
Inflatable XML Processing

Rohit Fernandes1 and Mukund Raghavachari2

1 Department of Computer Science, Cornell University
rohitf@cs.cornell.edu

2 IBM T.J. Watson Research Center
raghavac@us.ibm.com

Abstract. The past few years have seen the widespread adoption of
XML as a data representation format in various middleware: databases,
Web Services, messaging systems, etc. One drawback of XML has been
the high cost of XML processing. We present in this paper InflateX, a sys-
tem that supports efficient XML processing. InflateX advances the state
of the art in two ways. First, it uses a novel representation of XML,
called inflatable trees, that supports lazy construction of an XML docu-
ment in-memory in response to client requests, as well as, more efficient
serialization of results. Second, it incorporates a novel algorithm, based
on the idea of projection [8], for efficiently constructing an inflatable tree
given a set of XPath expressions. The projection algorithm presented in
this paper, unlike previous work, can handle all axes in XPath, includ-
ing complex axes such as ancestor. While we describe the algorithm in
terms of our inflatable tree representation, it is portable to other repre-
sentations of XML. We provide experiments that validate the utility of
our inflatable tree representation and our projection algorithm.

Keywords: XML, XPath, Performance, Projection.

1 Introduction

The past few years have seen the widespread adoption of XML as a data in-
terchange format in various middleware: databases, Web Services, messaging
systems, etc. The popularity of XML has been accompanied by its main draw-
back — the high cost of XML processing. One of the factors affecting XML
processing is the memory footprint of XML documents — when documents are
large or many documents are processed simultaneously, XML processors may
operate inefficiently or not execute at all.

Consider the following (common) situation — a web service receives an XML
document over the network. In processing the document, the web service accesses
certain portions of the document (possibly by executing queries in a language
such as XQuery [14] or XPath [12] on the document). Based on the result of
processing, the web service constructs a new XML document and publishes it
over the network. In such a situation, the cost of loading an instance of the
XML document into main memory and serializing the constructed output can
dwarf the cost of query evaluation during the execution of the web service.

G. Alonso (Ed.): Middleware 2005, LNCS 3790, pp. 144–163, 2005.
c© IFIP International Federation for Information Processing 2005

Inflatable XML Processing 145

Parsing

Construction

Query
Evaluation
Serialization

Fig. 1. Breakdown of query processing time in terms of parsing time, construction
time, query evaluation time, and result serialization time

Figure 1 presents a breakdown of the cost of executing a query on a DOM [13]
representation of an XML document.1

In this paper, we describe a system, InflateX, that addresses the high cost of
XML processing. At the heart of the InflateX system is a novel representation
of XML, called inflatable tree, that builds portions of an XML document lazily
in memory in response to traversals of the document initiated by clients. The
remaining portion of the XML document is stored in binary form, which can be
up to five times more concise than the DOM representation of XML [8]. To a
client, InflateX provides a DOM view of the XML document — the client may
manipulate this view as one would any DOM representation. We will show that
the inflatable tree representation is more efficient (in general) than full DOM ma-
terialization of a document in all aspects of XML processing : construction of an
instance of a document in memory, query evaluation, and serialization of output.

To optimize the lazy construction of inflatable trees, InflateX allows clients to
specify a set of XPath expressions with respect to which the document should
be projected [8]. In one pass over the document, the InflateX system materializes
those portions of the document that are relevant to the provided set of XPath
expressions and retains the remaining portions in binary form. Traversals of the
inflatable tree that are contained in the set of XPath expressions can be processed
efficiently (since those nodes are already materialized in memory). Traversals
that access portions that are not materialized will cause the InflateX system
to materialize those portions on-demand. We will provide a novel projection
algorithm that can handle all XPath axes — previous work could handle only
XPath expressions with child and descendant axes.

1.1 Contributions

The contributions of the paper are the following:

– A novel representation of XML, called inflatable tree, that supports lazy
construction of an XML document in memory. The representation allows for
more efficient construction, query evaluation and serialization of XML data.

1 The figure reports the execution of the Java equivalent of the XQuery
for $i in /site/regions/namerica/item return $i on a 10MB XMark [11]
document.

146 R. Fernandes and M. Raghavachari

– A novel projection algorithm that can handle all XPath axes. We will show
that the definition of projection of Marian and Siméon is not sufficient when
axes other than child and descendant are used, and provide a general
definition of projection that is valid for all XPath axes.

– Experiments that demonstrate that the inflatable tree representation sub-
stantially reduces the construction and serialization time in XML processing.
Furthermore, the inflatable tree representation allows an XML processor to
handle larger documents than it might otherwise (approximately, 2-5 times
the corresponding DOM representation).

1.2 Related Work

Bohannon et al. [4] describe a virtual DOM interface that delivers navigable
XML views of relational data. Like inflatable trees, their interface supports
lazy materialization of an XML document. Their system, however, relies on
the existence of an underlying database that acts as a persistent store for the
XML data. The system also relies on the database for query execution. In
many situations, for example, for some web services, such a store may not
be available. Our inflatable tree representation provides a mechanism for effi-
cient XML processing in memory, without any requirements of an underlying
database.

Marian and Siméon have introduced the idea of projection which constructs a
DOM representation of a document based on a set of XPath expressions [8]. One
drawback to projection as defined by Marian and Siméon is that it assumes that
all queries that will be executed on the document are known in advance. The
inflatable tree representation is robust in that it can be used even when the full
set of XPath expressions that will be evaluated on the document is not known
in advance. Second, their projection algorithm cannot handle XPath expressions
involving axes such as parent and ancestor. Finally, their approach does not
reduce the cost of serialization of results which, as observed in Figure 1, can be
high.

Compressed XML [5] is a concise representation of an XML document. The
tree skeleton of an XML document — the portion of an XML document ob-
tained by ignoring all string information — is compressed. String information is
not stored directly, but if the queries are known in advance, compressed XML
encodes information about the strings that may be required to evaluate the
queries on the document. Unlike compressed XML, our representation retains
all information relevant to an XML document.

Streaming algorithms [3,6,7] reduce the memory overhead of XML processing
by not constructing the document in memory, but processing it as it is parsed.
They can be applied in constrained circumstances where all queries evaluated
in the document are known in advance and are independent of each other. As
with projection, streaming algorithms support only limited subsets of query
languages; for complex queries involving joins or nested queries, it is necessary
to manifest portions of the document in memory [8].

Inflatable XML Processing 147

1.3 Structure of Paper

The paper is structured as follows. In Section 2, we describe our system archi-
tecture and the inflatable tree representation. In Section 3, we present a new
definition of projection that is valid when all XPath axes are allowed. In Sec-
tion 4 we present our algorithm for document projection. In Section 5, we give an
overview of our implementation. In Section 6, we provide experimental results.
Finally, in Section 7, we conclude and describe future work.

2 System Architecture

The architecture of our system is depicted in Figure 2. A client passes a ref-
erence to a data stream, and optionally, a set of XPath expressions called the
projection set to the InflateX system. The projection set is an approximation
of the traversals that will be executed over the XML document; it is used as
a hint to optimize the construction of the inflatable tree representation of the
document. The projection set need not be complete — the client may execute
XPath expressions over the document that are not covered by the projection
set. The InflateX system uses the projection set and the XML data stream to
construct an initial inflatable tree representation of the XML document. The
client may determine the initial projection set using various mechanisms, for ex-
ample, static analysis of the client application, profiling information of the most
common XPath expressions or traversals used, etc. In this paper, we will focus
on mechanisms for building the inflatable tree efficiently given a projection set.

We now describe our inflatable tree representation and how a client interacts
with it in greater detail. For simplicity, we will focus on elements, though our
implementation can handle the other XML nodes, such as attribute nodes.

2.1 Inflatable Trees

Our representation of XML documents, inflatable tree, is based on the observa-
tion that the binary representation of an XML document (as a sequence of bytes)

Projector

Catalog
Publisher

Book
Title

Compilers

Publisher
Book

Title
Algorithms

ROOT

XPath

Engine

Projection

Set

Inflatable Tree

Data Streams

DOM

Traversals

Fig. 2. System architecture

148 R. Fernandes and M. Raghavachari

can be 4-5 times more concise than constructing a DOM model instance of the
document. Given a reference to an XML document, we store the sequence of
bytes corresponding to the XML document in an array of bytes in memory. Our
representation of the XML document in memory consists of two sorts of nodes:
materialized nodes and inflatable nodes. A materialized node corresponds to an
element in the document and contains all information relevant to the element,
such as its tag. An inflatable node represents an unexpanded portion of the XML
document; it contains a pair of offsets into the byte array representation of the
document corresponding to the start and end of the unexpanded portion. For
example, Figure 3a depicts the inflatable tree representation of an XML docu-
ment tree. The materialized nodes are shown with a label, and the nodes that
have a dashed border are inflatable nodes. They contain offsets into the binary
array of bytes.

Catalog

Publisher

Book

Title

Compilers

Publisher

Book

Title

Algorithms

ROOT

Byte Array

Pubs

(a) (b)

Fig. 3. (a) Inflatable tree epresentation of an XML document. Boxes with solid borders
represent materialized nodes. Boxes with dashed borders represent inflatable nodes. (b)
Representation of a constructed XML document.

2.2 Operations on Inflatable Trees

We now describe how a client may operate on an inflatable tree.

Inflatable Tree Refinement. Once an inflatable tree is constructed, a client
may operate on the tree as with any other DOM representation of an XML
document, for example, by executing an XPath expression with respect to a
node of the inflatable tree. If the client accesses a portion of the tree that has
not yet been materialized, the runtime system inflates that portion of the tree
automatically in response to the client’s request. If desired, the client may pass
a new projection set to the InflateX system, which will be used by the system to
inflate portions of the tree corresponding to the new provided set of XPaths.

Construction of XML. A client may construct new nodes and trees, which
are always constructed in materialized form. When construction refers to sub-

Inflatable XML Processing 149

trees from existing documents, InflateX constructs an inflatable node with the
appropriate offsets. For example, Figure 3b shows the result of constructing a
tree based on the input XML document of Figure 3a. The children on the Pubs
element in Figure 3b are the two Publisher subtrees in Figure 3a.

Serialization of Results. Since the byte array representation of the input XML
documents is retained in memory, portions of the results that are derived from
the input document can be serialized directly from the byte array. As we will
show in Section 6, this direct serialization can be substantially more efficient than
explicit traversal of a tree to perform serialization. For example, in Figure 3b,
the inflatable nodes corresponding to the Publisher elements can be serialized
directly from the input document byte array.

3 Preliminaries

We define the abstractions of XML documents and XPath expressions that will
be used in this paper. We will then provide a definition of projection that is valid
when all XPath axes are supported.

3.1 Tree Model of XML Documents

An XML document can be represented as a tree whose nodes represent the
structural components of the document — elements, text, attributes, etc. Parent-
child edges in the tree represent the inclusion of the child component in its parent
element, where the scope of an element is bounded by its start and end tags. The
tree corresponding to an XML document is rooted at a virtual element, root,

which contains the document element. We will discuss XML documents in terms
of their tree representation; D represents an XML document, and ND and ED

denote its nodes and edges respectively.
For simplicity of exposition, we focus on elements in this paper, and ignore

attributes, text nodes, etc. The tree, therefore, consists of the virtual root and
the elements of the document. We refer to the nodes of the document tree as
elements to avoid confusion with vertices of the tree representation of an XPath
which we will discuss shortly. We assume that the following functions are defined
on the elements of an XML document:

– idD : ND → Integer: Returns a unique identifier for each element in a
document. We will assume that idD is a total order on the elements in D,
such that the assignment of identifiers to elements corresponds to a depth-
first preorder traversal of the tree (that is, document order in XML).

– tagD : ND → String: Returns the tag name of the element.

We also assume functions, childD, descD, selfD, fsD, and followingD,
each with the signature ND × ND → {true, false}. The semantics of these
functions is straightforward, childD(v1, v2) returns true if v2 is a child of v1 in D,
and fsD(v1, v2) returns true if v1 and v2 share a common parent, and moreover,
idD(v2) > idD(v1). followingD(v1, v2) returns true if idD(v2) > idD(v1) and
v2 is not a descendant of v1. Finally, selfD(v1, v2) returns true if v1 = v2.

150 R. Fernandes and M. Raghavachari

3.2 XPath Subset

The grammar of XPath expressions accepted by our projection algorithm is
provided below. In the grammar, the non-terminal Axis includes all axes defined
in the XPath specification [12]. For simplicity, we will only consider elements
and not consider the namespace and attribute axes.

AbsLocPath := ′/′ RelLocPath
RelLocPath := Step ′/′ RelLocPath | Step
Step := Axis :: NodeTest |Step ′[′ PredExpr ′]′

PredExpr := RelLocPath and PredExpr |AbsLocPath and PredExpr |
RelLocPath | AbsLocPath

NodeTest := String|∗

An absolute path expression corresponds to one that satisfies AbsLocPath
and is evaluated with respect to the root node of the tree. A relative XPath
expression corresponds to RelLocPath and is evaluated with respect to a provided
set of elements in the tree.

3.3 XPath Expression Trees

An XPath expression can be represented as a rooted tree T = (VT , ET) with
labeled vertices and edges. The root of the tree is labeled root. For every
NodeTest in the expression, there is a vertex labeled with the NodeTest. Each
vertex other than root has a unique incoming edge labeled with the Axis spec-
ified before the NodeTest. The vertex corresponding to the rightmost Node-
Test which is not contained in a PredExpr is designated to be the output
vertex. There are functions, labelT : VT → String, and axisT : ET →
Axis that return the labels associated with the vertices and edges respectively.
Figure 4 provides an example of the tree representation of the XPath expression
//book[title and author]/ancestor::publisher.2

ROOT

Book

Author Publisher

ancestor

Title

descendant

child
child

Fig. 4. Tree representation of the XPath expression //Book[Title and

Author]/ancestor::Publisher. The output vertex has a thick border.

The semantics of an absolute XPath expression is defined in terms of embed-
dings [9].

2 We will use the abbreviated XPath syntax in the paper for conciseness.

Inflatable XML Processing 151

Definition 1. A pair of elements (n1, n2) in a document, D, n1, n2 ∈ ND sat-
isfies an edge constraint (v1, v2) in the tree representation T of an XPath expres-
sion if the relation between n1 and n2 in the document matches axisT (v1, v2). For
example, n1, n2 satisfies (v1, v2) if axisT (v1, v2) =child and childD(n1, n2) =
true, or, if axisT (v1, v2) =ancestor and descD(n2, n1) = true.

Definition 2. An embedding of an absolute XPath expression T into a docu-
ment D is a function E : VT → ND such that:

1. E maps the root vertex of the XPath expression to the root element of the
document.

2. Labels are matched, that is, for each v ∈ VT , labelT (v) = ∗ or labelT (v) =
tagD(E(v)).

3. Edges are satisfied, that is, if (v1, v2) ∈ ET , then (E(v1), E(v2)) satisfies
(v1, v2).

Let o be the output vertex of the tree representation of an absolute XPath
expression. The output of an XPath expression is defined as all n ∈ ND such
that there exists an embedding where E(o) = n. The definition can be extended
easily to relative XPaths by replacing the embedding of the root element with
the context node.

For example, an embedding of the XPath expression tree of Figure 4 into the
XML document from Figure 5 is the following : E(ROOT) = {1}, E(Book) = {5},
E(Author) = {6} , E(T itle) = {8} and E(Publisher) = {3}.

3.4 Projection

A projected document is defined by Marian and Siméon in terms of an input
document D and a set of XPath expressions P , where some of the expressions
may be marked with the special output flag # [8]. Each XPath expression in
P is an absolute XPath expression (that is, it is evaluated with respect to the
root of the document). Only uses of the child and descendant axes are allowed
(predicates and backward axes are not allowed). Given P and D, the projected
document D′ is defined as follows: The projected document contains all elements
that are in the result set of an XPath expression in P , as well as, their ances-
tors. All subtrees rooted at some result of an XPath expression marked # are
materialized as well. The definition guarantees that the projected document D′

satisfies the key property that the evaluation of any XPath expression in P on
D′ returns the same result as the evaluation of that XPath expression on D. As
a result, one can substitute D′ for D without changing the behavior of query
evaluation with respect to P .

For example, consider the XPath expression, //Title, and assume that it is
marked with a #. Figure 5 depicts the elements that would be constructed in
the projection of the document with respect to this XPath expression.

When XPath expressions with axes other than child and descendant are
allowed in P , projection as defined in [8] can no longer be applied; the evaluation
of an XPath expression on the projected document D′ may differ from that on

152 R. Fernandes and M. Raghavachari

Catalog

Publisher

Addison-
Wesley Book

Title

Compilers

Author

Publisher

McGraw-Hill Book

Title

Algorithms

ROOT

AHU

Author

CLR

1

2

3

4 5

6

7

12

8

9

10

11

15

14

13

16

Fig. 5. Tree representation of an XML document. Highlighted nodes depict nodes
selected by the algorithm of Marian and Siméon.

D. Consider the XPath expression, //Author/ancestor::Publisher//Title
executed on the document in Figure 5. Only the elements highlighted in Figure 5
belong to the projected document D′. The result of the XPath expression on D′

will be the empty set since it does not contain any Author elements.
The embeddings of XPath expressions into a document D can be used as the

basis for a general definition of projection when complex axes such as ancestor
are allowed. The definition we provide subsumes that of [8] and serves as the
basis for the algorithm presented in Section 4.

Definition 3. Let D be a document and P be a set of absolute XPath expres-
sions, where some XPath expressions in P are marked with a special flag #. The
projected document D′ is composed of the set of all elements n in D that satisfy
at least one of the following conditions:

– For some XPath expression p in P , there is an embedding E of p into D such
that E(v) = n, where v is some vertex in p, or

– For some XPath expression p in P , there is an embedding E of p into D such
that E(v) = n′, where v is some vertex in p, and n is an ancestor of n′ in
D, or

– For some XPath expression p in P marked with the symbol #, n is the
descendant of an element in the result set of the evaluation of p on D.

In other words, the projected document consists of all elements that partic-
ipate in an embedding and their ancestors. Moreover, for each element in the
result set of the evaluation of a specially marked XPath expression, that element
and all its descendants belong to the projected document.

4 Inflatable Tree Construction

In this section, we present an algorithm for constructing an inflatable tree from
a given set of XPath expressions while parsing the document. The challenge is
in being able to handle complex XPath axes such as ancestor efficiently in a

Inflatable XML Processing 153

single pass over the input document. Our algorithm may be imprecise in that
it may materialize some elements that do not satisfy any of the conditions of
Definition 3. The algorithm is, however, careful in limiting the construction of
these inessential nodes.

Our algorithm works in two stages. First, the set of input XPath expressions
P is normalized into a canonical form. In the second stage, a document (or a
subtree of the document) is traversed to build the inflatable tree. Our algorithm
will not distinguish XPath expressions marked “#” from those that are not. Since
the bytes corresponding to the document are readily available, there is no need
to inflate the subtrees under output nodes, unless portions of these subtrees
may participate in an embedding (that is, satisfy the first two conditions of
Definition 3).

4.1 Normalizing XPath Expressions

The XPath axes following, preceding, following-sibling and preceding-
sibling are order-based axes (the result set for these axes depends on the order
between sibling tree nodes). The first step in our normalization is to rewrite in-
stances of these axes in XPath expressions into order-blind axes (such as parent
and ancestor). The rules for rewriting XPath expression trees are shown in
Figure 6. In the figure, v1 and v2 are vertices in a given XPath expression tree,
connected by an edge labeled with one of the order-based axes. The rewriting
rules may introduce new vertices. The rules are ordered so that the rules of Fig-
ure 6a and Figure 6b are applied until there are no instances of following and
preceding in the XPath expression tree. The rules of Figure 6c and Figure 6d
are then applied to the XPath expression tree.

For example, for the following-sibling axes, we replace instances of the
pattern v1/following-sibling::v2 with instances of v1/parent::∗/v2. The
rewritten XPath expression is an approximation of the original one — it chooses
v2 elements that both precede and follow v1 elements. The rewritings guaran-
tee that for any document, if an element n participates in an embedding of
the original XPath expression tree into the document, n also participates in an
embedding of the rewritten tree into the document.

4.2 Constructing an Inflatable Tree

The inflatable tree construction algorithm can be invoked by the client in one
of two states. In the first case, the document is being processed for the first
time and must be read from an external source. In the second case, an inflatable
tree already exists for the document in question, and the inflatable tree must be
modified to account for the new projection set of XPath expressions. In either
of the two cases, the algorithm traverses the document in a depth-first manner
and generates events similar to SAX [10]. A start element event is generated
when the traversal first visits an element, and an end element event once the
traversal of the subtree rooted at that element is finished. We will assume that
an event contains all information about the relevant element, such as its tag and
unique identifier (we will use the offset in the byte array for this purpose). At

154 R. Fernandes and M. Raghavachari

descendant-or-self

following-sibling

ancestor-or-selffollowing

*

*

v1

v2

v1

v2

(a)

descendant-or-self

preceding-sibling

ancestor-or-selfpreceding

*

*

v1

v2

v1

v2

(b)

child

parentfollowing-sibling

*

v1

v2

v1

v2

(c)

child

parentpreceding-sibling

*

v1

v2

v1

v2

(d)

Fig. 6. (a) Rule for rewriting following edges. (b) Rule for rewriting preceding

edges. (c) Rule for rewriting following-sibling edges. (d) Rule for rewriting
preceding-sibling edges.

each of these events, an event handler is invoked to perform actions related to
the construction of the tree.

In the case where a document is read for the first time from an external
source, the traversal records the bytes corresponding to the XML document
into an array. It simultaneously parses the document and generates appropriate
events. In the other case, where an inflatable tree already exists, the document
traverser walks over the inflatable tree and generates events. When it reaches
an inflatable node, it parses the portion of the byte array corresponding to that
node and generates appropriate events.

Definitions and Data Structures. The description of our algorithm will use
the following definitions.

Definition 4. The backward vertex set, B(v), of a vertex v ∈ VT in an XPath
expression tree is defined as {v′|(v, v′) ∈ ET ,axis(v, v′) ∈{parent, ancestor,
ancestor-or-self, self } ∪{v′′|(v′′, v) ∈ ET ,axis(v′′, v) ∈{ self, child,
descendant, descendant-or-self }. A backward constraint is an edge between
v and a vertex in its backward vertex set.

In other words, the backward vertex set with respect to a vertex v consists of
those vertices to which an outgoing edge from v is labeled with a backward axis
and those from which an incoming vertex into v is labeled with a forward axis.
We have a dual definition for a forward vertex set with respect to a vertex v.

Inflatable XML Processing 155

Definition 5. The forward vertex set, F(v), of a vertex v ∈ VT in an XPath
expression tree is defined as {v′|(v, v′) ∈ ET ,axis(v, v′) ∈{child, descendant,
descendant-or-self, self } ∪{v′′|(v′′, v) ∈ ET ,axis(v′′, v) ∈ { self, parent,
ancestor, ancestor-or-self }. A forward constraint is an edge between v and
a vertex in its forward vertex set.

Our algorithm maintains an active stack, which contains, at any time, the
list of elements for which a start event has been received, but no end event has
been received yet. For each element e in the stack we maintain and update the
following information as we traverse the document:

– tag(e) which corresponds to the tag of the element.
– Sets of vertices from the XPath expression tree: self(e), ancestors(e),

parent(e), children(e), and descendants(e). A vertex v is in self(e)
if e may embed into v. v is in parent(e) if the parent element of e may
embed into v. v ∈ children(e) implies that some child of e may embed into
v; v ∈ descendants(e), if some descendant of e may embed into v, and
finally, v ∈ ancestors(e) implies that some ancestor of e in the tree may
embed into v.

– An ordered set subtrees(e) of inflatable trees. This set corresponds to the
inflatable trees constructed for the children of e.

For each vertex v in the XPath expression, the algorithm maintains count(v),
which represents how many elements e in the active stack contain v in self(e).

Algorithm Overview. We first describe our algorithm with respect to a pro-
jection set that contains a single XPath expression, and then, discuss how to
extend the algorithm for multiple XPath expressions. The essence of the algo-
rithm is simple — materialize an element if it could participate in an embedding.
As a tree is traversed and events are generated, for each vertex in the tree repre-
sentation of the input XPath expression, the algorithm keeps track of the forward
and backward constraints that have been satisfied. The following two conditions
are used to determine whether a given element may participate in an embedding:

– Satisfaction of Backward Constraints: Let an element e belong to an embed-
ding E of T into D such that for some vertex v, E(v) = e. For each vertex
v′ in B(v), there must be some ancestor of e, e′ such that E(v′) = e′, and
the relation between e and e′ satisfies the edge constraint between v and v′.
This is a straightforward consequence of the definition of embeddings. At a
start element event for an element, we verify that if the label of e matches
some vertex v, then for each vertex v′ ∈ B(v), one can find such a candi-
date e′. The vertex sets self(e), parent(e) and ancestors(e) are used
for this purpose. For example, if axis(v, v′) = ancestor, we require that
ancestors(e) contains v′. Otherwise, e cannot participate in an embedding
for v. For ancestor-or-self constraints, we require that v′ be present in
the ancestors(e) or self(e) vertex sets.

– Satisfaction of Forward Constraints : A similar statement can be made for
forward vertex sets. Let an element e belong to an embedding E of T into D

156 R. Fernandes and M. Raghavachari

such that for some vertex v, E(v) = e. For each vertex v′ in F(v), there must
be some descendant of e, e′ such that E(v′) = e′, and the relation between
e and e′ satisfies the edge constraint between v and v′. At the end element
event, the algorithm can verify that if the label of e matches some vertex
v, then such a candidate e′ exists for all vertices v′ ∈ F(v). The vertex sets
self(e), children(e) and descendants(e) are used for this purpose in a
similar manner to the use of the self(e), parent(e) and ancestors(e) sets
for backward constraints.

At an end element event, the algorithm determines (given the current infor-
mation) whether the current element e or some node in its subtree is a possible
candidate for an embedding. If so, the algorithm materializes the element; oth-
erwise, it creates an inflatable node for the element. The count data structure
is used to prune information, as will be described shortly.

The handling of multiple XPath expressions is a straightforward extension
to the handling of a single XPath expression — the algorithm evaluates each of
them in parallel. An element is materialized if it is required by any of the XPath
expressions.

Algorithm Details. The inflatable tree construction algorithm processes a
given XPath expression T = (VT , ET) and a document D = (ND, ED) to con-
struct the inflatable tree in a bottom-up manner — at each end element event
for an element, the algorithm decides whether to build a materialized node or
an inflatable node for that element based on decisions taken for its children.

– Initially, set the active stack to be empty.
– At a start element event for an element e, push e on to the active stack.

1. Set ancestors(e), children(e), descendants(e) to be empty.
2. If e is the root of the document, set parent(e) to be empty, otherwise

set parent(e) to equal self(e′), where e′ is the parent of e in the tree.
3. Set self(e) to be all vertices v in the XPath expression tree such that

tag(e) matches label(v). For each vertex v in self(e) try to satisfy all
the constraints in B(v) using self(e), parent(e) and ancestors(e) as
described previously. If all constraints for v cannot be satisfied, remove
v from self(e). Continue this process until no further vertices can be
removed from self(e). For each vertex v remaining in self(e), increment
count(v).

– At an end element event for an element e:
1. If self(e) is non-empty, for each vertex v in self(e), check for the

satisfaction of forward constraints using the self(e), children(e) and
descendants(e) vertex sets. If the forward constraints cannot be satis-
fied for v, remove v from self(e) and decrement count(v). If count(v)
becomes 0, we can prune descendants(e). If descendants(e) does not
contain v, and count(v) is 0, then all vertices v′ that are descendants of
v in the XPath expression tree can be removed from descendants(e).
Consider a v′ that is in descendants(e) such that v′ is a descendant
of v in the XPath expression. For an element e′ in the subtree rooted at

Inflatable XML Processing 157

e to be mapped to v′ in some embedding, there must be an element e′′

that is mapped to v in that embedding. Since v′ is a descendant of v in
the XPath expression tree, e′′ must be an ancestor of e′. If count(v) is
0 and descendants(e) does not contain v, then observe that there can
be no such e′′ in the tree.

2. Repeat Step 1 for vertices in self(e) until no more vertices can be re-
moved from self(e).

3. If self(e) and descendants(e) are both empty, construct an inflatable
node for e (and the subtree rooted under it), and discard the contents
of subtrees(e).

4. If self(e) is not empty and descendants(e) is empty, construct a ma-
terialized node for e. If subtrees(e) is not empty, construct a single
inflatable node that represents all the children of e and insert this inflat-
able node as a child of the materialized node corresponding to e.

5. Otherwise, construct a materialized node for e and insert subtrees(e)
as the children of this materialized node.

6. Let e’ be the parent of e in D. Update children(e′) to children(e′)
⋃

self(e). Set descendants(e′) to descendants(e′)
⋃

descendants(e)⋃
self(e). For each vertex v remaining in self(e), decrement count(v).

In all cases, once the node for e is constructed, e is popped off the active stack
and the node corresponding to e is appended to subtrees(e′), where e′ is
the current head of the stack (corresponds to e’s parent in the document). If
the node corresponding to e and the tail of subtrees(e′) are both inflatable
nodes, the two nodes are merged.

5 Implementation

We use a custom parser to generate the start and end element events corre-
sponding to the depth-first traversal of the document. A key characteristic of
the parser is the ability to support controlled parsing over a byte array — we
can specify the start and end offsets of the byte array that the parser should use
as the basis for parsing. This property is essential for the parsing of subtrees cor-
responding to inflatable nodes. Another feature of the parser is that at element
event handlers, it provides offset information rather than materializing data as
SAX does. For example, rather than constructing a string representation of the
element tag’s name, it returns an offset into the array and a length.

One challenge in the implementation of a projection algorithm is efficiency
when complex axes are used. For example, Marian and Siméon report that
document instance construction can degrade when XPath expressions involv-
ing descendant axes are used [8]. As we will demonstrate in Section 6, our
algorithm scales well even in the presence of complex axes. The main reason for
the efficiency of our implementation is a careful design of the data structures
used to implement the algorithm of Section 4. We use bitmaps to represent much
of the information that is necessary — set containment and union operations are
encoded using efficient bitmask operations. As an optimization, our algorithm

158 R. Fernandes and M. Raghavachari

skips processing a subtree if it can detect that the subtree below the element
cannot participate in any embedding. This happens if all the paths in the XPath
set contain prefixes without any ancestor or descendant axes. For example, if
the set of XPath prefixes is {/a/b/c, /a/d}, then if we encounter a start tag of
a followed by an f , we can skip processing the subtree rooted at f .

Our system is implemented in Java. We use the Xerces [2] DOM repre-
sentation as the underlying representation for the inflatable tree. Materialized
nodes are represented as normal DOM nodes. Inflatable nodes have a special
tag “ INFLATABLE ” and they contain two attributes indicating the start
and end offsets in the byte representation of the document. The ability to use
DOM as our underlying representation is a key advantage — we are able to run
DOM-based XPath processors without modification on our inflatable trees; the
semantics of projection guarantees that the inflatable nodes do not affect the
result of evaluation of any XPath in the projection set!

6 Experiments

We used the queries of the XMark [11] benchmark set to evaluate the perfor-
mance of our algorithm. In our experiment, the same benchmark code was used
for both DOM and InflateX; the only difference being that for InflateX, the docu-
ment was first projected with respect to a set of XPath expressions derived from
the queries using the rules in [8]. In both cases, we used Xalan [1] as our XPath
engine. We used a custom parser to generate appropriate events to construct
both the inflatable tree, and in the DOM version, the full DOM data model
instance. We used a custom parser rather than a standard XML parser such
as Xerces [2] because our parser generates appropriate byte offset information
in the events. We compared the performance of our parser for the construction
of a full DOM instance with that of Xerces and found them comparable.3 All
experiments were run on a 1GHz IBM ThinkPad with 256MB of memory — the
Java heap size was set at 128MB.

We will explore the efficiency of InflateX versus DOM in several dimensions:
document construction time, query evaluation time, memory requirements, se-
rialization, and dynamic projection. For both InflateX and DOM, the document
is read from a file in the file system, the query is evaluated, and the results
are serialized to a file. We will use the 20 original queries of the XMark bench-
mark. Since the XMark query set does not include queries that use axes such as
parent and following-sibling, we have added two additional queries consist-
ing of XPath expressions that use these axes. The projection sets corresponding
to these two queries, which we refer to as Q21 and Q22 are provided in Table 1.
All experiments were run on a 10 MB XMark file.

Construction Time. Figure 7 compares the time taken to construct the in-
memory projection using InflateX with that for constructing a DOM instance.

3 The cost of constructing a DOM instance from a 10MB XMark file using our parser
was 1312ms compared to 1612ms for Xerces.

Inflatable XML Processing 159

Table 1. Projection sets involving uses of axes other than child and descendant

Q21 {//item[ancestor::africa]/name[following-sibling::payment]//mailbox//from}
Q22 {/site/closed auctions/closed auction/itemref[preceding-sibling::buyer],

/site/person/name[ancestor::people],
/site/regions//item[parent::europe]/name}

0
200
400
600
800

1000
1200
1400
1600
1800

D
O

M Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
10

Q
11

Q
12

Q
13

Q
14

Q
15

Q
16

Q
17

Q
18

Q
19

Q
20

Q
21

Q
22

XMark Query

Ti
m

e
in

 m
s

Fig. 7. Comparison of document construction time on a 10MB XMark file. The first
column shows the cost of constructing a DOM in-memory instance. The remaining
columns provide times for projection construction on the various queries.

As can be seen from the figure, our scheme is 2-3 times more efficient than DOM
depending on the size of the projection. In Marian and Siméon, the document
construction performance degrades with the presence of the descendant axis [8].
Our scheme is robust for descendant axes and performs well even when axes such
as ancestor or preceding-sibling are used (as can be seen from the results
for Q21 and Q22). The reason for the robustness is in the implementation of
our algorithm. Our algorithm does not maintain much state apart from the
projection tree that is being constructed; we encode much of the state using
compact bitmaps.

Query Evaluation. As in Marian and Siméon, our projection scheme improves
query evaluation because the queries are evaluated over a smaller document.
Figure 8 compares the execution of the XMark queries with that of a similar
evaluation over a full DOM instance. Most of the XMark queries contain only
child axes. The performance of these queries improves marginally as such XPaths
can be efficiently evaluated without having to search subtrees. In the presence
of descendant axes (Q7, Q19), we obtain factors of improvement of 13 and 2.5.
This is because the XPath processor searches entire subtrees to match descendant
nodes.

Memory Requirements. In terms of the absolute memory sizes that can be
handled, for DOM, the largest document that could be constructed in memory
was 25 MB on our system (irrespective of the query). The amount of data that
InflateX was able to handle depends on the projected set. For the projection path
Q21 in Table 1, and for most other XMark queries, our projection scheme was

//item[ancestor::africa]/name[following-sibling::payment]//mailbox//from
/site/closed_auctions/closed_auction/itemref[preceding-sibling::buyer]

160 R. Fernandes and M. Raghavachari

0

50

100

150

200

250

300

350

400

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
10

Q
11

Q
12

Q
13

Q
14

Q
15

Q
16

Q
17

Q
18

Q
19

Q
20

Queries

T
im

e
 (

m
s

)

DOM

Inflatable Tree

Fig. 8. Comparison of query evaluation time on a 10 MB XMark file

able to handle documents of size upto 100 MB. For other queries, the largest
document we could process was somewhere between 50 and 100MB. The size
of the projection is small relative to the overhead of storing the byte array in
memory.

Figure 9 measures the number of nodes in the inflatable trees for each of
the XMark queries. On average, we materialize about 10% of the nodes. The
number of inflatable nodes that we construct is of the order of the projection,
and therefore, does not add much overhead.

Serialization. Many queries return large result sets that need to be serialized
out as a sequence of bytes to a client. The definition of projection by Marian
and Siméon would construct all nodes that might have to be serialized. These
nodes would be traversed to generate the bytes corresponding to the result. Our
inflatable trees allow for efficient serialization directly from the byte array when

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
10

Q
11

Q
12

Q
13

Q
14

Q
15

Q
16

Q
17

Q
18

Q
19

Q
20

Queries

%
 N

o
d

e
s

 C
o

n
s

tr
u

c
te

d

Inflatable Nodes

Materialized Nodes

Fig. 9. Comparison of memory overhead on a 10MB XMark file. The total height of
a column is the percentage of nodes in the original tree that are constructed (the tree
contains 510946 nodes). Each column shows the breakdown in terms of materialized
nodes and inflatable nodes constructed.

Inflatable XML Processing 161

Table 2. Comparison of inflatable tree query execution time to the scheme that con-
structs the subtrees of all output nodes

Inflatable Tree Output Projection
Construction 470ms 680ms
Serialization 70ms 380ms
Number of Nodes 5119 78923

possible. Furthermore, we avoid the cost of having to construct all elements that
are materialized solely because they are required for the output.

Table 2 compares the cost of query execution of the XPath expression /site/
regions/namerica/itemusing different projections. The first uses our algorithm
to build a projection based on inflatable trees. The second, Output Projection,
constructs the subtrees of all output nodes in the document (as in Marian and
Siméon).

The presence of the byte array corresponding to the document allows for a
drastic reduction in the size of the projection, which in turn, reduces construction
time. Furthermore, the cost of serialization reduces by a factor of four. The
serialization of XML from a data model instance can be slow since the serializer
must traverse the entire data model instance and output the appropriate XML
constructs. The byte array allows our serialization mechanism to avoid this cost.

Dynamic Projection. One advantage of the inflatable tree representation over
projection as defined by Marian and Siméon is that it allows clients to ex-
pand portions of the tree dynamically. For example, a client may choose to
expand with respect to one set if an if branch is taken and another if the
corresponding else branch is taken. Figure 10 explores the performance of dy-
namic projection in the common situation where a client first issues a query and
then refines the query based on the results. In the experiment, the document is
first projected with respect to the XPath expression /site/regions/namerica,
and subsequently, the client refines the query with respect to XPath expression
/site/regions/namerica/item. We compare the cost of dynamic projection
over the inflatable tree to the cost of constructing a new projection (as would be
done in Marian and Siméon). As can be seen, there can be a significant advantage
to dynamic projection.

7 Conclusions

In this paper, we have proposed the inflatable tree data structure as a viable
in-memory representation of XML. Our representation also supports dynamic
projection of XML documents and efficient serialization of results to clients.

We have also developed a projection algorithm that can handle complex axes
such as ancestor and following-sibling. Our experiments demonstrate that
our algorithm constructs inflatable trees that are small compared to the full
data instance, even when these complex axes are used. In addition to reducing

/site/

162 R. Fernandes and M. Raghavachari

0

50

100

150

200

250

300

350

400

450

500

0 2 4 6 8 10 12

Size of File (MB)

Ti
m

e
(m

s)

Dynamic Projection

Full Projection

Fig. 10. Comparison of dynamically projecting a subtree of the document rather than
projection over the entire document

the memory overhead of the in-memory representation of XML, our algorithm
is efficient and can reduce the cost of constructing the instance significantly.

In the future, we plan to explore the use of schema information to drive the
derivation of projections. Schema information in conjunction with the projection
set of XPath expressions can be used to prune projections more precisely. An-
other area of interest is the exploration of automatically deflating trees, that is,
determining from an XQuery expression, when a subtree in the XML document
is no longer required.

References

1. Apache Software Foundation. Xalan-Java. http://xml.apache.org/xalan-j.
2. Apache Software Foundation. Xerces2 Java Parser. http://xml.apache.org/

xerces2-j.
3. C. Barton, P. Charles, D. Goyal, M. Raghavachari, M. Fontoura, and V. Josifovski.

Streaming XPath processing with forward and backward axes. In Proceedings of the
19th IEEE International Conference on Data Engineering (ICDE), pages 455–466,
March 2003.

4. P. Bohannon, S. Ganguly, H. F. Korth, P. P. S. Narayan, and P. Shenoy. Optimizing
view queries in ROLEX to support navigable result trees. In Proceedings of the
29th International Conference on Very Large Databases (VLDB), pages 119–130,
2002.

5. P. Buneman, M. Grohe, and C. Koch. Path queries on compressed XML. In
Proceedings of the 29th International Conference on Very Large Databases (VLDB),
pages 141–152, 2003.

6. C.-Y. Chan, P. Felber, M. Garofalakis, and R. Rastogi. Efficient filtering of XML
documents with XPath expressions. The VLDB Journal, 11(4):354–379, 2002.

7. Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and P. Fischer. Path sharing and
predicate evaluation for high-performance XML filtering. ACM Transactions on
Database Systems, 28(4):467–516, 2003.

8. A. Marian and J. Siméon. Projecting XML documents. In Proceedings of the 29th
International Conference on Very Large Databases (VLDB), pages 213–224, 2003.

http://xml.apache.org/xalan-j
http://xml.apache.org/
xerces2-j

Inflatable XML Processing 163

9. G. Miklau and D. Suciu. Containment and equivalence for a fragment of XPath.
Journal of the ACM, 51(1):2–45, 2004.

10. Simple API for XML. http://www.saxproject.org.
11. A. Schmidt, F. Waas, M. Kersten, M. Carey, I. Manolescu, and R. Busse. Xmark:

A benchmark for XML data management. In Proceedings of the 28th International
Conference on Very Large Databases (VLDB), pages 974–985, 2002.

12. World Wide Web Consortium. XML Path Language (XPath) Version 1.0, Novem-
ber 1999.

13. World Wide Web Consortium. Document Object Model Level 2 Core, November
2000.

14. World Wide Web Consortium. XQuery 1.0: An XML Query Language, August
2003. W3C Working draft.

http://www.saxproject.org

	Introduction
	Contributions
	Related Work
	Structure of Paper

	System Architecture
	Inflatable Trees
	Operations on Inflatable Trees

	Preliminaries
	Tree Model of XML Documents
	XPath Subset
	XPath Expression Trees
	Projection

	Inflatable Tree Construction
	Normalizing XPath Expressions
	Constructing an Inflatable Tree

	Implementation
	Experiments
	Conclusions

