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Abstract 

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy characterized by a heterogeneous 

tumor microenvironment (TME) that is enriched with cancer associated fibroblasts (CAFs)1. Cell-cell 

interactions involving these CAFs promote an immunosuppressive phenotype with altered inflammatory gene 

expression. While single-cell transcriptomics provides a tool to dissect the complex intercellular pathways 

that regulate cancer-associated inflammation in human tumors, complementary experimental systems for 

mechanistic validation remain limited. This study integrated single-cell data from human tumors and novel 

organoid co-cultures to study the PDAC TME. We derived a comprehensive atlas of PDAC gene expression 

from six published human single-cell RNA sequencing (scRNA-seq) datasets2–7 to characterize intercellular 

signaling pathways between epithelial tumor cells and CAFs that regulate the inflammatory TME. Analysis 

of the epithelial cell compartment identified global gene expression pathways that modulate inflammatory 

signaling and are correlated with CAF composition. We then generated patient-derived organoid-CAF co-

cultures to serve as a biological model of the cellular interactions learned from human tissue in the atlas. 

Transfer learning analysis to additional scRNA-seq data of this co-culture system and mechanistic experiments 

confirmed the epithelial response to fibroblast signaling. This bidirectional approach of complementary 

computational and in vitro applications provides a framework for future studies identifying important 

mechanisms of intercellular interactions in PDAC.  

 

Main Text 

Pancreatic ductal adenocarcinoma (PDAC) remains challenging to effectively treat largely due to detection at 

advanced stages and a heterogeneous tumor microenvironment (TME) that limits treatment efficacy. 

Molecular changes in the epithelial cell population during carcinogenesis promote further changes in the 

surrounding non-epithelial cell populations and results in a dense and immunosuppressive TME1. The TME 

in PDAC is characterized by its heterogeneity and includes a variety of infiltrating cell types, including 

mesenchymal cells, such as cancer associated fibroblasts (CAFs), and multiple sub-populations of myeloid 

and lymphoid cells1. The recognition of phenotypic heterogeneity in cell types comprising each patient’s 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 10, 2022. ; https://doi.org/10.1101/2022.07.14.500096doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.14.500096
http://creativecommons.org/licenses/by-nc-nd/4.0/


unique TME, and our understanding of the functional and dynamic diversity of these distinct cell populations, 

has historically been limited by available genomic technologies and represents a major barrier to our 

understanding of PDAC cancer biology.  

Single-cell RNA sequencing (scRNA-seq) has recently enabled a more nuanced study of the PDAC TME, 

uncovering the heterogeneity in cell-type and function. Prior work with PDAC single-cell datasets has 

provided a roadmap to help identify individual cell populations and associated transcriptional regulation of 

the TME8–11. These data demonstrated previously underappreciated cellular heterogeneity throughout stages 

of malignant progression in humans and mouse models of PDAC tumors and are complemented by studies 

exploring the signaling pathways driving a tumor’s phenotype12,13. Single-cell technologies have furthered our 

capacity to identify discrete and functionally distinct subpopulations in both the malignant epithelial cells and 

stromal cells. CAFs in the PDAC TME are abundant and specific phenotypes have been implicated as either 

tumor enhancing or tumor-restraining subtypes14,15. Myofibroblastic CAFs (myCAFs) and inflammatory 

CAFs (iCAFs) are two subpopulations that have been well-described4,16. More recently, additional subtypes 

have been proposed, including those expressing major histocompatibility complex class II (MHC-II) genes, 

termed antigen-presenting CAFs (apCAFs)4. While the identification of these subpopulations and their 

associated characterization has opened new avenues of research in this disease, the mechanisms of intercellular 

interaction and specifically how CAF functional heterogeneity influences the phenotype of the tumor cells 

remains poorly understood.  

To identify epithelial tumor cell and CAF intercellular interactions, we first collated an atlas of six published 

scRNA-seq datasets generated from small cohorts of  PDAC patients2–7. Single-cell data provide opportunities 

to isolate subpopulations for inferring intercellular interactions and identifying patterns of cell signaling 

associated with individual cell types or cell stressors. To investigate the inflammatory signaling responsible 

for major histocompatibility class (MHC) II expression in tumor cells demonstrated in prior work17–19, we 

focused on inflammatory signaling in epithelial tumor cells learned from applying our Bayesian non-negative 

matrix factorization method CoGAPS20 for discovery of gene expression patterns in this comprehensive atlas. 

Even with a larger cohort for analysis, in silico analyses of these data are limited in their ability to evaluate 

mechanism and implications of intercellular interactions. Thus, innovations in laboratory systems and 
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complementary computational approaches are needed to accelerate further the study of intercellular 

interactions and enable in vitro mechanistic evaluation of in silico hypotheses generated from high-throughput 

datasets. 

Currently, available biological models of PDAC are restricted in large part to either mouse models or in vitro 

epithelial cell lines derived from human pancreatic tumor cells. While mouse models can provide a global 

characterization of the TME, depletion experiments are required to isolate the effect of individual cell types, 

and this approach is limited by a lack of depleting agents with specificity for functionally different TME cell 

subtypes. In vitro experiments have traditionally been limited to epithelial tumor cells, but more recently have 

been adapted to investigate the effect of cell-cell interactions and paracrine crosstalk with other cell types 

using conditioned media. However, organoids and organoid co-cultures are an emerging system that may best 

recapitulate the tumor and associated microenvironment21.  

To further our ability to dynamically examine intercellular interactions inferred from single-cell analysis, we 

established an in vitro three-dimensional co-culture system of patient-derived organoids (PDOs) and patient-

derived CAFs. This system is useful for evaluating the transcriptional dynamics in response to external stimuli 

and investigating core intercellular interactions. Combining this approach with our novel suite of 

computational tools for single-cell analysis enables bi-directional investigation of fibroblast-tumor cell 

interactions between human tissue and PDO biological models, which is broadly applicable to untangling the 

complexities of intercellular interactions in the PDAC TME.  

 

A harmonized atlas of gene expression in PDAC created from an integrative analysis of 6 single-cell 

data to explore inflammatory signaling pathways 

To explore inflammatory signaling between CAFs and tumor cells in PDAC, we integrated six published 

human scRNA-seq datasets into a single comprehensive atlas. In total, the atlas reflected gene expression in 

174,394 total cells from 61 PDAC (142,807 cells) and 16 non-malignant pancreatic tissue samples (31,587 

cells) (Figure 1A-B, Supplemental Figure 1 with subset of PDAC specimens)2–7. All samples were of 

pancreatic origin (no metastatic samples) and from treatment-naïve patients (Table 1). Of the 61 PDAC 
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samples (2 were described as arising from cystic pancreatic lesions), 52 samples originated from patients with 

apparent localized disease, 6 samples originated from patients with distant metastases, and 3 samples were 

from patients whose stage was unknown. Of the 16 non-malignant control samples, 5 were specified by the 

authors as normal-adjacent to adenocarcinoma and 11 were derived from samples described as normal-

adjacent to non-malignant pathologies. All control samples and the majority of PDAC samples were obtained 

from resected surgical specimens. Ten PDAC samples originated from fine-needle biopsies, four of which 

presented with clinical metastatic disease. 

After filtering cells based upon biological or technical quality metrics (fraction of mitochondrial reads and 

number of transcribed genes as defined in the methods), the resulting atlas included 140,250 cells (dropout 

19.6%). The median and mean cell counts per patient sample were 1,455 and 1,821, respectively (interquartile 

range 828 – 2,200). Following computational pre-processing, we performed a clustering analysis for cell type 

annotation (supplemental methods). To make inferences on biology from an integrated atlas, it is critical to 

first determine inter-dataset variation for the mitigation of non-representative findings and technical artifacts. 

Most of the contributing tissues and cells (35 and 54,813, respectively) originated from Peng et al3 (Figure 

1C-E) with a mean of 1,566 cells per tissue. The mean number of included cells per sample was highest (4,754 

cells) in the dataset by Moncada et al5, a set that contributed PDAC samples from only three patients (Figure 

1C-E). Despite the heterogeneity in cell count, mapping dataset of origin on the atlas demonstrated 

contribution from all six datasets for most clusters, thereby visually verifying our integration strategy (Figure 

1E).  

Within PDAC samples, the predominant cell populations were epithelial malignant cells (32,515 or 29.3%), 

cells of myeloid origin (28,971 cells or 26.1%), and T cells (17,284 cells or 15.6%) (Supplemental Figure 

1B). The mesenchymal cell populations were composed of 8,953 CAFs (8.1%) and 6,049 stellate cells (5.4%). 

Altogether, the components of the TME (immune and mesenchymal cell populations combined) contributed 

67,690 cells or 60% of the total cell count. In the myeloid and lymphoid cell clusters, we derived 

subpopulations reflecting macrophages, mast cells, neutrophils, regulatory T cells and natural killer/cytotoxic 

T cells (Supplemental Figure 2). For the epithelial cells from tumor tissues, copy number variation analyses 

(CNV, Supplemental Figure 3) were combined with differential gene expression analyses to confirm 
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epithelial cell classification (benign or malignant). In the epithelial cell cluster, we classified malignant cells 

from PDAC tissues according to the classical and basal gene expression programs first reported by Moffitt et 

al21 (Supplemental Figure 4). In the CAF cluster, cells were subtyped according to iCAF and myCAF gene 

expression programs (Supplemental Figure 5). Cell cycle analyses within the PDAC samples revealed high 

cell cycle activity reflected by increased activity scores and translated phases primarily in the epithelial 

malignant, acinar, myeloid and CAF populations (Supplemental Figure 1C-D).   

To evaluate MHC-II expression in the PDAC epithelial compartment, we queried the atlas for expression of 

12 MHC-II genes, including HLA-DRB1, HLA-DOA, HLA-DMA, and identified heterogenous expression in 

the tumor epithelial cell population (Figure 1F-G). Overall, MHC-II gene expression was most pronounced 

in epithelial cells derived from tumor tissue as compared to epithelial cells obtained from non-malignant, 

control samples (Supplemental Figure 6). Additionally, strong expression of HLA-DO and HLA-DM 

isoforms suggest functionality of MHC-II proteins given their role as chaperones in antigen presentation.  

 

Inflammatory signaling drives MHC-II expression in the epithelial compartment of PDAC  

Next, we investigated patterns of gene expression within the epithelial cell populations in the atlas. To 

distinguish epithelial cells within PDAC tissues from epithelial cells derived from non-malignant samples, we 

performed an unsupervised analysis of gene expression patterns with our single-cell Bayesian non-negative 

matrix factorization algorithm CoGAPS22. Batch effects were mitigated by identifying robust gene expression 

patterns that are maintained across the two largest sample cohorts that contain both PDAC and non-malignant 

samples: Peng et al3 (18,261 epithelial cells) and Steele et al2 (7,181 epithelial cells). These two datasets 

account for 61.0% of all epithelial cells in the atlas. Mapping the epithelial cells from these two datasets on 

the UMAP from the entire atlas confirmed that they represent 49.3% of all malignant cells, and 97.1% of all 

benign cells. We then applied the CoGAPS algorithm to interrogate patterns of gene expression across these 

epithelial populations, identifying 8 distinct patterns (Supplemental Figure 7). Each pattern was annotated 

by estimated overrepresentation across genes identified by the CoGAPS pattern marker statistic23 and 

Hallmark gene sets from the Molecular Signatures Database24. Pattern 1 identified pathways associated with 

UV response and TGFβ signaling that did not reach statistical significance (Supplemental Table 1). Pattern 
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2 identified pathways of estrogen response and KRAS signaling that are relevant for PDAC development. 

Metabolic pathways including cell cycle, oxidative phosphorylation, and glycolysis were significant in 

Patterns 3-5. Pattern 6 identified pathways of apoptosis activity and Pattern 8 was dominated by genes inherent 

in response to hypoxia. Notably, genes associated with Pattern 7 were classified by CoGAPS to included 

increased pathway activities in inflammatory, fibrogenic, and malignant progression-associated gene sets, 

including epithelial-mesenchymal transition (EMT) (Figure 2A-C).  

Annotation of the genes associated with Pattern 7 using the hallmark gene sets as a guide demonstrated 

enrichment in this pattern for processes of inflammation in the epithelial compartment (Figure 2C). We also 

observed that Pattern 7 weights were significantly higher in both the malignant epithelial cells and the benign 

epithelial cells derived from patients with tumors relative to the epithelial cells in the non-malignant control 

samples (Figure 2B). The enrichment of Pattern 7 within the malignant epithelial population suggests a 

potentially transformative inflammatory program drives phenotype in the epithelial compartment in a manner 

similar to that which has been described in non-epithelial cell types in PDAC25. These findings are further 

supported by inducible MHC-II expression in response to inflammatory stimuli anticipated in the malignant 

epithelial compartment. We note that the MHC-II expression is identified in the malignant epithelial cell 

compartment in a manner independent of the specific inflammatory stimuli defined by Pattern 7, suggesting 

additional mechanisms driving MHC-II activation in epithelial cells may be playing a role.   

To investigate alternative sources of activated inflammatory pathways in the TME, we next investigated the 

fibroblast compartment in the atlas. Fibroblasts are an important driver of inflammatory processes in many 

human diseases, though much of this association has been established in non-cancer inflammatory illnesses26. 

Therefore, we hypothesized that CAFs may also drive inflammatory signaling in the TME that influences 

malignant epithelial cells. To test this hypothesis, we annotated the cell type composition in the tumor and 

control samples to identify subpopulations in the TME. Notably, the non-epithelial populations in the atlas 

largely originated from tumor samples (Figure 2D). When comparing the average cell type composition 

between the control and tumor samples within the Peng et al3 dataset, the fraction of fibroblast, myeloid and 

lymphoid populations were greater in tumor samples, with a proportional decrease in cells of endothelial 

origin, acinar cells and total epithelial cells (Figure 2E). Within the Steele et al2 dataset, differences between 
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the fibroblast/CAF, myeloid and lymphoid populations, while present, were less pronounced (Figure 2E). To 

elucidate the impact of CAF signaling in the TME on epithelial inflammatory gene expression, we correlated 

the mean CoGAPS weights of the inflammatory pattern 7 in the epithelial compartment with the presence of 

CAFs in the TME using the datasets from Peng et al3 and Steele et al2. We identified a direct association 

between increasing fibroblast proportion in the TME and the mean weight of CoGAPS Pattern 7 in the 

epithelial cells (Supplemental Figure 8). This association was lost when fibroblast populations were further 

divided into iCAFs and myCAFs (Supplemental Figure 8). Therefore, uncovering the mechanisms that drive 

CAF-mediated inflammatory signaling in the epithelial compartment requires further validation using 

approaches beyond the publicly-available gene expression datasets.       

 

PDOs as a system to evaluate mechanisms of inflammatory signaling in PDAC: Epithelial cells respond 

to interferon gamma (IFNγ) stimulation over time to induce MHC-II  

We further utilized our PDO cultures to validate the inflammatory phenotype identified in the atlas and to 

interrogate the mechanisms of inflammatory gene expression in the setting of multi-compartmental three-

dimensional co-cultures. We previously demonstrated that PDAC PDOs, comprised exclusively of malignant 

epithelial cells, have the capacity to recapitulate intratumoral heterogeneity and accurately provide clinically-

actionable data for chemotherapeutic selection27,28. Previous work has also shown that 24 hours of 200ng/mL 

of IFNγ added into cell media induces MHC-I and PD-L1 upregulation in organoids29. To extend these 

findings in additional samples from our organoid bank, we screened eleven PDO lines by flow cytometry 

(gating strategy Supplemental Figure 9) for both constitutive and IFNγ-induced cell surface protein 

expression of MHC-I and II and PD-L1 (Figure 3A). At 24 hours, both MHC-I and PD-L1 demonstrated a 

robust increase in expression in response to IFNγ stimulation. HLA-DR was used as a representative marker 

for MHC-II expression in this system. As expected, HLA-DR expression was restricted at baseline and 

remained low during the first 24 hours of IFNγ stimulation. Longer-term exposure to IFNγ treatment 

demonstrated upregulation of HLA-DR expression over 96 hours consistent with induced gene expression 

changes to MHC-II as a result of inflammatory signaling (Figure 3B). Reproducibility of this phenotype was 

demonstrated in a set of PDOs with evaluation and characterization of MHC-II presence in the setting of both 
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endogenous and IFNγ-induced gene expression changes (Figure 3C-D). To further evaluate IFNγ-induced 

changes in MHC-II alleles which lack specific antibodies, we validated HLA-DRB1, HLA-DRA, HLA-DPB1, 

HLA-DQB1 by qPCR and observed a heterogenous IFNγ-induced response in gene expression (Figure 3E). 

To further confirm these data, we examined inducible MHC-II expression in formalin fixed and paraffin-

embedded (FFPE) PDAC PDOs using IHC with antibodies against HLA-DR and HLA-DR/DP/DQ to inform 

the spatial distribution of the MHC-II expression across the PDO system (Figure 3F-G), further confirming 

robust MHC-II upregulation in response to IFNγ.  

 

Co-culturing PDOs and CAFs enhances the epithelial inflammatory pattern identified in atlas samples 

and drives expression of MHC-II genes. 

To evaluate the mechanisms responsible for fibroblast-induced inflammatory signaling towards the malignant 

epithelial compartment that was identified in the atlas, we established a system of PDAC PDOs co-cultured 

with patient-derived CAFs. Each patient-matched PDO-CAF co-culture leverages our previously published 

methods for generating PDOs27,28 while concurrently extracting CAFs from surgical resection specimens 

(Supplemental Figure 10). The three-dimensional cultures were established in Matrigel as the surrogate 

basement membrane for suspending culture components. We then optimized the culture conditions to 

maximize both the viability of input cell types during culture and the viability of cells following extraction 

(Supplemental Figure 10).   These methods for co-culture maintain viability of both cell-types allowing for 

mechanistic study (Figure 4A). 

To compare the signaling processes in our co-culture to the inflammatory signals observed in human PDAC 

from our atlas, we performed scRNA-seq profiling during a 12-hour PDO-CAF co-culture. Controls included 

scRNA-seq for both PDO and CAF monoculture. Multiplex analysis, with the established MULTI-seq 

protocol30, was used to assess transcriptional heterogeneity in the epithelial and CAF compartments.  As 

expected, clustering analysis and visualization of the scRNA-seq data from these conditions separated the 

fibroblasts from epithelial cells. Our initial evaluation demonstrated that cells from the co-culture and 

monoculture conditions did not separate into distinct clusters (Figure 4B-C). Despite the lack of separate 

clusters from the co-culture-derived cells, we did identify transcriptional plasticity in the epithelial 
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compartment with the co-culture condition demonstrating a greater number of cells expressing markers for 

both the classical and basal epithelial subtypes and fewer cells lacking expression consistent with either 

classification (Figure. 4E)31. Baseline heterogeneity of the basal and classical programs in PDOs identified 

using deconvolution of bulk RNA-seq was consistent with the recent report by Krieger et al32 (Supplemental 

Figure 11). Moreover, induced plasticity was not limited to the epithelial compartment as the co-culture also 

demonstrated increasing proportions of CAFs expressing gene markers for both iCAFs and myCAFs (Figure 

4F). This further supports the notion that co-culture induces both epithelial and CAF transcriptional plasticity.  

We hypothesized that the CAFs in this organoid co-culture drive inflammatory signaling in a manner similar 

to that observed in the human system. Therefore, we sought an integrative analysis to quantify the similarity 

between the scRNA-seq datasets from our human atlas and PDO co-culture. This analysis was performed 

using our transfer learning method ProjectR33 to project the inflammatory pattern (CoGAPS Pattern 7), 

identified in the epithelial cells from the human PDAC atlas, onto the epithelial cells of the PDO-CAF co-

culture. After 12 hours of co-culture, we identified increased gene expression in the Pattern 7 gene signature 

in PDAC organoids co-cultured with CAFs, relative to those cultured in mono-culture (Figure 4D). These 

data further support the hypothesis that the inflammatory signaling observed in epithelial cells is stimulated 

by the presence of CAFs in the TME.  

We next examined CAF-mediated upregulation of MHC-II in malignant epithelial cells by characterizing 

MHC-II expression from the co-culture scRNA-seq data (Figure. 5A-C). Similar to data seen under IFNγ 

stimulation, baseline and early (12 hours) HLA-DRA and HLA-DRB expression was low in both the 

monoculture and co-culture conditions (Figure 5 A-C). “To expand beyond 12 hours and better understand if 

there is a temporal change in the epithelial compartment over a longer period, we co-cultured PDO-CAF for 

24 and 96 hours. At each timepoint, we flow sorted the co-culture to have a pure population of cells to query 

MHC-II gene expression changes by qPCR. Similar as our findings with IFNg treatment, HLA-DRA and 

HLA-DRB expression increased with increasing time in co-culture conditions up to 96 hours (Figure 5D-E). 

This further implicates CAFs as critical mediators of epithelial inflammatory signaling in the tumor 

microenvironment.  
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Domino analysis of intercellular signaling identifies VEGF-A as an epithelial-derived ligand and ITGB1 

as a fibroblast-derived ligand driving molecular signaling between fibroblasts and malignant epithelial 

cells  

Next, we performed bidirectional in silico and in vitro experimental interrogation of the mechanisms leading 

to crosstalk between CAFs and epithelial cells that underlies the observed Pattern 7 inflammatory signaling in 

PDAC. No consistent association was observed between the composition of epithelial and CAF subtypes 

across the cohort of PDAC tumors in the atlas (Supplemental Figure 12). Still, we hypothesized that signaling 

pathways underlie epithelial and CAF interactions that are consistent between human tumors and our organoid 

co-culture model. To infer these pathways, we selected the epithelial and CAF populations of the PDAC tumor 

atlas derived from the Peng et al3 (12,120 epithelial cells, 63.8%; 5,823 CAFs, 84.0%) and Steele et al2 (6,883 

epithelial cells, 36.2%; 1,110 CAFs, 16%) datasets. We then analyzed these data with Domino, a 

computational method that infers intercellular interactions in scRNA-seq data by quantifying for coordinated 

gene expression changes between the ligands of one cell type with receptors of another34. The resulting 

analysis generated a putative global signaling network in PDAC based on population-specific gene expression 

of ligands and receptors with established signaling relationships (Figure 6A). Across both datasets, VEGF-A 

was expressed by epithelial populations and predicted to target fibroblasts (Figure 6B-C). To validate this 

inference in human tissue, we set about examining this relationship in our PDO-CAF co-culture. Cells were 

flow sorted after 24 or 96 hours of co-culture and qPCR was performed to assess VEGF-A expression in the 

co-culture as compared to the monoculture. At both timepoints, VEGF-A demonstrated increased expression 

in cells derived from the co-culture relative to those extracted from monoculture, consistent with the Domino 

inference (Figure 6D).  

Finally, we evaluated intercellular signaling, derived from CAFs, that drives gene expression in epithelial 

PDOs. Across basal and classical epithelial subtypes, ITGB1 was identified in both the Peng et al3 and Steele 

et al2 datasets as a ligand from both iCAFs and myCAFs directed at the epithelial subpopulations (Figure 6E-

F). While ITGB1 expression was identified both in patient-derived organoids and CAFs in our co-culture 

model, it was differentially expressed in the fibroblasts (Figure 6G). Although ITGB1 expression is not tissue- 

or cell-type specific, its expression is classically associated with fibroblasts and impact the structure and 
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function of the extracellular matrix. Taken together, discovery of this novel mechanism of CAF-epithelial cell 

inflammatory signaling, which was inferred by computational approaches using human tumor data and then 

validated in PDO-CAF co-culture, we demonstrate the utility of integrating human scRNA-seq data from 

human tissues with co-culture models to provide bidirectional study of critical TME effects on the cancer cells 

in PDAC tumors. 

 

Discussion 

Despite improving outcomes and new therapeutic regimens for the majority cancer subtypes, PDAC outcomes 

have remained stubbornly resistant to novel targeted therapeutics and new treatment approaches.  Recent 

technologic advances have shown that PDACs are composed of a complex and heterogenous TME that 

actively restricts therapeutic access and limits cancer cell killing.  In addition, studies suggest that cancer cells 

co-opt normal stromal cell behavior, inducing fibroblasts to become CAFs that support PDAC development 

and progression35. Although the genomic landscape has identified oncogenes associated with this process in 

PDAC, our understanding of additional mechanisms contributing to tumorigenesis is limited by a lack of 

characterization of the complex TME. Single-cell technologies, and the computational tools used for their 

analysis, enhance our ability to characterize the impact that this unique TME can impart on structure and 

function of malignant epithelial cells in PDAC. These technologies have empowered unprecedented discovery 

of cellular function directly in human studies. Nevertheless, one persistent barrier to advancement in the field 

is that there are limited relevant experimental systems with a capacity to mimic the human tumor TME and 

thereby enable mechanistic study to determine the function of in silico predictions in single-cell analysis. Here 

we present a convergence approach to overcome this barrier, using a novel PDO-CAF coculture system to 

validate changes in signaling between cells in the TME  that we have combined with in silico inference through 

transfer learning from single-cell analysis of publicly available datasets.  

This study combined an in silico analysis of transcriptional states in human tissue using our novel suite of 

computational tools with PDO-CAF co-culture to examine the role of inflammatory gene expression patterns 

in PDAC. This approach was facilitated by the evaluation of dynamic intercellular interactions using a single-

cell atlas to uncover cell-specific expression patterns that were then validated in cell-specific organoid co-
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cultures from additional patient tumors. Notably, the inflammatory gene expression patterns observed in the 

single-cell data from human tumors were also observed in tumor-adjacent epithelial cells that were 

transcriptionally more suggestive of “benign” epithelium. These findings provide additional data to support 

earlier observations that the tissue surrounding a tumor, even that in the epithelial compartment, is 

phenotypically distinct from normal epithelial cells obtained from a non-malignant specimen36. Consistent 

with this observation, our complementary study of spatial transcriptomic profiling in human pancreatic 

intraepithelial neoplasia (PanIN) demonstrates dynamic inflammatory signaling in epithelial cells during 

tumor progression37. These data provide a model in which the changes to epithelial cells induced by the 

biological alterations in the background TME contribute to subsequent tumorigenicity of the malignant 

epithelial state, with a transition between inflammatory and growth signaling that is further supported in our 

complementary PanIN data.  

Previous studies have shown that tumor cells from numerous cancer types can be induced to express MHC-II, 

but less is understood about the functional and therapeutic implications of this induction18,19,38. The multi-

gene signature that we uncovered in the atlas using our CoGAPS pattern detection algorithm36, associated 

with inflammatory signaling and EMT in epithelial cells (Pattern 7), was also enriched in our PDO-CAF co-

culture, suggesting that the co-culture system can recapitulate fibroblast induction of inflammatory processes 

in epithelial cells in PDAC. Similarly, EMT has been previously linked to inflammation in PDAC cells and 

CAFs through an IFNγ response12. Applying our established transfer learning methods33,39 to our new organoid 

co-cultures showed, for the first time, that these co-cultures can also model fibroblast-induced changes in 

epithelial cells associated with inflammation. These data provide supporting evidence that PDO-CAF co-

culture can serve as an effective experimental system for future mechanistic studies of these interactions. 

Specifically, through this analysis we were able to recapitulate the overrepresentation of the inflammatory 

signal observed in human scRNA-seq data when PDAC PDOs were co-cultured with CAFs, demonstrating 

that CAFs do alter tumor epithelial cell transcriptional phenotype and overall function. More generally, our 

combined single-cell analysis and PDO co-cultures suggest that both CAF and epithelial populations are 

transcriptionally plastic as shown in the changes observed in cell sub-population distribution after co-culture.  
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Additional studies are needed to distinguish whether fibroblasts directly regulate the inflammatory processes 

observed in the epithelial cells, whether the inflammatory process is MHC-II-independent or if inflammatory 

signaling through fibroblasts induces MHC-II expression to a lesser extent than direct activation in response 

to IFNγ treatment. Still, further ligand-receptor inference analysis of the single-cell datasets uncovered a 

directed mechanism of signaling between epithelial cells and fibroblasts within human tissue that could be 

experimentally validated in our organoid co-culture model. Our study identified a fibroblast-induced 

inflammatory signaling pathway through ITGB1 that was shown to directly influence PDAC cells.  While 

ITGB1 is a member of the integrin family of proteins that function diversely in cell adhesion and serve as 

receptors for collagen, it was recently identified as a marker of cytotoxicity potential in CD4+ and CD8+ T 

cells40. Additionally, mutated ITGB1 was shown to result in an MHC-II-restricted neoantigen in an established 

sarcoma cell line when evaluated in a subcutaneous xenograft model41. Our computational analyses of the 

single-cell datasets in this study predicted that fibroblasts receive VEGF-A as a ligand to initiate downstream 

signaling through the VEGF-A pathway that could be experimentally validated in our co-culture PDOs.  This 

finding also supports the inflammatory pattern identified in the tumor epithelial cells in both the atlas and 

PDO models, as increased VEGF-A expression has been identified in alveolar epithelial cells in response to 

inflammatory stimuli42. Further, CAFs were identified in squamous cell carcinoma of the skin as mediators of 

tumor-enhancing inflammation and angiogenesis, a signature validated in models of mammary and pancreatic 

tumors43. This particular interaction is of biological interest given the role of VEGF-A across different 

malignancies as well as the ability to inhibit VEGF-A clinically using bevacizumab44. While not currently a 

standard of care agent in PDAC, this finding further demonstrates the clinical relevance of this approach for 

future mechanistic studies. 

While our study robustly demonstrates that computationally inferred intercellular interactions in the TME are 

preserved between human scRNA-seq datasets and PDO co-culture models, there are also shortcomings to 

this study. Our collated scRNA-seq atlas of PDAC tumors is restricted to treatment naïve biospecimens from 

61 patients, with limited representation of some cell types and limited clinical annotations of the samples. This 

presents a challenge when trying to relate intercellular dynamics and signaling to patient outcomes for target 

discovery for translational research. Nonetheless, adapting our validated suite of computational tools to this 

atlas and the organoid co-culture still provides novel insight into the role of cellular crosstalk in tumorigenesis. 
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While additional computational tools enable more direct inference of molecular changes from cellular 

interactions45, the unique application of transfer learning between human scRNA-seq data and organoid co-

culture enables direct bidirectional investigation of cellular state transitions and intercellular signaling 

between in silico discovery and experimental validation. Currently, this analysis relies on inferences resulting 

from a pipeline combining NMF-based pattern detection with CoGAPS36, transfer learning with ProjectR33, 

and finally ligand-receptor networks from Domino34. While CoGAPS and ProjectR allow for unsupervised 

discovery and query of novel cell states, Domino is limited to investigation of pre-specified pairs of cell types. 

Additional methods that enable discovery of multicellular interactions and their impacts across both cell types 

and cellular phenotypes are needed to model the complex processes that underlie carcinogenesis in the PDAC 

TME. Similarly, while our organoid co-culture model is established to represent the epithelial and fibroblast 

compartments of the tumor, the immune cells which contribute to the complex TME in this disease are absent 

in our current PDO co-culture. The data presented here demonstrate the need for immune cell inclusion in 

future studies, particularly when asking questions related to the tumor immune microenvironment or 

mechanisms of response or resistance to immunotherapy. With these limitations in mind, we advocate for a 

complementary approach moving forward that combines reference human single-cell atlases and PDO co-

culture to transfer discoveries into mechanistic experiments of the TME effects in PDAC. 

In summary, we introduce a novel bidirectional approach leveraging scRNA-seq data and PDO co-culture to 

examine patterns of inflammation in PDAC. Further, we used this approach to specifically query patterns of 

inflammation inherent in the malignant epithelial cell compartment, identifying programs of gene expression 

that are both intrinsic to the epithelial compartment and those that are influenced by tumor residing CAFs. 

The power of applying computational biology to relate human tissue to organoid co-culture can be exploited 

in future studies spanning discovery, mechanistic validation, and perturbation of the complex cell-to-cell 

cross-talk in tumors that underlies tumorigenesis.  
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 Peng et al Steele et al Lin et al Elyada et al Moncada et 
al 

Bernard et 
al 

Year of publication 2019 2020 2020 2019 2020 2019 
Country of 
enrollment China USA South Korea, 

USA USA USA USA 

PDAC pancreas tissue samples 
Treatment-naïve, % 100% 100% 100% 100% 100% 100% 
Patients, N 24 16 10 6 3 2 
Sex, N  
   Female 
   Male 

 
13 
11 

 
6 

10 

 
4 
6 

 
2 
4 

 
Unknown 
Unknown 

 
0 
2 

Age, years median 
(range) 59 (36-72) 66 (42-80) 66 (41-80) 73 (64-87) Unknown 61 (59-62) 

Diabetes, N 10 6 Unknown Unknown Unknown Unknown 
Staging, N 
   Localized 
   Metastatic 

 
24 
0 

 
12 
4 

 
10 
0 

 
5 
1 

 
Unknown 
Unknown 

 
1 
1 

Grading, N 
   Well 
differentiated 
   Moderately 
differentiated 
   Poorly 
differentiated 
   Anaplastic 

 
3 
8 

13 
0 

 
Unknown 

≥6 
Unknown 
Unknown 

 
0 
6 
2 
2 

 
0 
3 
3 
0 

 
Unknown 
Unknown 
Unknown 
Unknown 

 
0 
0 
2 
0 

Tumor location, N 
   Head or uncinate 
   Neck, body or tail 

 
15 
9 

 
Unknown 
Unknown 

 
Unknown 
Unknown 

 
Unknown 
Unknown 

 
Unknown 
Unknown 

 
1 
1 

Specimen, N  
   Surgery 
(resected) 
   Biopsy (FNA) 

 
24 
0 

 
6 

10 

 
10 
0 

 
6 
0 

 
3 
0 

 
2 
0 

Survival Unknown Unknown Unknown Unknown Unknown Unknown 
Non-malignant pancreas tissue samples 
Patients, N 11 3 0 2 0 0 
Sex, N 
   Female 
   Male 

 
6 
5 

 
2 
1 

 
--- 
--- 

 
1 
1 

 
--- 
--- 

 
--- 
--- 

Histology, N 
   Normal 
   Normal-adjacent 
to  
      
adenocarcinoma 

 
10 
1 
 

 
1 
2 
 

 
--- 
--- 
 

 
0 
2 
 

 
--- 
--- 
 

 
--- 
--- 

 

Specimen, N 
   Surgery 
(resected) 
   Biopsy (EUS-
FNA) 

 
11 
0 

 
3 
0 

 
--- 
--- 

 
2 
0 

 
--- 
--- 

 
--- 
--- 

PDAC, pancreatic ductal adenocarcinoma 
EUS-FNA, endoscopic ultrasound guided-fine needle aspiration 

 

Table 1. Clinical patient data extracted from the six harmonized published datasets integrated in the PDAC 
atlas. 
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Figure 1. Summary of atlas composition and evaluation of MHC-II gene expression in atlas samples. (A) 
Complete atlas with assigned cell types. (B) Heatmap of differentially expressed genes used for cell type 
annotations. (C) Relative contribution of the 77 different samples with 140,250 cells, separated by tumor 
(below line) and control tissue (above line). (D) Mean number of cells per tissue by dataset origin. (E) Cell 
mapping by dataset origin from the six manuscripts in the complete atlas. (F) Epithelial cell clusters from 
patient tumor samples. (G) Expression of 12 MHC-II genes was queried in the atlas demonstrating variable 
endogenous expression of each gene. UMAP: Uniform Manifold Approximation and Projection.  
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Figure 2. Identification of pattern of inflammation (Pattern 7) in the atlas and cell type distribution in the 
atlas. (A) Complete atlas subset of the epithelial cell populations (malignant, benign and unspecified) from 
the Peng et al3 and Steele et al2 data with assigned weights of Pattern 7 as resulting from CoGAPS analyses. 
(B) Boxplot of Pattern 7 weights within the Epithelial, benign cell population demonstrating differences 
between control and tumor pancreas tissues. p < 2.22 e-16, generated by Wilcoxon test. (C) Overrepresented 
MSigDB hallmark gene sets in cells expressing Pattern 7 genes. (D) Cell mapping by tumor vs. control 
pancreas tissue in the complete atlas. (E) Differences in cell type composition for selected tumor vs. control 
pancreas tissues originating from Peng et al3 and Steele et al2.  
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Figure 3. MHC-II expression in PDAC PDOs. (A) Cell surface MHC-I, PD-L1, and MHC-II expression as 
determined by flow cytometry. Organoids were stimulated with 200ng/mL of IFNγ for 24hr or were left 
unstimulated. Bar graphs represent Mean Fluorescence Intensity (MFI). (B) HLA-DR (MHC-II) expression 
as determined by flow cytometry is increased after IFNγ stimulation for 24-96 hours shown both by % increase 
(left panel) and by increase in MFI (right panel) across one PDO line. (C) Representative flow cytometry dot 
plots of 5 organoid lines that were treated with 200ng/mL of IFNγ for 96 hours or left unstimulated. (D) Bar 
graph quantification of plots in C, bar graphs represent % increase in HLA-DR (MHC-II) expression of 
EpCAM+ cells (top panel) and Mean Fluorescence Intensity (MFI) (bottom panel). (E) qPCR readout of 
organoid lines that were stimulated with 200ng/mL of IFNγ for 96 hours or left unstimulated; genes quantified 
include HLA-DRA/HLA-DRB1/HLA-DPB1/HLA-DQB1. P-value for HLA-DRA/HLA-DRB/HLA-DP 
when tested between control and treated groups = 0.0006, p-value for HLADQ = 0.4 (statistical analysis was 
performed using a two-tailed, unpaired, parametric Mann-Whitney test).  (F) H&E slides of PDOs with and 
without IFNγ induction. Organoids were harvested 96 hours after IFNγ induction. (G) Immunohistochemistry 
(IHC) demonstrating expression of HLA-DRB1 (middle) and antibody binding to the common beta chain of 
HLA-DR/DP/DQ (right) after 96 hours of IFNγ stimulation.  
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Figure 4. Patient-derived organoids co-cultured with CAFs recapitulate the inflammatory pattern identified 
in tumor epithelial cells and demonstrate dynamic cellular phenotypes. (A) Representative brightfield image 
of co-culture at 20x magnification. Representative IHC of co-culture demonstrating proliferation by Ki-67 
after co-culture (top right), vimentin positive CAFs (bottom left), and EpCAM positive organoids (bottom 
right). Images obtained at 20x magnification. (B) UMAP demonstrating culture conditions: organoid 
monoculture (Org1), CAF monoculture (CAF1), co-culture (CC1). (C) UMAP demonstrating cell-type calls 
after co-culture: Organoid monoculture (Org1), CAF monoculture (CAF1), CAFs from co-culture (CC_CAF), 
organoids from co-culture (CC_Org). (D) Pattern 7 is composed of inflammatory genes and was enhanced in 
organoid cells from co-culture relative to organoid cells from monoculture, p=1.3e-6. (E) Co-culture 
demonstrates dynamic epithelial representation in the co-culture condition with a greater percentage of cells 
representing both basal and classical markers (dual_positive) present in co-culture. (F) Co-culture 
demonstrates dynamic CAF representation in the co-culture condition with a greater percentage of cells 
representing both iCAF and myCAF markers (dual_positive) present in co-culture. 
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Figure 5. Evaluation of MHC-II expression in the co-culture in response to the presence of CAFs. Expression 
of (A) HLA-DRA, (B) HLA-DRB1, and (C) HLA-DRB5 after co-culture for 12 hours evaluated using 
MULTI-seq. Expression is limited in all populations. (D) HLA-DRA and (E) HLA-DRB expression after 24 
and 96 hours of co-culture after which cells were flow sorted prior to qPCR. HLA-DRA did not amplify in 
JHH 326 at either 24 or 96 hours. HLA-DRB demonstrated less consistent amplification limiting statistical 
analysis. Co-cultures were established from two patients for which there were matched PDOs and CAFs. 
Plotted are the Fold Change values comparing our PDO co-culture to monoculture using GAPDH as an 
endogenous control. Comparisons of monoculture and co-culture conditions are statistically supported using 
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the two-tailed students t-test with equal variance in PRISM (V9.2.0 [283]). Significance is measured as: ****, 
p<0.0001; ***, p<0.001; **, p<0.01; *, p<0.05; ns, not significant.   
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Figure 6. Domino evaluation of intercellular interactions in the atlas with validation in PDO-CAF co-culture. 
(A) Signaling network between epithelial and CAF subpopulations from tumor pancreas tissues in the Peng 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 10, 2022. ; https://doi.org/10.1101/2022.07.14.500096doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.14.500096
http://creativecommons.org/licenses/by-nc-nd/4.0/


et al3 dataset as derived from the Domino R package. Nodes of the subpopulations are sized according to the 
amounts of expressed targeting ligands. The thicknesses of the intercellular connections are scaled based on 
the strength of signaling with their color indicating the signals’ origin (directionality). (B) Heatmap 
demonstrating VEGF-A as a ligand originating in the epithelial populations with the CAFs receiving this signal 
from the Peng3 and (C) Steele2 datasets. (D) Differential expression by qPCR of VEGF-A in monoculture and 
co-culture CAFs and epithelial cells after 24 or 96 hours of co-culture. (E) Heatmap demonstrating ITGB1 as 
a ligand originating in the CAF populations with the epithelial cells receiving this signal from the Peng et al3 
and (F) Steele et al2 datasets. (G) ITGB1 expression in monoculture and co-culture CAFs and epithelial cells 
after 24 or 96 hours of co-culture. Plotted are the Fold Change values comparing our PDO co-culture to 
monoculture using GAPDH as an endogenous control. Comparisons of monoculture and co-culture conditions 
are statistically supported using the two-tailed students t-test with equal variance in PRISM (V9.2.0 [283]). 
Significance is measured as: ****, p<0.0001; ***, p<0.001; **, p<0.01; *, p<0.05; ns, not significant.   
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Methods  

scRNA-seq dataset integration and harmonization for the PDAC atlas 

The six different datasets provided gene expression data with different versions (GRCh37 or GRCh38) and 

nomenclatures (Ensembl identifiers vs. HUGO gene nomenclature) of the human reference genome. Available 

patient metadata are summarized in Table 1. All analyses were performed in R (V 3.6-4.1) or Python (version 

3.8). Unified integration of the measured features revealed 15,219 genes that could be matched between all 

datasets with assured certainty. Next, cells with unfavorable quality, defined as mitochondrial counts >15% 

and unique features of <50 or >5,000, were removed. Computational pre-processing was performed with the 

Monocle31 R package. Dimensionality reduction into a unified manifold approximation and projection 

(UMAP) was based on the first 100 principal components and batch correction was applied per manuscript to 

account for potential dataset-intrinsic biases (technical or biological) using Batchelor R as utilized by the 

Monocle3 pipeline2. Annotation of cell types is described in detail in the Supplemental Methods. The 

distributions of epithelial and fibroblast populations and patient-level correlations across epithelial and CAF 

subtypes are further methodologically detailed and illustrated in Supplemental Fig. 10-12. Plotting was 

performed with the ggplot2 R package and Excel (Microsoft, Redmond, WA). For high-performance 

computing tasks, we leveraged the MARCC (Maryland Advanced Research Computing Center, Baltimore, 

MD) and AWS (Amazon Web Services, Seattle, WA) servers. 

 

CoGAPs analysis of expression patterns 

Non-negative matrix factorization (NMF) of transcript counts was conducted using CoGAPS (V 3.5.8)3,4. 

Given a matrix of single-cell data with normalized expression values, CoGAPS factorizes this matrix into two 

related matrices of gene weights (amplitude matrix) and sample weights (pattern matrix) for random subsets 

of the data based on the nsets parameter followed by relearning of the amplitude matrix on the full dataset. 

CoGAPS was run on log2 transformed counts of 15,176 genes from 25,442 cells in Peng et al and Steele et al 

annotated as epithelial_normal, epithelial_cancer, or epithelial_unspecified5,6.  
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Standard parameters were set to 8 Patterns, 50,000 iterations, seed 367, sparse optimized, and distributed: 

“Single-Cell”. Sparsity parameters were alpha = 0.01, max Gibb mass 100. Distributed CoGAPS parameters 

were 15 nSets, cut 10, minNS 8, maxNS 23.  

Marker genes for each pattern were identified using the patternMarkers function in CoGAPS (V3.9.5) with 

the “cut” threshold to provide subsets of the top-ranking genes associated with each pattern7. 

Overrepresentation analysis was then conducted using the fora function in the fgsea R package (V1.18.0) to 

find enrichment of any hallmark gene sets from the Molecular Signatures Database8,9 among the pattern 

markers for each CoGAPS pattern. The universe used in the overrepresentation analysis was all human genes 

with HGNC symbols in the GRCh38.p13 genome assembly (n = 39,535)10,11.  

 

Organoid and CAF co-culture and single-cell analysis 

Patients with PDAC undergoing endoscopic biopsy or surgical resection were enrolled in IRB-approved tissue 

acquisition protocols at Johns Hopkins Hospital and Massachusetts General Hospital (MGH) 

(NCT03563248). Patient-derived organoids (PDOs) were generated from patient surgical specimens 

following a combination of mechanical and enzymatic dissociation as previously described11. CAFs were 

extracted from surgical resection specimens after straining remnant tissue through a 70µm cell strainer and 

washed twice with human organoid wash media (Advanced DMEM/F12, 10mM HEPES, 1x GlutaMAX, 

100µg/mL Primocin, 0.1% BSA) with centrifugation between washes. For co-culture, organoids were 

combined with patient-matched CAFs in Matrigel (Corning, 356234) at a 1:10 ratio of organoids to CAFs. In 

parallel, CAFs and PDOs were plated separately in Matrigel. Co-cultures and monocultures were plated in 24-

well tissue culture dishes and extracted after 12 hours using Cell Recovery Solution (Corning, 354253) and 

incubated on ice at 4°C for 45 minutes for Matrigel depolymerization. Cells were then pelleted and washed in 

human organoid wash media prior to pelleting again. Organoids were dissociated to single cells using TrypLE 

Express (ThermoFisher Scientific, 12604013) following manufacturer instructions. Single-cells were 

barcoded using the MULTI-seq protocol as previously described12. Single-cell transcriptomics library prep 

was completed using the 10x Genomics Chromium Single Cell 3’ Gene Expression Dual Index Library (V3.1) 

according to manufacturer specifications. Library preparations quality were analyzed using the 2100 
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Bioanalyzer (Agilent). Sequencing was completed at the Johns Hopkins Genetic Resources Core Facility 

(GCRF). Cellranger (V6.0.0) was used to generate the feature-barcode matrices, aligned to the hg38 genome. 

Multiseq10x (V1.0) was used as the preprocessing pipeline companion to split the MULTI-seq FASTQs into 

cell barcode, unique molecular identifiers (UMI), and sample barcode sequences. Reads that did not align with 

>1 mismatch to any reference sequence and reads representing duplicated UMIs on a cell-by-cell basis were 

removed. Demultiplex (V1.0.2) was used for demultiplexing the data. The 3DGE data were log normalized, 

linear dimension was reduced using principle component analysis, and differentially expressed genes were 

identified in Seurat by Wilcoxon Rank Sum Test (V4.0.1). Additional annotations of Moffitt classifiers, 

denoting classical and basal epithelial subtypes, and CAF subtypes were added to the Seurat object metadata 

based on the clustering13. Co-culture cell types were parsed based on these annotations and the barcode 

distinctions. Projection of the discovered CoGAPS Pattern 7 onto the 12HR MULTI-seq expression data was 

completed using ProjectR (V1.8.0). The MULTI-seq expression data and CoGAPs feature loadings were run 

through the projectR function of the package14. The projection results were combined with the MULTI-seq 

metadata and plotted using ggplot2 (V3.3.5) and Wilcoxon results added using ggpubr (V0.4.0)14. 

 

Flow Cytometry and Cell Sorting 

Organoids were extracted using Cell Recovery Solution (Corning, 354253) and incubated on ice at 4°C for 45 

minutes for Matrigel depolymerization. Cells were pelleted and washed in human organoid wash media. 

Organoids were dissociated to single cells using TrypLE Express and washed in MACS buffer (PBS + 5 mM 

EDTA + 1% Fetal bovine serum). Cells were resuspended in PBS + Zombie NIR catalog no. 423106 (dilution 

1:1000) + Human TruStain FcX catalog no. 422302 (dilution 1:100) for 10 minutes at room temperature in 

the dark. Cells were quenched with MACS buffer, spun down, and then resuspended in surface stain for 20 

minutes on ice at 4°C in the dark; antibodies were purchased from Biolegend, APC EpCAM catalog no. 

324208 (dilution 1:200), PE/Cy7 HLA-A, B, C catalog no. 311429 (dilution 1:200), AF700 HLA-DR catalog 

no. 307626 (dilution 1:200), PerCP/Cy5.5 PD-L1 catalog no. 329738 (dilution 1:100). Cells were washed 

twice in MACS buffer. Flow cytometry analyses were performed on the Beckman Coulter Cytoflex. 
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For co-culture cell sorting, 1mL of 1mg/mL Dispase II (Thermofisher, 17105041) in organoid wash media 

was added to each coculture and monoculture dome to depolymerize Matrigel for 1 hr at 37°C. Digest was 

quenched with 1mL of wash media and cells were spun down. Cells resuspended in PBS + Zombie NIR 

catalog no. 423106 (dilution 1:1000) + Human TruStain FcX catalog no. 422302 (dilution 1:100) for 10 

minutes at room temperature in the dark. Cells were quenched with MACS buffer, spun down, and then 

resuspended in surface stain APC EpCAM catalog no. 324208 (dilution 1:200) and FAP R&D Systems, 

catalog no FAB3715P-100 (dilution 1:75) on ice at 4°C for 20 minutes in the dark. Cells were washed twice 

in MACS buffer and filtered through 70um filter. Cell sorting was performed on BD Fusion Sorter.   

 

Quantitative PCR (qPCR) 

To evaluate gene expression of MHC-II genes in patient-derived organoids, total RNA extraction using the 

RNeasy Mini Kit (Qiagen, - Catalog Number: 74104) was completed for each patient-derived organoid line 

according to manufacturer specifications. cDNA synthesis was performed using Invitrogen TaqMan Reverse 

Transcription Reagents (Catalog Number: N8080234), following manufacturer’s instructions. Real-time 

quantitative PCR was completed using the ThermoFisher Taqman Gene Expression Assays according to 

manufacturer’s protocol in the QuantStudio 6 Flex System (Applied Biosystems) mRNA targets included: 

ITGB1 (Hs01127536_m1), VEGFA (Hs00900055_m1), HLA-DRA (Hs00219575_m1), HLA-DRB1 

(Hs04192464), HLA-DQB1 (Hs03054971_m1), and HLA-DPB1 (Hs03045105_m1). Relative gene 

expression was quantified using the 2−ΔΔCt method as previously described15, and GAPDH (Hs02786624_g1) 

was used as the endogenous control. Data were analyzed using Applied Biosystems QuantStudioTM Real Time 

PCR System Software (V1.7.1). 

 

Inference of transitions in cellular phenotypes and intercellular interactions 

Within each cell group, additional analyses were performed to compute heterogeneity of cellular phenotypes, 

state transitions, and inter-cellular signaling across the atlas datasets. First, cell cycle scores and phases were 

computed with tricycle (V1.2.0)16. Further unsupervised exploratory analysis of transitions in epithelial cell 
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states was performed with CoGAPS (V3.5.8)3 analysis across epithelial populations in tumor and normal 

samples from Peng et al5 and Steele et al6. Single cell CoGAPs was run for 8, 10, and 12 patterns. Eight 

patterns were selected as the final analysis because 12 patterns returned 10 patterns suggesting an overfitting 

of the data. Further the 8-pattern run resulted in all 8 patterns that were analogous with the other patterns found 

in the higher dimensional runs. Finally, the impact of fibroblast cells on epithelial cells was computed by 

estimating intercellular signaling with Domino (V0.1.1)17 independently for each of the datasets in the atlas.  

For Domino analysis, pyScenic (V0.11.0) for Python was first used to generate the gene regulatory network 

and co-expression modules, the regulon predictions, and the area under the curve (AUC) matrix of cellular 

enrichment18. This was completed by providing the extracted counts matrix, a list of transcription factors, 

motif annotations, and cisTarget motifs for the hg38 genome18. With the use of the AUC and regulon 

predictions, a domino object is created and the signaling network built. This allowed for the visualization of 

global signaling network, gene networks and incoming signaling heatmaps for each narrow subtype 

annotation, a heatmap of the correlation between transcription factors and receptors, and lastly, the global 

transcription factor-ligand-receptor network between all subtype annotations17. 

Data Availability Statement: Submission of the RNA-seq data to dbGaP is in process. All analysis scripts 
are available from: https://github.com/fertiglab/ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 10, 2022. ; https://doi.org/10.1101/2022.07.14.500096doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.14.500096
http://creativecommons.org/licenses/by-nc-nd/4.0/


Methods References 

 

1. Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal 
ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014). 

2. Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch effects in single-cell RNA-
sequencing data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 36, 421–427 
(2018). 

3. Sherman, T. D., Gao, T. & Fertig, E. J. CoGAPS 3: Bayesian non-negative matrix factorization for single-
cell analysis with asynchronous updates and sparse data structures. BMC Bioinformatics 21, 453 (2020). 

4. Fertig, E. J., Ding, J., Favorov, A. V., Parmigiani, G. & Ochs, M. F. CoGAPS: an R/C++ package to 
identify patterns and biological process activity in transcriptomic data. Bioinformatics 26, 2792–2793 
(2010). 

5. Peng, J. et al. Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in 
pancreatic ductal adenocarcinoma. Cell Res. 29, 725–738 (2019). 

6. Steele, N. G. et al. Multimodal Mapping of the Tumor and Peripheral Blood Immune Landscape in 
Human Pancreatic Cancer. Nat Cancer 1, 1097–1112 (2020). 

7. Stein-O’Brien, G. L. et al. PatternMarkers & GWCoGAPS for novel data-driven biomarkers via whole 
transcriptome NMF. Bioinformatics 33, 1892–1894 (2017). 

8. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting 
genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102, 15545–15550 (2005). 

9. Liberzon, A. et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst 
1, 417–425 (2015). 

10. Durinck, S. et al. BioMart and Bioconductor: a powerful link between biological databases and 
microarray data analysis. Bioinformatics 21, 3439–3440 (2005). 

11. Durinck, S., Spellman, P. T., Birney, E. & Huber, W. Mapping identifiers for the integration of genomic 
datasets with the R/Bioconductor package biomaRt. Nat. Protoc. 4, 1184–1191 (2009). 

12. McGinnis, C. S. et al. MULTI-seq: sample multiplexing for single-cell RNA sequencing using lipid-
tagged indices. Nat. Methods 16, 619–626 (2019). 

13. Moffitt, R. A. et al. Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of 
pancreatic ductal adenocarcinoma. Nat. Genet. 47, 1168–1178 (2015). 

14. Sharma, G., Colantuoni, C., Goff, L. A., Fertig, E. J. & Stein-O’Brien, G. projectR: an R/Bioconductor 
package for transfer learning via PCA, NMF, correlation and clustering. Bioinformatics 36, 3592–3593 
(2020). 

15. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative 
PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402–408 (2001). 

16. tricycle. (Github). 
17. Cherry, C. et al. Computational reconstruction of the signalling networks surrounding implanted 

biomaterials from single-cell transcriptomics. Nat Biomed Eng 5, 1228–1238 (2021). 
18. Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–

1086 (2017). 
 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 10, 2022. ; https://doi.org/10.1101/2022.07.14.500096doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.14.500096
http://creativecommons.org/licenses/by-nc-nd/4.0/


Acknowledgements 

The authors would like to thank Dr. Chris McGinnis for his technical expertise in the completion of the 

MULTI-seq experiment. We would also like to thank the authors of the 6 datasets used in the generation of 

the atlas: the laboratories of Dr. Hector Alvarez, Dr. Haiyong Han, Dr. Marina Pasca di Magliano, Dr. David 

Tuveson, Dr. Wenming Wu, and Dr. Itai Yanai. Sequencing was completed through the Genetic Resources 

Core Facility, RRID:SCR_018669. Finally, we are grateful to Aviva Fertig for sharing her mommy with us 

during a pandemic. This work was funded by the Hopper-Belmont Foundation (JWZ), The Lustgarten 

Foundation (EMJ), Johns Hopkins University Discovery Award (EJF, LW), NIH/NCI (U01CA253403 to EJF; 

P01CA247886 to EMJ; P30CA006973; R50 CA243627 to LD; K08CA248710 to RAB), Break Through 

Cancer to LW and EJF, German Research Foundation (KI 2437-2/1 to BKK). TT Seppälä was supported by 

fellowship grants and research funding from Sigrid Juselius Foundation, Instrumentarium Science Foundation, 

Emil Aaltonen Foundation, Jane and Aatos Erkko Foundation, Relander Foundation, and the iCAN precision 

medicine flagship of the Finnish Academy. Stand Up To Cancer–Lustgarten Foundation Pancreatic Cancer 

Interception Translational Cancer Research Grant (SU2C-AACR-DT26-17 to RAB). Stand Up To Cancer 

(SU2C) is a division of the Entertainment Industry Foundation and funding is administered by the American 

Association for Cancer Research, the scientific partner of SU2C). Stand Up To Cancer -Lustgarten Foundation 

(2015-002 to DTT) 

 

Competing Interests Declaration 

T.T.S. is the CEO and co-owner of Healthfund Finland and reports consultation fees from Boehringer 

Ingelheim Finland and Amgen. E.M.J is a paid consultant for Adaptive Biotech, Achilles, DragonFly, Candel 

Therapeutics, Genocea, and Roche. She receives funding from Lustgarten Foundation and Bristol Myer 

Squibb.  She is the Chief Medical Advisor for Lustgarten and SAB advisor to the Parker Institute for Cancer 

Immunotherapy (PICI) and for the C3 Cancer Institute.  She is a founding member of Abmeta. E.J.F is on the 

SAB for Resistance Biology, Consultant for Mestag Therapeutics and Merck. D.T.T. has received consulting 

fees from ROME Therapeutics, Tekla Capital, Ikena Oncology, Foundation Medicine, Inc., NanoString 

Technologies, and Pfizer that are not related to this work. D.T.T. is a founder and has equity in ROME 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 10, 2022. ; https://doi.org/10.1101/2022.07.14.500096doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.14.500096
http://creativecommons.org/licenses/by-nc-nd/4.0/


Therapeutics, PanTher Therapeutics and TellBio, Inc., which is not related to this work. D.T.T. receives 

research support from ACD-Biotechne, PureTech Health LLC, and Ribon Therapeutics, which was not used 

in this work. D.T.T.’s interests were reviewed and are managed by Massachusetts General Hospital and Mass 

General Brigham in accordance with their conflict of interest policies. L.Z. reports personal fees from Biosion, 

Alphamab, NovaRock, Xilio, Ambrx, Novagenesis, and Snow Lake Capitals; and other support from 

Alphamab and Mingruizhiyao outside the submitted work. A.C.K. reports support from Vescor Therapeutics, 

Rafael Pharma, and AbbVie outside the submitted work; in addition, A.C.K. has a patent for targeting alanine 

transport pending, a patent for KRAS-regulated metabolic pathways issued, a patent for targeting GOT1 as a 

therapeutic approach issued, and a patent for autophagy control of iron metabolism issued. D.P.R. reports 

personal fees and other support from MPM, other support from Boehringer Ingelheim and Exact Sciences, 

and personal fees from UpToDate and McGraw Hill outside the submitted work.  

 

Author’s Contributions 

B. Kinny-Köster, S. Guinn, J.A. Tandurella: data curation, formal analysis, investigation, visualization, writing 

original draft and review. J.T. Mitchell, D.N. Sidiropoulos, M.R. Lyman, A.B. Pucsek, R. Suri, C. Cherry, L. 

Danilova, G. Stein-O’Brien: data curation, investigation, writing and review. M. Loth, T.T. Seppälä, H. 

Zlomke, J. He, C.L. Wolfgang, J. Yu, L. Zheng, D.P. Ryan, D.T. Ting, A. Kimmelman, A. Gupta, J.H. Elisseeff, 

L.D. Wood, L.T. Kagohara: resources, writing review. E.M. Jaffee: resources, funding acquisition, writing 

review and editing. R.A. Burkhart: conceptualization, resources, writing, review and editing. E.J. Fertig, J.W. 

Zimmerman: conceptualization, data curation, supervision, funding acquisition, formal analysis, visualization, 

writing original draft, review and editing.  

Supplementary Information 

Supplementary Information is available for this paper. 

Correspondence and requests for materials should be addressed to Dr. Jacquelyn Zimmerman.  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 10, 2022. ; https://doi.org/10.1101/2022.07.14.500096doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.14.500096
http://creativecommons.org/licenses/by-nc-nd/4.0/

