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1 Introduction

The standard model of particle physics has been very successful with highly accurate pre-

dictions. However, it still has no answer for various problems like dark matter and inflation.

Both inflation and dark matter have been established very firmly through various obser-

vations particularly of the cosmic microwave background (CMB) radiation. Inflation [1]

has long been the most successful theory to answer cosmological problems like the horizon

problem and homogeneity. The most popular inflationary models are those that have an

extra scalar particle which acts as the inflaton. Recent experiments like Planck [2] and

WMAP7 [3] have placed bounds with high accuracy on inflationary parameters like the

spectral index, the tensor to scalar ratio and the scalar power spectrum. There have been

a variety of inflation models over the years. The Higgs inflation [4, 5] models are the most

simple in the sense that they do not involve any extra field and have just one more parame-

ter ξ through which the field couples to gravity but they come with their share of problems.

The quartic coupling λ of Higgs field at high energy scales (& 1010 GeV) becomes negative.

This can cause problems with the stablility of the vacuum [6]. Another problem comes in

the form of non-unitarity. The scalar power spectrum bounds require ξ ∼ 104 [7] which

breaks unitarity at scales around mPl/ξ ≈ 1013 GeV [8]. To avoid running into problems

in a Higgs inflation model, often an extra scalar stabilizing field is added and such sce-

narios are called s-inflation. These models have an extra gauge singlet scalar particle that

acts as the inflaton while the Higgs field acts as a portal to the standard model to reheat

the universe. There can be variations in this model and in [9] distinctions between the

variations is studied. The inflationary potential is usually taken to be either a chaotic

one or a Starobinsky one. Chaotic inflation [10] models include power law potentials like

m2φ2 + λφ4. These were the first type of potentials used to study inflation. On the other
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hand Starobinsky models have exponential potentials. We will discuss more about them

later. A good review for inflationary cosmology in the light of data can be had in [11].

Dark matter has been studied extensively over the years. Thanks to the many experi-

ments and observations, we now have a good estimate for dark matter distribution in and

around our galaxy and in the universe at large. Planck results [12] together with other

astronomical observations have put down the abundance of dark matter in the universe

to Ωdmh
2 ' 0.12. The most commonly studied dark matter scenarios are the so called

Weakly-Interacting Massive Particles (WIMP). In recent years however, as dark matter

detection experiments have become better and colliders like LHC are probing higher ener-

gies, the absence of any new particle at the weak scale has put the WIMP scenario in a

fix and people have started looking at other options like axions, feebly interacting massive

particles (FIMP) and strongly interacting massive particles (SIMP) [13–16] among others.

One of the simplest models of dark matter — the scalar singlet dark matter model is still

being sustained and there have been updates to it [17]; see also [18].

In more recent works, people have started to look for scenarios where both inflation

and dark matter can be explained by the same field. Gauge singlet scalar models in the

s-inflation scenario is a case in point. In this paper, we have combined inflation and dark

matter in the inert doublet model coupled non-minimally to gravity. Such a unification

was first shown to be possible in [19] in string theory landscape. In [20–22] a gauge singlet

scalar is used as inflation and later after freeze out as the dark matter candidate. [23] has a

situation similar to s-inflation where the inflaton is very light and interacts very feebly to

become FIMP dark matter later. Inflation and dark matter in two Higgs doublet models

was studied in [24]. A scalar WIMP dark matter candidate with non-minimal coupling to

gravity acting as the inflaton was studied in [25].

The motivation for using inert doublet model in our case is the fact that pure Higgs

inflation is problematic and yet it is the only scalar field present in the standard model.

Another scalar doublet similar to Higgs doublet but stabilized by an extra Z2 symmetry

such that it does not interact with leptons and quarks via Yukawa couplings can present a

viable candidate for both inflation and dark matter. The components of the inert doublet

can all act as inflaton via a particular field redefinition. At the same time, its neutral

scalar component can later become the dark matter candidate. The inert doublet through

its interactions with the vector gauge bosons and Higgs can also reheat the universe at the

end of inflation to ensure that the universe gets populated by standard model particles.

Another motivation for using this model is that it is similar to s-inflation models in that

the potential turns out to be of the Starobinsky kind which gives some of the best fit to

inflationary parameters like the spectral index. We will also look at the reheating phase

in some detail. Inflaton during reheating behaves as non-relativistic matter and decays via

gauge and Higgs bosons to relativistic particles. We will look at the interactions happening

during reheating and later when we discuss dark matter, we will point out the changes that

take place in the interactions of the inert doublet compared to the reheating phase. The

electroweak (EW) symmetry breaking will play a role in determining the type of interactions

that the inert doublet undergoes.
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This paper is organized in the following manner. We describe the model in the next

section. In section 3, we study inflation and find the value of the various inflationary

parameters like the slow roll parameters, the spectral index and the tensor to scalar ratio.

In section 4 we study reheating which progresses by the decay of the inflaton into non-

relativistic vector and Higgs bosons which further annihilate into relativistic fermions. In

this section, we calculate the energy density stored in the relativistic particles and find some

bounds on some model parameters. The inert doublet as a cold dark matter candidate is

taken up in section 5 where we fix some parameter values like the mass of dark matter

through relic density calculations. We end in section 6 with conclusions.

2 The model

We will use the inert doublet model coupled non-minimally to gravity where there is an

extra doublet Φ2 apart from the Higgs doublet Φ1. The extra doublet is inert in the sense

that it does not have any Yukawa like couplings because of an inherent Z2 symmetry under

which this doublet is odd (Φ2 → −Φ2) while the Higgs and other standard model particles

are even (Φ1, ψ → Φ1, ψ, where ψ stands for SM particles other than Higgs). The action

of this model is:

S =

∫
d4x
√
−g
[
−1

2
M2
PlR−DµΦ1D

µΦ†1 −DµΦ2D
µΦ†2 − V (Φ1,Φ2)− ξ1Φ2

1R− ξ2Φ2
2R

]
,

(2.1)

where D stands for the covariant derivative containing couplings with the gauge bosons.

During inflation, there are no fields other than the inflaton so that the covariant derivative

will reduce to the normal derivative Dµ → ∂µ The minus sign in the kinetic terms is in

keeping with the metric convention of (−,+,+,+). MPl is the reduced Planck mass, R

is the Ricci scalar and ξ1 and ξ2 are dimensionless couplings of the doublets to gravity.

The motivation behind these couplings is that quantum effects invariably give rise to such

couplings at Planck scales [26].

The potential is:

V = m2
1|Φ1|2 +m2

2|Φ2|2 + λ1(|Φ1|2)2 + λ2(|Φ2|2)2

+λ3|Φ1|2|Φ2|2 + λ4(Φ†1Φ2)(Φ†2Φ1) +
1

2
λ5[(Φ†1Φ2)2 + c.c.]. (2.2)

The two doublets have the components:

Φ1 =
1√
2

(
χ

h

)
and Φ2 =

1√
2

(
q

x eiθ

)
. (2.3)

Note that there is no non-zero vacuum expectation value of the Higgs field as the

electroweak symmetry is intact at inflationary scales. We want the inert doublet to be the

inflaton. This is ensured if λ2
ξ22
� λ1

ξ21
. A choice where λ1 and ξ1 are of the same order while

λ2 ∼ 1� ξ2 automatically satisfies this condition
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3 Inflation

The action in eq. (2.1) is written in the physical or the Jordan frame [27, 28] and has terms

where the scalars Φ1,2 couple quadratically to gravity. This makes it difficult to derive

meaningful results from the usual processes of quantum field theory. We need to make

some transformations where we can get rid of such coupled terms. This can be done by

a conformal transformation to the so called Einstein frame. Einstein frame is useful as in

this frame the action looks like a regular field theory action with no explicit couplings to

gravity. Results for physical observables remain the same independent of the frame chosen.

After the end of inflation, the transformation parameter becomes almost 1, making the two

frames equivalent. Following [28], we make the following conformal transformation on the

metric and the fields to get the action in the Einstein frame: defining φ = {χ, h, q, x, θ}

S =

∫
d4x
√
−g̃
[
−1

2
M2
PlR̃−

1

2
Gij g̃

µν∂µφi∂νφj − Ṽ (h, q, x, θ)

]
, (3.1)

where:

g̃µν = Ω2gµν , (3.2)

Ω2 = 1 +
ξ1

M2
Pl

(χ2 + h2) +
ξ2

M2
Pl

(q2 + x2), (3.3)

Gij =
1

Ω2
δij +

3

2

M2
Pl

Ω4

∂ Ω2

∂ φi

∂ Ω2

∂ φj
, (3.4)

Ṽ =
V

Ω4
. (3.5)

Let us look at the kinetic terms. First, we expand the pre-factor G in a matrix form:

G =



Ω2+6ξ21χ
2/M2

Pl
Ω4 6

ξ21
M2

PlΩ
2χh

6ξ1ξ2
M2Ω4χ q

6ξ1ξ2
M2Ω4χx 0

6
ξ21

M2
PlΩ

2χh
Ω2+6ξ21h

2/M2
Pl

Ω4
6ξ1ξ2
M2Ω4hq

6ξ1ξ2
M2Ω4hx 0

6ξ1ξ2
M2Ω4χ q

6ξ1ξ2
M2Ω4hq

Ω2+6ξ22q
2/M2

Pl
Ω4

6ξ22
M2Ω4 qx 0

6ξ1ξ2
M2Ω4χx

6ξ1ξ2
M2Ω4hx

6ξ22
M2Ω4 qx

Ω2+6ξ22x
2/M2

Pl
Ω4 0

0 0 0 0 x2

Ω2



. (3.6)

The above G gives mixed kinetic terms. All these fields are always present in the

lagrangian but during inflation, fields other than the inert doublet components give no

contribution. Ω2 can also be simplified to exclude the ξ1
MPl

(χ2 + h2) term. This allows us
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to simplify the matrix G as:

G =



1
Ω2 0 0 0 0

0 1
Ω2 0 0 0

0 0
Ω2+6ξ22q

2/M2
Pl

Ω4

6ξ22
M2Ω4 qx 0

0 0
6ξ22
M2Ω4 qx

Ω2+6ξ22x
2/M2

Pl
Ω4 0

0 0 0 0 x2

Ω2



. (3.7)

A further simplification to a completely diagonal kinetic form can be obtained by

rearranging the fields as follows:

A =

√
3

2
MPl log

(
Ω2
)
, (3.8)

B = MPl
x

q
. (3.9)

Substituting this redefinition of fields into the kinetic part, we get a diagonal kinetic

term which is:

1

2Ω2

(
(∂µχ)2 + (∂µh)2

)
+

[
1

2
+

1

12ξ2F (A)

]
(∂µA)2 +

+

[
F (A)

2ξ2(1 +B2/M2
Pl)

2

]
(∂µB)2 +

[
F (A)B2

2ξ2(1 +B2/M2
Pl)

]
(∂µθ)

2, (3.10)

where F (A) = 1− exp
(
−
√

2
3
A
M

)
.

Eq. (3.10) is still apparently not canonical. However, at the scales relevant for inflation

F (A) is of the order of 1 and the change in F (A) while A drops from values many times

larger than MPl to MPl is very small. This can be seen in figure 1. With large ξ2 this

means that the coefficient of (∂µA)2 ≈ 1
2 and the other fields can have a constant rescaling

which makes the kinetic term canonical.

All such terms from the Einstein frame potential in eq. (3.5) which are not quartic in

q and x can be neglected owing to the largeness of these two fields. The only relevant term

that remains is the quartic term 1
4λ2

(
q2 + x2

)2
which using the redefined fields becomes:

Ve ≈
λ2M

4
Pl

4ξ2
2

[
1− exp

(
−
√

2

3

A

MPl

)]2

. (3.11)

The potential in eq. (3.11) belongs to a class of potentials called the Starobinsky

potentials [29]; see also [30]. In figure 2 we show the inflationary potential vs. the field
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Figure 1. The graph of F (A).

where it can be seen that the potential is almost flat at high field values ensuring slow roll.

The slow roll parameters ε and η with this potential are:

ε =
1

2
M2
Pl

(
1

Ve

dVe
dA

)2

=
4

3

[
−1 + exp

(√
2

3

A

MPl

)]−2

, (3.12)

η = M2
Pl

1

Ve

d2 Ve
dA2

=
4

3

[
2− exp

(√
2
3

A
MPl

)]
[
−1 + exp

(√
2
3

A
MPl

)]2 . (3.13)

For field values A� MPl, both ε, η � 1 and thus slow roll is satisfied. Inflation ends

when ε ' 1.

We would now like to get estimates for the values of A at the beginning and end of

inflation which will be needed to get the power spectrum. This can be done by looking at

the number of times the universe expanded by e times its own size, also called the number

of e-folds N . It is obtained as follows:

N =
1

M2
Pl

∫ Aini

Aend

Ve
V ′e

dA

=
3

4

[
exp

(√
2

3

Aini

MPl

)
− exp

(√
2

3

Aend

MPl

)
−
√

2

3

Aini

MPl
+

√
2

3

Aend

MPl

]
, (3.14)

where V ′e = dVe
dA , Aini is the value of A at the beginning of inflation and Aend is the value

of A at the end of the inflation.
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Figure 2. The slowly rolling inflationary potential.

To get Aend, we make use of the fact that slow roll inflation ends when ε ' 1 in

eq. (3.12), which gives:

exp

(√
2

3

Aend

MPl

)
' 2.15, (3.15)√

2

3

Aend

MPl
' 0.77. (3.16)

Using eq. (3.15) in eq. (3.14) for N = 601 we get

3

4

[
exp

(√
2

3

Aini

MPl

)
−
√

2

3

Aini

MPl
− 1.387

]
= 60, (3.17)

⇒
√

2

3

Aini

MPl
≈ 4.45. (3.18)

Looking at figure 2, we see that field values are consistent with slow-roll and its end.

With N fixed at 60 and the field value at the start of inflation fixed, we can get the

scalar power spectrum (PS), the tensor to scalar ratio (r) and the spectral index (ns) as

1In principle N could be any number greater than around 50 to solve flatness and horizon problems.

60 e-folds solves the baryon asymmetry problem if inflationary energy scales are O[1016] GeV [31]. Lower

inflationary energy scales would need more e-folds and vice versa. However, the number of e-folds cannot

be much larger than 60.
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Figure 3. The spectral index as a function of N.

follows:

Ps =
1

12π2

V 3
e

M6
Pl V

′2
e

= 5.57× λ2

ξ2
2

, (3.19)

r = 16 ε = 0.0029, (3.20)

ns = 1− 6ε+ 2η = 0.9678, (3.21)

where V ′e is the derivative of Ve with respect to A and both Ve and V ′e are calculated at the

Aini. The values of r and ns are well within the Plank bounds [2] of ns = 0.9677± 0.0060

at 1σ level and r < 0.11 at 95% confidence level. Since there is no reason for N to be

precisely 60, we look at the inflationary parameters over a range of N from 55 to 65 (see

figure 3 and 4). We see that in the entire region of N , the spectral index and the tensor to

scalar ratio lie within Planck bounds.

We can use WMAP7 constraint for Ps [3] to relate λ2 and ξ2 which will be needed

later for energy density calculations.

Ps = (2.430± 0.091)× 10−9 = 5.57
λ2

ξ2
2

,

⇒ ξ2 ≈ 4.79× 104 λ
1/2
2 . (3.22)

3.1 A note on isocurvature fluctuations

Having multiple scalar fields can give rise to multi-field effects which can cause significant

iso-curvature fluctuations. The presence of isocurvature fluctuations has been studied in

detail in [32–34]. Following them, we expand the fields to first order φi = ϕi(t) + δφi(xµ)
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and define

σ̇2 = Gijϕ̇iϕ̇j (3.23)

σ̂i =
ϕ̇i

σ̇
(3.24)

ŝi =
εi

ε
(3.25)

where ε is the turn-rate vector in the field space: εi = ˙̂σi + Γijkσ̂
j ϕ̇k with Γijk being the

connection in the field space for the field space metric Gij . We also define the mass-squared

matrix for the gauge invariant linearized perturbations [32]:

M i
j = GijDjDk V e−Rikljϕ̇kϕ̇l (3.26)

where Di is the covariant derivative in the field space w.r.t. field ϕi and Riklj is the Riemann

tensor in field space. These together are used to get a parameter ηss which is used to

calculate the mass-square of the isocurvature fluctuations µ2
s as follows:

ηss =
ŝiŝ

jM i
j

V e
M2
Pl (3.27)

µ2
s = 3H2

(
ηs +

ε2

H2

)
(3.28)

Since λ2
ξ22
� λ1

ξ21
, inflation occurs along the χ ∼ h ∼ 0 direction, thereby making ŝ1 and

ŝ2 zero. We are left with remaining two scalars q and x which have symmetric couplings

λ2 and ξ2. For such a case, ηss � 1 (∼ O(10−6)) which means [34] µ2
s/H

2 ' 0 giving a

very suppressed isocurvature fraction of βiso ∼ O(10−5). The results are hence consistent

with Planck data [2].
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4 Reheating

At the end of inflation, the universe is too dilute for anything to be present. Unless the

universe is somehow repopulated by particles, it remains empty. It is at this juncture that

the energy density till now stored in the inflaton starts to disperse as the inflaton particles

annihilate or decay into other particles including those of the standard model. This phase

of the universe after inflation where inflaton annihilates into other relativistic particles is

called reheating [35]. If the inflaton decays or annihilates into bosons, parametric resonance

production of bosons triggers efficient reheating [36, 37] (see also [38, 39]) and at the end

of it, the universe becomes radiation dominated.

The conformal transformation and the redefinition of fields done in the previous section

allows us to identify two distinct regions [40] marked by Acr =
√

2
3
MPl
ξ2

:

A ≈

{
(q2 + x2)1/2 for A < Acr,√
3
2 MPl log

(
Ω2
)

for A > Acr.
(4.1)

Inflation occurs in the second region where A > Acr which can also be written as

(q2 + x2)1/2 > Acr. Much below MPl, the inflationary potential in eq. (3.11) can be

approximated by a quadratic potential well:

Ve =
λ2M

4
Pl

4 ξ2
2

[
1− exp

(
−
√

2

3

A

MPl

)]2

,

'
λ2M

2
Pl

6ξ2
2

A2, (4.2)

Ve =
1

2
ω2A2, where ω2 =

λ2M
2
Pl

3ξ2
2

, (4.3)

This is a simple harmonic potential in which the inflaton oscillates rapidly with fre-

quency ω. This makes the oscillations coherent, the phase being the same at all points

in space. Since the potential is a simple harmonic one near the minimum, the average

energy density obeys the relation ρ̄A = 〈Ȧ2〉 and thus obeys the equation ˙̄ρA + 3Hρ̄A = 0

which yields a 1/a3 evolution for the average energy density. This means that during this

period the inflaton behaves as non-relativistic matter. A matter dominated universe has

the following characteristics with respect to the scale factor and Hubble’s constant:

a ∝ t2/3, (4.4)

H(t) =
ȧ(t)

a(t)
=

2

3t
. (4.5)

The equation of motion for A during this phase is

Ä+ 3HȦ+
dVe
dA

= 0, (4.6)

which gives on solving for ω � H:

A = A0(t) cos(ωt), (4.7)
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where

A0(t) = 2
√

2
ξ2√
λ2

1

t
. (4.8)

The quadratic phase ends when the amplitude of the oscillations A0 crosses Acr which

gives us the crossing time as tcr = 2ξ2
ω . In [35] it was shown that reheating occurs when the

field oscillates in a quadratic potential well. Therefore in the present scenario, reheating

starts when the potential gets approximated by eq. (4.3) and ends when the amplitude A0

crosses Acr at time tcr.

4.1 Decay of the inflaton

The inert doublet can decay into the W and Z bosons through the kinetic coupling terms

and into the Higgs boson through the potential in the Lagrangian. The resultant particles

don’t have a physical mass at this time but an effective mass arising due to the inflaton

oscillations. If the oscillation frequency ω is much larger than the expansion rate H, the

amplitude can be taken to be constant over one oscillation period. This allows us to write

down effective mass terms for the vector and scalar bosons. When A�
√

3
2 MPl but still

above Acr, (q2 + x2)� M2
Pl
ξ2

. Using this we can expand the log term in the definition of A

in terms of q and x to get:

q2 + x2 '
√

2

3

MPl

ξ2
A. (4.9)

The coupling of the inert doublet to W bosons is g2

4 (q2 + x2)W 2 which in terms of A

is g2

4
√

6

MPl
ξ2
AW 2. This gives an effective mass for W bosons to be:

m2
W =

g2

2
√

6

MPl

ξ2
|A|. (4.10)

The other vector boson effective masses can be related by the Weinberg angle.

The coupling to Higgs is through λ3,4,5. This gives us an effective mass term for the

Higgs boson:

m2
h =

1√
6

(
λ3 +

λ4

2

)
MPl

ξ2
|A|. (4.11)

In writing the Higgs effective mass, we have taken equal contributions of q and x in A.

Note that eq. (4.9) is not an equation for vacuum expectation value as it is not calcu-

lated at the minimum of the potential. It just describes the transformation between q and

x on one hand and A on the other in a particular regime mentioned above the equation that

follows from eq. (3.8). The masses in eqs. (4.10) and (4.11) are therefore not usual masses

obtained from spontaneous symmetry breaking but are just effective masses coming out of

their interactions with the inflaton fields when written in terms of the transformed field A.

The weak coupling g is large which makes the vector bosons non-relativistic. They will

decay and annihilate to other relativistic fermions to reheat the universe. If either of λ3 and

λ4 is large, the produced Higgs too will be non-relativistic and it will decay into fermions

through Yukawa interactions which will add to the relativistic energy density. The inert

doublet gives a cold dark matter candidate which means the combination of its couplings
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to Higgs becomes of the order of 1 [41]. We choose a case where λ3 ≈ 1 is the dominant

coupling when compared to λ4 and λ5 which are taken to be very small just for the sake of

brevity. This enables us to remove the λ4 term from the effective mass of Higgs in eq. (4.11).

At low number densities of the produced W and Higgs bosons (nW and nh respectively)

their decay to fermions is the dominant channel to produce relativistic particles. If the num-

ber density of the bosons becomes large, their production rate will become exponential due

to parametric resonancne. During the resonance phase, the W bosons will mostly annihilate

to produce fermions. Their decays will become sub-dominant channels of fermion produc-

tion. Higgs on the other hand can only produce fermions through decays. Following [40]

(see also [42, 43]), the production of W bosons in the linear and resonance regions is:

d(nWa
3)

dt
=


P

2π3ωK
3
1a

3, (linear),

2 a3 ωQnW , (resonance),

(4.12)

where P and Q are numerical factors with P ≈ 0.0455 and Q ≈ 0.045 and αW = g2

4π is the

weak coupling constant.

Making the corresponding changes for the production of Higgs, we have:

d(nha
3)

dt
=


P

2π3ωK
3
2a

3, (linear),

2a3ωQnh. (resonance).

(4.13)

K1 and K2 have dimensions of energy and are dependent on the respective mass terms

with:

K1 =

[
g2M2

Pl

6ξ2
2

√
λ2

2
A0(ti)

]1/3

, (4.14)

K2 =

[
λ3M

2
Pl

3ξ2
2

√
λ2

2
A0(ti)

]1/3

, (4.15)

where ti are instants when the inflaton A = 0. Inflaton can decay into W and Higgs bosons

only in the vicinity of A = 0 when the effective masses of these bosons are much less than

the inflaton effective mass ω.

W bosons decay into fermions with a decay rate given by:

ΓW = 0.75
g2

4π
mW , (4.16)

while their annihilation cross section is given by:

σWW ≈
g4

16

2Nl + 2NqNc

8π〈m2
W 〉

≈ 10π
g4

16π2〈m2
W 〉

. (4.17)
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Parametric resonance production of W bosons can start only when their decay rate

in eq. (4.16) falls below their production rate through parametric resonance in eq. (4.12).

Comparing them, we find that resonance production of W bosons can start only when

A0 <
2

0.5625π

Q2 λ2

α3
W

Acr ≈ 61.88λ2Acr. (4.18)

Production of relativistic particles through decay of W takes place very slowly and would

reheat the universe long after the resonance period would have ended [40] while production

of relativistic particles through annihilation is a much faster process and can yield enough

relativistic particles to reheat the universe. Annihilation can occur only when the number

density of W bosons is large. This makes the occurrence of parametric resonance necessary

allowing us to put a lower bound on λ2:

λ2 &
1

60
. (4.19)

When W is produced through resonance, its number density increases exponentially

and the dominant channel for production of fermions is by annihilations of W bosons

following eq. (4.17).

We need to check these conditions for fermion production via Higgs as well. The decay

rate of Higgs into fermions is given by the Yukawa couplings:

Γh =
y2

16π
〈mh〉. (4.20)

In eq. (4.20), only the coupling to top is important as it is large while the coupling for other

fermions is very small. The top quark can later decay or annihilate into other fermions.

Comparing eq. (4.20) to resonance production rate of Higgs in eq. (4.13), we find that

Higgs production enters the resonance regime only after:

A0 <
64πQ2λ2

λ3 y4
Acr ≈ 0.41

λ2

λ3
Acr. (4.21)

Comparing eq. (4.21)2 to eq. (4.18), we see that if λ3 . 0.006, Higgs production will

enter the resonance regime around the same time as W boson. For even a small amount

of resonance production in Higgs to occur, λ3 cannot be greater than 0.41λ2. Since the

inert doublet is a dark matter candidate with large couplings, Higgs production will not

enter resonance regime till long after the end of the quadratic phase of the potential. The

production rate of Higgs remains small and its decay to fermions is at a much lower rate

than the annihilation of gauge bosons.

During parametric resonance production of gauge bosons, almost all the W bosons

get converted to fermions giving a complete transfer of energy density from W bosons to

relativisitc fermions which can be obtained by solving the following equation [40]

d(ργa
4)

dt
= 2a4

√
〈m2

W 〉
4Q2ω2

σWW
, (4.22)

2The eq. (4.21) contains only λ3 in the denominator instead of full λ3 + λ4/2 because of our choice of

large λ3. The fact that Higgs won’t be produced via resonance stands even if λ4 is used.
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which after integration gives

ργ =
8Q2ω2

10πα2
W

6

13

(
4παWMPl√

3λ2

)3/2
[
t
13/6
cr − t13/6

p

t
8/3
cr

]
, (4.23)

where tp is the time when the parametric resonance starts given by the condition in

eq. (4.18) and tcr is the end of reheating. During this conversion, almost all the W bosons

get converted to fermions so that the only remaining particles by the time reheating ends

are the fermions apart from the inert doublet particles. Putting in the numbers, we get:

ργ ≈
1.46× 1057

√
λ2

. (4.24)

At this time, energy density in A is:

ρA =
ω2A2

cr

2
≈ 1.48× 1054

√
λ2

(4.25)

We can now obtain the reheating temperature from the energy density in relativistic

particles:

Tr =

(
30 ργ
π2 g

)1/4

, (4.26)

where g is the number of degrees of freedom in the relativistic plasma.

5 Dark matter

The end of reheating marks the end of the quadratic oscillations phase of the re-arranged

field A. Since now, A is the same as (q2 + x2)1/2 and the Jordan and Einstein frames have

become equivalent, we can come back to using the physical Jordan frame. The inflaton

field no longer has an effective mass ω. Rather things go back to the original inert doublet

potential given in eq. (2.2) with the inert doublet having a mass of m2. In the beginning,

the inert doublet obtains a thermal equilibrium with the rest of the relativistic plasma

and evolves as radiation. Later, as the temperatures fall and the inert doublet becomes

non-relativistic, its evolution is given by the Boltzmann equation. It freezes-out as a cold

relic and thus becomes a candidate for cold dark matter.

We will use the observed relic abundance of dark matter Ωdm h
2 = 0.12 [12] to calculate

certain parameters in the model. The interactions of the neutral scalar part of the inert dou-

blet are its annihilations into the vector bosons and Higgs. There are no decays of any of the

inert doublet components as they are prevented by the Z2 symmetry. At the tree level, there

are 4-point interactions (see figure 5). The scattering cross-section for these processes is:

σ|CM vrel =
1

32πm2
2 (1 + v2

rel/4)

∑
processes

|M|2. (5.1)

In the non-relativistic limit where vrel � 1, we can re-write eq. (5.1) as

σ|CM vrel =
1

32πm2
2

(
1−

v2
rel

4

) ∑
processes

|M|2. (5.2)
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Figure 5. The 4-point vertex interactions.

Figure 6. The other tree level interaction diagrams. H0 is the neutral scalar component of the

inert doublet.

The amplitude
∑

processes |M|2 for the neutral scalar component of Φ2 which is the

actual dark matter candidate is:∑
processes

|M|2 = (λ3 + λ4 + λ5)2 + g4 + (g2 + g′2)2 +
1

8

g4g′2

g2 + g′2
+

1

2
g2(g2 + g′2), (5.3)

where g and g′ are the weak couplings to the vector bosons.

Apart from these 4-point interactions, there are trilinear couplings as well which include

the annihilation of a pair of inert doublet particles via the gauge boson or the Higgs channel

into SM particles as shown in figure 6.

The gauge boson mediated diagrams are momentum dependent. Their contribution is

small compared to the one shown in figure 5. Most of the thermal equilibrium evolution of

the dark matter particles occur above the EW symmetry breaking scale where the Higgs

mediated diagram of figure 6 are not present.

To calculate the freeze-out temperature and the relic abundance, we need to solve the

Boltzmann equation. Assuming only s-wave annihilations, one can obtain the xf = m2
Tf

3

3We use m2 as the mass of the neutral scalar component of Φ2 because there are no mass corrections

which occur only after EW symmetry breaking.
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Figure 7. The relic abundance of dark matter vs the mass of the dark matter. The horizontal

black band is the Planck 2015 result.

at freeze-out where Tf is the freeze-out temperature, and the relic abundance Ωdmh
2 to

be [44, 45]:

xf = log

(
0.038

g

g
1/2
∗s

mP m2 〈σv〉

)
− 1

2
log

[
log

(
0.038

g

g
1/2
∗s

mPm2〈σv〉

)]
, (5.4)

Ωdm h
2 = 1.07× 109 xf

g
1/2
∗s
g

mP 〈σv〉, (5.5)

where mP is the Planck mass (not the reduced Planck mass which we have denoted as MPl),

g and g∗ are the number of degrees of freedom in the plasma and the entropic number of

degrees of freedom respectively and 〈σ v〉 is taken from eq. (5.2).

Planck 2015 data for the relic abundance can now be used to get estimates for the

mass of the dark matter and its freeze-out temperature. We obtain:

m2 = 1.89 TeV, (5.6)

Tf =
m2

xf
= 65.7 GeV. (5.7)

This calculation has been done using a fixed set of values for λ3, λ4 and λ5 with λ3 ≈ 1

and λ4, λ5 � 1. In principle, λ3 can vary between 0.5 to 1 while still keeping λ4 and λ5

very small. The effect of varying λ3 on the mass of the dark matter candidate is shown

in figure 7 where the solid horizontal line shows the value of the relic abundance obtained

from Planck 2015 [12] and is equal to 0.12. Note that m2 is the dark matter mass till EW

symmetry breaks which occurs around the same time as freeze-out. After the symmetry
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λ3 Mass in TeV

1 1.89

0.9 1.78

0.8 1.67

0.7 1.56

0.6 1.47

0.5 1.38

Table 1. Effect of varying λ3 on mass of dark matter.

breaks, dark matter mass will get a small correction of order 100 GeV. The table 1 gives

the values of dark matter mass satisfying the relic abundance constraint for various values

of λ3. The corresponding freeze-out temperatures are a little below the EW symmetry

breaking scale suggesting that we include the Higgs mediated diagrams in figure 6 in the

calculations. However, their contribution to the calculations are very small and any changes

that they bring about in dark matter masses are beyond the second decimal place.

6 Conclusion

Explaining inflation and dark matter remain two challenges for any theory beyond the

standard model of particle physics. The inert doublet model has been studied extensively

in the literature in the context of generating neutrino masses and mixing as well as dark

matter. The doublet is called inert because of a Z2 charge assignment which forbids all

Yukawa couplings of this doublet with the standard model fermions. This is done to avoid

all undesirable flavor violations in the model. In this work we showed that the inert doublet

coupled non-minimally to gravity could act both as the inflaton driving slow-roll inflation as

well as the cold dark matter of the universe. We obtained a Starobinsky like potential from

the model and showed that both slow-roll parameters ε, η � 1. We calculated the scalar

power spectrum, the tensor to scalar ratio and the spectral index in our model and showed

them to be well within the observed limits from Planck. After successfully reheating the

universe, the inert doublet attains thermal equilibrium and eventually freezes-out as a cold

dark matter. We obtained bounds on the couplings of the scalar potential from reheating

and dark matter constraints and showed that the Planck bound on relic abundance can be

satisfied for neutral scalar component mass of the inert doublet of around 1.3 to 2 TeV.
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