, we

assigned a window that extends 5 kb upstream and 5 kb

downstream from the differentially methylated CpG site.

This window allows the analysis of CpGs located in

regulatory regions distant to a TSS. Enrichment is

showed as –log10 raw binomial p values.

We used the findMotifsGenome.pl program of the

HOMER suite to look for motifs that are overrepresented

in the target set relative to the background set (software

v4.5). It was used to identify enrichment of TF binding

motifs in the 500-bp window upstream and downstream

of the differentially methylated CpG sites [25]. Annotated

CpGs in the EPIC array were used as background.

Chromatin state discovery and characterization

(ChromHMM algorithm) was used to analyze enrich-

ment of the different chromatin states for the corre-

sponding CpG sites [26]. The enrichment among

chromatin states is defined using the 18-state
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ChromHMM model (Roadmap Epigenomics Integra-

tive Analysis Hub, ChromHMM track of the UCSC

Genome Browser) (http://www.roadmapepigenomics.

org/) based on six chromatin marks (H3K4me3,

H3K4me1, H3K27ac, H3K36me3, H3K27me3, and

H3K9me3). A Fisher’s exact test was used to assign

odds ratio and p value.

Quantitative reverse transcription polymerase chain

reaction (qRT-PCR)

RNA was isolated by Maxwell® RSC simplyRNA kit (Pro-

mega, Madison, WI, USA) and reverse-transcribed using

the Transcriptor First Strand cDNA Synthesis Kit

(Roche, Basel, Switzerland) according to the manufac-

turer’s instructions. qRT-PCR was performed in tripli-

cate using LightCycler® 480 SYBR Green Mix (Roche,

Basel, Switzerland). Expression values were normalized

against the expression of the endogenous gene controls

as RPL38. See list of primers in Additional file 2: Table

S2.

Statistical analysis

Data were analyzed with Prism version 6.0 (GraphPad).

Statistical analyses were performed using the Mann-

Whitney test, except as indicated. The levels of signifi-

cance were as follows: *p < 0.05, **p < 0.01, ***p < 0.001.

Results
Monocytes from individuals who have undergone sepsis

display an aberrant methylation signature

We first performed DNA methylation screening on mono-

cytes, sorted from peripheral blood as CD14+CD66b−

cells (Fig. 1a and Additional file 3: Figure S1), from a co-

hort of 14 septic patients (Table 1 and Additional file 1:

Table S1) and compared it with those sorted from a co-

hort of 11 healthy controls. We also included 4 patients

with systemic inflammatory response syndrome (SIRS)

following cardiac surgery. For the analysis, we used bead

arrays to interrogate the DNA methylation status of > 850,

000 CpG sites across the entire genome covering 99% of

RefSeq genes. In the analysis, to minimize the potential

confounding influence of age and gender (shown in

Table 1), we used these parameters as covariates.

Principal component analysis (PCA) showed the two

groups of monocytes from patients with sepsis and con-

trols separated along the first principal component

(Fig. 1b), with the SIRS in between. Overall, we observed

a wider heterogeneity in septic monocytes than in con-

trol and SIRS monocytes (Fig. 1b), perhaps due to the di-

versity of infective bacteria (Additional file 1: Table S1).

Monocytes from sepsis patients display 595 CpG sites

with significantly higher methylation levels (hypermethy-

lated) and 302 CpG sites with significantly lower

methylation levels (hypomethylated) than control mono-

cytes (Fig. 1c and Additional file 4: Table S3).

We performed gene ontology (GO) analysis to deter-

mine whether the differentially methylated genes were

associated with relevant biological processes in sepsis. In

the hypermethylated set, there was enrichment of im-

portant GO categories such as MAPK signaling pathway,

NF-κB signaling pathway, and inflammation mediated by

chemokine-cytokine signaling pathway. In the hypo-

methylated group, the functional categories were also

relevant in the context of immune cell biology, including

the MHC class II protein complex, genes involved in

interferon-gamma (IFN-γ) signaling, and phagocytic

vesicle membrane (Fig. 1d). The analysis of the chroma-

tin states of differentially methylated CpG sites revealed

the enrichment in active and weak enhancers (character-

ized by H3K4me1 and H3K27ac) for both the hyper-

and hypomethylated sets and also for transcription start

site (TSS) flanking regions in the case of the hyper-

methylated set (additionally marked by H3K4me3)

(Fig. 1e).

We then inspected the enrichment of TF binding mo-

tifs among the two sets of differentially methylated CpG

sites. We observed a significant overrepresentation of

binding sites of the interferon regulatory factor (IRF)

and ETS TF families in hypermethylated regions in sep-

tic monocytes (Fig. 1f). Previous reports have shown that

ETS factors such as PU.1 can recruit DNA methyltrans-

ferases [27]. Hypermethylation could also antagonize the

function of these TFs in endotoxin response [28]. Se-

quences around hypomethylated CpG sites were

enriched for binding motifs of the signal transducer and

activator of transcription (STAT) family (Fig. 1f). Ac-

cording to previous studies, the Janus kinase (JAK)/

STAT pathway plays a critical role in protective immun-

ity during sepsis via controlling cytokine responses

(reviewed in [29]).

Inspection of individual genes among those containing

differentially methylated CpG sites made it possible to

identify some with essential functions in monocyte/

macrophage biology and function. These included genes

such as IL1A, CCL22, CCR2, and STAT3 in the hyper-

methylated set and HLA-A, SOCS1, IL1R2, and CD46 in

the hypomethylated set (Fig. 1g and Table 2). IL1A is a

pro-inflammatory cytokine. Different pro-inflammatory

cytokines induce JAK activation, as well as the phos-

phorylation and activation of transcription activators

STAT3, STAT5, and STAT6. CCL22 and CCR2 associ-

ate with leukocyte chemotaxis. HLA-A belongs to the

MHC class I and is involved in antigen presentation.

SOCS1 encodes a member of the suppressor of cytokine

signaling (SOCS) family that is involved in negative

regulation of JAK/STAT cytokine signaling. Another ex-

ample is CD46, encoding a costimulatory factor for T
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Fig. 1 (See legend on next page.)
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lymphocytes promoting T-regulatory 1 cells that sup-

press immune response through IL-10. All these exam-

ples highlight the relationship between the genes

undergoing changes in DNA methylation and pathways

related to the acquisition of endotoxin tolerance.

Septic monocytes also display increased DNA methylation

variability

As indicated above, our PCA analysis indicated a higher het-

erogeneity in the DNA methylation profiles of monocytes

from patients with sepsis. We used a recently developed al-

gorithm, named iEVORA [23], to determine significant dif-

ferentially variable CpG positions (DVPs) at an FDR< 0.05

between monocytes from patients with sepsis and healthy in-

dividuals. By using this method, we not only could confirm

the occurrence of a higher number of DVPs in monocytes

from patients with sepsis (n= 6833) versus healthy controls

(n= 148) (Fig. 2a) but also determine that many of these sites

occur at genes that also display significant DNA methylation

changes (Additional file 5: Table S4).

Similarly to our previous analysis of differentially

methylated sites, sepsis-associated DVPs mainly occur at

enhancers and also TSS flanking regions (Fig. 2b). Se-

quences surrounding these DVPs were highly enriched

in binding motifs of ETS and IRF families (Fig. 2c), again

highlighting the role of these TFs in the acquisition of

the tolerogenic phenotype of septic monocytes.

GO analysis revealed an enrichment of sepsis-associated

DVPs in positive regulation of inflammatory response,

leukocyte chemotaxis, and defense response to bacterium

and toll-like receptor binding (Fig. 2d). We found sepsis-

associated DVPs in genes important for immune response

against infection and hyperinflammation such as IL1A and

TNF (Fig. 2e and Additional file 5: Table S4).

All this suggests that a variety of factors encompassing

bacterial infection and sepsis are driving DNA methyla-

tion and phenotypic changes in these cells in a similar

manner, regardless of the infecting bacteria or

individual-specific clinical outcome of the individual.

DNA methylation changes in monocytes from patients

with sepsis correlate with increased IL-10 and IL-6 levels

Many of the characteristics of endotoxin-tolerized mono-

cytes/macrophages resemble that of anti-inflammatory

M2 macrophages [30, 31]. M2 macrophages show down-

regulated inflammatory cytokines (e.g., IL-12, TNFα) but

upregulated anti-inflammatory cytokines (e.g., IL-10),

scavenger receptor expression, and efficient phagocytosis.

We wondered whether the DNA methylation patterns ob-

served in monocytes from patients with sepsis might be

associated with the generation of an immunosuppressive

or tolerogenic environment in peripheral blood.

To address this question, we first tested the levels of a

panel of cytokines associated with acute sepsis in cul-

tured PBMCs from patients with sepsis and compared it

to those in control individuals. We identified signifi-

cantly increased levels of IL-10 and IL-6 in patients with

sepsis (Fig. 3a). We also examined the levels of cytokines

following the exposure to LPS. This analysis showed that

the majority of the septic patients had acquired toler-

ance, with decreased levels of pro-inflammatory TNFα,

IL-1β, and IL-6, following exposure to LPS, and in-

creased secreted levels of anti-inflammatory IL-10, indi-

cating a higher degree of tolerogenic properties on

septic monocytes (Fig. 3a), as previously reported [32].

Given the greater heterogeneity of the methylation

profiles of septic samples with respect to those from

healthy controls, we investigated whether this could also

be related to the wider range of cytokine levels, such as

those observed for IL-10 or IL-6. To this end, we first

performed Spearman’s correlation between the DNA

methylation data and the secreted IL-10 levels, for all pa-

tients with sepsis and control individuals. This analysis

revealed that there are 855 CpG sites that become

hypermethylated and 389 CpG sites hypomethylated in

relation to increasing levels of IL-10 (r > 0.5; Δβ ≥ 0.15)

(Fig. 3b and Additional file 6: Table S5). This analysis

also showed that, for CpG sites associated with IL-10

levels, there is a significant difference of their median

(See figure on previous page.)
Fig. 1 Global analysis of DNA methylation changes in septic monocytes. a Representative flow cytometry profiles indicating the sorting strategy
and gates used in this study. Monocytes (MOs) (CD14+ CD66b−) were sorted from healthy controls and patients (SIRS and sepsis). b Principal
component analysis (PCA) of methylation heatmap data for control, SIRS, and septic monocytes (in blue, green, and red respectively). c DNA
methylation heatmap showing differentially methylated CpGs between controls (CON, blue) and patients with sepsis (SEP, red). The heatmap
includes all CpG-containing probes displaying significant methylation changes (15% of differential of beta values, p < 0.01 and false discovery rate
(FDR) < 0.05). A scale is shown at the bottom left ranging from − 2 (lower DNA methylation levels, blue) to + 2 (higher methylation levels, red). d
Gene ontology (GO) analysis of genes associated with differentially methylated CpG sites showing the most relevant and significantly enriched
categories resulting from the Genomic Regions Enrichment of Annotations Tool (GREAT). e Enrichment analysis of the different chromatin states
for CpG sites corresponding to each methylation cluster (left to hypermethylation, right to hypomethylation). The relative enrichment of the
different states is represented using the odds ratio. Dot size represents the FDR value. Tss, transcription start site; Enh, enhancer; Repr, repressed
region; PC, Polycomb. f TF binding motif analysis of differentially methylated CpGs between control and sepsis. The panel shows fold change
(FC), TF family and factor (selected TF with p ≤ 1e−05 for hypermethylated regions and p≤ 1e−03 for hypomethylation). Motif logo is representative
of the TF family. g Box plots showing β-values obtained from the DNA methylation array. We observed hypermethylation and hypomethylation
in important immune system genes. The CpG sites are marked with a green line in the gene scheme placed on top of each graph, where the
TSS is marked with a red arrow
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Table 2 List of differentially methylated genes in septic monocytes
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DNA methylation levels between septic and healthy con-

trols (Fig. 3c), reinforcing the notion of the existence of

differential methylation patterns between control and

sepsis in addition to a contribution of IL-10 to the ac-

quisition of such changes. Spearman’s correlation be-

tween the DNA methylation data and the IL-6 levels

identified 2492 CpG sites becoming hypermethylated

and 909 CpG sites hypomethylated in relation to

increasing levels of IL-6 (r > 0.5; Δβ ≥ 0.1) (Add-

itional file 7: Figure S2A and Additional file 8: Table S6).

CpG sites displaying changes in methylation in relation

to IL-10 levels enriched for specific chromatin features

(Fig. 3d). Specifically, we found enrichment for enhancers

in both the hypermethylated and hypomethylated sets.

We also investigated for this set of CpG sites the enrich-

ment in TF binding motifs for these differentially

Fig. 2 Analysis of differentially variable CpG positions (DVPs) in monocytes from patients with sepsis. a Volcano plot showing the p value vs the
variance ratio for healthy control, SIRS, and sepsis-associated DVPs. DVPs were identified using the algorithm iEVORA. b Enrichment of sepsis-
associated DVPs at 18 distinct chromatin states using ChromHMM. c TF binding motif analysis for sepsis-associated DVPs. Bubbles are colored
according to TF family. The p value is indicated by bubble size (selected TF with p≤ 1e−07 for DVP regions). d GO categories resulted from GREAT
analysis for sepsis-associated DVPs of section (a). e Representative examples showing beta values of DVPs
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methylated CpG sites. We observed that approximately

25% of the hypermethylated CpG sites have motifs for

bZIP TF factor family (Jun-AP-1) and 25% of the hypo-

methylated CpG sites display motifs for STAT family

members (Fig. 3e), suggesting that methylation might be

driven by the stimulation of TLR by bacteria and the in-

creased levels of IL-10, stimulating its receptor IL-10R.

Interestingly, 15% of the hypomethylated sequences dis-

played enrichment of CTCF binding motifs, whose global

occupancy has been linked to differential DNA methyla-

tion [33]. Similar results were obtained when we analyzed

the data for the Spearman’s correlation with IL-6 levels

(Additional file 7: Figure S2C and S2D).

GO analysis revealed distinct enriched biological pro-

cesses for hypo- and hypermethylated CpG clusters in

relation to IL-10 levels, including MHC class II protein

complex and response to type I IFN, and fibroblast

growth factor-activated receptor activity respectively

(Fig. 3f). Of note, similar GO categories were also

enriched for differentially methylated CpGs correlating

to IL-6 levels (Additional file 7: Figure S2B).

Our data show that many members of Wnt signal-

ing pathway (WNT3A, WNT6, and AXIN2 among

others) (Additional file 6: Table S5) display a gain of

methylation in septic monocytes compared with their

healthy counterparts, highlighting the potential link

between aberrant DNA methylation and the Wnt

pathway. In fact, cumulative evidence supports the

role of the Wnt pathway in the regulation of the

macrophage-mediated inflammatory response in sepsis

[34], in which Wnt3a and Wnt6 reduce TNFα secre-

tion and promote the differentiation towards an M2

anti-inflammatory phenotype attenuating the immune

response [35]. Furthermore, we found a large genomic

region that also displayed DNA hypermethylation in

which it predominantly covered CpG sites in the

three tandem gene clusters of protocadherin (PCDHA,

PCDHB, and PCDHG) (Fig. 3g) (Additional file 6:

Table S5). This region has previously been reported

to undergo aberrant DNA hypermethylation in cancer

and in other disorders [36, 37]. Moreover, recent

studies have identified mechanisms by which PCDHs

can regulate the Wnt pathway (reviewed in [38]),

which further corroborates the Wnt pathway as a pu-

tative therapeutic target for the patient treatment.

Regarding the hypomethylated CpG sites, we found an

enrichment in genes involved in the IFN-γ pathway,

which is essential for antimicrobial defense and restoring

monocyte deactivation in patients with sepsis [39]. Re-

markably, among the CpG sites displaying changes in

methylation in relation to IL-10 levels, we identified 23

CpG sites within the HLA cluster, which is also induced

by the IFN-γ and JAK/STAT pathway [40] (Fig. 3g).

Monocytes exposed to LPS undergo DNA methylation

changes in parallel with the acquisition of endotoxin

tolerance

Our results suggest that TLR stimulation and the inflam-

matory environment generated in the context of sys-

temic bacterial infection are able to induce DNA

methylation changes in monocytes. First, the specific

DNA methylation profiles of monocytes from patients

with sepsis associate with IL-10 and IL-6 levels. Second,

there is an enrichment of binding motifs for AP-1 and

STATs. This suggests that both the stimulation of TLRs,

the resulting inflammatory conditions, and subsequent

anti-inflammatory signals, participate in shaping the

generation of aberrant methylation profiles which might

modulate and stabilize the phenotype of monocytes fol-

lowing a septic episode. We therefore explored the

possibility of inducing in vitro DNA methylation

changes observed in such conditions by exposing in

parallel PBMCs and monocytes from healthy individ-

uals to LPS, and compare it with PBMCs and mono-

cytes without such stimulation (Fig. 4a). We cultured

the cells for 4 days and measured the acquisition of

tolerance. In the case of PBMCs, we isolated

monocytes, sorted as CD14+CD66b− cells after these

(See figure on previous page.)
Fig. 3 DNA methylation changes in septic monocytes parallel the increase of IL-10 levels. a Cytokine measurement using cytometric bead array
(CBA) from control and septic PBMCs before and after LPS stimulation (t = 3 h). Box and whisker plots show median values. Mann-Whitney test
was used to determine significance (*p < 0.05, **p < 0.01, and ***p < 0.001). b DNA methylation heatmap of CpG changes in relation to IL-10 basal
concentration (represented on the top of the heatmap as log scale). Spearman’s correlation was used with p < 0.01, r > 0.5, and Δβ≥ 0.15. A scale
is shown at the bottom, wherein beta values range from − 4 (lower DNA methylation levels, blue) to + 4 (higher methylation levels, red). c Violin
plots corresponding to the 5mC-normalized data for control and sepsis presented in the heatmap in the previous section. The median and the
interquartile range are represented. d Chromatin state characterization of differentially methylated sites for section b. The relative enrichment of
the different state assignments is representing using the odds ratio. FDR is represented by the size of the dots. e Bubble scatterplot of TF
enrichment for hypermethylated and hypomethylated CpGs. The x-axis shows the percentage of windows containing the motif, and the y-axis
shows the fold enrichment of the motif. Bubbles are colored according to TF family. p value is indicated by the bubble size (selected TF with p <
1e−07 for hypermethylated and hypomethylation regions). f GO categories resulted from GREAT analysis of differentially methylated CpGs related
to IL-10 concentration. g Genomic tracks representing the clusters of differentially methylated CpGs for protocadherins (PCDH, upper scheme)
and human leukocyte antigen (HLA, lower panel). Blue and red lines represent the confidence intervals for each average values. A window of ±
50,000 bp was used
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4 days (Fig. 4a, top). These experiments were

performed in the presence of poly-2-hydroxyethyl

methacrylate (poly-HEMA), an agent that restricts the

attachment of the monocytes to the plates and

therefore their differentiation to macrophages, to

prevent the occurrence of vast changes in DNA

methylation [19, 20]. Enzyme-linked immunosorbent

assays (ELISA) revealed in both cases the acquisition

of tolerance following the initial encounter with LPS.

Specifically, these assays showed decreased levels of

TNFα and increased levels of IL-10 in a second LPS

exposure for those cells that had a first exposure to

LPS (Fig. 4b). We then performed pyrosequencing of

a selection of hypo- and hypermethylated genes in

septic monocytes. Our analysis revealed that the

in vitro stimulation with LPS is able to induce DNA

methylation changes in these genes (Fig. 4c) with a similar

trend to the changes observed in patients with sepsis when

Fig. 4 In vitro exposure to LPS induces the acquisition of tolerance and DNA methylation changes similar to those observed in sepsis. a
Schematic diagram depicting our in vitro model for sepsis. PBMCs were cultured with or without LPS during 4 days, and then, monocytes were
sorted as CD14+CD66b− cells for subsequent analyses. In parallel, monocytes were isolated with magnetic CD14 antibody and cultured in the
same conditions. b TNFα and IL-10 production, as determined by ELISA, from PBMCs or monocyte supernatants, following washout and resting
following the 4 initial days (with/without LPS) and an 8-h exposure to LPS, as indicated in the scheme in a. c Bisulfite pyrosequencing of selected
hypermethylated (IL15) and hypomethylated (IL1R2) genes in sorted CD14+CD66b− monocytes from PBMCs in the in vitro sepsis model. d IL1B,
IL6, IL15, and IL1R2 mRNA levels were analyzed by quantitative RT-PCR using RPL38 as control in the same sorted monocytes. e Bisulfite
pyrosequencing of IL15 and IL1R2 in CD14+ monocytes in the in vitro sepsis model. f IL1B, IL6, IL15, and IL1R2 mRNA levels analyzed by
quantitative RT-PCR in CD14+ monocytes
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PBMCs were exposed to LPS (followed by monocyte

purification). In the case of monocytes directly exposed to

LPS, we were able to stimulate only demethylation of the

IL1R2 gene, suggesting that perhaps signals from other

cell types are necessary to induce gains of methylation

following LPS treatment. Interestingly, changes in DNA

methylation at the aforementioned sites occurred in asso-

ciation with changes in gene expression of these genes

(Fig. 4d, e) in the two sets of samples exposed to LPS, and

not in controls. In addition, we also observed an increase

in mRNA levels of pro-inflammatory cytokines (IL-1β and

IL6) in LPS-treated cells. These results proved that both

gains and losses of DNA methylation and expression in

septic monocytes are the result of TLR stimulation and

the generation of an inflammatory environment and are

associated with the acquisition of a tolerized state in

monocytes.

Organ dysfunction associates with DNA methylation

changes

We finally tested DNA methylation profiles in relation

to SOFA, the main score used to assess organ dysfunc-

tion. When using Spearman correlation, we determined

that there are 1890 CpG sites that become hypermethy-

lated and 1536 CpG sites hypomethylated in relation to

increasing SOFA (p value < 0.01; r > 0.6) (Fig. 5a and

Additional file 9: Table S7). GO analysis revealed that

DNA methylation changes in relation to SOFA affect in-

flammatory response and antigen presentation in a simi-

lar manner than previous comparisons (Fig. 5b). We also

investigated for this set of CpG sites the enrichment in

TF binding motifs for these differentially methylated

CpG sites. We obtained similar sets of TF binding motifs

(Fig. 5c) like the ones observed for the correlations with

IL-10 and IL-6, suggesting the participation of these in-

flammatory cytokines in the acquisition of DNA methy-

lation changes in relation to organic damage. Finally,

individual inspection of the lists revealed the association

of several relevant molecules including HLA-A, IL19,

IL15, and IL27 (Fig. 5d). Altogether, this analysis sug-

gested that the DNA methylation changes associated

with organic damage involve similar changes to those

observed in relation to inflammatory cytokines.

Discussion
Our study demonstrates for the first time the existence

of DNA methylation alterations in human monocytes

from individuals following a sepsis episode in relation to

the acquisition of a tolerized phenotype, paralleling data

obtained in a mouse model [41]. Most notably, changes

occur in genes relevant to the function of these cells in-

cluding the interferon-gamma-mediated pathway and

MHC class II proteins. On the one hand, the observed

methylation changes in patients with sepsis suggest their

participation among the mechanisms leading to the gen-

eration of an aberrant phenotype of these cells. On the

other hand, correlation analyses of the DNA methylation

profiles in relation to IL-10 and IL-6 levels, which are in-

creased in patients with sepsis, suggest a potential mech-

anism downstream to these cytokines participating in

the defective generation of DNA methylation alterations.

Furthermore, in vitro analysis of the influence of bacter-

ial LPS and inflammatory context in determining the ac-

quisition of DNA methylation alterations in monocytes

also shows how these changes associate with aberrant

transcriptional levels of dysregulated genes. Finally, our

analysis shows increasing changes in DNA methylation

in relation to organ dysfunction.

Epigenetic factors play a role in the acquisition of endo-

toxin tolerance. In fact, seminal studies by the teams of

Netea, Logie, and Stunnenberg have shown that the tran-

scriptional inactivity in response to a second LPS exposure

in tolerized macrophages is accompanied by a failure to de-

posit active histone marks at promoters of tolerized genes

[17]. It has also been reported that leukocytes of patients

with sepsis have defects in important metabolism pathways

and, interestingly, these immunometabolic defects were

partially restored by therapy with recombinant IFN-γ [7].

The aforementioned studies paid less attention to

DNA methylation changes, as they appeared to be less

prevalent than those at occurring in histone modifica-

tions. However, DNA methylation is a relatively more

stable epigenetic mark than histone modifications. That

property makes this modification worth of study: firstly,

because it might have a long-term contribution to the

tolerized state of monocytes, and secondly, because it

could potentially be used as a marker, if associations

with patient prognosis and/or progression were found.

Many of the genes displaying differentially methylated

CpG sites between patients with sepsis and controls

occur within a limited number of pathways relevant to

the stimulation associated with bacterial infection (Fig. 6).

For instance, genes experiencing changes in methylation

such as IL1A, IL1R2, IL1R1, TAB2, TAB1, MAP 2K1,

and MAP 3K1 occur within the same signaling pathway,

which is also merging from the signals downstream to

TNF. On the other hand, several of the genes encoding

for cytokines like IL27, IL23A, IL19, and IL22 also dis-

play CpG sites undergoing methylation changes, as well

as genes encoding elements downstream to it, such as

TYK2, JAK1, STAT3 and 4, and SOCS3 and SOCS5. The

relationship between all these genes suggests two possi-

bilities: that DNA methylation changes at these sites

have a causal effect in determining the activation or re-

pression of the associated genes or, alternatively, that

the monocyte methylome is acting as a sensor of the ac-

tivation of these pathways through additional or alterna-

tive mechanisms.
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Fig. 5 DNA methylation changes in septic monocytes parallel organic damage. a DNA methylation heatmap of CpG changes in relation to the
SOFA score (represented on the top of the heatmap). Spearman’s correlation was used with p < 0.01, r > 0.6. A scale is shown at the bottom,
wherein beta values range from − 4 (lower DNA methylation levels, blue) to + 4 (higher methylation levels, red). b GO categories resulted from
GREAT analysis of differentially methylated CpGs related to SOFA. c Bubble scatterplot of TF enrichment for hypermethylated and
hypomethylated CpGs. The x-axis shows the percentage of windows containing the motif, and the y-axis shows the fold enrichment of the motif.
Bubbles are colored according to TF family. p value is indicated by bubble size (selected TF with p≤ 1e−06 for hypermethylated and
hypomethylation regions). d Box plots showing β-values obtained of genes significantly correlating with the SOFA score

Lorente-Sorolla et al. Genome Medicine           (2019) 11:66 Page 14 of 18



In this respect, our results show that monocytes from

patients with sepsis harbor an aberrant DNA methylation

signature that is related with the abnormal environment

derived from such inflammatory condition. Furthermore,

we have determined that DNA methylation changes cor-

relate with increased IL-10 and IL-6 levels and that those

changes are functionally annotated to genes belonging to

the Wnt and IFN-γ signaling pathways. In this respect, it

has been demonstrated, as mentioned above, that IFN-

γ-based therapy can partially restore the defective

metabolic changes occurring in leukocytes from

patients with sepsis [7].

Finally, our investigation demonstrates the sensitivity

of monocytes to translate environmental changes into

more stable changes at the transcriptional level through

DNA methylation. Given that sepsis is associated with

the generation of a particular cytokine environment [42],

our results reinforce the notion that epigenetic changes

are related to the maintenance of the dysregulated im-

mune response following an episode of sepsis. However,

with the existing data generated in this study, we cannot

distinguish whether these epigenetic changes are a cause

or a consequence: in other words, whether the DNA

methylation changes are caused by these individuals’ in-

fection history, perhaps influenced by the environment,

or whether environmental factors cause the generation

of the aberrant DNA methylation signature, which is

then accompanied by immune responses that are sec-

ondary to the sepsis. It is likely that the aberrant DNA

methylation (and expression signature) generated as a

result of the particular cytokine milieu generated under

the sepsis episode contributes to perpetuating the

Fig. 6 Scheme depicting important signaling pathways related to immunity and sepsis. Molecules whose encoding genes displayed DNA
methylation alterations in this study are shown in red and blue for hypermethylation and hypomethylation respectively. The following proteins/
genes are represented in the figure: TLR, Toll-like receptor; MyD88, myeloid differentiation primary response 88; IRAK, interleukin-1 receptor-
associated kinase; IL1R, interleukin-1 receptor; IL-1A, interleukin 1 alpha; TNFR, tumor necrosis factor receptor; TRADD, TNFR1-associated death
domain; TRAF, TNF receptor-associated factor; TAK1, transforming growth factor (TGF) beta-activated kinase 1; TAB2, TGF beta-activated kinase 1
binding protein 2; MAPK, mitogen-activated protein kinase; IKK, IκB kinase; AP-1, activator protein 1; NF-кB, nuclear factor kappa B; CCL20, C-C
motif chemokine ligand 20; CCL22, C-C motif chemokine ligand 22; IL-23A, interleukin 23A; IL-19, interleukin 19; IL-27, interleukin 27; IL-22,
interleukin 22; JAK1, Janus kinase 1; STAT, signal transducer and activator of transcription; TYK2, tyrosine kinase 2; SOCS, suppressor of cytokine
signaling. In this scheme, we have selected CpG sites/genes with a minimum 10% of differential of beta values, p < 0.01 and false discovery
rate (FDR) < 0.05
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tolerized state of these monocytes. Whether those

changes also affect bone marrow monocyte progenitors

giving long-lasting reprogramming, as occurs with

trained immunity [43], remains to be investigated. Inter-

estingly, the observed changes appear to be reflective of

the infection, as it suggests the data obtained for SIRS

patients (even if it is a small cohort), which are also

characterized by inflammation and organ dysfunction.

A potential limitation of our study is the size and char-

acteristics of the cohort. In future studies, it would be

necessary to use vaster cohorts, including patients with a

representative number of Gram-positive and Gram-

negative bacteria and patients at different stages follow-

ing the sepsis episode. However, the size and features of

our cohort, on the other hand, indicate that common

changes in DNA methylation are associated with sepsis

regardless of the infective bacteria. The identification of

specific DNA methylation markers associated with the

infecting organism of the clinical outcome of the patient

will surely be useful for predicting the evolution of the

patients and perhaps their clinical management.

Conclusions
In the present study, we have shown that patients with

sepsis undergo widespread changes in the methylome of

their circulating monocytes in parallel with the acquisi-

tion of endotoxin tolerance. Thousands of changes are

associated with the aberrant levels of IL-10 and IL-6, as

well as with organ dysfunction. Stimulation of the Toll-

like receptor in monocytes induces similar changes in

DNA methylation and expression, concomitant with the

acquired tolerance that points to a major role in the

stabilization of a tolerized phenotype through these al-

terations. Our results open up possibilities not only to

use DNA methylation as a marker for disease but also

for understanding its role in the acquisition of the aber-

rant phenotype of these cells.
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