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Abstract

We discuss the hypothesis that a large (or even a major) fraction of dark
matter in the Universe consists of primordial black holes (PBHs). PBHs may
arise from adiabatic quantum fluctuations appearing during inflation. We
demonstrate that the inflation potential V() leading to formation of a great
number of PBHs should have a feature of the “plateau” type in some range
1 < @ < 3 of the inflation field ¢. The mass-spectrum of PBHs for such a
potential is calculated.

1 Introduction

The nature of dark matter (DM) in the Universe is one of the greatest puzzles of
modern cosmology. The DM may consist of baryons, weakly interacting massive
exotic particles predicted by GUT, primordial black holes or some combination of
these species.

In this paper we shall consider the hypothesis that the DM consists mainly of
primordial black holes (PBHs) (The first works on PBH are [1], [2] see also [3] and
).

Recently the possible discovery of microlensing of stars in the Large Magellanic
Cloud by massive compact halo objects (MACHOs) with probable masses ~ 0.1
solar mass was reported [5], [6]. 1t was supposed (among other possibilities) that
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such objects might be black holes. We would like to emphasize that black holes with
masses of the order of 0.1Mg can only be of primordial origin. Thus this discovery
gives additional arguments to consider the possibility of the PBH nature of DM.

Let us consider the conditions for PBH formation in the Early Universe. The
simple estimates (see for example [4], [7]) show that for the formation of PBHs with
total mass density close to the critical one (pgy ~ 1) and with mass Mppy around
0.1Mg one needs an rms amplitude §,,,,(0.1Mp) of the Gaussian distribution of
the scalar metric fluctuations of the order of 6% (0.1Mg) =~ 0.06. This estimate
depends on Qppy and Mppy only logarithmically. For example, 6575 = 0.04 at
10%g and 67 = 0.08 at 10°Mg. On the other hand the COBE measurements of
the anisotropy of the Cosmic Microwave Background Radiation and other satellite,
balloon and ground-based radio telescope measurements, and also deep surveys of
galaxy distributions strongly indicate that on scales of galaxies and greater scales (up
to the horizon scale) the amplitude of .., was significantly less, probably around
107% =5 x 1078,

It is worth noting that COBE-data are compatible with a power spectrum of the
adiabatic perturbations P(k) o k* with n = 1.15¥3:82 (see [8]). This means that
a direct extrapolation of the COBE-data to smaller scales even with the maximal
possible value n = 1.6, can give é,,,, great enough for the formation of essential
number of black holes only for Mpgy less than 10'°g [4]. However such small PBHs
would have evaporated a long time ago and could not contribute to DM.

Notice that if we believe that the main part of PBH has some specific mass M.
then the spectrum of the primordial fluctuations must have a decrease or a cut off
from the side of smaller mass at Mpgy ~ M,.

Thus for the hypothesis of PBH DM one needs the following behaviors of the
spectrum of the primordial scalar metric perturbations. The rms amplitude must
be of the order of 107° at large scales, must increase by a factor 10* at the scales
corresponding to the masses of PBH and must decrease at less scales.

In the inflationary scenario of the Early Universe the spectrum of the primordial
perturbations is determined by the potential V() of the scalar field  (“inflaton”).
The purpose of our paper is the following. We shall demonstrate that an inflation
potential V() leading to formation of a great number of PBHs must have a feature

of the “plateau” type in some range ¢, < ¢ < p,, and we shall calculate the mass
spectrum of PBHs for such a V().

Qualitatively the conclusion about the plateau in V(i) follows from a well known
estimate for the spectrum of primordial metric fluctuations in the model of the chaotic
inflation assuming the friction-dominated and slow-roll conditions, |3| < H]|p| and
p? € V(p) respectively. Here the dot denotes differentiation with respect to time,
and H is the expansion rate. The power spectrum P(k) in this case can be written
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as follows [9}:

V3
P(k) ~ k?‘k:ali(w) ) (1)

)
where H{¢p) is the value of the Hubble parameter at the moment when the Universe
has the value ¢ of the inflaton field, a - is the scale factor. If the potential V(¢)
has a plateau in the range ¢1 < ¢ < @2, V(@) =~const and % — 0, then the
spectral amplitude P(k) is strongly increased {see the formula (1)). Outside the
range p; < ¢ < @32, V(i) has a standard (for example a power low) shape. In the
range k < k; and k > k, where k; = a(p;)H(y;), corresponding P(k) has also a
standard shape (for example it can be the Harrison-Zeldovich spectrum P(k) = Ak,

with A = 5 x 107).

The structure of the paper is the following. In section 2 the modification of the
inflation scenario with the plateau type peculiarity in V(yp) is discussed, and we
calculate the distortion of the spectrum of the primordial metric fluctuations due to
this peculiarity. Section 3 is devoted to the analysis of the mass spectrum of the
PBHs. In section 4 we discuss the possible role of the “gas” of PBHs in the origin of
the large scale structure of the Universe, and summarize the main conclusions.

2 Spectrum of scalar metric perturbations in the
inflationary scenario with a “plateau” in the
potential V(y)

The simple approach in inflaton based on one scalar field ¢ is to specify the physics

by choosing an appropriate form for V() and assuming the friction-dominated and
slow roll conditions [9]:

16| < 3H|¢l ()’ < 2V(9), (2)

where H = a/a; a(t) is the scale factor. In this regime Fourier components of
the scalar metric perturbations are 6 - correlated random values with a Gaussian
distribution.

Our task is to increase the spectral amplitude in some range k; < k < k, where k
is a wave number, without changing the standard spectrum of perturbations outside
this range. We propose to introduce the potential V() of the inflaton ¢ which is
depicted in Fig.1. This potential has a plateau in the range ¢1 < ¢ < ¢ and is a
power-law type outside of this range.

There are two breaks of the potential at ¢ = ¢y and ¢ = 3. We suppose that
these breaks are smoothed out in small ranges Ay € ¢y and Ap; < @2 around ¢,
and @, correspondingly (see Fig.1).

The conditions (2) are violated in these ranges. Starobinsky has pointed out
[10] that this violation results is a non-monotonic spectrum of perturbations. In the
vicinities of breaks of the potential V(y), but outside of A, and Ay,, the potential
can be described by

_ Aj'l', if z;>ei, >0,
Vipmp) = Vg bele), oe={ 40 1R T8 )
where z; = ¢ — @i; 1 = 1,2; p2 > ¢y, or it can be rewritten as

Vip ~wi) = V(pi) + A7 zi + (AT — AT)O(zi)a (4)

where O(z) is the Heaviside-function. Notice, that in the general case the shape of
the potential at 3 < ¢ < 2 can be complicated enough. However, for our purpose
it is enough to choose V(p) =const at ¢ < ¢ < ;. In this model AT AT #0;
A; = A} = 0. Evolution of the scalar field ¢ is governed by the equation [9]:

. . ov
<p+311t,a——-a; ) (5)

3H? =8n($* + V(p) ,

where ¢ = dp/dt . In the case of evolution of p when ¢ > @, from (5) we have

. A¥

AT (6)
We suppose that |AF — A7| > H2Ap; and A - Aps € V(p2). In this case for the
dynamics of ¢ one can neglect v(z2) in (3) compared with V(p;) and the regime
a(t) o exp(H - t) goes on after the field ¢ passes the break of the potential at ;.

After this passage the field evolves along the plateau, and solution of the equations
(5) can be written as

+
Az e —3H(t—t2)

3H ) (7

where ¢, is the moment of time, when ¢(f;) = ¢2. At the moment when ¢ comes to
the point p; = @(t1) its “velocity” is

. Af (k)
‘Plt:t; =~ "gﬁ (H) s (8)

where k; = a(t;)H(t;); 1 = 1,2. Using (6) and (8) we have the following expression for
0?V/8¢* which determines the dynarmics of the generation of adiabatic perturbations
in the vicinity of the break of the potential [10]:

oV 3H A7 (k)
97 @ [5(4—@)—;{;:(,?2) 6((-6)] , (9)
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where ¢ = [ %, and (; and (; correspond to t; and t; (see [11], [12], [13], [14]).
Let us consider the origin of adiabatic metric perturbations at the epoch of infla-
tion. We write down the spectrum of perturbations in the following form

P(k) = A*kD(k) , (10)

where A2k is the Harrison-Zeldovich spectrum and D(k) describes the deviation from
it. Using the method described by Demiansky et al. [14] one can obtain the following
expression for D(k) after the field ¢ passes both breaks in the potential

D(k) = DiD2 + Dins

i 2
D=1+ 3G [(1 - —12) sin 2y; + —cos2y]] +
; y? v

Y; 5 i
9 .1 1 1 1 2
+=C?— (1 + —> [1 + =+ (1 - —) cos 2y; — —sin2y'] R
O AN v v Ty
D,‘M = 4((1] — dl([(al — dl)(bg + (lgdg) — (1 — b])(dg — agbg)] , (11)

aj=In(es), bj=Re(B;), di=Ia(8;), j=12,

3, _ _
aj=1- 5ij]~1(1 +Y; B

3 . .
Bi = —2-Cj exp(?zy]-)yj_l(l + zy;l) R
y; = R;k, R; is the wavelength of the perturbation entering the horizon at the
~ 3
moment when ¢ = ¢;; C; = 1; (1 = —%i— (%) ; 7 = 1,2 . Asymptotic behaviors of
2
D(k) are

—\ 2
D(0) = (%) . D(co) =1 (12)

The function D(k) is depicted in Fig.2. Notice the oscillations in the spectrum related
with each break in the potential V(). These oscillations were discussed in [14], [15].

For the hypothesis of PBH DM the case (%{-) < 1 1s especially interesting. Under
2

this condition, at :—2 > 4, and D(k) can be described with accuracy better than 5%
by the fitting formula

- 32 si
D(k) ~ [1+%73] [1+3 'ZZ{”], y= :—; v> 1. (13)
One can see in Fig.2 that in the case ¥ > 1 at ks < k < k; therc is a great
increase of the spectral amplitude by a factor D'/?(k) ~ %‘-73. The two lowest curves
in Fig.2 show the character of approach of D(k) to its asymptotic value at k — 0.
One can see that between the long wavelength asymptotic of D(k) and the range of
the strong increase of the spectral amplitude there is a range where the amplitude is
suppressed.

3 Mass-spectrum of PBH.

In our approach to the calculation of the mass-spectrum of PBHs we focus on the
peaks of the Gaussian random field of the primordial adiabatic metric perturbations
("

PBH can arise when the space scale of the peak scalar metric perturbations of
the order of one becomes smaller than a particle horizon Ay = t but still is greater
than the Jeans’ radius A; = /\H/\/i. Masses of PBHs, Mgy, are proportional to the
moment tgy of their formation Mgy o tpn. Shapes of the peaks of the fluctuations
play an important role in the formation of PBHs {16}, {17]. Some shapes can result
in the dissipation of the peaks due to pressure gradients.

Zabotin and Naselsky [17] have pointed out that in the case of the Harrison-
Zeldovich spectrum of the primordial fluctuations (and spectra which are close to
them) the most probable distribution of the matter inside the peak is favorable for
the formation of PBHs. Moreover one can calculate the mass-spectrum of PBHs in
the framework of the model of the homogeneous collapse proposed in the work [18].

Note that the process of PBH formation is certainly nonlocal because it includes
a volume of the radius R. In order to take into account this nonlocality one needs
to use the characteristics averaged over the sphere with a Gaussian filtering function
[9).

Besides that, it is necessary to take into account that for the perturbations with
the wavelength more than the particle horizon evolution of the density contrast é(7,1)
can be written in the form (7, ¢} = 6(7¥)®(t) where §(7) is determined by the spectrum
of the initial metric perturbations and ®(t) corresponds to the growing mode of
gravitational instability.

Because of this factorization it is enough to analyze the statistical behavior of
peaks of the function &(7).

Following the work [19], let us introduce a new field F'(7, R) which is the result
of Gaussian smoothing of the random field é(7) on the scale R

1 = _ 2
FFR) = W/d3f’5(f')exp (— ""m’;| ) : (14)

and consider the correlation function

1 [ sin kx
] = dkk* P (k —k?RH)——
C(R,2) =55 [ (k) exp(~K*R) ==,
o [e4 2 . [¢] 0 .
where 22 = 33 _, (xg - 2(2 )) . For the notation of 1; ) the upper indices o = 1,2,3

label coordinates, and the lower ones | = 1,2 label points in space.

!For an alternative approach to the mechanism for PBH formation see the work by Doelgov and
Silk [20].



In order to make further calculations the dispersion Co(R) = C(R, 0) is required.
For analytic estimates we shall use the approximation (13) for the spectrum P(k),
assuming P(k) = 0 in the ranges k < k; and k > k;. In this approximation we obtain

2 2
Co(R) ~ %ﬁ‘ﬂs [1 + 6.7, (3, g, —%)] ) (15)
where 1 Fy(a, b, z) is the degenerated hypergeometric function and A is the amplitude
of the Harrison-Zeldovich spectrum on large scales (it can be normalized to COBE-
data).

Formula (15) is correct for the range By < R < R,. For the range B < R, and
R > R, the dispersion Co(R) is negligible compared with the dispersion in the range
R, < R < R,, and we can put Co(R) ~ 0 at R < R, and R > R,.

Thus the spectrum of Gaussian random matter density perturbations smoothed
by the Gaussian filter on the scale R can be given by the following simple formula:

col®) = (5 Firym (16)

where €2 = (A%/47%)(7%/R}) is a measure of the spectral amplitude at B = R, and

3 R:
F(R/R)=1+6.1F (3,-2—,—ﬁ) .
During its formation each PBH absorbs mass from the region with the co-moving
scale R « M,l;/g,_,. Since F(R,/R) varies in the limits O(1), one can use the following
approximate estimate of the fraction of the total matter 3(R) collapsing into PBHs
with mass Mpgy

. 1/2
st ()] s [ -

We performed numerical computations of (R) using the equation (10) and (11) and
estimate for calculation S(R) given by [4]. The results of these computations are
presented on Fig.3 for v = 16.5; 18 and 20. As seen from Fig.3 the asymptotic rough
analytic formula (25) is valid at Ry/R < R; only. Numerical computations show
two maxima which correspond two scales R, and R; of the initial spectrum P(k) of
perturbations. The mass-spectrum of PBHs is determined by the function B(Mpy)

1 d
Mpy dMpy

. (17)

F(Mpg) « [BMe)ME?|,  Mpn o B .

Thus varying the main parameters of the model one can vary the possible values for
PBH masses in very broad limits.

4 Astronomical consequences of the hypothesis
about PBH DM and concluding remarks

We have demonstrated that under some conditions on the inflation potential V{y)
(see section 3) the matter density of PBHs could be great enough to make up a
considerable or even major part of DM in the modern Universe. This imposes a
lower limit on the possible parameter R, of the model. Indeed, PBHs could not have
masses Mgy < 10%g. Such PBHs must evaporate due to Hawking’s process, and
this gives a strong observational constrain on their density gy < 1078, see [3]. For
Mgy > 10%°g and up to scales of the clusters of galaxies constraints come only from
the inequality gy < 1 in the modern Universe [3].

One can consider models with Q,,; = 1 and with DM consisting mainly of PBHs,
which implies Qpgy ~ 1, or more complicated models with Qpgy < 1 and with a
A-term or some HDM, see [21].

In Fig.3 we show straight lines corresponding to the conditions {lppy = 1 for
the modern Universe and which are tangential to the spectrum B(R) of different
models. The tangent points determine the corresponding effective masses Mpgn of
the models. As may be seen from Fig.3, for all interesting ranges of Mpgyi, the
parameter v is ¥ = 15 — 20. The parameter y determines the distribution of masses
of PBHs, and thus it could be a possible test on the nature of DM.

In this paper we do not analyze special behaviors of the formation of the large
scale structure of the Universe (LSS) in the framework of the PBH DM model. We
note only the following. The main properties of the LSS in this model probably are
the same as in different versions of the standard CDM model due to the fact that the
masses of PBHs are much smaller than the masses of the LSS.

We want to point out that the condition Qpgy = 1 for PBHs with small masses
can be satisfiesd only by very “delicate” adjustment of the parameters of the theory.
Indeed, in order that the total mass contained in PBHs be close to the critical value
it is necessary that the fraction of the total mass contained in them be sufficiently
small (but have some well defined value!) at the period of PBH formation [1], [22].
Perhaps the explanation of this “fine tuning” of parameters could be related to the
anthropic principle.

Acknowledgements

This paper was supported in part by the Danish Natural Science Research Council
through grant 11-9640-1, in part by Danmarks Grundforskningsfond through its sup-
port for an establishment of the Theoretical Astrophysical Center, and in part by
the Russian Foundation for Fundamental Research (the project code 93 02 29 29).
We acknowledge B.Jones who read the manuscript and made very useful comments,
A .Polnarev for discussions, and E.Kotok, who helped us in the computations and the
preparation of this paper.



References.

(1] Ya.B. Zeldovich and L.D. Novikov, Astron. Zh., 43, 758 (1966).

[2] $.W. Hawking, Mon.Not.Roy.Astr.Soc. 152, 75 (1974).

[3] B.J. Carr, Astrophys. J. 205, 1 (1975);

D.N. Page and S.W. Hawking, Astrophys. J. 208, 1 (1976);

G.F. Chapline, Nature (London) 253, 251 (1975);

P.D. Naselsky, Sov. Astron. Lett, 4, 209 (1978);

P.D. Naselsky and N.V.Pelikhov, Sov. Astron. 56, 714 (1979);

I.D. Novikov, A.G. Polnarev, A.A. Starobinsky and Ya.B. Zeldovich, Astron. Astro-
phys. 80, 104 (1979);

A.Q. Polnarev and M.Yu. Khlopov, Astron. Zh. 58, 706 (1981);

A. G. Polnarev, In: Proceed. of Cracow cosmological school “Morphological cosmol-
ogy”, p- 369 - 376, (1989).

{4] B.J. Carr and J.E. Lidsey, Phys.Rev D48, 543 (1993).

[5] C. Alcock et al. Nature, 365, L621 (1993).

[6] F. Aubourg et al. Nature, 365, 1623 (1993).

(7] P.D. Naselsky and A.G. Polnarev, Sov. Astron. 29, 487 (1985);

A.G. Polnarev, M.Yu. Khlopov, Soviet Phys. Usp. 28, p. 213 - 232, (1985);

N.A. Zabotin, P.DD. Naselsky, A.G. Polnarev, Soviet Astronomy, 31, p. 353 - 359,
(1987).

[8] G.F. Smoot et al., Astrophys. J. Lett. 396, L1 (1992).

[9] A.D. Linde, “Physics of Elementary Particles and Inflationary Cosmology”, Moscow,
Nauka, (1990).

[10] A.A. Starobinsky, JETF Lett 53, 489 (1992).

[11] J.M. Bardeen, P.J. Steinhardt, and M.5. Turner, Phys. Rev D) 28, 679 (1983)
[12] S.W. Hawking, Phys. Lett. B 115, 295 (1982).

[13] A.A. Starobinsky, Phys. Lett B 117, 175 (1982)

{14] M. Demiansky, P. lvanov and D.Novikov, NORDITA preprint N94/9 A, (1994),
Phys. Rev.D (submitted).

{15] H. Jgrgensen, P.D. Naselsky, I.D. Novikov and D.1. Novikov, NORDITA preprint
N93/51 A, (1993), submitted for publication in the Proceedings of the Course of the
International School of Cosmology and Gravitation on “Elementary Particles and
Cosmology”, Erice, 3-14 May, 1993.

[16] D.K. Nadezhin, I.D. Novikov and A.G. Polnarev, Astron. Zh. 55, 216 (1978).
[17) N.A. Zabotin and P.D. Naselsky, Astron. Zh, 59, 647 (1982).

[18] B.J. Carr and S.W. Hawking, Mon.Not.Roy.Astr.Soc. 168, 399 (1971).

[19] J.M. Bardeen, J.R. Bond, N. Kaiser and A.S.Szalay, Astrophys. J., 304, 15
(1986).

[20] A. Dolgov and J. Silk, Phys.Rev. D47, 4244 (1993).

[21] L.A. Kofman, N.Y. Gnedin and N.A. Bahcall, Astrophys.J. 413, 1 (1993);

R. Cen, J.P.Ostriker and P.J.E. Peebles, Astrophys.J., 415, 423 (1993);

J. Silk and A. Stebbins, Astrophys.J., 411, 4319 (1993);

9

A.A. Klypin, J. Holtzmann, J. Primak and E. Regos, Astrophys.J. 418, (1993);
R.Scaramella, R. Cen and J.P. Ostriker, Astrophys.J. 416, 399 (1993);

U.-L. Pen, D.N. Spergel and N. Turok, Phys. Rev. D49, 692 (1994).

[22] Ya.B. Zeldovich and L.D. Novikov, Relativistskaya Astrofisica, “Nauka”, Moscow,
(pp 544-754), (1967).

10



Figure captions.

FIg.1. Schematic representation of the potential V{p) of the scalar field ¢ (“infla-
ton”). The potential has a “plateau” in the range g1 < ¢ < 92 and is power-law type
outside of this range. The breaks of the potential are smoothed out in small ranges
Aypy €y and Ay, < p; around @ and ¢, correspondingly.

Fig.2. Result of computations of D(z), z = kR;. The dashed, dashed dotted,
dashed-triple dotted and solid lines correspond to v = 20, v =10, y = 5 and y = 2
respectively.

Fig.3. Function A(y) ,y = R/R;. The solid, dashed and dashed-dotted lines corre-
spond toy = 20, v = 18 and 7 = 16.5 respectively. Straight lines which are tangential
to B(y) of different models correspond to the conditions Qpgy = 1 for the modern
Universe. The tangent points determine the corresponding Mpgy.

Mpgy ~ 108M@ at v=20.0
MPBH ~ IOZM@ at T = 18.0
Mppy ~ 10_6M® at v =16.5
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