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The respiratory epithelium is lined by a tightly balanced fluid layer that allows normal O2 
and CO2 exchange and maintains surface tension and host defense. To maintain alveolar 
fluid homeostasis, both the integrity of the alveolar–capillary barrier and the expression 
of epithelial ion channels and pumps are necessary to establish a vectorial ion gradient. 
However, during pulmonary infection, auto- and/or paracrine-acting mediators induce 
pathophysiological changes of the alveolar–capillary barrier, altered expression of epithe-
lial Na,K-ATPase and of epithelial ion channels including epithelial sodium channel and 
cystic fibrosis membrane conductance regulator, leading to the accumulation of edema 
and impaired alveolar fluid clearance. These mediators include classical pro-inflammatory 
cytokines such as TGF-β, TNF-α, interferons, or IL-1β that are released upon bacterial 
challenge with Streptococcus pneumoniae, Klebsiella pneumoniae, or Mycoplasma 
pneumoniae as well as in viral infection with influenza A virus, pathogenic coronaviruses, or 
respiratory syncytial virus. Moreover, the pro-apoptotic mediator TNF-related apoptosis- 
inducing ligand, extracellular nucleotides, or reactive oxygen species impair epithelial 
ion channel expression and function. Interestingly, during bacterial infection, alterations 
of ion transport function may serve as an additional feedback loop on the respiratory 
inflammatory profile, further aggravating disease progression. These changes lead to 
edema formation and impair edema clearance which results in suboptimal gas exchange 
causing hypoxemia and hypercapnia. Recent preclinical studies suggest that modulation 
of the alveolar–capillary fluid homeostasis could represent novel therapeutic approaches 
to improve outcomes in infection-induced lung injury.

Keywords: ion channel, ion pumps, edema, cytokines, na-K-ATPase, cystic fibrosis membrane conductance 
regulator, epithelial sodium channel, lung injury
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inTRODUCTiOn

The major task of the respiratory tract is the exchange between 
inhaled atmospheric oxygen and carbon dioxide carried by the 
bloodstream, which is ensured by a thin but large surface area 
formed by type I and type II alveolar epithelial cells. Both the  
upper and the lower respiratory epithelia are lined by a thin (0.2 µM) 
aqueous layer (1), referred to as airway surface liquid (ASL) and 
alveolar lining fluid (AFL), respectively. This fluidic component 
serves—in concerted action with surfactant, mucus, and ciliary 
beat—to reduce alveolar surface tension and prevent atelectasis 
as well as to defend against invading pathogens. To maintain the 
composition of the ASL and AFL and to prevent alveolar flooding, 
lung fluid homeostasis is tightly controlled by the expression and 
activity of ion channels and pumps. These channels and pumps 
establish an osmotic gradient between airspace and interstitium, 
driving paracellular or aquaporin- (AQP3, 4, and 5) (2) mediated 
fluid movement across the respiratory epithelium. Among these, 
the apical amiloride-sensitive epithelial sodium channel (ENaC) 
and the amiloride-insensitive cyclic nucleotide-gated cation 
channel (CNG) acting together with the basolaterally located 
Na,K-ATPase (NKA) promote transcellular sodium transport 
(3), which is accompanied in the alveolar epithelium by chloride 
uptake from the apical cystic fibrosis membrane conductance 
regulator (CFTR) (4). However, in the airway, CFTR promotes 
chloride secretion to regulate mucus density (5). In addition, 
Ca2+-activated ion channels (CaCC) promote apical chloride 
secretion, further supported by basolateral chloride uptake via 
Na+/K+/2Cl− cotransporters (NKCC) (6) as well as potassium 
ion channels such as Kv7.1, contributing to cellular membrane 
potential and buildup of an electrochemical gradient necessary 
for apical chloride secretion (7). Additional factors influencing 
fluid homeostasis are epithelial (im)permeability established by 
tight junction proteins as well as endothelial integrity limiting the 
extravasation of fluid from the blood vessels driven by changes in 
the capillary hydrostatic pressure (8, 9).

Pulmonary infections commonly disturb ion and thus fluid 
homeostasis, resulting in abnormal changes of ASL, AFL, and 
alveolar edema formation. Both viral and bacterial pathogens 
are common causative agents for acute lung injury (ALI) and the 
acute respiratory distress syndrome (ARDS), which are charac-
terized by a widespread inflammation within the lungs, extensive 
flooding of the alveolar airspace with protein-rich exudate fluid 
and impaired gas exchange leading to respiratory failure and 
resulting in mortality rates of 40–58% (10, 11). Additionally, 
sepsis resulting from primary infections at other sites is often 
complicated by the development of severe lung injury during 
the onset of bacteremia, resulting in lung failure and accounting 
for as many as half of all cases of ARDS (12). Although some of 
the pathogen-derived effects on ion transport during lung injury 
have been reported to be caused directly by the pathogen–host 
cell interaction (13), accumulating evidence suggests that auto- 
and paracrine mediators of local and/or systemic inflammatory 
responses mounted upon pathogen recognition and replication 
induce—among other pathophysiological changes—impaired ion 
transport and alveolar fluid clearance (AFC), resulting in edema 
formation and persistence. Importantly, mortality in ARDS 

patients has repeatedly been found to correlate with persistence 
of alveolar edema (11, 14).

In this review, we will highlight advances in the understanding 
of how inflammatory responses in pulmonary infection affect 
ion transport, including common patterns and unique pathways 
activated by different respiratory pathogens, and how these 
mechanisms might be modulated to improve the outcomes of 
ARDS patients.

MeDiATORS MODULATinG iOn AnD 
FLUiD HOMeOSTASiS

There are numerous reports showing that pulmonary infection 
leads to loss of barrier integrity and edema accumulation as 
well as the role of distinct mediators on impairing ion chan-
nel or transporter function on the alveolar, bronchial, and gut 
epithelia. However, there have been few studies showing how 
infectious agents modulate soluble signaling molecules that affect 
ion and fluid homeostasis. Several reports from the last decade 
have reestablished an important role for soluble, inflammatory 
mediators in the progression of ARDS. For example, Lee et  al. 
demonstrated that exposure of human ATII cells to pulmonary 
edema fluid derived from ARDS patients alone was sufficient 
to downregulate the ion channels and pumps involved in AFC, 
including ENaC, the NKA, and CFTR (15). Concomitantly, it was 
established that viral or bacterial lung infections lead to edema 
accumulation and impair clearance via the induction of paracrine 
factors. For example, influenza A virus (IAV) has been shown to 
increase apical potassium secretion by upregulation of the apical 
potassium channel KCNN4 by a paracrine signaling event, thus 
disturbing the osmotic gradient necessary for edema clearance 
(16). Similarly, Pseudomonas aeruginosa evokes a strong inflam-
matory response and lung edema accumulation related with the 
modulation of ENaC subunit expression (17, 18). In the next 
paragraphs, we will provide an overview on interconnections of 
mediators released in pulmonary infection and their effects on 
ion and fluid homeostasis (Figure 1).

interferon
Once cells detect pathogens by their specific and specialized 
pattern recognition receptors, they produce interferons (IFN), 
which can be detected—if not actively suppressed by a given 
pathogen—in most pulmonary infection scenarios. Effects of 
IFN on fluid homeostasis seem to be mostly limited to gamma 
IFN (IFN-γ), which have been attributed a modulatory role 
in both innate and adaptive immunity (19, 20). IFN-γ has 
been reported to decrease sodium transport at levels as low as  
10  U/ml (21). Moreover, IFN-γ can also directly decrease 
chloride currents along the bronchial epithelium by downregu-
lating CFTR due to a posttranscriptional modulation of CFTR 
messenger RNA (mRNA) stability and thus half-life (21–23). 
In contrast, both class I IFN, IFN-α, and IFN-β that are usually 
implicated in mounting a direct cellular pathogen-restrictive 
response do not modulate CFTR mRNA or protein abundance 
(22). IFN-α appears to negatively impact NKA cell membrane 
protein abundance during IAV infection via activating the 
metabolic sensor AMP-kinase (AMPK) (24). However, to date, 
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FiGURe 1 | Mediators released in pulmonary infection and their effects on ion homeostasis. Ion transport of the lung epithelial cell is mediated by various 
ion channels and pumps. Sodium enters the epithelial cell via the apical cyclic nucleotide-gated cation channel (CNG) or the epithelial sodium channel (ENaC), that 
can be downregulated by reactive oxygen and nitrogen species (RONS) and ATP, transforming growth factor beta (TGF-β) or interleukin-1 beta (IL-1β) upon 
Streptococcus pneumoniae and influenza A virus (IAV) infection. Sodium is secreted at the basolateral side by the Na,K-ATPase (NKA), which is modulated in 
lipopolysaccharide (LPS)-induced lung injury as well as upon Mycoplasma pulmonis, IAV, coronavirus (CoV), or adenovirus challenge. RONS, interferon-alpha 
(IFN-α), and TNF-related apoptosis-inducing ligand (TRAIL) lead to a decrease in NKA abundance or activity. In parallel, chloride is taken up (alveolar epithelium)  
or secreted (airway) by the cystic fibrosis membrane conductance regulator (CFTR) and secreted by apical Ca2+-activated ion channels (CaCC), supported by 
basolateral potassium channels (not shown) and Na+/K+/2Cl− cotransporters (NKCC). While extracellular ATP enhances chloride secretion by CaCC, CFTR  
action is reduced by IFN-γ and interleukin-8 (IL-8) in CoV, IAV, respiratory syncytial virus (RSV), or Mycoplasma pneumoniae infection.
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there is no data supporting whether this effect of IFN-α on ion 
transport is a generalized response during pulmonary infections.

Tumor necrosis Factor Alpha (TnF-α)
Tumor necrosis factor alpha is a classical cytokine produced 
upon local or systemic inflammation, regulating differential 
processes such as proliferation and differentiation of immune 
cells as well as cell death (25–27). After initial conflicting stud-
ies, it has by now become clear that it plays a dichotomic role 
in lung fluid reabsorption (28). On one hand, TNF-α ligation 
to its receptor TNF receptor 1 (TNFR1, also named CD120a 
or p55) inhibits ENaC activity both in vitro and in vivo via a 
PKC-dependent mechanism (29). On the other hand, a distinct 
lectin-like domain of TNF different from the receptor-binding 
domain, which can be mimicked by the 17-amino acid circular 
TIP peptide (30), has been reported to increase edema reab-
sorption in rat bacterial pneumonia (31). Application of the 
TIP peptide has been demonstrated to elevate ENaC expres-
sion and open probability (32) resulting in enhanced AFC in  
P. aeruginosa-treated rats in vivo (31) and has furthermore been 
reported to increase NKA activity (33). In addition to its direct 
effects on ion channels and pumps of the alveolar epithelium, the 
TNF-α/TNFR1 interaction also modulates the integrity of the 
alveolar barrier, as it increases endothelial expression of chem-
oattractants and adhesion molecules including the interleukin-8 
(IL-8; formerly called neutrophil chemotactic factor)/IL-8-
receptor 2 axis, the intercellular adhesion molecule-1, platelet 
endothelial cell adhesion molecule-1, and vascular adhesion 
molecule-1, and thus promotes excessive recruitment of mono-
nuclear phagocytes and neutrophils during lung inflammation  
(30, 34, 35). Importantly, besides cellular transmigration itself, 

neutrophil-derived proteases and neutrophil extracellular traps 
are central drivers of both endothelial and epithelial injury (36).

interleukin-1 Beta (iL-1β)
Interleukin-1 beta is one of the most commonly found cytokines 
in pulmonary edema and bronchoalveolar lavage fluids in experi-
mental and human ARDS (37, 38) and is, for example, induced 
during Klebsiella pneumoniae bacterial pneumonia (39–41). It is 
mainly produced by macrophages and, similarly to TNF-α, has a 
major impact on cell proliferation, differentiation, and cell death. 
In pulmonary inflammation, IL-1β increases lung barrier perme-
ability in in vitro and in vivo models of ARDS (41, 42) and may 
contribute to alveolar edema in lung injury models by impairing 
fluid reabsorption from the lungs. This can in part be attributed to 
decreased sodium absorption due to a decrease in αENaC expres-
sion and trafficking to the apical membrane of ATII cells (43). In 
addition, IL-1β in Streptococcus pneumonia infection (44)—and 
also TNF-α and IFN-γ (45)—can influence ion transport pro-
cesses via activation of the pro-coagulant factors (46). Thrombin 
in particular has been demonstrated to impair AFC by increasing 
the PKC-ζ-dependent endocytosis of the alveolar NKA (47).

interleukin-8
Interleukin-8 is a chemotactic factor that correlates with neutro-
phil accumulation in distal airspaces of patients with ARDS and 
is a predictor of mortality (48–50). IL-8 is secreted by bronchial 
epithelial cells and can be induced by Mycoplasma pneumoniae 
antigen or live M. pneumoniae (51) as well as by severe acute 
respiratory syndrome coronavirus spike protein or respiratory 
syncytial virus infection (52, 53). The rate of AFC is impaired by 
high levels of IL-8 and is significantly lower in patients who have 
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a pulmonary edema fluid concentration of IL-8 above 4,000 pg/ml  
(54). Mechanistically, IL-8 inhibits beta-2 adrenergic recep-
tor (β2AR) agonist-stimulated fluid transport across rat and 
human alveolar epithelia. This inhibition is mediated by a PI3K-
dependent desensitization and downregulation of the β2AR 
from the cell membrane associated with an inhibition of cyclic 
AMP generation normally observed in response to β2AR agonist 
stimulation (54).

Transforming Growth Factor Beta (TGF-β)
The cytokine TGF-β is a critical factor for the development of 
ARDS. Besides its established role in dampening inflammatory 
responses (55), e.g., by driving macrophages toward an anti-
inflammatory phenotype (56), it increases alveolar epithelial 
permeability to promote edema formation upon lipopolysac-
charide (LPS) stimulation (57). Furthermore, TGF-β has been 
shown to inhibit amiloride-sensitive sodium transport by an 
ERK1/2-dependent inhibition of the αENaC subunit promoter 
activity, decreasing αENaC mRNA and protein expression (58). 
In addition, Peters et al. (59) demonstrated that TGF-β leads to 
the subsequent activation of phospholipase D1, phosphatidyl-
inositol-4-phosphate 5-kinase 1α, and NADPH oxidase 4 
(Nox4). Nox4 activation results in the production of reactive 
oxygen species (ROS) that in turn reduce cell surface stability of 
the αβγENaC complex and thus promote edema fluid accumula-
tion. Moreover, TGF-β decreases NKA β1 subunit expression, 
resulting in decreased NKA activity in lung epithelial cells  
(60, 61). In further support of a role for TGF-β in lung injury, 
TGF-β levels are increased in lung fluids from patients with ALI/
ARDS (62) and in murine models of Streptococcus pneumoniae 
and IAV infection (63, 64). Of note, TGF-β has been proposed to 
further aggravate edema formation in IAV infection by increas-
ing epithelial cell death, causing a disruption of epithelial barrier 
integrity (64). Moreover, it has been implicated in the upregula-
tion of cellular adhesins which increase host susceptibility to 
bacterial co-infections (65) posing a major risk for increased viral 
pneumonia-associated morbidity and mortality during influenza 
epidemics (66).

TnF-Related Apoptosis-inducing Ligand 
(TRAiL)
The principal role of TRAIL, highly released by lung macrophages 
upon viral infection, is to drive infected cells into apoptosis to 
limit pathogen spread. TRAIL has been reported to be produced 
especially during viral respiratory infections, including IAV-, 
adenovirus-, and paramyxovirus infection, and cell sensitivity 
to TRAIL-induced apoptosis is enhanced in infected cells by 
increased TRAIL-receptor expression (67, 68). However, this 
process also affects alveolar epithelial barrier integrity leading 
to edema accumulation (67, 69). Moreover, TRAIL signaling 
leads to NKA downregulation in IAV infection in non-infected 
neighboring alveolar epithelial cells mediated by AMPK (24). 
Accordingly, TRAIL signaling reduces AFC and promotes edema 
formation. In addition, TRAIL release upon IAV infection further 
favors bacterial superinfection with S. pneumoniae, aggravating 
lung injury (70).

nucleotides
During acute infection, extracellular nucleotides often serve as 
danger signals involved in recognition and control of pathogens 
by promoting the recruitment of inflammatory cells, stimulating 
pro-inflammatory cytokines, and increasing the production of 
ROS or nitric oxide (NO) (71, 72). Extracellular ATP, which can be 
released from the airway epithelia and is produced by endothelial 
cells upon acute inflammation, binds to P2 purinergic receptors 
to promote a calcium signaling-dependent stimulation of CaCC 
and a decreased open probability of ENaC (73, 74). Moreover, 
extracellular adenosine, produced from ATP by hydrolysis via 
the ecto-5′-nucleotidase CD73, is increased in bronchoalveolar 
lavage fluid of IAV-infected mice, and genetic deletion of the 
A1-adenosine-receptor is protective (75). However, CD73 is only 
to a limited extent involved in the progression of lung injury and 
has no effect on pulmonary edema formation (76).

Reactive Oxygen and nitrogen Species 
(ROnS)
Reactive oxygen and nitrogen species have been shown to be 
involved in the development of epithelial injury in pathologic 
situations, including LPS-/sepsis-induced lung injury as well as 
viral pneumonia, in which RONS are produced in large quanti-
ties by alveolar phagocytes (77). Studies in rabbit and piglet lungs 
further elucidated that RONS affect AFC and edema persistence 
by inhibiting both the activity of ENaC and alveolar epithelial 
NKA (78, 79).

eFFeCTS OF iOn CHAnGeS On 
CYTOKine PRODUCTiOn

To add to the complexity of airway and alveolar fluid regulation, 
it has been suggested that not only ion channels, pumps, and 
transporters are modulated by signaling factors released upon 
pulmonary infection but also changes in ion transport influ-
ence the respiratory inflammatory response. For example, the 
transporter NKCC1—which plays a critical role in basolateral 
ion transport—can affect the severity of pneumonia and sepsis 
and consequently severity of lung injury, by regulating the 
ability of the alveolar–capillary barrier to modulate neutrophil 
infiltration into the air spaces of the lung (80). Lack of NKCC1 
in a mouse model of pneumonia infection with K. pneumonia or 
LPS resulted in increased numbers of neutrophils in the lavage 
fluid, decreased bacteremia, and importantly mortality. It has, 
therefore, been suggested that the activity of NKCC1 contributes 
to edema formation and decreased neutrophil migration into 
the lung air spaces, probably contributing to reduce bacterial 
killing and the subsequent development of severe sepsis (81–83). 
Similarly, mutations of CFTR can amplify lung inflammation by 
upregulating pro-inflammatory responses caused by an increase 
in cytokine production upon NFκB activation in lung epithelial 
cells (84). Lack of functional neutrophilic CFTR in a model of 
LPS-induced lung inflammation contributes to inflammatory 
imbalance with NFκB translocation and a reduction of anti-
inflammatory cytokines such as IL-10, favoring the increase 
in lung vascular permeability (85). Also ion imbalances in 
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response to expression of viral ion channels or viroporins, has 
been recognized as potential pathogen recognition pathway 
that favors inflammasome activation and the release of IL-1β, 
TNF, and IL-6, which might contribute to the limitation of virus 
spreading (86, 87).

THeRAPeUTiC MODULATiOn OF THe 
ALveOLAR–CAPiLLARY FLUiD BALAnCe 
DURinG PULMOnARY inFeCTiOn

As stated above, pulmonary infections—especially in severe 
cases—can lead to lung edema accumulation and impaired 
edema clearance. Lung edema results in impaired oxygenation 
and organ dysfunction which if not resolved leads to high mortal-
ity of patients with ARDS (11, 14). Current treatment options 
for infection-induced ARDS include antivirals and antibiotics. 
However, there is increased antibiotic resistance—reported for 
pathogens such as K. pneumoniae, Escherichia coli, Staphylococcus 
aureus and P. aeruginosa (82, 83, 88)—or lack of readily avail-
able treatment options for some acute emerging agents such as 
zoonotic influenza viruses or middle east respiratory syndrome 
coronavirus (89–91). Current approaches to treat ARDS patients 
include low tidal volume mechanical ventilation, positive end 
expiratory pressure, fluid management, and extracorporeal mem-
brane oxygenation as measures to primarily improve oxygenation 
(92). Interestingly, lung-protective ventilation strategies have not 
only been reported to reduce mortality by 22% in patients with 
ARDS but also to diminish the number of neutrophils and the 
concentration of pro-inflammatory cytokines released in patient 
lavage fluids.

Novel approaches targeting host mediators known to promote 
lung edema formation and impair clearance such as studies on 
TIP peptide [see Tumor Necrosis Factor Alpha (TNF-α) above] 
administration in ARDS are being studied. Initial reports showed 
that AP301, a synthetic peptide mimicking TIP, induces ENaC 
activity in type II alveolar epithelial cells from dogs, pigs, and rats 
(93) and improves lung function in a porcine lung injury model 
(94). A subsequent phase II clinical trial with AP301 in ventilated 
ARDS patients resulted in improved AFC and oxygenation of 
these patients (95). Also, mesenchymal stem cells, which have 
been reported to improve epithelial barrier integrity in human 

AEC II treated with a cytokine mix composed of a combination 
of IL-1β, TNFα, and IFNγ (96), are currently tested for safety and 
efficacy in phase II trials (clinical trial identifiers NCT02097641, 
NCT01775774, NCT02112500). Studies on β2-agonists, which 
had been previously shown to improve vectorial sodium transport 
and edema clearance (97, 98), did not improve ARDS outcomes 
(99, 100), possibly due to an enhanced inflammatory response 
driven by lung macrophages (101). Further treatment options 
targeting para- or autocrine signaling events affecting AFC in 
preclinical models include glucocorticoids that suppress inflam-
mation and upregulate both NKA (102) and ENaC (103, 104),  
neutralizing antibodies directed against virus-specific release of 
macrophage TRAIL that improve NKA expression as well as AFC 
in IAV-infected mice (24) and nitric oxide synthase inhibitors ami-
noguanidine or N(omega)-monomethyl-l-arginine (l-NMMA)  
that protect against pulmonary edema in LPS-induced lung 
injury as well as in IAV infection (77, 105).

COnCLUSiOn

Pathogen-induced lung injury but also sepsis can lead to wide-
spread respiratory inflammation that favors accumulation of lung 
edema leading to multiorgan dysfunction and poor outcomes. 
Recent advances in the development of novel treatment strategies 
targeting respiratory ion homeostasis show encouraging results, 
identifying them as promising candidates to improve AFC in ALI 
which could potentially improve the survival of patients with 
ARDS.
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