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Systemic lupus erythematosus (SLE) is an autoimmune disease of unknown origin affecting virtually all organ systems. Beyond
genetic and environmental factors, cytokine imbalances contribute to immune dysfunction, trigger inflammation, and induce
organ damage. The key cytokine that is involved in SLE pathogenesis is interferon alpha. Interferon secretion is induced by immune
complexes and leads to upregulation of several inflammatory proteins, which account for the so-called IFN signature that can be
found in the majority of SLE PBMCs. Additionally IL-6 and IFN-y as well as T-cell-derived cytokines like IL-17, IL-21, and IL-2
are dysregulated in SLE. The latter induce a T-cell phenotype that is characterized by enhanced B-cell help and enhanced secretion
of proinflammatory cytokines but reduced induction of suppressive T cells and activation-induced cell death. This paper will focus
on these cytokines and highlights pathophysiological approaches and therapeutic potential.

1. Introduction

Systemic lupus erythematosus (SLE) is a complex autoim-
mune disease of unknown origin affecting virtually every
organ in the human body. SLE is primarily caused by
autoantibodies and immune complex deposition. Enhanced
apoptosis in conjunction with defective clearance of apop-
totic cells results in occurrence of high levels of autoan-
tibodies [1]. Deregulated cytokine production contributes
to immune dysfunction and mediates tissue inflammation
and organ damage. Inflammatory cytokines, like type I and
type II interferons and interleukin-6 (IL-6), IL-1, and tumor
necrosis factor-alpha (TNF-α) as well as immunomodulatory
cytokines like IL-10 and TGF-β, have been identified as
important players in SLE. Apart from those IL-21 and IL-
17 have been lately identified to play a relevant role in
autoimmunity, while recent findings regarding IL-2 brought
this cytokine back in focus of SLE research. Beside interferons
this paper will highlight some recent advances of IL-6, IL-21,
IL-17, and IL-2 research with regard to SLE.

2. Type I Interferons

Type I interferons (IFNs) are important cytokines, whose
most prominent function is to mediate the early immune

response to viral infections. Viral RNA and DNA are recog-
nized by Toll-like receptors (TLRs) and trigger IFN release
of leukocytes. Although all leukocytes produce IFN, plas-
macytoid dendritic cells (pDCs) are the main producer [2].
PDCs are a rare cell population. Only 0,2–0,8% of peripheral
mononuclear cells (PBMCs) are pDCs, but their capacity
to produce IFN is unique and 100–200 times enhanced
compared to any other cell type [3, 4]. The ability to
release such high amounts of IFN might be caused by the
fact that pDCs constitutively express Toll-like receptor 7
(TLR7) and Toll-like receptor 9 (TLR9) [5]. After secretion
IFN binds its heteromeric type I IFN receptor on target
cells, transduces signals mainly via JAK/STAT pathways, and
initiates gene transcription of so-called interferon-stimulated
genes [6]. Microarray analysis detected >300 genes induced
by interferon [7]. By activation of genes which are respon-
sible for antimicrobial responses, antigen processing, and
inflammation, IFNs exert several immunomodulatory effects
and are therefore supposed to be key cytokines not only
in the innate immune system but also in adaptive immune
responses [8]. The central role of IFN in SLE has been
confirmed by several observations.

Many of the symptoms that SLE patients develop are con-
gruent with symptoms of patients suffering from influenza
or as a side effect of interferon-alpha (IFN-α) therapy. Fever,
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fatigue, and leukopenia are some examples. SLE patients
often show enhanced IFN-α serum levels [9], and the IFN
levels correlate with anti-dsDNA production and disease
activity [10]. Furthermore, IFN-α therapy may lead to
autoantibody production and an SLE-like syndrome [11, 12].
Genetic association studies of patients with SLE identified
several genes, amongst which components of the upstream
and downstream pathways of type I interferon are the
most frequently found [13] including Signal Transducer
and Activator of Transcription 4 (STAT4) and interferon
regulatory factor 5 (IRF5) [14–16]. STAT4 interacts with
type I interferon receptors and is directly involved in IFN
signaling. IRF5 is a transcription factor which induces IFN
transcription in response to TLR signaling. In fact the IRF5
risk haplotype in SLE patients is associated with high serum
IFN-α activity [17]. These genetic association studies are in
accordance with the fundamental observations identified by
gene expression profiling of SLE PBMCs in the group of
Virginia Pascual. These experiments demonstrate a signifi-
cant upregulation of interferon-regulated gene transcripts in
adult and paediatric SLE PBMCs [18, 19]. This characteristic
is referred to as the “interferon signature” and assessed as a
new biomarker for disease activity [13].

These observations raised the questions of how the IFN
signature in SLE patients develops and how IFNs are involved
in pathogenesis of SLE. A hallmark of SLE is the formation
of immune complexes (ICs). One cause of immune complex
formation is an increased apoptosis and defective clearance
of apoptotic material on the one hand and high occurrence of
autoantibodies on the other hand [1]. In 1998 Cederblad et
al. observed the production of IFN-α by PBMCs when serum
samples from SLE patients were used as culture supplement
[20]. Further studies showed that immune complexes induce
IFN-α production by pDCs [21–24]. Immune complexes are
internalized after binding Fc gamma RIIa on the surface
of pDCs and activate TLR9 and TLR7 in the endosomal
compartment, which induces secretion of IFN-α [25]. Indeed
pDC are reduced in SLE blood [20], but this reduction might
be related to enhanced recruitment to tissues [26, 27].

The overproduction of IFNs in SLE exerts wide effects,
which result in the above-mentioned IFN signature. We
would like to accent a few of these effects which were inten-
sively observed and papered by Obermoser and Pascual [13].

First IFN-α promotes feedback loops by induction of
TLR7 in pDCs, mDCs, and monocytes which enhance
synthesis of IFN [28]. Secondly IFNs contribute to disrup-
tion of peripheral tolerance by promoting DC maturation
(mDC) and thereby reducing numbers of immature DCs.
Immature DCs are important to keep up immune tolerance
by induction and maintenance of regulatory T cells. In
addition immature DCs promote anergy and deletion of self-
reactive T cells by presenting self-peptide MHC complexes in
the absence of costimulatory signals to self-reactive T cells
[29]. Activated and self-reactive T cells provide help for B
cells. Thirdly mDCs can also directly enhance selection and
survival of autoreative B cells by producing B-cell activating
factor (BAFF) [30]. This cytokine belongs to the family of B-
lymphocyte stimulators (BLySs) and contributes to survival
of B cells [31]. Finally IFN-α drives disease activity by

enhancing cytotoxicity of CD8 T cells [32] and also directly
increases numbers of autoreactive CD4 T cells by upregu-
lation of the costimulatory molecules CD80 and CD86 on
antigen-presenting cells (APCs) [13]. Therefore, activation of
the IFN system by ICs as endogenous IFN inducers in SLE
patients generates a self-reinforcing trial which Rönnblom
and Alm describe as a vicious circle (Figure 1) [8].

Therapeutical targets which disrupt this circle are sub-
jects of intensive research. The widely used and old drug
resochin changes the pH of the endosomes and therefore the
affinity of TLR7 and TLR9 towards ICs. Specific inhibitors
of TLR7 and TLR9 have already been tested in animal
models [33]. Antibodies to block IFN-alpha (Sifalimumab,
Rontalizumab) are currently being tested in clinical trials
[34]. In a phase I trial treatment of SLE patients with an anti-
IFN-α monoclonal antibody influenced interferon signature
and skin lesions of these patients [35].

3. Interleukin-6

IL-6 is produced in many cell types, like monocytes,
fibroblasts, endothelial cells, and also T and B lymphocytes
[36] and has a range of biological activities on various
target cells. IL-6 serves as a differentiation factor for several
haematopoetic cells. Differentiation of B cells in plasma
cells and induction of IgG production is induced by IL-
6 [37] as well as differentiation and proliferation of T
cells [38] and macrophages [39]. Further effects of IL-
6 are bone marrow stem cell maturation, activation of
neutrophils, and stimulation of the production of platelets
from megacaryocytes and osteoclast differentiation [40]. IL-
6 is the major hepatocyte stimulation factor and induces
acute-phase proteins [41].

IL-6 signaling occurs via its heteromeric receptor com-
plex, which consists of two glycoproteins, an IL-6-specific
binding chain (IL-6R) and a signal transducing chain
(gp130) [42]. Binding of IL-6 on IL-6R triggers dimerisation
of gp130, which results in activation of JAK1 and tyrosine
phosphorylation of gp130. This activates the ERK/MAPK
signaling pathway and p-STAT3-mediated pathways [43]. IL-
6R expression is limited to several cells, but a so-called gp130
transsignaling occurs when IL-6 binds a soluble IL-6R form
and then interacts with the more unique expressed gp130
(Figure 2) [44].

Murine lupus models indicate the involvement of IL-
6 in B-cell hyperactivation and onset of autoimmune
disease. In Mrl/lpr mice IL-6 and soluble IL-6R serum
levels are increased related to age [45, 46]. IL-6-deficient
Mrl/lpr mice show a delayed onset of lupus nephritis and
prolonged survival [47]. IL-6 receptor blockade suppressed
IgG antibody production in NZB/W F1 mice and develop-
ment of autoimmune disease [48, 49], whereas exogenous
administration of IL-6 accelerates glomerulonephritis in
NZB/W F1 mice. Recent investigations suggest that IL-6
blockade not only targets autoreactive B cells but also inhibits
autoreactive T cells in NZB/W F1 mice [50]. Next to its
effects on B cells IL-6 is a key cytokine that determines T-
cell differentiation of naı̈ve T cells into so-called regulatory
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Figure 1: The vicious circle of IFN signaling in SLE: ICs bind to Fc gamma RII receptors on pDCs and reach the endosomes where they are
recognized by TLRs. TLRs transduce signals to the nucleus which induce transcription of IFN. IFN secretion enhances expression of its own
receptor on pDCs, mDCs, and monocytes. Furthermore, IFN promotes maturation of DCs which leads to disruption of peripheral tolerance
and activation of autoreactive CD4 T helper cells. The appearance of autoreactive CD4 T cells is further amplified by upregulation of CD80
and CD86 on APCs. This results in enhanced B cell help by autoreactive CD4 cells, which is again sustained by an upregulation of BAFF. The
increased formation of autoreactive B cells triggers appearance of ICs and further IFN release.
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Figure 2: Model of gp130 transsignaling. IL-6 signaling occurs by
binding its membrane bound receptor (IL-6R) in target cells and
subsequent dimerization of gp130 (Figure on the left). Cells which
do not express IL-6R can also be susceptible to IL-6 via soluble IL-
6 receptors that dimerize with membrane bound gp130 (Figure on
the right).

T cells with a suppressive phenotype or into T cells with
a proinflammatory Th17 phenotype. Since IL-6R blockade
in mouse model of arthritis inhibited the differentiation of
Th17 cells [51], effects of IL-6 blockade on T-cell responses
and therefore benefits for autoimmune diseases should also
be taken into consideration [52].

Patients with active SLE have increased IL-6 serum levels
[53, 54] which in some studies correlated with disease
activity [53] or anti-DNA levels [40, 54]. Elevated IL-6 levels
are associated with B-cell hyperactivity and autoantibody
production [40] and secretion of IgG anti-DNA antibodies

were reduced by neutralizing IL-6 and restored by adding
exogenous IL-6 in vitro [40, 53]. In addition to its systemic
effects IL-6 also has a role in local inflammation, for
example, in lupus nephritis and is supposed to be involved
in mesangial cell proliferation, one of the hallmarks of
proliferative lupus nephritis [40]. Patients with active lupus
nephritis show elevated urinary IL-6 secretion [55, 56], and
the expression of IL-6 is increased along glomerular and
tubulus tissue in lupus nephritis kidneys in situ [57]. IL-6
is increased during cardiopulmonary complications of SLE
[58], and SLE patients with neuropsychiatric syndromes
show elevated IL-6 levels in the cerebrospinal fluid [59].
Current investigations also indicated the involvement of IL-6
in joint damage in SLE patients [60].

As IL-6 exerts systemic effects and also mediates local
inflammation, IL-6 targeting therapy, which has been shown
to be efficacious in inflammatory autoimmune diseases [61],
might also be promising in the treatment of SLE patients.
Tocilizumab is a humanized monoclonal antibody, which
inhibits IL-6 signaling by binding IL-6R and soluble IL-
6 receptors. It was recently tested in an open label-phase
1 dosage escalation study in SLE patients. The results
are promising regarding decreased levels of anti-dsDNA
antibodies and of acute-phase reactants in Tocilizumab
treated patients [62].

4. Interferon-Gamma

Interferon-gamma (IFN-γ) activates macrophages at the site
of inflammation, contributes to cytotoxic T-cell activity,
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has antiviral capacities, and is strongly associated with Th1
responses. It induces differentiation of naı̈ve T cells into
Th1 cells and triggers Th1 differentiation in an autocrine
manner. IFN-γ signaling induces phosphorylation of STAT1
which leads to expression of the Th1-lineage-specific tran-
scription factor T-bet and subsequent expression of IFN-γ
[63].

Due to the fact that Th1-mediated effects can explain
many features of autoimmune diseases, IFN-γ became
an archetypical inducer of organ-specific autoimmunity
[64]. IFN-γ might contribute to autoimmune disease by
inducing production of IgG2a and IgG3 isotype antibodies
that activate complement and furthermore by activating
macrophages and promoting tissue inflammation. However,
in autoimmune models like experimental autoimmune
encephalomyelitis [65] and collagen-induced Arthritis [64,
66], IFN-γ-deficient mice are more susceptible; therefore,
the role of IFN-γ is not proinflammatory per se. Recent
studies detected diverse mechanisms via which IFN-γ might
counteract inflammatory pathways (review in [67]). One
important mechanism might be that IFN-γ inhibits the
development of autoimmune-related Th17 cells [67, 68].

The role of IFN-γ in SLE was analyzed in several
mouse models. T-helper cells expressing IFN-γ correlate with
age and development of disease in NZB/W F1 mice [69].
Additionally treatment of NZB/W F1 mice with recombinant
IFN-γ accelerated development of disease, while adminis-
tration of monoclonal antibodies against IFN-γ resulted in
remission of disease [70]. Furthermore, IFN-γR-deficient
NZB/W F1 mice show reduced glomerulonephritis and
reduced serum concentration of anti-dsDNA antibodies
[71].

IFN-γ-deficient Mrl/lpr mice are prevented from early
death and have reduced lymphadenopathy and reduced
glomerulonephritis [72]. Treatment with a cDNA encoding
IFN-γR/Fc reduces disease manifestations [73]. However,
treatment of Mrl/lpr mice with recombinant IFN-γ leads
to dichotomic effects. While treatment at an early age
proves to be protective, treatment later in life accelerates
disease manifestations [74]. In a pristine-induced lupus
model IFN-γ deficient BALB/c mice are protected from
renal disease [75]. Several studies on lupus models suggest
that an imbalance towards Th1 dominance plays a role in
acceleration of disease [76–78]. In human patients with
SLE a disbalance in mechanisms that regulate Th1 and
Th17 cells with an enhanced expression of Th17 cells was
observed [79], which was partially aggravated by the use of
glucocorticoids [80]. Recent studies detected unusual IFN-
γ and IL-17 double-positive T cells [81] which indicates
a quite complex and not yet understood plasticity of
Th1 and Th17 cells [82]. The complex role of IFN-γ in
SLE is underscored by contradictory clinical studies that
find a correlation between serum IFN-γ level and disease
activity and a correlation between IFN-γ expression and
severity of lupus nephritis while others show decreased
IFN-γ levels in lupus nephritis [83, 84]. Nevertheless,
AMG-811, a human monoclonal antibody to IFN-γ, is
under investigation in a phase Ib study in SLE patients
[34].

5. Interleukin-2

T cells are the main producer and responder cells of
interleukin-2 (IL-2). IL-2 production is induced after T-cell
receptor (TCR) activation, induces itself in paracrine and
autocrine loops, and also upregulates surface expression of
its receptor. IL-2 was initially discovered as a cytokine which
drives clonal expansion of T cells, but the phenotypes of IL-
2-deficient or IL-2-receptor- (IL-2R-) deficient mice expand
the tasks and impact of IL-2 [85].

Mice with IL-2 or IL-2R deficiency show an enlarge-
ment of peripheral lymphoid organs (lymphadenopathy and
splenomegaly) and impaired activation-induced cell death
(AICD) and develop autoimmune disorders [86, 87]. In
addition to this, a defective production of IL-2 is observed
in several murine models of autoimmune diseases [88]
including three well-established lupus models. In all of these
models the production of IL-2 is reduced once disease starts
to appear [89–91].

These observations are somewhat inconsistent with the
view of IL-2 as growth factor for T cells and raise the question
of how loss of IL-2 is connected with loss of immunotol-
erance. Interestingly, IL-2 deficiency in mouse models is
paralleled by reduced levels of regulatory T cells (Tregs).
Therefore, the uncontrolled activation of B and T cells in the
absence of IL-2 might be caused by deficiencies of regulatory
T cells in these mice. Direct evidence that regulatory T cells
depend on IL-2 comes from experiments which show that
IL-2 is required for homeostatic maintenance of regulatory
T cells [92] as well as for their thymic development and IL-
2 also directly affects suppressive function of regulatory T
cells [93]. In addition to its effect on regulatory T cells, it
was very recently discovered that IL-2 also affects Th17 cells.
This highly proinflammatory T-cell subset is linked to many
autoimmune diseases. IL-2 limits production of IL-17 in vivo
and in vitro, and low levels of IL-2 favour occurrence of Th17
cells [94]. IL-2-deficient mice show enhanced serum levels
of IL-17 and a higher number of IL-17 producing T cells in
peripheral lymph nodes. Laurence et al. showed by adoptive
transfer experiments that the IL-17 overproduction is not
caused by a secondary manifestation of disease, but directly
due to deficiency of IL-2 [95].

It is therefore currently accepted that IL-2, beyond its role
as a growth factor, is important to maintain functionality
and homeostasis of regulatory T cells on the one hand and
to inhibit production of IL-17 on the other hand. As a
consequence IL-2 appears to be a crucial cytokine to prevent
formation of autoimmunity.

In accordance with this SLE T cells show reduced IL-2
production [96–98] and IL-2 deficiency is also paralleled by
low numbers of regulatory T cells in SLE patients [99]. The
molecular mechanism of the IL-2 defect in SLE is caused
amongst others by overexpression of cAMP response element
modulator alpha (CREMα), a transcription factor which
binds to the IL-2 promoter and inhibits IL-2 transcription.
Anti TCR/CD3 antibodies present in SLE sera induce expres-
sion of CREMα, which leads to an increased CREMα binding
to the IL-2 promoter and decreased IL-2 production [100].
We recently showed that increased CREMα expression is the
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result of enhanced CREMα promoter activity in SLE T cells
and CREMα promoter activity correlates with disease activity
[101]. Interestingly the defective IL-2 production of SLE
T cells can be restored by introducing a plasmid encoding
antisense CREMα into these cells [102]. The IL-2 activating
transcription factor CRE-binding protein (CREB) shares the
same binding site on the IL-2 promotor and is displaced by
CREM in SLE cells possibly because of high levels of CREM
[103]. Furthermore, diminished activity of CREB, caused by
increased levels of the serine/threonine phosphatase PP2a,
the phosphatase that is responsible for dephosphorylation of
CREB, contributes to reduced production of IL-2 [104]. It
is not clear whether lower IL-2 levels in SLE also contribute
to enhanced IL-17 levels, but the ratio of Treg to Th17
cells in SLE patients with active disease is significantly lower
than that in healthy controls and inversely correlates with
the severity of active SLE [105]. IL-2 is also involved in
activation-induced cell death (AICD). AICD is a controlled
apoptotic mechanism by which excess effector cells are
eliminated and it is regulated by CD95 and TNFR1 [106–
108]. This process is affected in SLE patients, in whom T cells
are more resistant to AICD [109, 110] resulting in persistence
of autoreactive T cells. Furthermore, IL-2 is also important
for the development of CD8 T-cell cytoxicity. Cytotoxic T
cells (CTL) destroy virus-infected T cells and are important
to defend infections. Some SLE patients develop cytotoxic
defects, while a lot of SLE patients suffer from increased
mortality and morbidity during infections [109].

Altogether defective IL-2 production in SLE T cells
seems to contribute to several immune alterations includ-
ing reduced numbers and function of regulatory T cells,
decreased AICD, decreased CTL responses and to upregu-
lation of IL-17 production [109]. This raised the question
whether compensation of low IL-2 levels by adding exoge-
nous IL-2 would result in lower disease activity [111].

Humrich et al. treated lupus prone mice with IL-2. In
the IL-2 treated mice the homeostatic balance of Treg and T
effector cells was re-established and impeded disease progres-
sion [112]. However, the half live of exogenous cytokines in
vivo is quite short, while IL-2 in complexes with an antibody
is more functional [111]. These complexes can prevent type 1
diabetes [113] and suppress experimental myasthenia [114].
Furthermore in vivo expansion of regulatory T cells with
IL-2/IL-2mAB complexes induces resistance to experimental
autoimmune encephalomyelitis [115].

Therefore IL-2 seems to have a therapeutic potential
to treat autoimmune diseases, but the activity of IL-2 as
growth factor bears a risk. IL-2 has been used as adjuvant
for treatment of patients with renal cancer albeit with
considerable side effects. The effect of IL-2 seems to depend
on the administered dose, it is possible that low doses favour
Tregs, while high doses favor memory/effector cell function
[111].

Recently published data from Liao et al. further expand
the impact of IL-2 to a cytokine that in addition to its influ-
ence on regulatory T cell and Th17 cells broadly regulates
T helper cell differentiation [116]. Further investigations is
needed to understand the several and sometimes ambivalent
roles of IL-2. It should be taken into consideration to

therapeutically influence mechanisms upstream from IL-2,
which are responsible for reduced IL-2 expression in SLE.

6. Interleukin-21

IL-21 is produced by a range of differentiated CD4+ T
cell subsets and natural killer (NK)T cells [117]. IL-21
signals through a heterodimeric receptor, which is formed
by common gamma chain (shared with IL-2, IL-4, IL-
7, IL-9, IL-13 and IL-15 receptors) and an IL-21 specific
receptor (IL-21R) [118, 119]. Since IL-21R is expressed
on CD4+, CD8+ T cells, B cells, NK cells, dendritic cells,
macrophages and keratinocytes [118], IL-21 acts on a range
of lymphoid lineages and exerts pleiotropic effects. We will
give a short numeration of its effects on immune cells. IL-
21 is a stimulator of CD8+ T cell proliferation. In synergy
with IL-15 and IL-7 it promotes CD8+ T cell expansion [117,
120, 121]. IL-21 drives differentiation of naı̈ve T cells into
Th17 cells [122]. IL-21 is induced by IL-6 and RORγt and
stabilizes and maintains Th17 cells by upregulating its own
expression and the expression of IL-23R [117, 121]. Induced
regulatory T cells are negatively regulated by IL-21, as IL-
21 downregulates FoxP3 induction in TGF-β stimulated cells
[122]. Furthermore IL-21 counteracts suppressive effects of
Tregs, however it is not known if IL-21 acts on Tregs or CD4+

T cells in this circumstances [123]. Furthermore IL-21 plays
a role in follicular T helper cell (Tfh) development and is
necessary for germinal center (GC) formation [124, 125].
GCs can be the origin of autoantibodies and abnormalities
in GCs can lead to aberrant selection of autoreactive B
cells and might contribute to autoimmunity [126]. IL-21
effects on B cells are context-depended. IL-21 has a role
in B cell activation and differentiation of plasma cells that
produce IgG [127], but also induces apoptosis of resting
and activated B cells [128]. IL-21 without antigen or in the
presence of a non-specific polyclonal signal induces deletion
of autoreactive B cells. IL-21 in context of a specific antigen
and T cell interaction leads to expansion of responding
cells [118]. IL-21 can also act anti-inflammatory, it inhibits
dendritic cell maturation and stimulates IL-10 production
[129, 130].

SLE patients have higher serum levels of IL-21, while
IL-21 and IL-21R polymorphisms are associated with sus-
ceptibility to SLE [131, 132]. A subset of patients with SLE
shows increased numbers of circulating CD4+ CXCR5+ cells
(Tfh cells) [133]. The sanroque mouse bears a mutation
in a gene that negatively regulates Tfh cell development.
These mice develop lupus-like symptoms, paralleled by an
overproduction of IL-21 and increased levels of Tfh cells
[134]. Mrl/lpr mice show increasing numbers of Tfh cells and
extrafollicular T helper cells with age and disease develop-
ment [135]. Mrl/lpr mice treated with IL-21R/Fc to block IL-
21 signaling displayed reduced level of autoantibodies and
SLE-like symptoms [136]. The lupus mouse BXSB.B6-Yaa+
shows increased IL-21 mRNA levels compared to wildtype
mice [125] and disease was prevented by genetic deletion of
IL-21R in these mice [137]. Notably treatment of BXSB.B6-
Yaa+ mice with an IL-21R/Fc fragment negatively influenced
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survival early on and positively influenced survival at later
stages of disease [138]. Because of these pleiotropic effects, it
remains debatable if IL-21 blockade might be useful to treat
SLE.

7. Interleukin-17

IL-17 is produced by several T-cell subsets including T helper
cells (CD4+ T cells), cytotoxic T cells (CD8+ T cells), double-
negative (CD4−CD8−CD3+) T cells, gamma-delta T cells but
also by natural killer (NK) cells and neutrophils [139]. A
new CD4+ T-cell subset, which preferentially produces IL-17
but not IL-4 or IFN-γ, is termed Th17 cells. Beyond IL-17a
and IL-17f these cells produce IL-22 and IL-21. Important
factors for the differentiation of murine as well as human
Th17 cells include IL-6, IL-21, and IL-1β together with TGF-
β [122, 140–146]. In addition to these cytokines, IL-23 is
crucial for expansion and maintenance of Th17 cells [147].
Th17 cells are involved in the immune response against
bacteria, like Citrobacter, Klebsiella pneumoniae, and Borrelia
burgdoerferi and against fungi like Candida albicans [64].
Some of these infections cannot be cleared by Th1 or Th2
cells. Beyond these protective roles, IL-17 and Th17 cells
contribute to tissue inflammation and organ damage in
autoimmune diseases by triggering chronic inflammation
[148].

IL-17 exerts several effects and affects several cell types
(Table 1). IL-17 receptors are broadly expressed not only
on immune cells but also on epithelial and endothe-
lial cells [139, 149–151]. IL-17 signaling through these
receptors increases production of chemokines (interleukin-
8 (IL-8), monocyte chemoattractant protein-1, growth-
related oncogene protein-alpha), which leads to recruitment
of monocytes and neutrophils into the inflamed tissue
[152–154]. Moreover, IL-17 also induces T-cell infiltration
by upregulating the expression of intercellular adhesion
molecule 1 (ICAM-1) [155]. IL-17 induces secretion of many
proinflammatory proteins, among them prostaglandin E2,
granulocyte-macrophage colony-stimulating factor (GM-
CSF), and granulocyte colony stimulating factor [155–157],
and also cytokines which induce a positive feedback loop and
lead to further IL-17 production like interleukin-6 (IL-6),
IL-1β (interleukin-1 beta) and IL-21 (interleukin-21) [148].
Recent experiments provide evidence that IL-17 alone or in
synergy with BAFF also promotes B-cell differentiation and
autoantibody production [158, 159].

SLE patients have raised serum levels of IL-17. Enhanced
percentages of IL-17 producing cells [160–164] and plasma
IL-17 levels correlate with disease activity [162]. One source
of IL-17 in SLE patients is double-negative T cells (DNTs)
[164]. SLE patients have expanded numbers of double-
negative T cells (DNTs) compared to healthy individuals
[165]. IL-17 producing cells infiltrate skin, lung, and kidneys
of SLE and lupus nephritis (LN) patients [160, 165–167] and
most likely contribute to organ damage by exerting-above-
mentioned effects. Evidence that IL-17 also contributes to
B cell activation in LN comes from in vitro experiments
with PBMCs [168]. These experiments document that IL-17
induces induction of IgG and anti-dsDNA production.

Table 1: IL-17 exerts effects on several cell types and tissues.

T cells

Induces production of
proinflammatory IL-6, IL-1beta, and
IL-21, providing a feedback loop [148]

Enhances recruitment of T cells to
inflamed tissue [155]

B cells
Drives B-cell differentiation into
plasma cells and production of
autoantibodies [158, 159]

Monocytes
Enhances migration to inflamed tissue
[173]

Epithelial/
endothelial cells

Induces increased production of
chemokines and upregulation of
adhesion molecules [152]

Neutrophils
Enhances migration to inflamed tissue
[154]

In the last years the Mrl/lpr mice model provided some
evidence for the functional contribution of IL-17 to disease
progression and organ damage. Mrl/lpr mice have increased
numbers of double-negative T cells (DNTs), which produce
high amounts of IL-17 and expression of IL-17, and IL-23
receptor (IL-23R) increases with disease progression [169].
Lymphoid cells from Mrl/lpr mice can induce nephritis
in nonautoimmune species after IL-23 in vitro treatment
[169]. After ischemic reperfusion of the gut, enhanced IL-17-
mediated tissue injury was observed in Mrl/lpr mice [170].
Splenocytes from SNF1 (New Zealand Black x SWR F1)
mice secrete higher levels of IL-17 than nonautoimmune B6
mice [171]. In congruence with observation from the Mrl/lpr
model IL-17-producing T cells are detected in kidneys
affected by nephritis [171]. BXD2 mice express high levels
of IL-17 in serum and increased numbers of IL-17+ cells
in the spleen [172], which form spontaneous autoreactive
germinal centers in concert with IL-17R expressing B cells.
These features could be blocked by inhibition or deletion of
the IL-17 receptor [172].

Although these data indicate that IL-17 plays a role in
pathogenesis of autoimmune diseases, it is not clear whether
targeting IL-17 is suited to treat SLE. Next to Th17 cell other
T-cell subsets like Th1 cells crossregulate each other [158].
In a graft-versus-host-disease model the absence of donor
Th17 cells leads to an exacerbated disease by augmented Th1
differentiation [174]. More importantly there is a reciprocal
relationship between regulatory T cells and Th17 cells.
Recent studies showed that increases in Th17 cells are directly
correlated with the depletion of Treg cells during SLE flares
[160]. It is therefore suggested to consider possibilities to
recover the balance between Th17 and regulatory T cells
to treat SLE and other autoimmune diseases [148, 175].
In fact Tregs and Th17 cells can be generated from the
same cell. TGF-beta induces the differentiation of Treg cells
from naı̈ve T cells; however, the addition of IL-6 or IL-21
results in Th17 differentiation [140, 176, 177]. The lineage
transcription factors of Th17 and Treg cells, RoRγT/RORα
and FoxP3, respectively, bind each other and inhibit each
other’s function [178, 179]. IL-2 is an indispensable growth
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Figure 3: Dysregulated cytokine expression by T cells contributes to pathogenesis of SLE. SLE T cells secrete enhanced levels of IL-17 and
IL-21 compared to healthy persons. IL-17 induces secretion of chemokines and other proinflammatory cytokines and therefore participates
in tissue inflammation and organ damage. IL-21 and IL-17 both promote differentiation of B cells into plasma cells and production of IgG
antibodies. IL-21 further maintains and expands occurrence of Th17 cells. In contrast SLE T cells have a defective production of IL-2, which
leads to reduced level of regulatory T cells and defective function of T cells, which might also be caused by IL-21. Since IL-2 is crucial for
AICD, low levels of IL-2 might be responsible for reduced AICD leading to expansion of autoreactive T cells, which further trigger B-cell
activation and tissue inflammation.

factor for Tregs but inhibits Th17 differentiation [94, 95],
and IL-21 promotes Th17 differentiation and inhibits the
induction of regulatory T cells [122]. Finally Tregs treated
with IL-6 can produce IL-17 [180–182] and can convert
into IL-17 producing autoimmune effector cells [183]. The
balance of Th17 and Treg cells is regulated by several
transcription factors which are activated in a context-
dependent manner depending on external cytokines. The
cytokine environment in SLE is ideal for the generation of
Th17 cells [184]. Low levels of IL-2, enhanced production
of IL-21 and IL-6 [53, 185] might lead to enhanced IL-17
levels. We do not know if Tregs lose expression of FoxP3
and become IL-17-producing cells during SLE flares. But the
cytokine milieu apparent in SLE patients could theoretically
facilitate this phenomenon.

Future investigations might shed light on the question
whether IL-17 blockade or blockade of cytokines or tran-
scription factors that regulate Th17-Treg homeostasis will be
useful to treat SLE.

8. Concluding Remarks

Cytokines are important mediators of intercellular commu-
nication and orchestrate the interaction of immune cells
during immune responses. In SLE several cytokines are
involved in general immune dysregulation and also in local
inflammation which leads to tissue injury and organ damage.
Here we summarized recent advances in the studies of some
cytokines, which contribute to SLE pathogenesis. It is widely

accepted that interferons have a crucial role in the pathogene-
sis of SLE. The therapeutic blockade of the IFN driven vicious
circle might be one of the most promising anti-cytokine
therapies in the future. Furthermore, an aberrant SLE T-
cell phenotype which is characterized by a dysregulated
production of IL-17 and IL-21 and low production of
IL-2 also aggravates disease pathology (Figure 3). These
cytokines exert pleiotropic pathogenic effects, which make
them potential targets in SLE.
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