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ABSTRACT

Inflammation is a biological response of the immune system that can be triggered 

by a variety of factors, including pathogens, damaged cells and toxic compounds. 

These factors may induce acute and/or chronic inflammatory responses in the 

heart, pancreas, liver, kidney, lung, brain, intestinal tract and reproductive system, 

potentially leading to tissue damage or disease. Both infectious and non-infectious 

agents and cell damage activate inflammatory cells and trigger inflammatory signaling 

pathways, most commonly the NF-κB, MAPK, and JAK-STAT pathways. Here, we review 
inflammatory responses within organs, focusing on the etiology of inflammation, 

inflammatory response mechanisms, resolution of inflammation, and organ-specific 

inflammatory responses.

INTRODUCTION

Inflammation is the immune system’s response to 
harmful stimuli, such as pathogens, damaged cells, toxic 
compounds, or irradiation [1], and acts by removing 
injurious stimuli and initiating the healing process [2]. 
Inflammation is therefore a defense mechanism that is 
vital to health [3]. Usually, during acute inflammatory 
responses, cellular and molecular events and interactions 
efficiently minimize impending injury or infection. This 
mitigation process contributes to restoration of tissue 
homeostasis and resolution of the acute inflammation. 
However, uncontrolled acute inflammation may become 
chronic, contributing to a variety of chronic inflammatory 
diseases [4].

At the tissue level, inflammation is characterized 
by redness, swelling, heat, pain, and loss of tissue 
function, which result from local immune, vascular and 
inflammatory cell responses to infection or injury [5]. 
Important microcirculatory events that occur during the 
inflammatory process include vascular permeability 
changes, leukocyte recruitment and accumulation, and 
inflammatory mediator release [2, 6].

Various pathogenic factors, such as infection, tissue 
injury, or cardiac infarction, can induce inflammation by 
causing tissue damage. The etiologies of inflammation 
can be infectious or non-infectious (Table 1). In response 
to tissue injury, the body initiates a chemical signaling 
cascade that stimulates responses aimed at healing affected 
tissues. These signals activate leukocyte chemotaxis from 
the general circulation to sites of damage. These activated 
leukocytes produce cytokines that induce inflammatory 
responses [7].

INFLAMMATORY  RESPONSE 

MECHANISMS

The inflammatory response is the coordinate 
activation of signaling pathways that regulate 
inflammatory mediator levels in resident tissue cells 
and inflammatory cells recruited from the blood [8]. 
Inflammation is a common pathogenesis of many chronic 
diseases, including cardiovascular and bowel diseases, 
diabetes, arthritis, and cancer [9]. Although inflammatory 
response processes depend on the precise nature of 
the initial stimulus and its location in the body, they all 
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share a common mechanism, which can be summarized 
as follows: 1) cell surface pattern receptors recognize 
detrimental stimuli; 2) inflammatory pathways are 
activated; 3) inflammatory markers are released; and 4) 
inflammatory cells are recruited.

Pattern recognition receptor activation

Microbial structures known as pathogen-associated 
molecular patterns (PAMPs) can trigger the inflammatory 
response through activation of germline-encoded 
pattern-recognition receptors (PRRs) expressed in both 
immune and nonimmune cells [10, 11]. Some PRRs 
also recognize various endogenous signals activated 
during tissue or cell damage and are known as danger-
associated molecular patterns (DAMPS) [11]. DAMPs are 
host biomolecules that can initiate and perpetuate a non-
infectious inflammatory response [12]. Disrupted cells can 
also recruit innate inflammatory cells in the absence of 
pathogens by releasing DAMPs [13]. 

Classes of PRR families include the Toll-like 
receptors (TLRs), C-type lectin receptors (CLRs), retinoic 
acid-inducible gene (RIG)-I-like receptors (RLRs), and 
NOD-like receptors (NLRs) [5]. TLRs are a family of 
highly conserved, mammalian PRRs that participate in 
the activation of the inflammatory response [14]. More 
than ten members of the TLR family have been identified, 
and TLRs are the most well-studied of the known PRRs 
[15]. Transmission of PAMPs and DAMPs is mediated 
by myeloid differentiation factor-88 (MyD88) along with 
TLRs. Signaling through TLRs activates an intracellular 
signaling cascade [16, 17] that leads to nuclear 
translocation of transcription factors, such as activator 
protein-1 (AP-1) and NF-κB or interferon regulatory factor 
3 (IRF3) (Figure 1). DAMPs and PAMPs share receptors, 
such as TLR4, suggesting similarities between infectious 
and noninfectious inflammatory responses [18, 19].

Activation of inflammatory pathways

Inflammatory pathways impact the pathogenesis 
of a number of chronic diseases, and involve common 
inflammatory mediators and regulatory pathways. 
Inflammatory stimuli activate intracellular signaling 
pathways that then activate production of inflammatory 

mediators. Primary inflammatory stimuli, including 
microbial products and cytokines such as interleukin-1β 
(IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α 
(TNF-α), mediate inflammation through interaction with 
the TLRs, IL-1 receptor (IL-1R), IL-6 receptor (IL-6R), 
and the TNF receptor (TNFR) [20]. Receptor activation 
triggers important intracellular signaling pathways, 
including the mitogen-activated protein kinase (MAPK), 
nuclear factor kappa-B (NF-κB), and Janus kinase (JAK)-
signal transducer and activator of transcription (STAT) 
pathways [21–23].

NF-κB pathway

The NF-κB transcription factor plays important 
roles in inflammatory, immune response, survival, and 
apoptosis processes [24]. The NF-κB family includes 
five related transcription factors: P50, p52, RelA (p65), 
RelB, and c-Rel [25, 26]. NF-κB activity is induced by a 
range of stimuli, including pathogen-derived substances, 
intercellular inflammatory cytokines, and many enzymes 
[27, 28]. Under physiological conditions, IκB proteins 
present in the cytoplasm inhibit NF-κB [29]. PRRs use 
similar signal transduction mechanisms to activate IκB 
kinase (IKK), which is composed of two kinase subunits, 
IKKα and IKKβ, and a regulatory subunit, such as IKKγ. 
IKK regulates NF-κB pathway activation through IκB 
phosphorylation [8]. IκB phosphorylation results in its 
degradation by the proteasome and the subsequent release 
of NF-κB for nuclear translocation and gene transcription 
activation [30]. This pathway regulates pro-inflammatory 
cytokine production and inflammatory cell recruitment, 
which contribute to the inflammatory response (Figure 2).

MAPK pathway

MAPKs are a family of serine/threonine protein 
kinases that direct cellular responses to a variety of 
stimuli, including osmotic stress, mitogens, heat shock, 
and inflammatory cytokines (such as IL-1, TNF-α, and IL-
6), which regulate cell proliferation, differentiation, cell 
survival and apoptosis [31, 32]. The mammalian MAPKs 
include extracellular-signal-regulated kinase ERK1/2, 
p38 MAP Kinase, and c-Jun N-terminal kinases (JNK) 
[33]. Each MAPK signaling pathway comprises at least 

Table 1: Etiology of inflammation

Non-infectious factors Infectious factors

Physical:  burn, frostbite, physical injury, foreign bodies, 
trauma, lionizing radiation

Chemical:  glucose, fatty acids, toxins, alcohol, chemical 
irritants (including fluoride, nickel and other 
trace elements)

Biological: damaged cells
Psychological: excitement

Bacteria
viruses
other microorganisms
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three components: a MAPK, a MAPK kinase (MAPKK), 
and a MAPK kinase kinase (MAPKKK). MAPKKKs 
phosphorylate and activate MAPKKs, which in turn 
phosphorylate and activate MAPKs [33, 34]. ERKs are 
generally activated by mitogens and differentiation signals, 

while inflammatory stimuli and stress activate JNK and 
p38 [35]. MKK1 and MKK2 activate ERK1/2, MKK4 and 
MKK7 activate JNK, and MKK3 and MKK6 activate p38. 
Activation of the MAPKs, including Erk1/2, JNK, leads to 
phosphorylation and activation of p38 transcription factorsv  

Figure 1: TLR signaling. MyD88-dependent and TRIF-dependent pathways are shown. Signaling through TLRs activates intracellular 
signaling cascades that lead to nuclear translocation of AP-1 and NF-κB or IRF3, which regulates the inflammatory response.

Figure 2: NF-κB pathway. This pathway is triggered by TLRs and inflammatory cytokines, such as TNF and IL-1, leading to activation 
of RelA/p50 complexes that regulate expression of inflammatory cytokines. NF-κB signaling requires IKK subunits. which regulate 
pathway activation through IκB phosphorylation.
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present in the cytoplasm or nucleus, which initiates the 
inflammatory response [32, 36] (Figure 3).

JAK-STAT pathway

The highly conserved JAK-STAT pathway involves 
diverse cytokines, growth factors, interferons, and related 
molecules, such as leptin and growth hormone, and is a 
signaling mechanism through which extracellular factors can 
control gene expression [37]. Receptor-associated JAKs are 
activated by ligands and phosphorylate one other, creating 
docking sites for STATs, which are latent, cytoplasmic 
transcription factors. Cytoplasmic STATs recruited to these sites 
undergo phosphorylation and subsequent dimerization before 
translocation to the nucleus [38]. Tyrosine phosphorylation 
is essential for STAT dimerization and DNA binding [39]. 
Therefore, JAK/STAT signaling allows for the direct translation 
of an extracellular signal into a transcriptional response. For 
example, binding of IL-6 family members to plasma membrane 
receptors activates the JAK-STAT proteins. STAT proteins 
translocated into the nucleus bind target gene promoter regions 
to regulate transcription of inflammatory genes (Figure 4) [40].

Dysregulation of NF-κB, MAPK, or JAK-STAT 
activity is associated with inflammatory, autoimmune, 
and metabolic diseases, and cancer [41]. Signaling through 
transcription factors results in secretion of cytokines [42, 
43]. Multiple transcription factors regulate a variety of 
inflammatory genes, such as IL-1, TNF-α, IL-6 [44], 
colony stimulating factor (CSF), interferons, transforming 
growth factor (TGF), and chemokines.

Inflammatory markers

Markers are used in clinical applications to indicate 
normal versus pathogenic biological processes, and assess 
responses to therapeutic interventions. Inflammatory 
markers may be predictive of inflammatory diseases 
[45–50], and correlate with the causes and consequences 
of various inflammatory diseases, such as cardiovascular 
diseases, endothelial dysfunctions, and infection [51, 52]. 
Stimuli activate inflammatory cells, such as macrophages 
and adipocytes, and induce production of inflammatory 
cytokines, such as IL-1β, IL-6, TNF-α, and inflammatory 
proteins and enzymes. These molecules can potentially 
serve as biomarkers for diseases diagnosis, prognosis, and 
therapeutic decision making [53–57].

Inflammatory cytokines

Cytokines (Table 2) are predominantly released 
from immune cells, including monocytes, macrophages, 
and lymphocytes. Pro- and anti-inflammatory cytokines 
facilitate and inhibit inflammation, respectively. 
Inflammatory cytokines are classified as ILs, colony 
stimulating factors (CSF), IFNs, TNFs, TGFs, and 
chemokines, and are produced by cells primarily to 

recruit leukocytes to the site of infection or injury [58]. 
Cytokines modulate the immune response to infection 
or inflammation and regulate inflammation itself via a 
complex network of interactions. However, excessive 
inflammatory cytokine production can lead to tissue 
damage, hemodynamic changes, organ failure, and 
ultimately death [59, 60]. A better understanding of how to 
regulate cytokine pathways would allow for more accurate 
identification of agent-mediated inflammation and the 
treatment of inflammatory diseases [58].

Inflammatory proteins and enzymes

Inflammatory proteins in the blood, including 
C-reactive protein (CRP), haptoglobin, serum amyloid 
A, fibrinogen, and alpha 1-acid glycoprotein [61], 
help restore homeostasis and reduce microbial growth 
independently of antibodies during trauma, stress, or 
infection [62]. Abnormal activation of certain enzymes, 
including high-mobility group box 1 (HMGB1), 
superoxide dismutase (SOD), glutathione peroxidase 
(GPx), NADPH oxidase (NOX), inducible nitric oxide 
synthase (iNOS) and cyclooxygenase (COX)-2, play key 
roles in the development of inflammation-related diseases, 
such as cardiovascular disease and cancer [63–66]. For 
example, extracellular HMGB1 effects may be mediated 
by activation of TLR-coupled signaling pathways [67]. 
The primary target of extracellular HMGB1 is TLR4 [68], 
which triggers MyD88-dependent intracellular signaling 
cascades involved in activation of the NF-κB and MAPK 
pathways. This leads to release of such inflammatory 
cytokines as TNF-α and IL-1β [67]. Inflammatory proteins 
and enzymes have been used as inflammation, infection, 
and trauma biomarkers in medicine.

Other inflammatory markers

Antioxidant defense systems, including antioxidant 
enzymes, influence oxidative stress. Elevated oxidative 
stress can induce production of reactive oxygen species 
(ROS), malondialdehyde (MDA), 8-Hydroxy-2-
deoxyguanosine (8-OHdG) and isoprostanes [64, 69], 
each of which can activate various transcription factors, 
including NF-κB, AP-1, p53, and STAT. Thus, this cascade 
can increase expression of genes encoding growth factors, 
inflammatory cytokines, and chemokines [70]. Oxidative 
stress is associated with the pathogenesis of multiple 
diseases, such as cardiovascular disease, cancer, diabetes, 
hypertension, aging, and atherosclerosis. Therefore, 
oxidative stress products can also be used as markers of 
the inflammatory response.

Cell types in inflammatory responses

The inflammatory response involves a highly 
coordinated network of many cell types. Activated 
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macrophages, monocytes, and other cells mediate local 
responses to tissue damage and infection. At sites of 
tissue injury, damaged epithelial and endothelial cells 
release factors that trigger the inflammatory cascade, 
along with chemokines and growth factors, which attract 
neutrophils and monocytes. The first cells attracted to a 
site of injury are neutrophils, followed by monocytes, 
lymphocytes (natural killer cells [NK cells], T cells, and B 
cells), and mast cells [71–73]. Monocytes can differentiate 
into macrophages and dendritic cells and are recruited via 

chemotaxis into damaged tissues. Inflammation-mediated 
immune cell alterations are associated with many 
diseases, including asthma, cancer, chronic inflammatory 
diseases, atherosclerosis, diabetes, and autoimmune and 
degenerative diseases.

Neutrophils, which target microorganisms in 
the body, can also damage host cells and tissues [74]. 
Neutrophils are key mediators of the inflammatory 
response, and program antigen presenting cells to activate T 
cells and release localized factors to attract monocytes and 

Table 2: Summary of cytokines and their functions

Cytokine Family Main sources Function

IL-1β IL-1 Macrophages, monocytes
Pro-inflammation, proliferation, apoptosis, 
differentiation

IL-4 IL-4 Th-cells
Anti-inflammation, T-cell and B-cell proliferation, 
B-cell differentiation

IL-6 IL-6 Macrophages, T-cells, adipocyte Pro-inflammation, differentiation, cytokine production

IL-8 CXC
Macrophages, epithelial cells, 
endothelial cells

Pro-inflammation, chemotaxis, angiogenesis

IL-10 IL-10 Monocytes, T-cells, B-cells Anti-inflammation, inhibition of the pro-inflammatory 
cytokines

IL-12 IL-12
Dendritic cells, macrophages, 
neutrophils

Pro-inflammation, cell differentiation, activates NK cell

IL-11 IL-6 Fibroblasts, neurons, epithelial cells 
Anti-inflammation, differentiation, induces acute phase 
protein

TNF-α TNF
Macrophages, NK cells, CD4+ 
lymphocytes, adipocyte

Pro-inflammation, cytokine production, cell 
proliferation, apoptosis, anti-infection

IFN-γ INF T-cells, NK cells, NKT cells Pro-inflammation, innate, adaptive immunity anti-viral

GM-CSF IL-4 T-cells, macrophages, fibroblasts
Pro-inflammation, macrophage activation, increase 
neutrophil and monocyte function

TGF-β TGF Macrophages, T cells 
Anti-inflammation, inhibition of pro-inflammatory 
cytokine production 
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dendritic cells [7]. Macrophages are important components 
of the mononuclear phagocyte system, and are critical in 
inflammation initiation, maintenance, and resolution [75]. 
During inflammation, macrophages present antigens, 
undergo phagocytosis, and modulate the immune response 
by producing cytokines and growth factors. Mast cells, 
which reside in connective tissue matrices and on epithelial 
surfaces, are effector cells that initiate inflammatory 
responses. Activated mast cell release a variety of 
inflammatory mediators, including cytokines, chemokines, 
histamine, proteases, prostaglandins, leukotrienes, and 
serglycin proteoglycans [76].

Multiple groups have demonstrated that platelets 
impact inflammatory processes, from atherosclerosis 
to infection. Platelet interactions with inflammatory 
cells may mediate pro-inflammatory outcomes. The 
acute phase response (APR) is the earliest response to 
infection or injury, and some studies have indicated that 
platelets induce the APR [77]. After being recruited by 
inflammatory stimuli, immune cells amplify and sustain 
the APR by releasing local inflammatory mediators at the 
site of recruitment.

RESOLUTION OF INFLAMMATION

To prevent progression from acute inflammation to 
persistent, chronic inflammation, the inflammatory response 
must be suppressed to prevent additional tissue damage. 
Inflammation resolution is a well-managed process involving 
the spatially- and temporally-controlled production of mediators, 
during which chemokine gradients are diluted over time. 

Circulating white blood cells eventually no longer sense these 
gradients and are not recruited to sites of injury. Dysregulation of 
this process can lead to uncontrolled chronic inflammation [78]. 
Inflammation resolution processes that rectify tissue homeostasis 
include reduction or cessation of tissue infiltration by neutrophils 
and apoptosis of spent neutrophils, counter-regulation of 
chemokines and cytokines, macrophage transformation from 
classically to alternatively activated cells, and initiation of 
healing [79, 80].

Chronic inflammation occurs when acute 
inflammatory mechanisms fail to eliminate tissue 
injury [81], and may lead to a host of diseases, such as 
cardiovascular diseases, atherosclerosis, type 2 diabetes, 
rheumatoid arthritis, and cancers [82]. Understanding the 
common mechanisms that orchestrate dysfunction in the 
various organ systems will allow for development and 
production of improved targeted therapies.

ORGAN-SPECIFIC INFLAMMATORY 

RESPONSES

Inflammation has long been recognized as a 
major cause of disease. It is estimated that some 15% 
of human cancers are associated with chronic infection 
and inflammation [83]. Acute and chronic inflammation-
mediated tissue injury is observed in many organ systems, 
including the heart, pancreas, liver, kidney, lung, brain, 
intestinal tract, and reproductive system.

Figure 3: MAPK pathway. This pathway mediates intracellular signaling initiated by extracellular stimuli, such as stress and cytokines. 
MAPKKKs phosphorylate and activate MAPKKs, which in turn phosphorylate and activate MAPKs. The mammalian MAPK family 
includes Erk1/2, JNK, and p38. In the Erk1/2 pathway, Erk1/2 is activated by MKK1/2, which is activated by Raf. In the JNK pathway, 
JNK is activated by MKK4/7, which is activated by MEKK1/4, ASK1, and MLK3. In the p38 pathway, p38 is activated by MKK3/6, 
which is activated by MLK3, TAK, and DLK. Activated MAPKs phosphorylate various proteins, including transcription factors, resulting 
in regulation of inflammatory responses.
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Heart

Cardiovascular disease, and its underlying pathology, 
atherosclerosis, is the major cause of death and disability 
worldwide [84, 85]. By 2030, almost 23.6 million people 
are projected to die annually from cardiovascular disorders 
[86, 87]. Inflammatory mediators play key roles in 
atherosclerosis, from initial leukocyte recruitment through 
rupture of the atherosclerotic plaque [88–91]. Inflammation 
is also an early event in cardiac stress. Elevated levels of 
endothelial adhesion molecules and increased inflammatory 
cytokine and chemokine production and release are 
observed in affected cardiac tissues [92].

The innate immune system is the primary cardiac 
defense against pathogens and tissue damage [93]. 
Myocardial infarction, which commonly results from 
coronary atherosclerosis and involves acute loss of many 
myocardial cells, is the most common cause of cardiac 
injury [94]. Necrotic cardiac cells initiate an inflammatory 
cascade to clear dead cells and debris from the infarct 
[95, 96]. Cell death releases intracellular components 
that activate innate immune mechanisms to initiate an 
inflammatory response. Endogenous ligands released 
following injury are recognized as danger signals by 
cell surface receptors, and activate inflammation [97, 
98]. TLR-mediated pathways trigger post-infarction 
inflammatory responses by activating NF-κB signaling 
[98–103]. Chemokines recruit inflammatory leukocytes to 
the infarct, and cytokines promote leukocyte-endothelial 
cell adhesions [104, 105]. Moreover, TGF-β and IL-10 
promote cardiac repair by suppressing inflammation, 
enhancing myofibroblast phenotypic modulation, and 
promoting extracellular matrix deposition [106, 107].

Cardiovascular disease is the main cause of death 
and disability in patients with diabetes mellitus, especially 
those with type 2 diabetes (T2D), in whom cardiovascular 
disease occurs 14.6 years earlier on average [108]. About 
two-thirds of deaths in people with diabetes are due to 

cardiovascular disease; among these, approximately 40% 
die from ischemic heart disease, 15% from other forms 
of heart disease, principally congestive heart failure, and 
about 10% from stroke [109]. Recent global estimates 
indicate that over 422 million adults currently live with 
diabetes, of which over 90% have T2D.

Diabetes is a group of metabolic disorders 
characterized by sustained high blood sugar levels, and is 
a major global health challenge, both to individuals and 
their families, and to healthcare systems [110]. Diabetes 
complications include heart attack, stroke, kidney failure, 
limb amputation, blindness, and nerve damage. Diabetes 
results from either impaired insulin production in the 
pancreas or body cells not responding to produced insulin 
[111]. Insulin resistance is defined as decreased insulin-
stimulated glucose uptake, and is associated with inactivity, 
obesity, and aging. Pancreatic islet cells respond to insulin 
resistance by enhancing insulin secretion and cell mass. 
However, when islet β-cells are unable to compensate for 
insulin resistance, insulin deficiency develops, followed by 
T2D [112], which is increasingly being characterized as 
an inflammatory disease [113, 114]. Elevated circulating 
levels of acute-phase proteins, including CRP, fibrinogen, 
serum amyloid A, plasminogen activator inhibitor, 
and haptoglobin, along with sialic acid, cytokines, and 
chemokines, have been observed in patients with T2D. 
Elevated IL-1β, IL-6, TNF-α, and CRP levels are also 
predictive of T2D. IL-1 receptor antagonist (IL-1RA) is 
elevated in obesity and prediabetes prior to T2D onset. 
Excessive nutrient levels, including those of glucose and 
free fatty acids, promote insulin resistance. T2D also 
activates the NF-κB, MAPK, and JAK-STAT pathways, 
which can each promote tissue inflammation [110, 114, 
115]. Metabolic stressors also negatively impact pancreatic 
islet cells and insulin-sensitive tissues, including adipose 
tissue, promoting local cytokine and chemokine production 
and release. At the same time, immune cells, such as mast 
cells and macrophages, are recruited and contribute to 

Figure 4: JAK-STAT pathway. Following IL-6 binding, signal is transduced by a receptor to activate the JAKs, which then activate 
STATs. STATs are dephosphorylated in the nucleus, leading to activation of downstream cytokines.



Oncotarget7211www.impactjournals.com/oncotarget

tissue inflammation. Similarly, cytokine and chemokine 
release from adipose tissues into the circulation promotes 
further inflammation in other tissues [116].    

Pancreas

Pancreatitis, caused by pancreatic duct 
obstruction, trypsinogen gene mutation, or alcoholism, 
is an inflammatory disease of the pancreas [117]. Acute 
pancreatitis (AP) incidence ranges from 4–45 per 100,000 
patients per year and increases annually by approximately 
1.3–4.0% in most developed countries. AP is one of the 
most common gastrointestinal causes for hospitalization in 
the US, and chronic pancreatitis (CP) is less common than 
AP. However, CP patients experience chronic abdominal 
pain and exocrine and/or endocrine insufficiency, 
leading to reduced quality of life [118]. Pancreatitis is 
characterized by acinar cell destruction and activation of 
inflammatory cells, including macrophages, neutrophils, 
and granulocytes, which secrete inflammatory cytokines 
[117, 119]. These cytokines further activate pancreatic 
stellate cells (PSCs) to promote CP [120]. Pancreatitis 
development requires various molecular pathways, such as 
NF-κB, MAPK, and JAK-STAT, which play critical roles 
in inflammatory cell activation during pancreatitis [117]. 

Pancreatic cancer (PC) remains one of the most lethal 
of malignancies and a major health burden [121], and is the 
fourth most common cause of death from cancer in the US 
[118]. There is a strong link between antecedent CP and PC 
[122]. CP leads to fibrosis, which is a common pathological 
feature and major risk factor for PC [123]. Pancreatic cancer 
results from dysregulation of oncogenes and tumor suppressor 
genes, as well as growth factors and their receptors, including 
epidermal growth factors, vascular endothelial growth factor 
(VEGF), fibroblast growth factor (FGF), and many cytokines, 
such as TGF-β, IL-1, IL-6, TNF-α, and IL-8, which modulate 
pathways involved in growth and differentiation [124, 125]. 
Shi, et al. has showed that VEGF is upregulated by low 
extracellular PH (acidosis), which occurs frequently around 
necrotic regions in tumors, and that acidosis activates IL-8 
[126]. VEGF and IL-8 are important angiogenic factors in 
PC [126], and acidosis-promoted upregulation of these genes 
can be mediated through NF-κB and AP-1 transactivation and 
cooperation [127]. 

Liver

Inflammation in the liver protects this organ from 
infection and injury, but excessive inflammation may lead 
to extensive loss of hepatocytes, ischemia-reperfusion 
injury, metabolic alterations, and eventually permanent 
hepatic damage [128]. Inflammation can destroy hepatic 
parenchymal cells, increasing the risk of chronic liver 
diseases, such as non-alcoholic fatty liver disease (NAFLD) 
or viral hepatitis. Chronic liver diseases are a leading cause 
of morbidity and mortality in the US [129].

The liver is the largest solid organ in the body 
[130], and is a target of both infectious and non-infectious 
inflammatory pathologies. Infectious inflammation of 
the liver is mainly caused by microorganisms, such as 
bacterial products, hepatitis B virus (HBV), or hepatitis 
C virus (HCV) [131, 132]. Sterile inflammation (SI) is 
also important in the pathology of many liver diseases, 
such as alcoholic or nonalcoholic steatohepatitis, drug-
induced liver injury, and ischemia/reperfusion [133–135]. 
In SI, endogenous DAMPs are released to injured tissues 
and activate immune cells [136]. While pathogen-driven 
inflammation and SI differ, they share several functional 
characteristics. Many receptors and pathways can be 
activated by both PAMPs and DAMPs [137]. TLR4, for 
example, can be activated by bacterial LPS and cellular 
HMGB1. Because of the liver’s unique vascular supply, 
PAMPs of intestinal origin and DAMPs from hepatocytes 
both contribute to inflammation in a variety of diseases. For 
example, PRR activation by DAMPs and PAMPs can induce 
production of pro-inflammatory cytokines and immune 
cell localization to sites of injury. Recognition of DAMPs 
and PAMPs results in assembly of the inflammasome, a 
cytosolic protein complex that activates the serine protease 
caspase-1, followed by activation and secretion of IL-1β and 
other cytokines. At the same time, Kupffer cell activation 
and inflammatory cell recruitment leads to production 
of cytokines and chemokines that promote long-term 
inflammation, hepatocyte damage, and/or cholestasis [138].

Lung

Lung inflammatory diseases involve complex 
interactions among and between structural and immune 
cells [139]. Lung inflammation results predominantly 
from tissue exposure to bacterial and viral pathogens, and/
or environmental pollutants. Excessive acute inflammation 
and subsequent lung injury can cause pulmonary fibrosis 
and impair gas exchange. Unresolved lung injury and 
chronic inflammation are frequently observed in acute 
respiratory distress syndrome, cystic fibrosis, chronic 
obstructive pulmonary disease (COPD), and asthma [140–
142]. Approximately 90% of COPD cases are associated 
with cigarette smoking-induced inflammation in small 
airways and lung parenchyma [143]. Cigarette smoking is a 
major risk factor for COPD, which involves both systemic 
and pulmonary inflammation. Long-term smoking can 
cause macrophage, neutrophil, and activated T lymphocyte 
infiltration into airways, and promote production of 
chemokines, oxygen radicals, proteases, and cytokines, 
including that of TNF-α, IL-6 and IL-8, in the lung [144].

Kidney

Kidney inflammation contributes to progressive renal 
injury, which may lead to glomerulonephritis, end-stage 
renal disease, or acute or chronic kidney disease (CKD) 
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[145–147]. Approximately 10–12% of the population suffers 
from CKD, and some 50% of elderly patients show signs of 
kidney dysfunction, which is associated with high morbidity 
and mortality [52]. Kidney inflammation is most commonly 
induced by infection, ischemia/reperfusion, in situ immune-
complex formation/deposition, or complement pathway 
dysregulation [145]. CKD and acute kidney injury (AKI) 
are the most severe types of kidney disease [148]. Interstitial 
inflammation and tubular injury are commonly observed 
in acute and chronic kidney injury cases. Renal tubular 
epithelial cells are likely important promoters of kidney 
inflammation, secreting a variety of inflammatory cytokines 
in response to both immune and non-immune factors, and 
leukocyte infiltration depends on the local presence of 
these cytokines [146]. Stimuli that can induce kidney injury 
activate transcription factors (NF-κB or MAPK). These 
stimuli include cytokines, growth factors, DAMPs, and 
PAMPs, TLRs, Nod-like receptors (NLRs), and metabolic 
(high glucose, advanced glycosylation end products) and 
immune mediators [147].

Intestinal tract

Acute and chronic inflammatory diseases of the 
intestine can cause various health issues, and decrease 
patient quality of life worldwide [149, 150]. The complex, 
polygenetic inflammatory bowel diseases (IBDs) are 
characterized by an excessive inflammatory response to 
gut lumen microbial flora [151]. IBDs mainly include 
ulcerative colitis (UC) and Crohn disease (CD), but 
also noninfectious inflammation of the bowel [152, 
153]. Idiopathic IBDs, such as CD and UC, are caused 
by cytokine-driven, non-infectious inflammation of 
the gut. For example, CD is associated with excessive 
IFN-γ/IL-17 and IL-12/IL-23 production, while UC is 
associated with excess IL-13 [153]. Thus, IBD appears to 
be the result of a dysfunctional interaction between gut 
bacteria and the mucosal immune system [154]. A key 
process in the immune system’s response to microbes is 
the recognition of microbial agents via PRRs, including 
TLRs and nucleotide-binding oligomerization domain 
containing NLRs, which sense evolutionarily conserved 
PAMPs [155]. Upon PAMP detection, PRRs activate 
intracellular signaling pathways that induce production of 
cytokines and chemokines to promote host resistance to 
infection. TLR (mainly TLR4) signaling induces NF-κB 
and MAPK transcription. At the same time, NLRs are also 
activated through ligand detection [154], in turn activating 
caspase-1, followed by activation and secretion of IL-1β, 
interleukin-18 and other cytokines [154].

Reproductive system

The hallmarks of inflammation are observed 
during many normal reproductive processes, including 
menstruation, ovulation, implantation, and parturition 
[156]. Injury and healing caused by menstruation, 

ovulation, and parturition trigger the inflammatory 
cascade. However, initiation and maintenance of 
inflammatory processes are also important components 
of many reproductive tract diseases. Damaged tissues 
locally release inflammatory interleukins, growth factors, 
cytokines, and prostaglandins, which activate signaling 
pathways and recruit immune cells (e.g. neutrophils 
and macrophages) to the site of injury. This process 
synergistically controls tissue remodeling and repair, but 
can also induce inflammatory diseases [7]. Inflammatory 
cytokines, including IL-6, are the primary mediators of 
inflammation-related reproductive tract diseases, and 
act via signal transduction pathways such as the MAPK 
pathway [157, 158].

Brain

Inflammatory responses occur in the brain in 
many central nervous system (CNS) diseases, including 
autoimmune diseases, neurodegenerative diseases like 
Alzheimer’s (AD) and Parkinson’s disease (PD), and 
epilepsy. Inflammatory responses in the brain can enhance 
neuronal excitability, injure cells, and increase blood-
brain barrier permeability to various molecules [159–
161]. Inflammation-associated CNS diseases result from 
activation of the brain’s resident immune cells and microglia, 
which produce pro-inflammatory markers [162]. These 
inflammation processes also involve both the innate and 
adaptive immune systems and resemble immune responses 
to systemic infection. Cytokines and TLRs are major 
inflammatory mediators in the transition between innate 
and adaptive. Inflammatory responses in the CNS may also 
be triggered by endogenous ligands recognized by TLRs. 
DAMPs, such as heat-shock proteins and extracellular 
matrix degradation molecules, entering the brain through 
a damaged blood-brain barrier may initiate inflammatory 
responses. The CNS inflammatory response is strong in 
reaction to both infectious agents and brain injury, such as 
tissue damage observed following ischemic, traumatic, or 
excitotoxic brain injury, or seizure [160, 163, 164].

CONCLUSIONS

Inflammation is frequently a key element in the 
pathological progression of organ disease. Three main 
pathways, NF-κB, MAPK, and JAK-STAT, play major 
roles in inflammation, and dysregulation of one or more 
of these pathways may lead to inflammation-associated 
disease. A better understanding of inflammatory response 
pathways and molecular mechanisms will undoubtedly 
contribute to improved prevention and treatment of 
inflammatory diseases.
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