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Inflammatory Pathophysiology
as a Contributor to
Myeloproliferative Neoplasms
Daniel Arthur Corpuz Fisher , Jared Scott Fowles, Amy Zhou and Stephen Tracy Oh*

Divisions of Hematology & Oncology, School of Medicine, Washington University in St. Louis, Saint Louis, MO, United States

Myeloid neoplasms, including acute myeloid leukemia (AML), myeloproliferative neoplasms

(MPNs), and myelodysplastic syndromes (MDS), feature clonal dominance and remodeling

of the bone marrow niche in a manner that promotes malignant over non-malignant

hematopoiesis. This take-over of hematopoiesis by the malignant clone is hypothesized

to include hyperactivation of inflammatory signaling and overproduction of inflammatory

cytokines. In the Ph-negative MPNs, inflammatory cytokines are considered to be

responsible for a highly deleterious pathophysiologic process: the phenotypic

transformation of polycythemia vera (PV) or essential thrombocythemia (ET) to secondary

myelofibrosis (MF), and the equivalent emergence of primary myelofibrosis (PMF). Bone

marrow fibrosis itself is thought to be mediated heavily by the cytokine TGF-b, and possibly

other cytokines produced as a result of hyperactivated JAK2 kinase in the malignant clone.

MF also features extramedullary hematopoiesis and progression to bone marrow failure,

both of which may be mediated in part by responses to cytokines. In MF, elevated levels of

individual cytokines in plasma are adverse prognostic indicators: elevated IL-8/CXCL8, in

particular, predicts risk of transformation of MF to secondary AML (sAML). Tumor necrosis

factor (TNF, also known as TNFa), may underlie malignant clonal dominance, based on

results from mouse models. Human PV and ET, as well as MF, harbor overproduction of

multiple cytokines, above what is observed in normal aging, which can lead to cellular

signaling abnormalities separate from those directly mediated by hyperactivated JAK2 or

MPL kinases. Evidence that NFkB pathway signaling is frequently hyperactivated in a pan-

hematopoietic pattern in MPNs, including in cells outside the malignant clone, emphasizes

that MPNs are pan-hematopoietic diseases, which remodel the bone marrowmilieu to favor

persistence of the malignancy. Clinical evidence that JAK2 inhibition by ruxolitinib in MF

neither reliably reduces malignant clonal burden nor eliminates cytokine elevations,

suggests targeting cytokine mediated signaling as a therapeutic strategy, which is being

pursued in new clinical trials. Greater knowledge of inflammatory pathophysiology in MPNs

can therefore contribute to the development of more effective therapy.
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INTRODUCTION

The Ph-negative myeloproliferative neoplasms (MPNs) are chronic
myeloid neoplasms, featuring an overproduction of one or more
mature non-lymphoid cell lineages. A diversity of clinical
presentations may include erythrocytosis, thrombocytosis, and/or
myeloproliferation as the primary feature. These can be followed by
progression to myelofibrosis as a primary or secondary disease
phenotype, cytopenias and bone marrow failure, and/or
transformation to secondary acute myeloid leukemia (sAML), for
which the prognosis is dismal in the post-MPN setting. Many
studies have elucidated that MPNs feature an inflammatory
component to their pathophysiology, considered to be secondary
to their neoplastic development, based on their relative paucity of
somatically acquired driver mutations in inflammatory pathways.
Inflammation, particularly in the bone marrow microenvironment,
can be a factor in clonal dominance and in the progression of the
disease, particularly inasfar as it promotes fibrotic transformation of
the bone marrow and suppression of benign hematopoiesis,
conferring a competitive advantage to the malignant clone. The
inflammatory pathophysiology of MPNs, however, has the potential
to be leveraged therapeutically for the development of new
treatments and improved future therapy.

CLINICAL ASPECTS OF MPNS SUGGEST
INFLAMMATORY AS WELL AS
NEOPLASTIC PATHOPHYSIOLOGY

Ph-negative MPNs are associated with myeloproliferation,
constitutional symptoms, and bone marrow fibrosis, which can
also be observed in patients with chronic inflammatory diseases.
The activating JAK2 V617F mutation is the most common driver
mutation in MPNs. In polycythemia vera (PV) and essential
throbocythemia (ET), the JAK2mutation can sustain a condition
of chronic inflammation (1–3), explaining the associated
constitutional symptoms, thrombosis, and premature
atherosclerosis observed in patients with these disorders (4–6).
Furthermore, the increases in circulating levels of cytokines,
chemokines, and reactive oxygen species (ROS) accumulation
in chronic inflammatory states can lead to genetic instability,
which may favor the development and progression of neoplasms
(7). The current evidence suggests that MPNs are chronic
inflammatory conditions in addition to neoplastic disorders,
and that both processes contribute to the cl inical
manifestations and pathogenesis of the disease.

Several studies have suggested an association between
autoimmune disorders and hematologic malignancies (8–10).
A large population-based retrospective study by Kristinsson et al.
(11) of 11,039 MPN patients and 43,550 matched controls found
a significantly increased risk of MPN in patients with a prior
history of autoimmune disease (11). The study found that
individuals with a prior history of any autoimmune disease
had a 20% increased risk of developing an MPN. When
evaluated by individual autoimmune diseases, the study found
a 2 –to 3-fold elevated risk of MPNs among patients with a

history of immune thrombocytopenia purpura, Crohn’s disease,
polymyalgia rheumatica, giant cell arteritis, aplastic anemia, or
Reiter’s syndrome (11). These findings suggest that inflammation
could be a predisposing factor for development of MPNs and
that the overproduction of inflammatory cytokines associated
with autoimmune diseases may play a role in the pathogenesis of
MPNs (12).

Inflammation is considered a factor that may promote MPN
disease development, progression and/or lead to poorer
prognosis overal l . The recent findings that c lonal
hematopoiesis is frequent among adult humans, that JAK2

V617F is among the most common mutations found in
asymptomatic clonal hematopoiesis, and that, impressively,
clonal JAK2 V617F is most frequently acquired in childhood or
even in utero, suggest that some biological selective process is
necessary to transform asymptomatic JAK2 V617F mutant
clones into overt MPNs (13–17). Chronic inflammation in the
bone marrow or in the systemic circulation could contribute to
the slow selection for eventually pathogenic mutant clones.
Further studies are needed, however, to elucidate the specific
relationships between inflammatory disorders and MPNs.

A notable feature of MPNs is their diversity of disease
phenotypes. MPNs may present as ET, PV, or PMF, often
following years to decades of asymptomatic clonal
hematopoiesis (13, 14, 16, 17). The malignant clones in the
vast majority of MPN patients harbor mutations in JAK2,
calreticulin (CALR), or MPL (18). Nearly all PV clones are
JAK2 mutant, however, while ET and PMF clones may harbor
mutations in any one of JAK2, CALR, or MPL. JAK2 mutant
clones can give rise to any of the three disease phenotypes. MPN
clones can differ in their propensity to induce inflammatory
pathophysiology, which can, in turn, affect their disease
phenotype. It has been observed that ex vivo erythroid cell
colonies derived from patients with either ET or PV differed in
their propensity to harbor elevated interferon g and STAT1
directed gene expression, which was more prevalent in ET
versus PV derived colonies (19). This indicated that
inflammatory signaling might alter disease pathophysiology
even in the context of a common driver mutation.

JAK2 mutant homozygosity is substantially more common in
PV and MF than in ET (20, 21). It has also been associated with
more severe symptoms and increased risk of cardiovascular
events in PV (22). In ET and PV, acute phase inflammatory
proteins such as high sensitivity (hs)-CRP and pentraxin 3 (PTX-
3) were found to significantly correlate with JAK2 V617F allele
burdens of greater than 50% (23–25). Hs-CRP levels were shown
to be increased in MPN patients compared to normal controls,
and independently associated with shortened leukemia free
survival in myelofibrosis (MF) patients (26). Increased levels of
hs-CRP were associated with an increased risk of thrombosis,
although conversely, high PTX-3 levels were associated with a
lower rate of thrombosis (23). Importantly, however, JAK2
V617F allele burdens of greater than 50% in MF patients have
also been associated with favorable responses to ruxolitinib (27),
suggesting that MPN patients with elevated hs-CRP or PTX-3
may benefit from aggressive JAK inhibitor therapy.
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Consistent with evidence of elevated inflammation, JAK2
mutant homozygosity in PV or ET increases risk of
transformation to MF (28). In contrast to mutant JAK2,
mutant CALR and MPL alleles almost never develop
homozygosity (29, 30). The contribution of JAK2 mutant
homozygosity to the inflammatory pathophysiology of MPNs
remains obscure, but might contribute to differences between
outcomes of JAK2 mutant ET or MF patients versus others. In
PMF, survival (either overall or leukemia free) is inferior in the
JAK2 mutant patient population (as compared to MPL or CALR
mutant patients; although triple negative, or 3N, PMF shows
even worse survival) (31, 32). The observation of typically greater
NFkB activation in hematopoietic stem and progenitor cells
(HSPCs) from JAK2 mutant MF patients (33) is suggestive of
more severe inflammation, which may in turn contribute to poor
outcomes. More widespread expression of mutant JAK2 versus
MPL or CALR (34) among hematopoietic cells may contribute to
greater inflammation in JAK2 mutant patients as well.

Despite evidence of inflammatory pathophysiology
contributing to poor outcomes in MPNs, specifically to the
development of secondary MF and thromboses (3, 5, 23, 25,
26, 28, 35, 36), other factors are known to influence outcomes in
MPNs, some of which may have divergent effects from those
caused by inflammation. Epigenetic and RNA splicing related
mutations are well recognized as predictive of adverse outcomes
in MPNs (18, 31). It is notable that low, rather than high, JAK2
V617F allele burdens at diagnosis have been correlated with
shortened leukemia-free survival in PMF (37, 38). Low JAK2

V617F allele burdens at diagnosis may be associated with anemia
and cytopenias in MF (38), and possibly with epigenetic
mutations producing prognoses more similar to those of triple
negative, or 3N, PMF (32, 39). In PV, low JAK2 V617F allele
burdens at diagnosis are also common in younger patients who
frequently present with thrombotic events (40, 41).

CYTOKINES ARE ELEVATED IN ALL
CHRONIC PHASE MPNS IN COMPARISON
WITH HEALTHY AGED INDIVIDUALS

Multiple studies that investigated cytokine levels in MPNs have
now produced data showing widespread cytokine elevations in
ET, PV, and PMF, and correlations with disease features and
outcomes (Tables 1 and 2). These studies have identified not
only the cytokine elevations most associated with particular
disease phenotypes, but also with blast transformation of a
chronic phase MPN, or with prognosis. The wide variation in
the studies in terms of technology, disease subtype, and specific
cytokines measured, poses a challenge for hypothesis generation.
Regardless, underlying concepts are coming into focus, namely
that: 1) elevated cytokines are observed in MPN patients of all
subtypes compared to healthy individuals; 2) the elevated
cytokine profiles between subtypes appear distinct in
composition or magnitude albeit overlapping among different
MPN diagnoses on the level of individual cytokines. Evidence of

elevated cytokine levels in MPN patients began to emerge over 30
years ago, with studies relying predominantly on ELISA and/or
semiquantitative real time PCR of a small collection of targets.
The development of multiplex array-based and single cell
technologies in recent years has allowed researchers to
interrogate large panels of cytokines to further illuminate the
connections between inflammatory cytokines and other
pathophysiologic features of myeloid malignancies.

In studies that correlated cytokine levels from PV and ET
samples with disease features, IL-2, s-IL-2R, and IL-6 correlated
with MF transformation from both PV and ET (50).
Additionally, CRP correlated with thrombosis and JAK2
V617F burden in a combined PV/ET cohort (23). In ET where
overproduction of platelets is a main feature, a study observed a
correlation with thrombocytosis and TNF levels (47).

Patients with primary myelofibrosis (PMF) have been shown
to share both clinical symptoms and laboratory abnormalities
with patients with systemic inflammatory response syndrome,
such as elevation in the erythrocyte sedimentation rate, C-
reactive protein (CRP), IL-1b, IL-6, IL-8, and TNF (54). High
plasma levels of IL-6 and IL-8 were found to be significantly
associated with severity of constitutional symptoms in PMF
patients by Tefferi et al. (43) Elevations of IL-2, and sIL-2R, Il-
6, IL-8, and b2-microglobulin, have been associated with blast
transformation of CML or Ph- MPNs, based on several studies
(43, 50, 51, 55). IL-8, also known as CXCL8, is a CXC family
cytokine found to be expressed by HSPC in MF (48) and de novo

AML (56) patients. High levels of IL-8 were associated with both
poor overall and leukemia-free survival, and transformation to
sAML, when assayed in blood plasma from MF patients (43). IL-
8 has thereby been hypothesized to be a potential surrogate for
CD34+ cell burden in MF, and hence a possible risk marker for
incipient transformation to sAML (48). Tefferi et al. also found
plasma IL-12, IL-15, IP-10, and circulating IL-2R, to be
independent markers of poor survival, as well as IL-8 (43).

The prognostic potential of cytokines in PV was addressed in
2012 by Vaidya et al., revealing a different profile from what was
observed for MF (44). Thirty cytokines were measured from
plasma samples from 65 patients using the same Luminex
technology as in the preceding study by Tefferi et al. for MF
(43). A univariate analysis showed association of multiple
cytokines with inferior overall survival in PV, but CCL4/MIP-
1b alone remained associated in a multivariable analysis. Fibrotic
transformation was associated in a univariate analysis with
elevations in IL-1b, IL-5, IL-6, IL-10, IL-12, IL-15, IL-17, and
IP-10 (44).

Verstovsek et al. showed that levels of several cytokines from
25 patients enrolled in the Phase 1-2 clinical trial of ruxolitinib
for MF, before and 28 days-post treatment decreased
significantly (57). Reductions of CRP, IL-1RA, CCL4/MIP-1b,
TNF, and IL-6 were associated with decrease in the composite
symptom score of patients (57). Pardanani et al. identified in MF
patients from two different clinical trials of pomalidomide for
MF-associated anemia, that patients with high levels of sIL-2R,
IL-8, IL-15, MCP-1, and VEGF at baseline had significantly
lower rates of anemia response to treatment (42).
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Inflammation has been shown to increase with age, consistent
with changes in hematopoiesis observed in healthy aging.
Although much less frequently, MPN can occur at younger
ages. In 2019, a study by the authors examined the relationship
of age in PV patients with both inflammation and genomic
mutation profile (41). Comparing plasma from 16 young PV
patients (age ≤ 45 years) with 12 old PV patients (age ≥ 65 years)

that were all within 1.5 years of diagnosis, the same cytokines
were significantly elevated compared to age-matched healthy
donors (10 young and 7 old). When comparing the fold change
based on their respective age-matched donors, old PV patients
exhibited an exacerbated elevation of cytokines compared to
young PV patients. Overall mutational burden increased with
age as expected, and secondary non-JAK2 driver mutations were

TABLE 1 | Selection of inflammatory cytokines elevated in plasmas of MPN patients of all disease stages.

1st Author Pardanani (42) Tefferi (43) Vaidya (44) Kalota (45) Pourcelot (46) Cacemiro (47) Fisher (48) Fowles (41)

journal Am J Hematol J Clin Oncol Am J Hematol Clin Cancer Res Exp Hematol Hematol Transfus Cell Ther Leukemia Leukemia

year 2011 2011 2012 2013 2014 2019 2019 2019

EGF ns ns HD > PV;

PMF > PV

- - - - -

b-FGF ns ns PMF > PV - - - - -

G-CSF ns PMF > HD ns MF > HD;

PV > HD

- - - ns

GM-CSF MF > HD ns PV > HD;

PV > PMF

MF > HD;

PV > HD

PV > HD;

ET > HD

MPN > HD;

PV > ET

ns -

HGF MF > HD PMF > HD PV > HD - PV > HD;

ET > HD

- - -

IFN-a ns PMF > HD PMF > PV MF > HD;

PV > HD

- MPN > HD - -

IFN-g MF > HD HD > PMF PV > PMF MF > HD;

PV > HD

PV > HD;

ET > HD

PMF > ET ns PV > HD

IL-4 MF > HD ns ns - PV > HD;

ET > HD

MPN > HD;

PV > ET

ns -

IL-5 ns ns PV > HD - - MPN > HD ns -

IL-6 MF > HD PMF > HD PV > HD MF > HD;

PV > HD

PV > HD;

ET > HD

MPN > HD MF > HD PV > HD

IL-8 MF > HD PMF > HD PV > HD - PV > HD;

ET > HD

- - ns

IL-10 MF > HD PMF > HD PMF > PV - PV > HD;

ET > HD

MPN > HD MF > HD -

IL-12 MF > HD PMF > HD PV > HD;

PMF > PV

- PV > HD;

ET > HD

MPN > HD;

PMF > ET;

PV > ET

ns -

IL-13 MF > HD PMF > HD PV > HD - - - ns -

IL-15 MF > HD PMF > HD PV > HD - - - ns -

IL-16 ns - - - - - MF > HD -

IL-17 MF > HD ns ns - - PMF > HD;

PMF > ET

ns -

IL-1RA MF > HD PMF > HD PV > HD;

PMF > PV

- - - - -

IL-1b MF > HD PMF > HD PMF > PV - ns MPN > HD ns -

IP-10 MF > HD PMF > HD PV > HD;

PV > PMF

- - PMF > ET ns PV > HD

MCP-1 MF > HD PMF > HD PV > HD - PV > HD;

ET > HD

ns ns -

MIG MF > HD PMF > HD PV > HD;

PV > PMF

- - - - -

MIP-1a MF > HD PMF > HD PV > HD;

PV > PMF

- - MPN > HD ns PV > HD

MIP-1b MF > HD PMF > HD PV > HD;

PV > PMF

MF > HD;

PV > HD

- PV > HD;

ET > HD

ns -

RANTES MF > HD ns HD > PV;

PMF > PV

MF > HD;

PV > HD

- ET > HD;

PV > ET

- -

sIL-2R MF > HD PMF > HD PMF > PV - - - - PV > HD

TNFRII - - - - - - - -

TNF-a MF > HD PMF > HD ns MF > HD;

PV > HD

PV > HD;

ET > HD

MPN > HD ns PV > HD

VEGF MF > HD PMF > HD PV > HD;

PV > PMF

- PV > HD;

ET > HD

- MF > HD ns

MF, myelofibrosis; PMF, primary myelofibrosis; HD, healthy donor; PV, polycythemia vera; ET, essential thrombocythemia; MPN, myeloproliferative neoplasms; ns, no significant

differences between sample types; “>“, first sample type is significantly elevated compared to second sample type; “-”, not in assay.
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TABLE 2 | Cytokine correlations with disease features and outcomes in MPNs.

reduced sur-

vival

MF trans-

formation

AML

trans-

formation

leukocytosis HCT/Hgb transfusion

dependence

thrombo-cytosis thrombosis splenomegaly vascular

complications

JAK2 burden Age sex (M)

GM-

CSF

PV (44) ↓PV (44) ↓PV, ↓ET (46)

HGF PMF (43);

PV (44);

PV (49)

PV (49) PMF (43) ↓PV (44) PMF (43)

hs-

CRP

MF (23, 25) MF (23) PV& ET

(23, 24)

PV& ET (23, 24), PMF

(25)

PMF

(25)

IFN-a PV (44) PV (44);

PMF (47)

IL-1b PV (44) PV (44) PV (44)

IL-2 PV, ET

(50)

MF (51);

PMF (50)

PV (44)

sIL-2R PMF* (43);

MF* (52)

PV, ET

(50)

MF (51);

PMF (50)

PMF* (43);

PMF (35)

↓JAK2 mut PMF

(35)

PMF* (43);

MF (52)

↓JAK2mut PMF

(35)

MF (52);

JAK2 mut PMF

(35)

PMF* (43) PV (41) PMF

(43)

IL-4 PV (44) PV (46);

↓PV (47)

↓PV (44)

IL-5 PV (44) PV (44) ↓PV (47)

IL-6 PV, ET

(50);

PV (44)

PMF (50) PV (46) ↓PV (44) PMF (43) PV (41)

IL-8 PMF* (43);

MF* (52)

PMF (43) PMF* (43) PMF

(43)

IL-10 PV (44) PV (44) PMF (43)

IL-12 PV (44) PV (44) PMF* (43) ↓PV, ↓ET (46) PMF (43)

IL-15 PMF* (43) PV (44) PMF*

(43)

IP-10 PMF (43) PV (44) PMF (43) ↓PMF (47) PMF (43);

PMF (47)

PMF

(43);

PV (41)

MCP-1 PV (44) PV (46) PMF (43) PV (44)

MIG PMF (43) PMF (43) PMF

(43)

MIP-

1a

PV (44) ↓PMF (47) PMF (43) PMF*

(43)

MIP-1b PV* (44)

TNF-a PV (44) PV (46) PV (46) ET (47) MPN (53) PV (41)

MF, myelofibrosis; AML, acute myeloid leukemia; HCT, hematocrit; Hgb, hemoglobin; PV, polycythemia vera; ET, essential thrombocythemia; PMF, primary myelofibrosis; MPN, myeloproliferative neoplasm; * significant in multivariate analysis;

↓, lower cytokine levels is associated with disease feature; superscript numbers refer to reference number in bibliography.
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found in 9/10 old PV patients, in contrast with young PV
patients, where JAK2 V617F appeared to be the only disease-
related mutation present (41). Together, this data suggests two
important concepts for MPN pathophysiology: First, that PV
patients exhibit elevated inflammatory cytokine production
regardless of age. Second, that the more pronounced elevation
of cytokines observed in old PV patients could be attributable to
age and/or the presence of secondary mutations. It is important
to note that in this study no predominance of non-JAK2
mutations preceding JAK2 V617F was observed. This suggests
that the increase in MPN-related mutational burden might not
be a mere function of age, but also a result of the JAK2 mutation
itself, as suggested by findings that JAK2 V617F may indirectly
promote genomic instability (58).

Taken together, these studies provide evidence that
inflammatory cytokine levels are elevated in MPNs compared
to healthy counterparts, that this elevation can be seen even
among relatively young MPN patients, and that other signaling
pathways or factors may be involved besides JAK-STAT
signaling. Furthermore, plasma cytokines levels in MF and
sAML patient samples, assayed by V-PLEX human cytokine
30-plex assay, demonstrated that sAML cytokine levels were
similar to MF levels (48). Therefore, the pattern of elevation of
plasma cytokines observed in chronic MPNs persists in sAML,
despite the extremely altered cellular composition of AML versus
chronic MPNs.

HYPERACTIVATION OF JAK2 OR
MPL CAUSES MYELOPROLIFERATION,
CYTOKINE PRODUCTION,
AND MYELOFIBROSIS

The Ph-negative myeloproliferative neoplasms (MPNs),
polycythemia vera (PV), essential thrombocythemia (ET),
primary or idiopathic myelofibrosis (PMF), and secondary
myelofibrosis (MF, secondary to PV or ET), share a common
etiology in hyperactivation of the kinase JAK2 in the
hematopoietic stem and progenitor cell (HSPC) compartment
of a malignant clone. Genomic studies of MPNs have revealed
that nearly all cases of PV harbor mutations in the gene encoding
JAK2 itself, with the specific hyperactivating JAK2 V617F
mutation being present in over 90% of cases of PV, and
slightly over half of all studied cases of ET and PMF (31, 40,
59, 60). Roughly 5-10% of ET and MF patients harbor mutations
in the MPL gene, which encodes the cell surface receptor for
thrombopoietin (TPO), which signals intracellularly by binding
to and activating JAK2 kinase. A greater portion, 30-35% of ET
and MF patients, harbor mutations in calreticulin (CALR), a
multifunctional protein typically resident in the endoplasmic
reticulum, but occasionally exposed at the cell surface (29, 30,
34). Mutant versions of CALR protein contain a neomorphic C-
terminal domain (resulting from a frameshift in the genomic
DNA sequence) that complexes MPL molecules at the cell
surface and predisposes them to constitutive signaling activity

(61). Therefore, in almost all cases of MPNs, the malignant clone
harbors a mutation conferring a constitutive activation of JAK2
activity in the HSPC population, and throughout derivative
malignant hematopoiesis (Figure 1). It is not clear if this is
true in the case of every MPN patient, as there exist rare triple
negative (3N) cases lacking mutations in any of the JAK2, MPL,
or CALR genes. Some of these 3N cases, however, have been
found to harbor mutations in genes such as CBL and SH2B3/

LNK (62, 63), which confer enhanced JAK2 activity by removal
of inhibition; hence it is likely that all Ph-negative MPN cases
include constitutive JAK2 activity in the malignant clone (60).
JAK2 inhibition, most frequently with ruxolitinib, the first JAK
inhibitor approved for treatment of MF, remains the best
available therapy and standard of care for many MF patients
today, and provides clinical benefits to selected PV (and some
ET) patients as well (64–70).

The identification of disease-driver mutations in MPL and
CALR, in addition to those in JAK2, confers clues to the
molecular pathophysiology underlying the diversity of MPN
phenotypes. MPL mutations in MPNs are activating mutations
that facilitate activation of JAK2 kinase by MPL receptor. The
MPL gene is expressed in HSPCs, including stem cells and early
myeloid progenitors, in all stages of the megakaryocytic lineage,
and in a subset of monocytic lineage cells, some of which may be
fibrogenic (71). These cells respond to TPO by activating JAK2,
which phosphorylates the transcription factors STAT3 and
STAT5, to transcriptionally active forms capable of mediating
cell-type-specific transcriptomic profiles (72, 73). MPL and
CALR mutations are notably not observed in PV, presumably
because the MPL gene is not expressed in erythroid progenitors,
the proliferation of which is normally driven by erythropoietin
rather than TPO. A mouse model of Mpl hyperactivity in vivo,
however, is sufficient to produce bone marrow fibrosis that
resembles that observed in MF: Tpo treatment of mice induces
bone marrow fibrosis, and this has been used as a model to study
this pathophysiologic process, albeit in the absence of a
malignant clone (74). This stands in contrast to mouse models
expressing MPN-derived mutations in JAK2 and CALR
homologs at physiologic levels, which exhibit phenotypes
resembling PV or ET, with little if any bone marrow fibrosis
(75). In humans, progression of PV or ET to secondary MF often
occurs over a number of years greater than the lifespan of a
mouse (28).

The specific pathophysiology of myelofibrosis has long been
hypothesized to be reactive, since the bone marrow stromal cells
are non-malignant, with an important role played by cytokines
secreted from malignant cells (54, 76). In the Tpo induced model
of bone marrow fibrosis, the cytokine transforming growth factor
beta (Tgf-b) was found to be essential to the development of the
fibrotic phenotype (74). The essential lesson from this study was
that Tpo-responsive cells (hence, Mpl expressing) directed bone
marrow fibrosis non-cell-autonomously via the production of
another cytokine. This illustrates the inflammatory hypothesis of
MPN pathophysiology, a hypothesis that has been applied to
other cancers as well: namely, that inflammation, particularly via
inflammatory cytokines, is a major driver of disease phenotype.
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FIGURE 1 | Mechanisms of JAK2 activation by MPN driver mutations. (A) Normal mechanism for receptor activation of the human thrombopoietin (TPO) receptor

MPL (myeloproliferative leukemia proto-oncogene). MPL, expressed in HSPC and megakaryocytic lineage cells, exists in an equilibrium between inactive monomers

and active homodimers. Binding of the monomeric ligand TPO stabilizes dimer formation, allowing phosphorylation of the receptor by dimeric JAK2 tyrosine kinase.

This step initiates intracellular signaling downstream of active JAK2. The active receptor-kinase holocomplex is subject to inhibition by several inhibitor molecules,

notably SOCS (suppressor of cytokine signaling) family proteins, tyrosine phosphatases, and the adaptor protein SH2B3 (also known as LNK, lymphocyte linker

protein). Mutations in genes encoding these various inhibitory molecules are rare driver mutations in MPNs, which lead to JAK2 hyperactivation by removal of

physiologic inhibition. (B) Activation of JAK2 signaling by mutant CALR. The single-pass transmembrane protein CALR (calreticulin) is a calcium-binding chaperone

protein that normally recycles between plasma and intracellular membranes in the secretory pathway. Mutated CALR acquires a neomorphic C-terminus (depicted as

striped), which is capable of binding to and dimerizing MPL, consequently producing signaling-active MPL homodimers, which recruit and activate JAK2, in the

absence of TPO binding. CALR mutations in MPN are therefore hypothesized to have similar effects to activating MPL W515L/K mutations, which are present in

roughly 10% of ET and MF patients. (C) Effect of the JAK2 V617F mutation. JAK2 (Janus kinase), depicted as the ancient Roman god Janus (sculpture in the

Vatican Museum, Rome), contains homologous kinase and pseudokinase domains, the pseudokinase being inhibitory to the kinase. V617F mutation in the

pseudokinase domain inactivates the inhibition, producing a constitutively active (autophosphorylated) kinase. (D) Direct activation of JAK/STAT signaling by active

JAK2. Mutant JAK2 (typically V617F) dimerizes MPL and other cytokine receptors, rendering the receptor active even in absence of a bound ligand. The active

receptor-bound JAK2 phosphorylates STAT3 and STAT5 homodimers, which then translocate to the nucleus to activate transcription. Unlike MPL and CALR

mutations, JAK2 mutations enable constitutive JAK2 activity even in cells that do not express MPL. Mutant JAK2 has been shown to promote epigenetic changes

and increase the potential for unrepaired DNA damage. Active JAK2 collaterally activates MAP kinase (MAPK) and PI3 kinase (PI3K) signaling pathways

independently of STAT3 and STAT5.
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Furthermore, the hyperabundance of inflammatory
mediators that is present in myeloid neoplasms is not confined
to circulating cytokines. Cell-contact-mediated inflammatory
activation is certainly also a feature of these diseases. In the
case of MF, cell-contact-mediated inflammatory activating
ligands, such as FAS and the endogenous toll-like-receptor
ligands S100A8 and A100A9, have been found to be
upregulated at the gene expression level in the malignant
CD34-expressing HSPC population (48, 77). This is important
because, in MPNs, the HSPC population is not only the disease-
propagating population from which the malignant clone initially
arises, but also because it is a malignant population that remains
present over the course of years in the chronic (ET or PV) phase
of the MPN, and hence must be at least partly responsible for
effecting phenotypic transformation, such as from ET or PV to
MF (78). In MPNs, the entire compendium of malignant
pathophysiology must ultimately originate from the stem
cell population.

In contrast to the dependence of MPN pathophysiology on
the actions of malignant HSPCs, MPNs are also pan-
hematopoietic diseases, involving the entire hematopoietic
system of the patient, as well as the niche environments
supporting hematopoiesis, such as the bone marrow and
splenic stroma. Prominent features of MF pathophysiology
include HSPC mobilization from the bone marrow, and
consequent extramedullary hematopoiesis in the spleen (and
occasionally in the liver), producing marked splenomegaly.
Therefore, the roles of multiple hematopoietic cell niches need
to be considered in the total extent of pathophysiology of MPNs,
as components of the affected hematopoietic system.

MF CYTOKINE OVERPRODUCTION
DEPENDS ON SIGNALING
ABNORMALITIES BEYOND JAK-STAT

MPN pathophysiology is predominantly dependent on the
common feature of hyperactivation of JAK2 kinase. Therefore, it
is of interest to determine to what extent the inflammatory features
of MPNs are directly, or indirectly, dependent on JAK2 activity.
This is also important because JAK2 inhibition, as a therapeutic
modality for MPNs, does not greatly or reliably reduce the
malignant clonal burden or extent of bone marrow fibrosis (68,
79, 80). Therapeutic JAK2 inhibition with ruxolitinib was observed
to result in reductions of multiple plasma cytokines in MF patients
within the first month of treatment (57). Ruxolitinib treatment of
MF patients for periods from one month to over a year, however,
was observed not to revert plasma cytokines to the low levels seen in
healthy control plasmas (48). Therefore, ruxolitinib can be said to
provide a partial, but incomplete, reduction of inflammatory
pathophysiology in MF. This conclusion raises the important
question of whether longstanding MPN pathophysiology has
activated signaling pathways that cannot be restored to their
normal state by ameliorating the primary signaling defect of JAK2
hyperactivation. Multiple cytokines significantly elevated in MF

plasmas activate downstream signaling other than via JAK-STAT.
These included TNF, which is known to activate multiple signaling
pathways, including pro-apoptotic signaling and the canonical
NFkB pathway (81). Other studies identified pathologic
production of TNF in ET, PV, and sAML, as well as in de novo

AML, implying non-JAK/STAT signaling hyperactivations almost
certainly occur across the spectrum of MPNs (33, 41, 53, 82).

Our group has utilized mass cytometry (CyTOF) to survey
both intracellular signaling in MF and sAML (33) and cytokine
production in human MF patient blood cells ex vivo (48). A
survey of intracellular signaling identified frequent elevations of
MAP kinase, PI3 kinase, and NFkB pathway signaling markers in
MF and sAML patients HSPCs, and in some other myeloid
populations such as monocytes (33). Independent gene
expression studies corroborated evidence for supranormal
NFkB signaling, as well as Notch and p53/apoptotic signaling,
in PMF (33, 77, 83). Evidence for NFkB signaling
hyperactivation was also observed in MPL W515L model mice
(84), and in Jak2 V617F model mice with loss of Dnmt3a, which
showed a myelofibrosis-like phenotype (85).

Since MF patients frequently exhibit mobilization of CD34+
hematopoietic stem and progenitor cells (HSPC) from the bone
marrow to the peripheral blood and spleen, it is possible to study
cells occupying a spectrum of hematopoiesis from stem cells to
more mature cells, using blood cells from MF patients, and
comparing these to cells with comparable immunophenotypes in
healthy control bone marrow and peripheral blood. Using the mass
cytometry approach, our group was able to analyze cytokine
production throughout hematopoietic cell populations ex vivo in
MF patients versus healthy controls (48). Among cytokines
surveyed by mass cytometry, a subset were identified that were
inducible by TPO and TLR ligands, most of which were also
inducible by TNF: these included TNF itself, IL-6, and IL-8/
CXCL8, all previously implicated in MPN pathophysiology (48).
This result suggests that in vivo overproduction of these cytokines is
supported by combined JAK2 andNFkB signaling hyperactivations.
Basally supranormal, or constitutively elevated, production of these
cytokines in MF cells, was not invariably sensitive to suppression by
ex vivo ruxolitinib. Instead, inhibitors of NFkB, MEK, and
p38MAPK, were more effective than ruxolitinib at reducing basal
levels of TPO/TLR/TNF inducible cytokines. Another subset of MF
overproduced cytokines, notably including TGFb and VEGF, did
not show any responsiveness to TPO, TLR ligands, TNF, or
ruxolitinib. Their basal levels, ex vivo, were likewise either
unaffected or slightly elevated by inhibitors of NFkB, MEK,
p38MAPK, or JNK. This second set of cytokines was not
frequently co-expressed with the first set at the single cell level,
while the TPO/TLR/TNF inducible cytokines were frequently co-
expressed in individual MF monocytes (Figure 2). This suggests
that overproduction of TGFb and VEGF is directly driven by
entirely different signaling pathways from TNF, IL-6, and IL-8/
CXCL8, and which are separate from JAK-STAT, NFkB, MAPK, or
JNK pathways.

Plasma cytokines elevated in the MPL W515L retroviral
transplant mouse model of MF were also reduced by
ruxolitinib, although not to the low levels observed in control
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mice (86). Cytokine levels were further reduced in this mouse
model by BET bromodomain protein inhibitor JQ1, which
reduced NFkB-associated gene expression, in combination with
ruxolitinib (84). Since multiple cytokines are known to be
inducible by NFkB, this pathway is an obvious candidate for a
direct inducer of cytokine expression in MPNs.

Tgf-b mediated fibrosis in Tpo-treated mice has been linked
to suppression of GATA-1 expression in megakaryocytes (87).
However, the relationship of this model to human MF is
uncertain, not only because it lacks a malignant clone, but also
because it can be produced in NOD/SCID mice lacking a

functional immune system and defective in cytokine secretion
from monocytes (88); whereas monocytes, as well as
megakaryoblasts, were observed to produce TGFb in human
MF (48). In contrast, pharmacologic inhibition of Aurora kinase
A (AURKA) reduced plasma Tgf-b and bone marrow fibrosis in
the MPL W515L retroviral transplant mouse model of MF (89).
This result cannot be compared to those obtained in the same
mouse model with ruxolitinib and/or JQ1, as Tgf-b was not
among the cytokines assayed in those studies (84, 86). Therefore,
the signaling mediators directly driving TGFb and VEGF
overproduction in MF remain unknown.

A B

C

FIGURE 2 | Distinct coexpressed groups of cytokines overproduced in MPNs. Data specific to MF, also utilized in Fisher et al. (48). (A, B) Presence or absence of

tandem regulation of cytokine induction by TPO. Biaxial plots show in rows (from top to bottom) ex vivo cell samples from healthy control blood and blood from the

JAK2 V617F mutant MF patient MF20. Columns show cytokines as identified in cells by mass cytometry (CyTOF) after 4-hour incubation either without stimulation

(Basal) or stimulated by TPO. (A) In monocytes, TNF (Y axis) showed coexpression with IL-8/CXCL8 (X axis) when induced by TPO. Combined induction is illustrated

by schematic below lower right plot. (B) TGFb (X axis) showed minimal basal coexpression with TNF (Y axis) in monocytes. TPO stimulation, however, induced TNF

but not TGFb, as illustrated by schematic under lower right plot. (C) Schematic depicting “axis” groups of cytokines overproduced in MF myeloid cells ex vivo. The

majority of cytokines could be separated into TNF or TGFb “axis” groups (related to biaxial plots in A, B), based on co-expression with either TNF or TGFb after

stimulation with TPO, TNF, or a TLR receptor ligand (R848 or PAM3CSK4), with Pearson R>0.25 (48). Of 15 cytokines assayed by CyTOF in Fisher et al. (48), only

VEGF and IFNg failed to demonstrate coexpression with either TNF or TGFb, while IL-8/CXCL8 showed some evidence of coregulation with both (R>0.25).
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TNF IS IMPLICATED IN CLONAL
DOMINANCE IN MPNS

MPNs are clonal diseases of the hematopoietic compartment, but
the mechanisms for clonal expansion are not fully elucidated.
Plausible hypotheses include that the molecular events driving
pathogenesis, such as mutations that constitutively activate JAK-
STAT signaling, either confer growth advantage to HSPCs
compared to their wildtype counterparts under normal
conditions, or can be protective against additional
environmental factors related to aging, such as declining
hematopoietic stem cell (HSC) functionality or inflammation
(12, 54, 90). The TNF receptors TNFRSF1a and TNFRSF1b (also
known as TNFR1 and TNFR2) activate different signaling
pathways downstream of TNF binding (Figure 3), the former
being associated with apoptosis and the latter with proliferation
(81). Notably, TNFRSF1a, but not TNFRSF1b, contains an
intracellular protein-protein binding domain known as a
“death domain” (DD), which provides an essential scaffold for
recruitment of the apoptosis-inducing multiprotein “Complex
II”, or Death Inducing Signaling Complex (DISC), which can be
activated by TNF (81, 91).

TNF can activate the canonical NFkB pathway, which is
associated with myeloproliferation, both in myeloid neoplasms
and in “stress” or “emergency” hematopoiesis following a
hematopoietic insult such as the systemic inflammation
resulting from an infection (92). Nonetheless, TNF has been
observed to mediate substantial myelosuppressive effects by its
direct action on hematopoietic stem and progenitor cells
(HSPCs). Tnf can cause bone marrow failure and induce
leukemic clonal evolution in mouse models of Fanconi anemia
(93, 94). Furthermore, a recent study has shown that Tnf injected
into normal, healthy mice is acutely toxic to myeloid progenitor
cells and granulocytes, causing cell death by a combination of
apoptosis and necroptosis, but that HSC are resistant to this Tnf
toxicity (95). It has been hypothesized in several studies that
malignant HSC from MPNs or leukemic initiating cells (LICs) in
AML may harbor cell-autonomous mechanisms enabling these
cells to further resist toxic or myelosuppressive effects of TNF
acting on their non-malignant counterpart cells (53, 82, 96, 97).

The duality of TNF as an endogenous factor, which could
potentially be either myelosuppressive or myeloproliferative, has
led to hypotheses that this cytokine could play a major role in
myeloid neoplasms, in the manner of promoting clonal
dominance by exerting a myelosuppressive role on benign
hematopoiesis while simultaneously exerting a myeloproliferative
role onmalignant hematopoiesis. This could be particularly crucial
for chronic MPNs, where clonal dominance develops despite the
malignant clone producing (mostly) functional mature myeloid
cells. This feature of MPNs stands in contrast to AML or
myelodysplastic syndromes (MDS), in which maturation-
defective abnormal myeloid cells accumulate in a manner that
can progressively crowd the normal hematopoietic niche out of
existence. Therefore, a mechanistic hypothesis explaining the
development of clonal dominance in MPN pathophysiology
is necessary.

TNF is elevated in human MPN patient samples and is also
elevated in JAK2 V617F mouse models of MPN; notably,
Fleischman et al. showed that PV, ET, and MF patients all had
higher TNF levels in blood plasma than healthy controls, and
that TNF levels correlated with JAK2 V617F burden (53). Colony
formation assays in methylcellulose revealed that whereas
normal cells were inhibited by TNF, JAK2 mutant cells were
either resistant or stimulated by TNF (53). In colony assays from
Tnf knockout mice with or without retroviral expression of JAK2
V617F, the former clonal expansion observed in JAK2 mutant
cells in colony formation assays was limited. Additionally, in the
mouse model, lack of Tnf did not prevent MPN development,
but did severely limit the expansion of JAK2 mutant cells. These
data suggest that JAK2 V617F HSPCs can both induce
production of TNF and protect from its suppressive effects,
thereby promoting clonal expansion (53). Simultaneously, the
data suggest that TNF is not strictly necessary for development of
an MPN disease phenotype. Recently, a study with induced
pluripotent stem cell-derived CD34+ cells from a PV patient
showed that JAK2 V617F not only induces inflammation
through IFNg and NFkB pathways, but also protects from
DNA damage due to inflammation via upregulation of dual-
specificity phosphatase 1 (DUSP1) (98). The authors also
observed that JAK2 V617F-expressing cells only exhibited
partial activation of ATM-related DNA damage checkpoint
and p38/JNK stress pathway signaling under inflammatory
conditions (98). In this system, expression of TNF, IFNg or
TGFß alone was insufficient for the induction of pro-fibrogenic
chemokines CXCL9 and CXCL10, while the expression of TNF
combined with IFNg or all three cytokines produced a strong
pro-fibrogenic response (98). By implication, a fibrogenic
response could be produced by TNF plus IFNg without
artificial overexpression of TGFß, but none of the three
cytokines alone sufficed to produce a strong fibrogenic response.

Clonal expansion mediated by TNF was reported in AML
mouse models, showing that leukemic initiating cells (LICs)
harbored constitutive NFkB activity due to an autocrine
positive feedback loop with TNF (82, 97). NFkB signaling was
bolstered by increased proteasome activation, which resulted in
enhanced degradation of IkBa, a negative regulator of NFkB.
This TNF/NFkB activity which increased LIC frequency in AML
cells was not present in normal HSCs (82). Volk et al. also found
that the administration of exogenous TNF had opposite effects
with leukemic cells versus normal HSPCs in colony forming
assays, where leukemic cells expanded and HSPCs were
repressed (97), an analogous result to that obtained by
Fleischman et al. with MPN HSPCs (53).

In 2011, a double knockout mouse for both Tnfrsf1a and
Tnfrsf1b (encoding Tnfr1 and Tnfr2, respectively) was compared
by Pronk et al. to either receptor knockout alone, showing for the
first time that in vivo suppression of HSC cycling by TNF
requires the expression of both receptors (99). A separate study
in the same year showed that deletion of both Tnf receptors in
mice provided a partial rescue of the combination of apoptosis
and necroptosis produced in HSPCs by deletion of the Tgf-ß
activated kinase (Tak1), which inhibits cell death pathways
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downstream of Tnfr1 (Figure 3) (100). While neither deletion of
Tnfrsf1a nor Tnfrsf1b alone provided as strong of a rescue as the
double knockout, the extent of rescue from Tnfrsf1a deletion was
much greater than that from Tnfrsf1b deletion, consistent with

Tnfr1 being the principal Tnf receptor mediating cell
death (100).

In contrast to the result reported by Pronk et al. that both Tnf
receptors Tnfrsf1a and Tnfrsf1b were required for Tnf-mediated

A B

C D

FIGURE 3 | Signaling pathways activated by TNF receptors. (A) Bivalent cell-death regulating Complex I formed at plasma membrane by TNFR1 but not TNFR2.

TNF receptors TNFR1 (encoded by TNFSF1A) and TNFR2 (encoded by TNFSF1B) are homotrimeric receptors binding homotrimeric TNF ligand. TNFR1, unlike

TNFR2, contains an intracellular “death domain” (DD), which binds homologous DDs on intracellular RIP1, FADD, and TRADD, to compose the core of Complex (I)

RIP1 recruits the pro-apoptotic RIPK1 kinase, while TRADD recruits the anti-apoptotic TRAF adaptor protein family members, which are necessary for activation of

NFkB and MAP kinase signaling downstream of TNFRs. TNFR2, which lacks a “death domain”, can recruit TRAFs directly, but with a lower binding affinity than

Complex (I) TRAFs can recruit CIAP1 and CIAP2, anti-apoptotic proteins which form heterodimers (encoded by BIRC2 and BIRC3). (B) Mechanism of cell death

inhibition by CIAPs at TNFRs. CIAPs are ubiquitin ligases, which polyubiquinate RIPK1, targeting it for degradation. CIAPs can be recruited intracellularly at TNF-

bound TNFR1 or TNFR2. SMAC/DIABLO is an inhibitor of CIAPs: hence, SMAC/DIABLO mimetics (such as LCL-161 and birinapant) are pro-apoptotic. (C) Cell

death pathways downstream of TNFR1. The uninhibited Complex I (with active RIPK1) promotes formation of the cytoplasmic death promoting Complexes IIa and

IIb. Both complexes can activate cytoplasmic CASP8, the cleavage of which, to an active protease (cCASP8), initiates the apoptotic cascade. CASP8 activation can

be inhibited by the long form of FLIP, encoded by the NFkB target gene CFLAR: a mechanism by which NFkB activation can promote cell survival. Complex IIb

(containing RIPK3 as well as RIPK1) activates the kinase MLKL, which activates the necroptotic signaling cascade. (D) Activation of NFkB by TNFRs. TRAFs bound

to TNFR1 or TNFR2 recruit TAK1, an essential activator of NFkB signaling. TAK1 activates the canonical NFkB pathway by recruiting the IKK complex, consisting of

NEMO/IKKg, IKK1, and IKK2. The IKK complex phosphorylates IkB family members, dissociating them from NFkB subunits and targeting them for degradation.

NFkB, freed from IkB, is phosphorylated by both the IKK complex and casein kinase II (CK2), which in tandem activate NFkB subunits, which translocate to the

nucleus to act as transcription factors. Bortezomib (directly) and pevonedistat (indirectly) inhibit IkB degradation. Among NFkB target genes are those encoding

several cytokines and their receptors, as well as both antiapoptotic and pro-apoptotic components of the TNFR-NFkB signaling cascades.
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repression of normal HSCs in mice (99), Heaton et al. observed
that in MF CD34+ cells, selectively inhibiting TNFR2 but not
TNFR1 was effective for blocking colony formation (96). In a
Jak2 V617F mouse model of MPN, blocking Tnfr2 (Tnfrsf1b)
was sufficient to restore the expression of Xiap and Mapk8 that
was found to be downregulated in Jak2mutant vs wild-type cells.
These genes were also found downregulated in MF CD34+ cells.
These data suggest TNFR2 (TNFRSF1b) is likely to be an
important cell-autonomous mediator of clonal expansion
(96, 99).

Studies have shown that the accrual of secondary mutations, in
addition to the primary drivers such as mutations in JAK2, CALR,
or MPL, can be associated with disease progression and poorer
prognosis. Mutations in TET2 are among the most common non-
JAK2mutations occurring inMPNs. Cells from Tet2 knockout mice
and TET2 mutant human HSPCs were observed to have a growth
advantage in clonogenic assays over non-mutant control cells (101).
Chronic exposure to TNF in these cells led to myeloid skewing and
increased resistance to apoptosis (101). A previous study from the
same research group showed that macrophages deficient in TET2
were hyperinflammatory (102). Therefore, TET2 mutations, like
JAK2 V617F, can lead to similar dual outcomes of promoting both
an inflammatory environment and resistance to myelosuppressive
effects of TNF, thus leading to clonal dominance of the mutant cells
(102). Interestingly, other studies have shown that in MPN patients
with JAK2 V617F and TET2 mutations, the presence of the TET2
mutation in single cell-derived clones conferred an advantage
towards clonal dominance, but not JAK2 V617F on its own (103,
104). Kent et al. in 2013 studied highly purified JAK2 V617F HSCs
from a JAK2 V617F mouse model with an ET phenotype, and
observed that the mutation reduced HSC numbers, but that early
progenitors exhibited increased proliferation and differentiation
(105). This result suggests that while JAK2 V617F confers
hyperproliferation to the malignant clone within the myeloid
progenitor population, it may be insufficient to establish clonal
dominance at the level of HSC, and therefore that additional
mutations or other pathogenic mechanisms may be necessary for
clonal dominance to occur within the HSC population.

NFΚB PATHWAY HYPERACTIVATION IS
SYSTEMIC IN MPNS AND MAY AFFECT
STROMAL-HEMATOPOIETIC
INTERACTIONS

NFkB signaling hyperactivation has been observed in multiple
cancers, including lymphoid neoplasms (106), AML (107), MDS
(108), and myelofibrosis (109). In contrast to lymphoid
neoplasms, where mutations in NFkB pathway related genes
are common, in myeloid neoplasms, mutations in NFkB
pathway related genes are very rare (110). Since NFkB
signaling is not (or very rarely) altered directly by mutation in
myeloid neoplasms, it must be altered indirectly.

The indirect constitutive activation of NFkB signaling (i.e. not
via mutation of an integral NFkB pathway component) may

occur by a combination of cell-autonomous and non-cell-
autonomous mechanisms (Figure 4). NFkB signaling can be
activated cell-autonomously by signaling downstream of an
activating kinase mutation, such as FLT3-ITD or JAK2 V617F.
A mechanism has been described for FLT3 to activate NFkB
signaling by direct binding to the IKK complex and consequent
phosphorylation of IKK2 (114). A similar mechanism has been
described where a Ras/PI3K/AKT pathway activated in AML
cells led to activation of NFkB, which could be suppressed by
pharmacologic AKT inhibition (111). Since the PI3K/AKT
pathway, as well as NFkB, can be activated by TNF (97), this
could be considered a feed-forward activation downstream of
TNF receptors. Activation of ERK and downstream targets have
been identified in individual MF and post-MPN sAML patients
(33), and likewise JAK2-dependent ERK activity has been shown
to contribute to disease phenotypes in JAK2 V617F and MPL

W515L expressing mice (112). The cell cycle activating kinase
CDK6 is another potential activator of NFkB, as it shares with
the IkB kinase family the activity of phosphorylating the NFkB
subunit p65/RELA at serine 536, a phosphorylation necessary for
activating it as a transcription factor (113, 115, 116). This would
suggest the possibility that myeloproliferative HSPC could have
higher intrinsic NFkB activity than quiescent HSPC, simply by
virtue of higher CDK6 activity present in the cell cycle. In MPNs,
this would presumably be an indirect consequence of the JAK2
hyperactivity responsible for the myeloproliferative phenotype.
The role of CDK6 in MPNs is currently unclear: mice with Cdk6

deletion along with JAK2 V617F exhibited a somewhat less
severe MPN phenotype than mice with JAK2 V617F alone, but
observed effects on NFkB target gene expression were
ambiguous (117).

A prevalent alternative hypothesis is that in myeloid
neoplasms, and particularly in MPNs, NFkB signaling is most
often activated non-cell-autonomously by inflammatory
mediators. The most prominent suspects include the known
NFkB activating ligands IL-1a and b, which have been shown to
be upregulated in some cases of AML (118) and MF (43)(note
that circulating levels of IL-1 are normally undetectable), and
which can promote myeloproliferation and HSC depletion in
mice (119); endogenous toll-like-receptor (TLR) ligands, such as
S100A8 and S100A9, which are overexpressed in MF CD34+
cells (48, 77); and, most of all, TNF, which is frequently
overproduced in all chronic MPNs (53), as well as in a subset
of AMLs, most often corresponding to the M4/M5
(myelomonocytic) FAB subclass (82). While circulating TNF is
normally undetectable in healthy individuals (43), it is detectable
in the plasma of almost all MF patients, and of many PV, ET, and
sAML patients (33, 41, 48, 53). Likewise, while it is not yet clear
what proportion of patients with any category of myeloid
neoplasm feature NFkB signaling hyperactivation, our study
using mass cytometry identified that, in CD34+ cells from the
majority of MF patients studied, levels of phosphorylated, and
hence active, NFkB subunit p65/Rela, were above the range
observed in healthy controls (33).

NFkB signaling hyperactivation observed in MF and in
sAML, however, was not confined to CD34+ cells, but rather
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was observed throughout both myeloid and lymphoid cell
populations (33). This is consistent with a non-cell-
autonomous etiology. In a study using mouse transplant
models of MPNs with activated alleles of either JAK2 or MPL,
co-transplanted with wild-type mouse bone marrow cells, NFkB
hyperactivation was observed in co-transplanted non-mutant
hematopoietic cells as well as mutant cells (84, 86). Likewise in
human MPNs, the total population of lymphoid cells is most
frequently only partly derived from the malignant clone, as
malignant hematopoiesis is typically myeloid-biased (78). The
prevalent hypothesis is, therefore, that NFkB hyperactivation is
transmitted from the malignant clone to the residual non-
malignant hematopoietic cells and to bone marrow and splenic
stroma via NFkB-activating cytokines.

Our group’s study of cytokine production by mass cytometry
identified overproduction of several cytokines in MF monocytes
and myeloid progenitor cells, which derive heavily from the
malignant clone in most MF patients (78). Frequently
overproduced cytokines in MF monocytes and myeloid
progenitors included TNF and the ex vivo TNF-inducible

cytokines IL-6, IL-8/CXCL8, CCL4/MIP-1b, and IL-1RA (48).
This exact set of cytokines was previously shown to be
overproduced in MF granulocytes (86). Likewise, these
cytokines were among the larger set previously observed to be
elevated in MF patient plasma (43). These cytokines represent a
credible means for the malignant clone to induce NFkB
hyperactivation and other signaling effects in the residual non-
malignant hematopoietic and stromal cells (Figure 5).

Mouse homologs of MF-overproduced cytokines (except for
IL-8/CXCL8, which does not have a direct homolog in mice) are
overproduced in JAK2 V617F (or Jak2 V617F, if the mouse gene
was mutated rather than the mutant human gene introduced)
and MPLW515L MPN mouse models, and furthermore are also
overproduced in non-mutant mouse cells co-transplanted with
JAK2 or MPL mutant cells: a non-cell-autonomous induction
directed by the malignant cells, in direct analogy to human
MPNs (86). Cytokine overproduction in MPN model mice was
found to be heavily dependent on Jak2 phosphorylation of Stat3
(86), and on a maintenance of elevated NFkB-dependent gene
expression by BET bromodomain proteins (84). In these studies,

A B

FIGURE 4 | Cell-autonomous and non-cell-autonomous paths to NFkB pathway activation in MPNs. (A) Hypothesized pathways for cell-autonomous activation of

NFkB downstream of active JAK2. JAK2 is activated by cytokine receptors such as MPL, or constitutively resulting from the V617F mutation. Active JAK2 activates

RAS, in turn activating the MAP kinase and PI3 kinase signaling cascades, which are active in MPN HSPCs. Reported inputs of these pathways to NFkB include

phosphorylation of IKK1 by AKT and phosphorylation of p65/RELA by S6 kinase (111, 112). The cell cycle kinase CDK6, a transcriptional target of both JAK/STAT

and NFkB signaling, also can phosphorylate RELA (113). Active phosphorylated RELA translocates to the nucleus to mediate transcription. (B) Several non-cell-

autonomous inputs overproduced in MPNs can activate NFkB. MPN driver mutations produce JAK2 hyperactivity, which leads to pathophysiologic production of

TNF, IL-1, and TLR ligands S100A8/A9 and related family members. NFkB is activated either by TNFRs via TRAFs and TAK1, or by TLRs or IL-1 receptor, via the

adaptor protein MYD88, which binds to these receptors, and recruits IRAK1/IRAK4 kinase heterodimers, which in turn activate the IKK complex.
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bone marrow fibrosis was also reduced by either Stat3 deletion
(86) or treatment with BET bromeodomain protein inhibitor
JQ1 (84). Notably, the dependence of cytokine overproduction
on Stat3 was only observed when all transplanted donor cells
were Stat3 null. In a co-transplant experiment withMPLW515L,
Stat3 -/- cells co-transplanted with wild-type mouse cells,
cytokines were produced at levels similar to MPL W515L
transplant recipients with intact Stat3 (86). Therefore, the
requirement of Stat3 for cytokine production was found in
non-malignant cells, in which cytokine production was

induced non-cell-autonomously by the malignant cell
population (Figure 5).

Much as the malignant clone can induce activation of NFkB
signaling, and hence cytokine overproduction, even in residual
non-malignant hematopoietic cells, it can also do the same to the
non-hematopoietic stromal compartments of the bone marrow.
Bone marrow stroma is a unique environment that supports
normal hematopoiesis, known as the hematopoietic niche, which
is severely disrupted by malignant hematopoiesis, particularly in
MF and AML (120–123). In healthy bone marrow, HSCs are

A

C

B

FIGURE 5 | Transmission of JAK/STAT and NFkB pathway activation from malignant to non-malignant cells. (A) Malignant hematopoietic MPN cells transmit NFkB

signaling activation to non-malignant cells, according to the hypothesized mechanism described by Kleppe et al. (86) MPN driver mutations produce hyperactive

JAK2, leading to overproduction of cytokines, including IL-6. IL-6 receptor activation (in non-malignant cells) activates JAK2 and STAT3, which are required for

maximal non-cell-autonomous NFkB activation in non-malignant cells. STAT3 shares multiple target genes with NFkB. NFkB mediated transcription requires BET

bromeodomain proteins (BRDs) as cofactors, and therefore is subject to inhibition by the BRD inhibitor JQ1. (B) Active cytokine receptor signaling (such as from

MPL or IL-6R) in malignant cells activates JAK2 and phospho-STATs 3 and 5, which co-activate multiple target genes along with NFkB. Among JAK2/STAT3,5 and

NFkB co-induced targets are genes encoding several cytokines overproduced in MPNs: TNF, CCL3 (MIP-1a), CCL4 (MIP-1b), IL-6, IL-8, IL-1a, and IL-1b (41, 48,

53, 84, 86). IL-6 and IL-8 (bold) can activate JAK2/STAT3,5 signaling in non-mutant cells. These cytokines in turn act non-cell-autonomously on the endothelial cells

of blood vessels (BV), mesenchymal stromal cells (MSC), and endosteal cells in the bone marrow. MSC are sources of SCF and IL-6 and endosteal cells are sources

of TPO, which can activate JAK2/STAT3,5 signaling non-cell-autonomously (also see Figure 6). (C) Malignant neutrophils (PMN) in MPNs can produce IL-1a, and

IL-1b, while malignant monocytes produce IL-6, IL-8, and TNF. TNF, IL-1a, and IL-1b, can activate NFkB signaling in endothelial cells of blood vessels (BV), leading

them to release SCF and IL-6. These cytokines can combine with IL-6 and IL-8 secreted by malignant monocytes to produce activated JAK2/STAT3,5 signaling in

both malignant and non-malignant cells.
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mainly localized to two distinct niches: the endosteal niche,
characterized by direct HSC-osteoblast contact, and containing
primarily quiescent HSCs; and the perivascular niche,
characterized by direct contact of HSCs with endothelial cells,
and containing the majority of proliferating, and potentially
mobilized, HSCs and HSPCs (Figure 6). These niches both
feature direct contact of HSCs and HSPCs with CXCL12-
abundant reticular cells (CAR cells), which maintain HSPC
localization in the bone marrow by producing CXCL12, which
activates the receptor CXCR4 on HSPCs. Disruption of HSPC-
CAR cell contact in MF may be one of the causes of the HSPC
mobilization typically observed in MF. Mesenchymal stromal
cells of the bone marrow (of which CAR cells are a
subpopulation) are hypothesized to be the major fibrogenic
cells in MF (124), although a role has also been described for
monocyte-derived fibrocytes (71). Unquestionably, malignant

hematopoietic cells can induce pathophysiologic changes in the
non-malignant cells of the hematopoietic niche, via released
cytokines and cell-contact-mediated factors.

Pathophysiologic intracellular signaling alterations in
hematopoietic niche cells almost certainly produce reciprocal
paracrine effects with malignant and non-malignant
hematopoietic cells (Figures 5 and 6). Mesenchymal stromal
cells in the bone marrow are a source for HSPC-promoting
cytokines, including stem cell factor (SCF) and IL-6, and
osteoblasts are a source for TPO, which promotes HSC
quiescence in the endosteal niche (125, 126). NFkB activation
in hematopoietic niche cells is likely to severely affect
hematopoiesis. This hypothesis is supported by a recent study
which used an inducible endothelial-specific expression system
to produce constitutive MAP kinase signaling in endothelial
cells, downstream of an introduced phosphorylation-mimic

A B

C D

FIGURE 6 | Hematopoietic bone marrow niches disrupted in MPNs. (A, B) Bone marrow niches in healthy hematopoiesis. (A) The endosteal niche: HSPC reside in

contact with the endosteum, composed of osteoblasts that release TPO, promoting HSC quiescence. CXCL12 secreted by CAR cells promotes HSPC stasis in the

bone marrow, while mesenchymal stromal cells (MSC) secrete SCF and IL-6. (B) The perivascular niche: HSPC reside in contact with blood vessels (BV), which are

also contacted by the CXCL12-secreting CAR cells. This niche, however, is more prone to HSPC circulation than the endosteal niche. Monocytes (Mono) and

megakaryocytes (Mega) secrete cytokines active on HSPC. (C, D) Disruption of hematopoietic niches in MF. (C) In MF, MSCs are abundant but CAR cells are

reduced. The endosteum can be disrupted, and MSCs can differentiate into fibrocytes and deposit collagen, disrupting blood vessels in the hematopoietic space.

Consequently, HSPC become mobilized. (D) Monocytes and megakaryocytes become abundant in the MPN bone marrow, releasing cytokines including TNF and

the fibrogenic TGFb. Monocytes, as well as MSCs, can differentiate into fibrocytes (71).
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MAPKK1 S218D, S222D (127). This produced secondary NFkB
signaling hyperactivation in the bone marrow endothelial cells
(plausibly a cell-autonomous effect), and the hematopoietic
phenotype of HSC depletion by induction of proliferation and
differentiation of HSC to myeloid progenitors, and consequent
preferential production of myeloid cells in the setting of overall
pancytopenia (Figure 7A). This hematopoietic phenotype very

closely resembles phenotypes observed when a phosphorylation-
mimic Ikk2 (IKBKB) S177E, S181E was expressed pan-
hematopoietically in mice, either heterozygously (129) or
homozygously (130). It also resembles mouse phenotypes
obtained when A20/TNFAIP3, an inhibitor of NFkB signaling
activation by activated TNFR1, TLRs, and other signaling
receptors, was eliminated (131–134). Furthermore, the

A

B

FIGURE 7 | Hypothesized mechanisms of bone marrow niche remodeling in MPNs based on studies in mouse models. This figure illustrates mechanisms

hypothesized from mouse model studies by Ramalingam et al. (127) Nature Communications (127) (A) and by Arranz et al. (128) Nature (128) (B). (A) (from top left,

following arrows indicating course of pathogenesis): Expression of MAPKK1 S218D, S22D mutant in endothelial cells, resulting in constitutive activation of MAP

kinase signaling, also produced constitutive NFkB activation, possibly by a cell-autonomous mechanism, as described in Figure 4A. This led to HSPC proliferation

and losses of stemness and regeneration potential in mouse HSPC: phenotypes derived non-cell-autonomously, since mutant MAPKK1 expression was confined to

endothelial cells. HSPC phenotypes were dependent on NFkB hyperactivation in HSPC, as they could be entirely rescued by hematopoietic expression of the non-

degradable IkBa S32A, S36A “super repressor” mutant. NFkB hyperactivation in HSPC promoted myeloid differentiation with loss of HSPCs and lymphocytes,

resulting in pancytopenia and bone marrow failure (a phenotype also observed to result from pan-hematopoietic NFkB hyperactivation in mice) (129–133). (B) Bone

marrow remodeling by hematopoietic Jak2 V617F, analogous to human MPNs. 1. In healthy mouse bone marrow, Cxcl12 secreted by CAR cells and cytokines

secreted by MSCs maintain HSPCs in the perivascular niche (analogous to Figure 6B). Bone marrow also contains sympathetic nerve fibers, which secrete

norepinephrine (NE). Schwann cells (SC) are associated with the sympathetic neuronal fibers, and essential for their survival. 2. Jak2 V617F, expressed in

hematopoietic cells, causes secretion of Il-1b (Il-1a was not assayed). Il-1b caused apoptosis of CAR cells, other MSCs, and Schwann cells, leading to sympathetic

denervation of bone marrow. The exact downstream signaling pathways to apoptosis and marrow fibrosis were not defined in this study. These features were,

however, substantially rescued by either a catecholaminergic agonist or the natural Il-1 receptor antagonist Il-1ra, establishing essential roles of both Il-1 and

sympathetic denervation in bone marrow pathophysiology caused by Jak2 V617F.
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hematopoietic phenotype induced by endothelial MAP kinase
pathway hyperactivation was completely suppressed by
introduction of IkBa (NFKBIA) S32A, S36A “super repressor”,
which constitutively inhibits canonical NFkB signaling,
exclusively in the endothelial cells (127). The implication is
that NFkB hyperactivation in bone marrow endothelial cells,
derived secondarily to MAP kinase pathway hyperactivation, was
transmitted non-cell-autonomously to the hematopoietic
compartment, resulting in NFkB-hyperactivated hematopoiesis.
A reverse of this process may occur in MPNs, where NFkB
signaling hyperactivation in hematopoietic cells can produce
cytokine-mediated circular positive feedback with signaling
hyperactivation in endothelial or mesenchymal components of
the hematopoietic niche. Notably, inhibition of NFkB in mouse
endothelial cells was also observed to improve hematopoietic
recovery after myeloablative insults (135). This is further
supporting evidence that inhibiting NFkB signaling may be a
useful therapeutic modality to promote recovery of residual
benign hematopoiesis.

Hematopoietic niche remodeling produced by JAK2 V617F
has also been modeled in mice (Figure 7B). An inducible JAK2
V617F mouse model (using Mx1-Cre, induced by poly-inosine-
cytidine, a.k.a. poly-IC or PIPC) exhibited apoptosis of nestin-
expressing mesenchymal stem cells (MSCs) and Schwann cells of
sympathetic nerve fibers within the bone marrow, and
consequent loss of sympathetic innervation (128). These
pathophysiologic changes could be substantially prevented by
16-week treatment with either a catecholaminergic agonist or Il-
1ra, an endogenous antagonist of Il-1 receptor, the human
homolog of which, along with IL-1a and b , is also
overproduced in human MF (43, 48). In the mouse model, the
sequence of pathogenic events appeared to be: (1) secretion of Il-
1b from hematopoietic cells (Il-1a was not assayed), (2) loss of
catecholaminergic nerve fibers, (3) loss of Cxcl12 expression in
mesenchymal stromal cells, resulting in (4) mobilization of
HSPCs from bone marrow, and finally (5) apoptosis of
mesenchymal stromal cells (128). It is notable not only that a
chain reaction of pathogenic events was unleashed non-cell-
autonomously by JAK2 V617F, but also that the second step in
the chain, after JAK2 hyperactivation, was release of Il-1b, an
NFkB activating ligand, from the hematopoietic cells. Therefore,
an important role of NFkB in the remodeling of the bone
marrow niche by MPNs is probable.

NFkB signaling in HSPCs is thought to be a mediator of
“stress hematopoiesis”, or “emergency hematopoiesis”, in which
HSPCs are activated to produce granulocytes, erythrocytes, and
megakaryocytes, in the setting of sepsis or another extreme
hematopoietic insult (92). MPNs can be considered to hijack
the normal mechanisms of stress hematopoiesis to remodel the
bone marrow niche in a manner deleterious to benign
hematopoiesis, but to which the malignant clone is adaptable,
and through which it thrives.

It is relevant to note that while NFkB signaling is clearly
implicit in the pathophysiology of MPNs, its effects other than
induction of cytokine production remain largely unknown.
Moreover, not all NFkB signaling is equal in the context of

myeloid neoplasms. NFkB can be activated by two major
upstream signaling pathways, termed canonical and non-
canonical NFkB signaling (115). It was found that a stabilized,
non-degradable mutant of NFkB-inducing kinase (NIK), a
crucial mediator of non-canonical NFkB signaling, prolonged
survival of MLL-AF9 AML mouse transplant recipients (136).
The effects of this mutation included a severe downregulation of
nuclear Rela, a canonical NFkB subunit, which is elevated in and
essential for MLL-AF9 AML (137), as well as upregulation of
nuclear non-canonical NFkB subunits Relb, p50, and p52 (136).
This is consistent with previous findings that canonical and non-
canonical NFkB subunits can inhibit, as well as activate,
transcription, depending on the exact DNA target sequence
bound (115), and that Rela and Relb can mutually antagonize
by the formation of inactive heterodimers (138). In MF CD34+
cells, while NFkB target genes were predominantly expressed at
higher levels than in normal control CD34+ cells, a subset of
NFkB-related genes, including REL and NFKB1, were observed
to be downregulated in MF versus control CD34+ cells,
suggesting a dichotomy in the pathologic dysregulation of
NFkB signaling (33). This dichotomy, however, was not
straightforwardly explicable as a divergence of canonical versus
non-canonical NFkB signaling (33, 115).

JAK INHIBITOR BENEFITS AND
LIMITATIONS MAY RELATE TO CYTOKINE
MEDIATED INFLAMMATION

JAK inhibitors have demonstrated efficacy in reducing spleen
volume and improving constitutional symptoms associated with
MPNs, but the only curative therapy remains allogeneic stem cell
transplant. Indeed, amelioration of splenomegaly was one of the
principal aims targeted in the COMFORT trials of ruxolitinib for
treatment of MF (139, 140). Ruxolitinib has been shown to
reduce elevated levels of circulating inflammatory cytokines in
MF, which may underlie the improvement in constitutional
symptoms and splenomegaly observed with treatment (57).
While ruxolitinib improves symptoms, it does not eradicate the
malignant clone, induce molecular remission, or prevent
transformation to acute myeloid leukemia (AML), and only
shows modest survival benefit. Studies conducted in our
laboratory indicated that ruxolitinib therapy reduces but does
not rectify cytokine overproduction in MF (48). These findings
may explain why certain disease features such as malignant
clonal burden and marrow fibrosis remain refractory to
ruxolitinib therapy.

Other JAK inhibitors besides ruxolitinib, namely
momelotinib, pacritinib, and fedratinib, have demonstrated
some ability to reduce cytokines overproduced in MF beyond
that observed with ruxolitinib, possibly due to their inhibitory
actions on other signaling molecules besides JAK2 (70, 141–145).
Notably, both ruxolitinib and momelotinib inhibit JAK1 as well
as JAK2, while pacritinib and fedratinib are relatively more
specific for JAK2. JAK1 is activated by interferons, IL-3, IL-7,
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IL-6 and related cytokines, and IL-2 (86, 146). This means it
could play a significant role in inflammatory responses to
cytokines induced in MPNs. JAK1 overlaps with JAK2 in
phosphorylating STAT3, which is necessary for signaling
activated by multiple cytokines, and Stat3 is necessary for
maximal cytokine production in MPL W515L model mice (86,
146). Loss of Jak1 in mouse hematopoiesis causes accumulation
of HSPCs, and blunted or absent proliferative responses to Il-3,
Il-6, and type I interferons (84). Therefore, inhibition of JAK1
could potentially reduce both myeloproliferation and cytokine-
mediated pathophysiology in MPN patients. Itacitinib, a JAK1
specific inhibitor, was studied in a Phase 2 trial of MF patients
(142). Itacitinib produced reductions of constitutional symptoms
and splenomegaly, but only modest or inconsistent reductions in
plasma cytokines, or cytokines produced in MF myeloid cells ex
vivo (48, 142).

Other relevant non-JAK targets of JAK inhibitors include
FLT3 and Interleukin Receptor Associated Kinase-1 (IRAK1),
targeted by fedratinib and pacritinib; JNK (also known as
MAPK8 or SAPK1), targeted by momelotinib; and CSF1R, also
targeted by pacritinib. IRAK1 is a Ser/Thr kinase activated
downstream of IL-1 receptor and TLRs (see Figure 4). Active
IRAK1 dimerizes with TRAF6 to activate the IKK complex, and
hence, NFkB signaling. Implicitly, IRAK1 inhibition might
reduce NFkB signaling in the presence the ligands of IL-1
receptor and TLRs. Likewise, CSF1R inhibition might mitigate
monocytosis. IRAK1 inhibition has been proposed as a
therapeutic strategy for myelodysplastic syndromes (MDS), as
well as MPNs, based on preclinical studies (147). JNK/MAPK8 is
a kinase that can be activated by TNF separately from NFkB
signaling. It activates the AP-1 transcription factor, which shares
a number of anti-apoptotic target genes with NFkB. Volk et al.
(97) found that co-inhibition of JNK and NFkB signaling in
MLL-AF9 induced mouse model leukemic blasts could induce
cell death (primarily necroptosis) in the presence of Tnf (97).
Therefore, effects on several of the known targets of JAK
inhibitors other than JAK2 could provide therapeutically
useful effects.

Like ruxolitinib, other JAK2 inhibitors have also not
demonstrated an impact on malignant clonal burden or
reduction in bone marrow fibrosis. Ultimately, the
consequences of cytokine overproduction in MF disease
pathogenesis and the cellular pathways involved require further
exploration in order to improve therapy for MPNs.

INFLAMMATORY SIGNALING IS
A BASIS FOR NOVEL MPN
TREATMENT MODALITIES

The clearly prominent role of inflammation in the
pathophysiology of MPNs has led to the hope that
inflammatory signaling, either between or within cells, could
be manipulated to lead to improved options for treatment. Prior
studies have suggested links between TNF and clonal expansion,

TGFb and fibrosis, and IL-1 (a or b) and pre-fibrotic damage to
the bone marrow milieu (53, 128, 148). The fibrogenic effect of
TGFb is likely to be separate from the pathogenesis of clonal
expansion and myeloproliferation. A study using the JAK2

V617F transgenic and MPL W515L retroviral transplant mouse
models of MF showed improvement of bone marrow fibrosis and
splenomegaly with galunisertib, an antagonist of the TGFb
receptor serine/threonine kinase ALK5, despite absence of any
effect on any other hematologic parameter (148). Therefore,
antifibrotic treatments, especially if targeting TGFb or its
downstream signaling, will likely need to be combined with
anti-myeloproliferative agents such as ruxolitinib (149, 150),
and/or agents for reducing malignant clonal burden, such
as IFNa.

Alternate approaches for MF treatment could include
targeting inflammatory signaling in the pre-fibrotic alterations
of the bone marrow milieu or manipulating the inflammatory
signaling abnormalities present in the disease to trigger cell death
in the malignant clone. This latter approach is suggested by the
known signaling pathways activated by the cytokine TNF
(Figure 3). While TNF is an activating ligand for NFkB, MAP
kinase, and JNK signaling, it also can activate a variety of cell
death modalities: these are activated by a death-promoting
signaling cytoplasmic complex known as Complex II (as
opposed to the bivalent TNFR1 signaling Complex I), which is
activated specifically by TNF binding to its receptor TNFR1
(TNFRSF1A), but not by the alternate TNF receptor TNFR2
(TNFRSF1B) (81). TNFR1, TNFR2, and members of the TLR/IL-
1 receptor superfamily can all activate NFkB signaling, but only
TNFR1 and several of its relatives, such as FAS/CD95, can
activate Complexes I-II, which in turn activate signaling that
can lead to apoptosis, necroptosis, or pyroptosis (81, 151). NFkB
is known to activate transcription of a number of known anti-
apoptotic target genes, including BCL2 and CFLAR (encoding c-
FLIP) (152). Therefore, it is hypothesized that inhibiting NFkB
in the presence of TNF might promote cell death mediated by
TNFR1 and Complexes I-II.

Etanercept, a dimeric recombinant TNFR2 (TNFRSF1B)
extracellular domain fusion protein with human IgG1-Fc, is
used clinically along with other TNF/TNFR antagonists as an
anti-inflammatory agent, and was used as a single agent in a
clinical trial for MF, resulting in improvement of constitutional
symptoms, somewhat similar to observed effects of ruxolitinib
(153). TNF/TNFR antagonism, however, does not exploit the
principle of antagonizing anti-apoptotic effects of inflammatory
signaling, while maintaining cell death inducing signaling intact.

Several basic studies in mice and human cells support a
rationale for targeting NFkB activation downstream of TNFRs,
with the goal of killing malignant HSPCs. Acute Tnf treatment in
normal mice was observed to induce rapid cell death in the bone
marrow, to which normal HSCs and Cd41+ megakaryoblasts
were almost entirely resistant (with other primitive myeloid
progenitors being partially resistant, in comparison with
granulocytes), with these resistant populations being induced
to enter the cell cycle, rather than being killed (95). The
preservation of HSC was found to be dependent on the NFkB
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subunits p50 and p65/Rela, in absence of which HSC would
succumb to a combination of apoptosis and necroptosis
(Figure 3). This was coincident with more abundant nuclear
p50 and p65/Rela in HSC than in other cells, and higher ratios of
Tnfr2 to Tnfr1. Furthermore, human gene homologs of mouse
HSC and GMP Tnf-induced gene expression signatures were
found to be upregulated in human aging, MDS, and AML (95).
Similarly, human MF but not healthy control CD34+ HSPC were
found to be sensitive to reduction of colony forming activity by a
TNFR2 (TNFRSF1B) blocking antibody, coincident with
elevated expression of anti-apoptotic BIRC2 and BIRC3

(encoding cIAP1/2), and reduced expression of pro-apoptotic
XIAP and MAPK8 (encoding JNK), in MF HSPC (96). These
results are similar to those of a study showing that combined
inhibition of NFkB and JNK could promote apoptosis and
necroptosis in AML blasts (97); although the role of JNK
observed in the MF and AML studies was opposite (96, 97).
Put together, the results of these studies suggest that HSCs, and
MF HSCs in particular, may be dependent on TNFR2 signaling
to NFkB, to rescue them from cell death, which would otherwise
be induced by TNF through TNFR1.

Canonical NFkB signaling, in absence of an activating signal,
is inhibited in the cytoplasm by the endogenous inhibitor IkBa,
and signal activation by TNF triggers the degradation of IkBa
(Figure 3D). Given this knowledge, therapeutic agents that could
prevent the degradation of IkBa have been considered potential
therapeutic NFkB inhibitors, including in the treatment of
myeloid neoplasms. Bortezomib, a proteasome inhibitor with
clinical activity against multiple myeloma, was able to inhibit
both NFkB activation and bone marrow fibrosis in mice treated
with Tpo (154). Phase I/II clinical trials of bortezomib for MF,
however, showed no clinical benefit and significant toxicity (155,
156). There is no evidence currently suggesting specificity of
bortezomib for IkBa.

A logically equivalent approach has been undertaken with
another indirect NFkB inhibitor, pevonedistat, which inhibits the
neddylating enzyme NAE, responsible for a covalent modification
to cullin ring ligase enzymes necessary for the degradation of IkBa
(157–160). Pevonedistat has been shown to synergize with TNF in
promoting apoptosis of hepatoma cells (157), and has observed pro-
apoptotic activity against AML, MDS, ALL, and lymphoma cells
(158, 160–164). Pro-apoptotic effects of pevonedistat may be
enhanced in combined treatment with other pro-apoptotic agents,
such as BCL-2 antagonists or SMAC (second mitochondria-derived
activator of caspase, also known as DIABLO) mimetics (162), or in
combination with HDAC inhibitors (159). HDAC inhibitors, which
can actually enhance NFkB activity by preventing deacetylation of
p65/RELA, can provide apoptosis in combination with NFkB
inhibition (165, 166).

We have also observed pevonedistat to inhibit production of
TPO/TLR/TNF-inducible cytokines from MF patient myeloid
cells ex vivo, supporting its potential as an anti-inflammatory
agent for MF (48). Based on this hypothesis, our group has
initiated a Phase I clinical trial, combining pevonedistat with
ruxolitinib for MF treatment (NCT03386214). Phase I/II studies
of pevonedistat in MDS and AML have shown tolerability, and a

Phase III study of pevonedistat in combination with azacitidine
in MDS/AML is currently ongoing (NCT03268954) (167–169).
A caveat with pevonedistat is that, like bortezomib, its activity
may not be specific to IkBa, and there is evidence that some of its
pro-apoptotic activity may be independent of NFkB inhibition
(162, 164, 170–173).

SMAC/DIABLO mimetics have recently been tested in pre-
clinical and clinical studies for MF, with some encouraging results.
SMAC inhibits endogenous inhibitor of apoptosis proteins (IAPs,
also called BIRC family proteins). IAPs are ubiquitin ligases, which
ubiquitinate the pro-apoptotic Complex I scaffold RIP1 and the
non-canonical NFkB activating kinase NIK (NEMO-independent
kinase), targeting these proteins for degradation (174). SMAC/
DIABLO mimetics, by inhibiting IAPs, promote cell death in the
presence of TNF or FAS (175–179). Two such compounds,
birinapant and LCL-161, (Figure 3B) were observed pre-clinically
to have an inhibitory effect on myeloid colony formation specific to
MF, rather than healthy control, CD34+ HSPCs (96, 180). In a
recently completed Phase II study of LCL-161, encouraging activity
was observed, with an overall response rate of 32% (15/47) in
patients with MF who were refractory or intolerant to JAK inhibitor
therapy (174, 181).

Casein kinase 2 (CK2) phosphorylates RELA on serine 529
(S529). While RELA phosphorylation on S536 has been more
thoroughly researched, we have observed that the two
phosphorylation events were interdependent in the JAK2

V617F mutant human erythroleukemia (HEL) cell line (33).
Inhibition of CK2 with CX-4945 in human AML cell lines and
primary AML CD34+ cells ex vivo was shown to induce cell cycle
arrest, with downregulation of active RELA, AKT, and pSTAT3
(182). This represents a pharmacologic inhibition of NFkB that
also might be adapted to MPN treatment.

Other potential therapeutic targets for anti-inflammatory
therapy in MF include TLRs and their endogenous ligands,
and IL-8/CXCL8, along its receptor CXCR2 and downstream
signaling. Several endogenous TLR ligands of the S100 family
were found to be overexpressed in MF versus normal CD34+
HSPC (33, 48, 77). Laouedj et al. showed that the ratio of S100A8
to S100A9 mediates a balance between immature cell
proliferation, promoted by S100A8, versus myeloid
differentiation, promoted by S100A9, in HOXA9-MEIS1 and
MLL-AF9 AML mouse models (183). While both S100A8 and
S100A9, as well as other related S100 isoforms, were found to be
comparably overexpressed in MF versus normal CD34+ HSPC
(48), altering the balance between them might prove to be
therapeutically useful. There is not currently, however, a
known pharmacologic strategy to manipulate the S100A8:
S100A9 ratio, and indeed, the mechanism based on which high
S100A8 expression and high S100A8:S100A9 ratio are poor
prognostic indicators in AML remains unknown (183).

Overproduction of IL-8/CXCL8 was observed to be a poor
prognostic feature in MF, particularly with respect to sAML
transformation, and IL-8/CXCL8 is often highly expressed in MF
CD34+ HSPC as well as monocytes (43, 48). High expression of
its receptor CXCR2 was found to be an adverse prognostic
indicator for survival in AML and transfusion dependence in
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MDS (56). CXCR2 activation by IL-8/CXCL8 was shown to
activate MAPK/PI3K signaling pathways, leading to proliferative
and pro-survival effects in AML CD34+ HSPC (56, 184).
Therefore, any of IL-8/CXCL8, CXCR2, or downstream
signaling, are plausible therapeutic targets for MPNs.

UNANSWERED QUESTIONS IN MPN
INFLAMMATORY PATHOPHYSIOLOGY
AND TREATMENT

MPNs can be clearly described as systemic inflammatory diseases
of the hematopoietic system, as well as neoplastic diseases.
Despite substantial recent progress in understanding the
inflammatory components of MPN pathophysiology, a number
of unanswered questions remain, whose answering might
contribute to substantial improvements in MPN treatment.

The first question concerns treatment modalities. JAK inhibitors
counteract the primary molecular defect common among MPNs,
and, while substantially improving quality of life for many patients,
they only modestly impact clonal burden or long-term outcomes
(68, 79, 185, 186). IFNa therapy, in contrast, can reduce malignant
clonal burden in individual patients, despite having pro-
inflammatory activity and substantial systemic inflammatory
toxicity, resulting in poor tolerability for many patients (187–193).
Why do these therapeutic agents have relative effects on clonal
burden that are discordant with what might be intuitively expected
based on their molecular targets? While there is some hope that a
pro-apoptotic therapy with greater efficacy against the malignant
clone than against residual benign hematopoiesis might be
achievable, particularly leveraging differential responses to TNF
and NFkB between malignant and benign hematopoiesis (53, 96),
such therapies are only in their initial experimental stages, in clinical
Phase I/II trials. It is not clear whether a pro-apoptotic or anti-
inflammatory approach can be successful, even in combination with
ruxolitinib, hydroxyurea, or IFNa. In some secondary MF patients,
active hematopoiesis derives almost exclusively from the malignant
clone. An important question is whether in this set of patients,
restoring benign hematopoiesis is possible.

A second question derives from the evidence that the malignant
clone effectively poisons the bone marrow microenvironment. In
MPN mouse models, there is already evidence that this may be
occurring in a step-wisemanner, with sequential pathologic changes
occurring in the bone marrow, with each step depending on one or
more of those preceding it (128). Is there a sequential chain reaction
of pathophysiologic events in human MPN disease progression that
can be assaulted at its early stages to prevent (or, at minimum, make

less likely) disease progression to MF or sAML? Determining this
will require a great deal of further pathologic study of MPN bone
marrow samples, including comparison of ET and PV to MF
samples, early versus advanced stage MF samples, and ideally
serial biopsies from individual patients. In a JAK2 V617F mouse
model, Arranz et al. showed, perhaps surprisingly, that loss of
sympathetic innervation was a relatively early, and crucial, event in
the pathologic remodeling of MPN bone marrow (Figure 7B):
indeed, hematopoietic secretion of Il-1b was the only antecedent
even in the chain reaction identified in their study (128). Is the
progression of pathologic events similar or different in human
patients? If it proves similar, this would be a strong case for anti-
inflammatory therapy being applied not only to MF but also to ET
and PV, on the theory that bone marrow inflammation represented
an early event in the progression leading up to the bone marrow
microenvironment becoming hostile to benign hematopoiesis while
remaining receptive to malignant hematopoiesis.

A third question is whether similar, or different, therapeutics will
be needed for different stages of disease progression. Blast phase, or
sAML, may require cytoreductive chemotherapy, and lasting
remissions from sAML have been rare (28, 40). If sAML
remission is achievable, will either sAML in remission or MF ever
be curable by means other than allogeneic hematopoietic stem cell
transplant? And if so, would a therapy to eliminate a diminutive
malignant clone in the case of minimal residual disease even
plausibly be the same as what might eradicate a malignant clone
in MF, which would usually contribute the majority, or even a near-
totality, of hematopoietic cell production? It seems certain that these
vastly different disease states would require substantially different
treatment modifications, even if there were a common element to
the otherwise diverse treatments. But would a common element be
possible? A one-size-fits-all treatment is not likely to be effective for
all stages of MPNs. Rather, there remains the hope that some
selective treatment targeting the malignant clone might be useful at
multiple stages, in conjunction with stage-specific treatments to be
used in combination therapy – JAK inhibitors, anti-inflammatory
agents, pro-apoptotic agents, and other signaling inhibitors –

wherein might lie some hope for patients to be cured
pharmacologically rather than exclusively by transplant.
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