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Abstract. In the general framework of Metric-Affine theories of gravity, where the metric
and the connection are independent variables, we consider actions quadratic in the Ricci
scalar curvature and the Holst invariant (the contraction of the Riemann curvature with the
Levi-Civita antisymmetric tensor) coupled non-minimally to a scalar field. We study the
profile of the equivalent effective metric theory, featuring an extra dynamical pseudoscalar
degree of freedom, and show that it reduces to an effective single-field inflationary model.
We analyze in detail the inflationary predictions and find that they fall within the latest
observational bounds for a wide range of parameters, allowing for an increase in the tensor-
to-scalar ratio. The spectral index can either decrease or increase depending on the position
in parameter space.
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1 Introduction

Cosmological inflation [1–7], according to which the Universe underwent a phase of quasi-
de Sitter expansion, has become central to our present understanding of early Cosmology
primarily because it provides a mechanism for the origin of formation of the observed large
scale structure [8–13]. A standard way to model inflation is to introduce a scalar field (the
inflaton) that on the one hand provides the vacuum energy driving the expansion and on
the other hand through its quantum treatment generates the spatial inhomogeneities that at
presently are detected in CMB.

The common framework of all cosmological models is Einstein’s General Relativity
(GR) with gravity entering in the action through the standard Einstein-Hilbert term and
the inflaton coupled minimally to it through the metric. Nevertheless, although gravity
is treated classically, the scalar fields are expected to be sensitive to quantum corrections
which are likely to generate correction terms as a non-minimal coupling of the scalar fields
to the Ricci scalar ξφ2R or quadratic terms like γR2. In fact, the Starobinsky model [1]
based on the latter correction has been quite successful in its predictions of inflationary
observables [14, 15]. Similarly, the non-minimal coupling to the Ricci scalar is central to the
Higgs inflation model [16]. The understanding is that these terms, even if they are absent in
the classical action, they are bound to be generated and, therefore, they should be included
in the effective action employed to model inflationary phenomena.

In the standard (metric) formulation of GR the affine connection is not an independent
variable but it is constraint to depend on the metric through the Levi-Civita relation. In the
case of the simple Einstein-Hilbert action with minimally coupled matter fields this is entirely
equivalent to the so-called “first order” or Palatini formulation in which the connection is
an independent variable [17] (see also [18–24]). Nevertheless, in the presence of non-minimal
corrections, like the ones mentioned above, this no longer true and the two formulations lead
to different predictions [25]. The Palatini version of the Starobinsky model does not provide
any scalar degree of freedom suitable to play the role of the inflaton in contrast to its metric
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version. Nevertheless, Palatini inflationary models of a scalar field in the presence of an R2

term have been studied with predictions compatible with existing cosmological data [26, 27]
(see also [28–60] for various applications.)

The Palatini formulation of GR coupled to scalar fields falls into the framework of the
so-called Metric-Affine theories of gravity in which the metric and the connection represent
independent degrees of freedom [61, 62]. The Palatini formulation terminology is used when
the matter fields are not coupled to the independent connection. This is usually the case of
scalar fields. This generalization of GR to a Metric-Affine theory preserves general covariance
and is quite natural from the geometric point of view. The difference between the independent
connection and the Levi-Civita one turns out to be a tensor C λ

µ ν , named the Distortion
tensor. In general, solving for the Distortion, a Metric-Affine theory can be rewritten as
an “equivalent” metric theory which may or may not have the same degrees of freedom as
the starting Metric-Affine theory, depending on whether the Distortion is dynamical or not.
In the case that new dynamical degrees of freedom are present in the resulting theory, its
phenomenology will be different and possibly interesting [63, 64].

In the present article we considered a Metric-Affine theory of gravity based on an
action that includes a quadratic Ricci scalar term R2 as well as linear and quadratic terms
of the Holst invariant R̃, coupled non-minimally to a scalar φ, and studied the inflationary
behaviour of the resulting two-scalar field model. As we have already stated above there is
plenty of motivation for the study of quadratic gravitational terms, based on the fact that
such terms are bound to be generated by quantum corrections. Therefore, they should be
included in the effective theory of gravity to be considered as a framework for the investigation
of inflationary phenomena. This is independent of whether the presence of the extra terms
will provide additional dynamical degrees of freedom that could either carry out inflation
or participate in it through their mixing with a fundamental inflaton. Although that in the
present article we focus on the Metric-Affine formulation, the motivation applies equally
well to the metric formulation as well. Apart from the theoretical interest on the models,
their resulting inflationary phenomenology, although in agreement with present observational
data, allows for their disapproval or favourable comparison to other models in the light of
future more precise data. We have found that the model reduces to an effective single-
field model with a potential analogous to the one arising in the Palatini-R2 model with its
characteristic inflationary plateau. The inflationary predictions of the model fall within the
latest observational bounds for a wide range of parameters.

In Section 2 we set up the theoretical framework of Metric-Affine theories formulated
in terms of the Distortion tensor. In Section 3 we consider Metric-Affine theories based on
an action that includes quadratic terms of the Ricci scalar R2 and the Holst invariant R̃2

and derive the equivalent metric action. In Section 4 we consider the above quadratic theory
coupled non-minimally to a scalar field. In Section 5 we analyze in detail the inflationary
predictions of the above model. Finally, we summarize and conclude in Section 6.

We use natural units ~ = c = kB = 1 as well as taking the reduced Planck mass MP = 1.
The metric signature is (−,+,+,+) throughout.

2 Framework

A Metric-Affine theory is defined in terms of a metric gµν and an independent connection

Γ̃ ρ
µ ν . Note that no particular symmetry is assumed for the lower indices of the connection

in contrast with the Levi-Civita connection of metric theories where they are symmetric. A
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curvature tensor is defined as

R ρ
µν σ ≡ ∂µΓ̃ ρ

ν σ − ∂νΓ̃ ρ
µ σ + Γ̃ ρ

µ λΓ̃ λ
ν σ − Γ̃ ρ

ν λΓ̃ λ
µ σ , (2.1)

The Distortion is defined as
C ρ
µ ν ≡ Γ̃ ρ

µ ν − Γ ρ
µ ν , (2.2)

where Γ ρ
µ ν is the Levi-Civita connection

Γ ρ
µ ν =

1

2
gρσ (∂µgσν + ∂νgµσ − ∂σgµν) . (2.3)

The Distortion can be shown to be a tensor.
The following two scalars, that are linear in the Riemann tensor, can be defined as

R = R ρ
µν σδ

µ
ρ g

νσ = R µν
µν , (2.4)

R̃ = (−g)−1/2εµν σ
ρ R ρ

µν σ = (−g)−1/2εµνρσRµνρσ , (2.5)

where g is the determinant of the metric and εµνρσ is the totally antisymmetric symbol with
ε0123 = 1. The first scalar is the usual Ricci scalar and the second one is the so-called Holst
invariant. Note that the pseudoscalar R̃ [65, 66] vanishes identically in a metric theory due
to the symmetry in the lower indices of the Levi-Civita connection. Both these scalars can
be written in terms of the standard (metric) Ricci scalar R[g] and the Distortion C as1

R = R+DµC
µν
ν −DνC

µν
µ + C µ

µ λC
λν
ν − C µ

ν λC
λν

µ , (2.6)

R̃ = 2(−g)−1/2εµνρσ
(
DµCνρσ + CµρλC

λ
ν σ

)
, (2.7)

where the covariant differentiation is in terms of the Levi-Civita connection.
The simplest Metric-Affine action is the analogue of the Einstein-Hilbert action

S =
1

2

∫
d4x
√
−gR

=
1

2

∫
d4x
√
−g
{
R+DµC

µν
ν −DνC

µν
µ + C µ

µ λC
λν
ν − C µ

ν λC
λν

µ

}
. (2.8)

Variation with respect to the Distortion gives the equation of motion

δS
δC

= 0 =⇒ δαβC
ν

νγ + δαγC
ν
ν β − C α

βγ − C α
γ β = 0 , (2.9)

which has the general solution Cµνρ = Uµ gνρ in terms of the arbitrary vector Uµ. Substitut-
ing this solution into Eq. (2.8) the C−dependent terms vanish. Therefore, the Metric-Affine
theory (2.8) is entirely equivalent to standard metric GR for any Uµ. Nevertheless, this is
not the case for quadratic actions.

Closing this section we mention that the terms Metric-Affine and Palatini formulation
are equivalent as far as they are referring to gravity theory with an independent connection,
while torsion and non-metricity being an immediate consequence of that.

1The indices of the Distortion tensor are raised and lowered in the usual way, i.e C βγ
α = C β

α δ g
γδ and

Cαβγ = gβδC
δ

α γ .
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3 Quadratic Metric-Affine theories

Consider the following generalization of the Starobinsky model

S =

∫
d4x
√
−g
{
α

2
R +

β

2
R̃ +

γ

4
R2 +

δ

4
R̃2

}
. (3.1)

Without loss of generality we may set α = 1, i.e. we identify the parameter α with the
reduced Planck mass and rewrite the action in the form

S =

∫
d4x
√
−g
{

1

2
(1 + γχ)R+

1

2
(β + δζ)R̃ − γ

4
χ2 − δ

4
ζ2

}
, (3.2)

introducing the two auxiliary scalars χ and ζ. As we will see a dynamical scalar field can
be generated in this case. Using (2.6) and (2.7) of the previous section we can rewrite the
action in terms of the Distortion C as

S =

∫
d4x
√
−g
{

1

2
(1 + γχ)R+

1

2
(1 + γχ)

(
DµC

µν
ν −DνC

µν
µ + C µ

µ λC
λν
ν − C µ

ν λC
λν

µ

)
+(β + δζ)(−g)−1/2εµνρσ

(
DµCνρσ + CµρλC

λ
ν σ

)
− γ

4
χ2 − δ

4
ζ2

}
. (3.3)

Substituting the covariant derivatives of the Distortion this is equivalent to

S =

∫
d4x
√
−g
{

1

2
(1 + γχ)R− γ

4
χ2 − δ

4
ζ2 − 1√

−g
∂µ

(
1

2

√
−g(1 + γχ)

)
C µν
ν

+
1√
−g

∂ν

(
1

2

√
−g(1 + γχ)

)
C µν
µ +

1

2
(1 + γχ)

(
C µ
µ λC

λν
ν − C µ

ν λC
λν

µ

+Γ µ
µ ρC

ρν
ν + Γ ν

µ ρC
µρ
ν − Γ µ

ν ρC
ρν

µ − Γ ν
ν ρC

µρ
µ

)
− 1√
−g

∂µ(β + δζ)εµνρσCνρσ

+(β + δζ)(−g)−1/2εµνρσCµρλC
λ
ν σ

}
. (3.4)

Variation with respect to C βγ
α gives

Ω2

2

(
δαβC

ν
νγ + δαγC

ν
ν β − C α

βγ − C α
γ β

)
+

Ω
2

√
−g

(
−εµασβCµγσ − ε

µασ
γCµσβ

)
= J α

β γ , (3.5)

with

J α
β γ =

1

2
∂βΩ2 δαγ −

1

2
∂γΩ2 δαβ +

1√
−g

∂µΩ
2
εµαβγ . (3.6)

The conformal factors Ω2,Ω
2

are given by Ω2 ≡ 1 + γχ and Ω
2 ≡ β + δζ. Note also that

the tensor J α
β γ is antisymmetric in its lower indices, i.e. J α

β γ = −J α
γ β . Thus, we proceed

by considering a trial solution for Cµνρ antisymmetric in the last two indices, namely

Cµνρ = gµν∂ρX − gµρ∂νX + εµνρσ∂
σY . (3.7)

Introducing this ansatz into (3.5) we obtain

∂X =
1

2∆

(
Ω2∂Ω2 + 4Ω

2
∂Ω

2
)
, ∂Y =

1√
−g∆

(
Ω2∂Ω

2 − Ω
2
∂Ω2

)
, (3.8)
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with ∆ = Ω4 + 4Ω
4
.

Substituting the solution for the Distortion into the action (3.3) we obtain

S =

∫
d4x
√
−g
{

1

2
Ω2R +

3

4

(∇Ω2)2

Ω2
− 3

Ω2∆

(
Ω2∇Ω

2 − Ω
2∇Ω2

)2
− γ

4
χ2 − δ

4
ζ2

}
.

(3.9)
The final step is the passage to the Einstein-frame applying a Weyl rescaling of the

form gµν = ḡµν/Ω
2. Note that the standard (metric) Ricci scalar is rescaled as R = Ω2R̄ −

6Ω3�Ω−1, in contrast to the Metric-Affine one which follows the rule R = Ω2R̄, since the
curvature R ρ

µν σ is metric-independent. Under this Weyl rescaling we obtain the Einstein-
frame action

S =

∫
d4x
√
−ḡ
{

1

2
R̄[ḡ] − 3

Ω4∆

(
Ω2∇̄Ω

2 − Ω
2∇̄Ω2

)2
− 1

4

γχ2 + δζ2

Ω4

}
. (3.10)

Introducing the field

σ ≡ Ω
2

2Ω2
. (3.11)

we obtain the scalar field Lagrangian

L = − 12(∇̄σ)2

(1 + 16σ2)
− 1

4γ

(
1− Ω−2

)2 − 1

4δ

(
2σ − βΩ−2

)2
. (3.12)

Solving with respect to the non-dynamical Ω2 we get

δL
δΩ2

= 0 =⇒ Ω−2 =
δ + 2βγσ

δ + β2γ
, (3.13)

which leads to

L = − 12(∇̄σ)2

(1 + 16σ2)
− 1

4

(2σ − β)2

(δ + β2γ)
. (3.14)

Thus, the model based on the action (3.1), in addition to the standard graviton, predicts
a pseudoscalar gravitational degree of freedom associated with the invariant R̃. The model
can be expressed in terms of a canonical field s, defined by

σ =
1

4
sinh(

√
2/3 s) . (3.15)

The potential becomes

V (s) =
1

16

(
sinh(

√
2/3s)− 2β

)2

(δ + β2γ)
. (3.16)

This model and its inflationary behaviour have been considered in [63, 64]. If we were to
take the limit β → 0, while δ 6= 0, we would not be able to obtain an acceptable inflationary
behaviour as in the case of a non-zero β. Thus, the parameter2 β, associated with the linear
Holst term, is crucial in obtaining a suitable inflationary phenomenology, since it enhances
the flatness of the potential in a certain region. It is evident that the parameters γ and δ,
associated with the presence of the R2 and R̃2 term, have a secondary role in the inflationary

2The parameter 1/(2β) is called Barbero-Immirzi parameter [67, 68].
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Table 1. List of different combinations of the curvature scalars in Metric-Affine gravity (upper row)
and the equivalent Metric theory (lower row). VI (NVI) stands for viable (not viable) inflation and
σ is the dynamical scalar.

Metric-
Affine
Gravity

R R+ R̃ R+R2 R+ R̃2 R+ R̃+R2 R+ R̃+ R̃2 R+ R̃2 +R2 R+ R̃+ R̃2 +R2

Metric
Gravity

GR GR GR σ with NVI σ with VI σ with VI σ with NVI σ with VI

behaviour of the model, which is controled by β, while γ and δ affect only the scale of inflation.
Even without one of them, the inflationary model would still be viable, since even a single
term is sufficient to achieve the desired inflationary scale. Note however, that the above
pseudoscalar mode would not be present if the action were to contain only the linear Holst
term. At least one of the R2 or R̃2 has to be included in order to generate a dynamical
scalar degree of freedom [63, 64]. In the absence of R̃, i.e. β = 0, a quadratic Holst term
R̃2 can generate a dynamical scalar as well, but in this case no viable inflation arises. Note
also that all this is in contrast to the Metric-Affine version of the Starobinsky model (just
an R2 term present), where no dynamical scalar degree of freedom arises. In Table 1 we
list the possible combinations of curvature scalars up to quadratic terms in the framework
of Metric-Affine gravity and indicate the presence or absence of the new dynamical scalar in
the Metric equivalent theory as well as the inflationary viability of the corresponding model.

4 Coupling to a fundamental scalar

Assuming that we have a model of a scalar field φ coupled to gravity in the framework of
Metric-Affine theory, as it was mentioned in the introduction non-minimal terms as the non-
minimal coupling to the curvature scalars or quadratic scalar curvature terms are bound to
be present in the effective theory. Therefore, we start by considering

S =

∫
d4x
√
−g
{

1

2
f(φ)R+

1

2
g(φ)R̃+

γ

4
R2 +

δ

4
R̃2 + Lφ

}
, (4.1)

with

Lφ = −1

2
gµν∂µφ∂νφ− V (φ) . (4.2)

This can be rewritten in terms of the auxiliary scalars χ and ζ as

S =

∫
d4x
√
−g
{

1

2
(γχ+ f(φ))R+

1

2
(δζ + g(φ)) R̃ − γ

4
χ2 − δ

4
ζ2 + Lφ

}
. (4.3)

Defining Ω2 = γχ+ f(φ), Ω
2

= δζ + g(φ) and following the previous section we obtain

S =

∫
d4x
√
−g
{
R

2
− 3

Ω4∆

(
Ω2∂Ω

2 − Ω
2
∂Ω2

)2
− γ

4Ω4
χ2 − δ

4Ω4
ζ2 − 1

2

(∇φ)2

Ω2
− V (φ)

Ω4

}
,

(4.4)
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where now we have to substitute δζ2 =
(

Ω
2 − g(φ)

)2
/δ and γχ2 =

(
Ω2 − f(φ)

)2
/γ. Intro-

ducing the scalar field σ = Ω
2

2Ω2 we obtain

S =

∫
d4x
√
−g
{
R

2
− 24

1 + 16σ2

(∇σ)2

2
− (∇φ)2

2Ω2
− σ2

δ

−(f(φ)− Ω2)2

4γΩ4
− g(φ)

4δΩ4
(g(φ)− 4σΩ2)− V (φ)

Ω4

}
. (4.5)

Varying the action with respect to Ω2 we obtain from the solution of δS/δΩ2 = 0, that

Ω2 =
4γV (φ) + f2(φ) + γg2(φ)/δ

f(φ) + 2γσg(φ)/δ − γ(∇φ)2
. (4.6)

Substituting this back to the action (4.5) we get

S =

∫
d4x
√
−g
{
R

2
−Kφ(φ, σ)

(∇φ)2

2
+ Lφ(φ)

(∇φ)4

4
−Kσ(σ)

(∇σ)2

2
− Veff(φ, σ)

}
, (4.7)

with

Kφ(φ, σ) =
f(φ) + 2γσg(φ)/δ

γg(φ)2/δ + f2(φ) + 4γV (φ)
,

Lφ(φ) =
γ

γg(φ)2/δ + f2(φ) + 4γV (φ)
,

Kσ(σ) =
24

1 + 16σ2
,

Veff(φ, σ) =
V (φ)

f2(φ) + 4γV (φ)
+

1

δ

(
f2(φ) + 4γV (φ)

γg2(φ)/δ + f2(φ) + 4γV (φ)

)
(σ − σ0(φ))2 . (4.8)

The potential Veff (φ, σ) is positive-definite3 and gets minimized along the line

σ0(φ) =
g(φ)f(φ)/2

f2(φ) + 4γV (φ)
. (4.9)

Note that along this line the potential coincides with that obtained in the δ = g(φ) = 0
case [26, 27, 29]. A canonical σ-field can readily be defined as

σc =
√

24

∫
dσ√

1 + 16σ2
=⇒ σ =

1

4
sinh

(√
2

3
σc

)
. (4.10)

The φ-dependent mass of σc along the minimum line is

M2
σc(φ) ≡

∂2Veff
∂σ2

c

∣∣∣∣
σ0

=

(
∂σ

∂σc

)2 ∂2Veff
∂σ2

∣∣∣∣∣
σ0

+

�
���

���∂2σ

∂σ2
c

∂Veff
∂σ

∣∣∣∣
σ0

⇒

M2
σc(φ) =

(
f2(φ) + 4γV (φ)

)2
+ 4g2(φ)f2(φ)

12δ (f2(φ) + 4γV (φ)) (γg2(φ)/δ + f2(φ) + 4γV (φ))
> 0 . (4.11)

3The potential V (φ) and the parameters γ and δ are taken to be positive.
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Figure 1. The two-field effective potential given by Eq. (4.8). The parameters used are γ = 106,
δ = ξ = ξ̄ = 1 and ξ̄′ = 0, while the quartic coupling λ is fixed by the observed value of the amplitude
of the scalar power spectrum, A?s = 2.1 × 10−9, at the pivot scale k? = 0.05 Mpc−1 in the σ0(φ)
direction (red line).

Assuming a quartic potential and a quadratic f(φ) function, this mass tends to a constant
for φ→ ∞, namely

M2
σc(φ→∞) ≈


1

3γ
f2(φ)

f2(φ)+4γV (φ)
, g2(φ)� φ4

1
12δ , g2(φ)� φ4 .

(4.12)

Along the minimum line σ0(φ) the contribution of σ to the potential is removed but
it still has contribution to the kinetic terms. Substituting σ0(φ) into the φ-kinetic term, it
reduces to the one obtained in the δ = g(φ) = 0 case, namely

− 1

2

(
f(φ)

f2(φ) + 4γV (φ)

)
(∇φ)2 . (4.13)

Substituting σ(φ) at the minimum in the σ kinetic term we obtain the correction

−Kσ(σ0(φ))
(∇σ0(φ))2

2
= −1

2

 12

1 + 4g(φ)2f2(φ)
[f2(φ)+4γV (φ)]2

 (∇φ)2

(
g′(φ)f(φ) + g(φ)f ′(φ)

f2(φ) + 4γV (φ)

− g(φ)f(φ)

[f2(φ) + 4γV (φ)]2
(
2f ′(φ)f(φ) + 4γV ′(φ)

))2

. (4.14)

Thus, the overall φ-kinetic term will be the sum of (4.13) and (4.14).
At this point we may proceed to specify the coupling functions4 of φ with R and R̃,

namely f(φ) and g(φ). The standard non-minimal coupling to the Ricci scalar adopted is a

4See also [69] for a general discussion on non-minimal couplings to the torsion and non-metricity tensors.
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5.×10-12

1.×10-11
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Figure 2. The single-field effective potential in the σ0(φ) direction. The parameters used coincide
with those in figure 1. The blue dotted line corresponds to the potential U(φ) plotted against the
non-canonical field φ, while the red one to U(φ(φc)) plotted in terms of the canonical field φc. The
dots from right to left give the field values at the pivot scale k? = 0.05 Mpc−1 and at the end of
inflation.

quadratic function of φ that reduces to a constant in the absence of φ. In our case this would
correspond to taking

f(φ) = 1 + ξφ2 . (4.15)

Next, for the case of the R̃ term, since no such term is present in the minimal gravitational
action and is expected to arise as a quantum correction attributed to φ, it is reasonable to
assume that g(φ) should vanish in the absence of it. In addition, since R̃ is parity-odd, it
would also be reasonable to assume that g(φ) is an odd function of φ (see [70, 71] for quadratic
non-minimal couplings to the Holst invariant). Therefore, we shall adopt the following ansatz,
namely5

g(φ) = ξ̄φ+ ξ̄′φ3 . (4.16)

In figure 1 we display the two-field effective potential of Eq. (4.8) (for the canonical
normalized pseudoscalar σc) using the coupling functions (4.15)-(4.16) and the quartic po-
tential V (φ) = λ

4φ
4. For illustrative purposes we have chosen a linear dependence on φ for

the function g(φ), i.e. ξ̄′ = 0. The values of the rest of the parameters are6 γ = 106 and
δ = ξ = ξ̄ = 1. The parameter λ is fixed by the observed value of the amplitude of the
scalar power spectrum, A?s = 2.1× 10−9, at the pivot scale k? = 0.05 Mpc−1. The red curve
corresponds to the minimum direction of Eq. (4.9). As it is evident from this figure, in
the σc direction the potential grows exponentially as σc gets larger, hence the pseudoscalar
is doomed to fall into the valley. This will be verified in the framework of the numerical
treatment of the next section.

It is interesting to have a look at the resulting effective Lagrangian along the σ0(φ)
line in the large field limit. Taking the potential to be a standard renormalizable quartic

5The parameters ξ̄, ξ̄′, as well as the above parameter ξ are assumed to be positive.
6The parameter δ will be set equal to one from now on without any further reference to it. It turns out

that, along the minimum line, where we study inflation, it appears only on the higher order kinetic term which
is negligible anyway.
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potential V (φ) = λ
4φ

4, we obtain

L(φ→∞) ≈ −1

2

(∇φ)2

φ2

(
3

2
+

1

ξ + γλ
ξ

)
− λ

4(ξ2 + γλ)
. (4.17)

The potential shows the familiar Palatini-plateau, while the kinetic term is expressed in terms
of an effective ξ-parameter

ξ−1
eff =

3

2
+

1

ξ + λγ
ξ

. (4.18)

Note that ξeff is less than 1. We have not displayed in (4.17) the quartic kinetic term,
anticipating that it is not expected to play any role in inflationary considerations, something
that will be supported by our subsequent numerical analysis.

In figure 2 we have plotted the single-field effective potential results when the pseu-
doscalar σ moves along the minimum line σ0(φ), i.e. U(φ) = Veff(φ, σ0(φ)). The values of
the parameters have been taken to be the same with those in figure 1. Since the inversion
from the non-canonical field φ to the canonical one φc cannot be achieved analytically, we
plot U(φ) (blue dotted line) and U(φ(φc)) (red line) doing the inversion to the canonical field
numerically.

5 Inflation

In this section we analyze the inflationary behaviour of the model. We aim at restrict-
ing the parametric space, comparing its inflationary predictions to the corresponding latest
observational bounds as set by the latest combination of Planck, BICEP/Keck and BAO
data [14, 15].

5.1 Single-field inflation

Our system of two fields is described by the action (4.7), where the functions7 Kφ, Lφ and
Veff are given by (4.8). Starting from this action the equations of motion arising from it in
an FRW background are8

(Kφ + 3Lφφ̇
2)φ̈+ 3H(Kφ + Lφφ̇

2)φ̇+ φ̇σ̇c
∂Kφ

∂σc
+

(
1

2

∂Kφ

∂φ
+

3

4

∂Lφ
∂φ

φ̇2

)
φ̇2 +

∂Veff
∂φ

= 0 ,

σ̈c + 3Hσ̇c −
1

2

∂Kφ

∂σc
φ̇2 +

∂Veff
∂σc

= 0 ,

H2 =
1

3
ρ ,

Ḣ = −1

2
(ρ + p) , (5.1)

where the total energy density and pressure are

ρ =
1

2
Kφφ̇

2 +
3

4
Lφφ̇

4 +
1

2
σ̇2
c + Veff and p =

1

2
Kφφ̇

2 +
1

4
Lφφ̇

4 +
1

2
σ̇2
c − Veff . (5.2)

We have considered the system of differential equations for φ(t) and σc(t) and solved
it numerically. We start with indicative initial field values σc(0) = φ(0) = 20 and zero

7For simplicity we have omitted the arguments of these functions.
8Notice here that we use the canonical normalized pseudoscalar, given by Eq. (4.10).
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Figure 3. The evolution of the scalar fields σc (left) and φ (right). Both fields start from the initial
field value 20 with zero velocities. The black dashed line in the left plot corresponds to the minimum
direction σ0(φ). The parameters are γ = 106, ξ = ξ̄′ = 1 and ξ̄ = 0.

velocities σ̇c(0) = φ̇(0) = 0. The parameters are chosen at the characteristic values γ = 106,
ξ = ξ̄′ = 1 and ξ̄ = 0. The results are shown in figure 3. It is evident that when φ reaches
the inflationary plateau, the σc has already fallen into the valley defined by the minimum
line (4.9). This can be also understood by comparing the relevant mass of the σc−field with
the inflationary Hubble scale. After a numerical calculation we obtain that M2

σc(φ)/H2 ∼ 104

(for the benchmark case of figure 3) at times t & 105, which reinforces further the conclusion
that the model is downgraded to a single-field inflationary model.

Therefore, for the inflationary period it would be sufficient to study the single-field
problem described by φ, σ0(φ). Then, the system is described by the single field action

S =

∫
d4x
√
−g
{

1

2
R− 1

2
K̄(φ)(∇φ)2 +

1

4
L(φ)(∇φ)4 − U(φ)

}
, (5.3)

where

K̄(φ) =
f(φ)

f2(φ) + 4γV (φ)
+

 12

1 + 4g(φ)2f2(φ)
[f2(φ)+4γV (φ)]2

(g′(φ)f(φ) + g(φ)f ′(φ)

f2(φ) + 4γV (φ)

− g(φ)f(φ)

[f2(φ) + 4γV (φ)]2
(
2f ′(φ)f(φ) + 4γV ′(φ)

))2

,

L(φ) =
γ

γg2(φ)/δ + f2(φ) + 4γV (φ)
,

U(φ) =
V (φ)

f2(φ) + 4γV (φ)
. (5.4)

Note that both kinetic functions K̄(φ) and L(φ) are positive definite.
Considering an FRW background, we obtain from (5.3) the following set of equations

of motion(
K̄(φ) + 3L(φ)φ̇2

)
φ̈+ 3H

(
K̄(φ) + L(φ)φ̇2

)
φ̇+

1

2
K̄ ′(φ)φ̇2 +

3

4
L′(φ)φ̇4 + U ′(φ) = 0 ,

H2 =
ρ

3
and Ḣ = −1

2
(ρ+ p) , (5.5)
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where the energy density and pressure are given by

ρ =
1

2
K̄(φ)φ̇2 +

3

4
L(φ)φ̇4 + U(φ) and p =

1

2
K̄(φ)φ̇2 +

1

4
L(φ)φ̇4 − U(φ) . (5.6)

Although we have displayed the single-field equations of motion for general f(φ), g(φ), V (φ),
in the analysis of inflationary observables that will follow we have focused on f(φ) = 1+ ξφ2,
g(φ) = ξ̄φ+ ξ̄′φ3 and V (φ) = λφ4/4.

Due to the appearance of the higher order kinetic term in the equation of motion the
speed of sound in general deviates from unity. This can be easily seen from the form of the
speed of sound which is given by

c2
s =

1 + L(φ)φ̇2/K̄(φ)

1 + 3L(φ)φ̇2/K̄(φ)
. (5.7)

Nevertheless, the deviation from unity turns out to be quite small.

5.2 Inflationary observables

As it is quite complicated to find analytical expressions for the inflationary observables, we
will solve the equation of motion (5.5) numerically to calculate them. To be as precise as
possible the calculation of the amplitude of the scalar power spectrum As, the spectral index
ns, and the tensor-to-scalar ratio r, is done in the framework of the adiabatic approximation
as described in [72]. This method is suitable for theories with varying speed of sound and
resembles to the well known WKB method. In our model even though the speed of sound
is not constant, it is very close to unity throughout the full inflationary period, resulting to
insignificant corrections to the inflationary observables.

Following [72], in order to calculate the observables we will use the Hubble flow functions
given by

ε1 = − Ḣ

H2
, ε2 =

ε̇1
ε1H

, s1 =
ċs
csH

. (5.8)

The scalar (Pζ) and tensor (Ph) power spectra can be expanded around the arbitrary pivot
scale k? = a?H?/c

?
s, that exited the sound horizon at some time t?. keeping the first order

terms in the Hubble flow functions (5.8), we obtain

Pζ(k) =
H2
?

8π2ε?1c
?
s

(
1− 2(D + 1)ε?1 −Dε?2 − (2 +D)s?1 − (2ε?1 + ε?2 + s?1) ln

k

k?

)
, (5.9)

Ph(k) =
2H2

?

π2

(
1− 2(D + 1− ln c?s)ε

?
1 − 2ε?1 ln

k

k?

)
, (5.10)

where the constant D is given by D = 7/19− ln 3. The corresponding amplitudes, for scalar
and tensor perturbations, are given by,

A?s = Pζ(k?) and A?t = Ph(k?) . (5.11)

The Planck 2018 data [14], yield a value for the amplitude of the scalar power spectrum
A?s = (2.10± 0.03)× 10−9, at the pivot scale k? = 0.05 Mpc−1.

The tensor-to-scalar ratio (r) and the spectral index of the scalar power spectrum (ns)
are given by

r =
A?t
A?s

= 16ε?1c
?
s (1 + 2ε?1 ln c?s +Dε?2 + (2 +D)s?1) , (5.12)

ns = 1− 2ε?1 − ε?2 − s?1 . (5.13)
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Figure 4. Predictions of the model using pivot scales 0.05 Mpc−1 for ns and 0.002 Mpc−1 for r.
Shaded regions are the allowed parameter regions at 68% and 95% confidence coming from the latest
combination of Planck, BICEP/Keck and BAO data [14, 15]. The values of the parameters are ξ̄′ = 0
and γ = 106, while ξ = 0.1 (green dashed-dotted line), ξ = 1 (red dashed line) and ξ = 10 (black
dotted line). The parameter ξ̄ varies from 10−3 to 103 in each curve in a clockwise direction indicated
by the arrow. The small numbers at the edges of the curves indicate the number of e−folds N0.05

calculated by (5.15), for the extreme values of the parameter ξ̄.

The recent release of the BICEP/Keck [15] data, imposes the bound r0.05 < 0.036
at the 95% C.L. where the subscript denotes the pivot scale in Mpc−1. Furthermore, the
combination of WMAP, Planck and BICEP/Keck data constrains the spectral index to the
range 0.958 < ns < 0.975 again at the 95% C.L. for r = 0.004.

After the end of inflation, the Universe enters to the radiation-dominated era through
a reheating phase, which may last some e−folds or can be instantaneous. Following [73], we
can compute the number of e−folds during inflation after the comoving scale, k? = a?H?/c

?
s,

crosses the sound horizon by defining N? = ln
(
aend
a?

)
, where aend/? denote the scale factor at

the end of inflation and at the scale k? respectively. Analyzing the scale factor as

c?sk? =
a?
aend

aend

areh

areh

a0
aoH? (5.14)

and assuming instantaneous reheating (aend = areh) and entropy conservation, we obtain

N? = 66.89− ln c?s − ln

(
k?
a0H0

)
+

1

2
ln

(
3H2

?

ρ
1/2
end

)
− 1

12
ln gsreh. (5.15)

The subscripts “reh” and “0” denote evaluations at the end of reheating and present epoch
respectively, while gsreh are the entropy density degrees of freedom being 106.75 assuming the
Standard Model particle content and temperatures ∼ 1 TeV or higher. Having in mind that
V ?

eff '
3π2

2 A?sr?, ρend ' 3
2V

end
eff , 9 and omitting the speed of sound contribution we obtain for

the pivot scale k? = 0.05 Mpc−1 that

9This equality is exact if there are no higher order kinetic terms. In [33] the higher-order kinetic terms
have been taken into account, but as it is shown there, only an insignificant correction arises.
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Table 2. Predictions of the model for the benchmark points that correspond to the maximum values
of the spectral index ns of figure 4.

ξ ξ̄ ns0.05 r0.05 N0.05 r0.002 N0.002

0.1 3 0.9644 6.72× 10−3 56.15 6.04× 10−3 59.37
1 30 0.9645 1.50× 10−3 55.39 1.35× 10−3 58.61
10 300 0.9645 9.66× 10−4 55.20 8.66× 10−4 58.42

10-3 10-2 10-1 100 101 102 103

0.945

0.950

0.955

0.960

0.965

0.970

0.975

10-3 10-2 10-1 100 101 102 103

0.945

0.950

0.955

0.960

0.965

0.970

0.975

10-3 10-2 10-1 100 101 102 103

10-4

10-3

Figure 5. Predictions of the model as a function of the parameter ξ̄ using the pivot scale 0.05 Mpc−1

for both ns and r. Shaded regions in the left plot are the allowed parameter regions, ns = 0.9649 ±
0.0042, at 68% and 95% confidence coming from the Planck data [14]. In the right plot the whole
region is allowed, since r0.05 < 0.036 at 95% confidence [15]. The values of the parameters and the
coloring are the same with that in figure 4.

N0.05 ' 55.8 +
1

4
ln

r

0.036
− 1

4
ln
V end

eff

V 0.05
eff

. (5.16)

At the pivot scale k? = 0.002 Mpc−1, in which the tensor-to-scalar ratio is calculated in some
of our figures, the numerical coefficient increases to the value ∼ 59.1.

Let us now turn to the analysis of the parametric space of the model under consideration
with respect to its predictions for the cosmological observables. For the parameter ξ we choose
to start from the value ξ = 0.1, since as discussed in [33] in the “simple” Palatini-R2 model
for values ξ & 0.1 the spectral index can be within observational limits. It is also acceptable
to use lower values, but at the price of reducing the range of acceptable e-folds considerably.
For vanishing g(φ) the spectral index and the tensor-to-scalar ratio are given approximately
by

ns ' 1− 2

N?
− 1

8ξN2
?

and r ' 1

N2
?

2ξ

ξ2 + γλ
. (5.17)

In our case both of them get modified, but their analytic expressions are not available
since the functions involved are too complicated. We will examine two limiting cases for the
function g(φ) for the sake of better understanding of the behaviour of the observables.

In figure 4 we explore the case in which the linear part of the non-minimal coupling
function g(φ) of Eq. (4.16) dominates, taking the parameter ξ̄′ to be zero. In this figure we
show the predictions of the model in the σ0(φ) direction using pivot scales 0.05 Mpc−1 for ns
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Figure 6. Predictions of the model using pivot scales 0.05 Mpc−1 for ns and 0.002 Mpc−1 for r.
Shaded regions are the allowed parameter regions at 68% and 95% confidence coming from the latest
combination of Planck, BICEP/Keck and BAO data [14, 15]. The values of the parameters are ξ̄ = 0
and γ = 106, while ξ = 0.1 (green dashed-dotted line), ξ = 1 (red dashed line) and ξ = 10 (black
dotted line). The parameter ξ̄′ varies from 10−3 to 103 in each curve in a counterclockwise direction
indicated by the arrow. The small numbers at the edges of the curves indicate the number of e−folds
N0.05 calculated by (5.15), for the extreme values of the parameter ξ̄′.

and 0.002 Mpc−1 for r. For each given set of values for the parameters, we have employed
Eq. (5.15) to obtain the number of e-folds that complies with the constraints from reheating,
while the value of quartic coupling λ is fixed by the observed value of the amplitude of the
scalar power spectrum, A?s = 2.1× 10−9, at the pivot scale k? = 0.05 Mpc−1. The parameter
γ is fixed to the value 106, while ξ = 0.1 (green dashed-dotted line), ξ = 1 (red dashed line)
and ξ = 10 (black dotted line). The parameter ξ̄ varies from 10−3 to 103 in each curve in a
clockwise direction as indicated in the figure. As the parameter ξ̄ gets larger the tensor-to-
scalar ratio r increases. The spectral index ns decreases up to some value of ξ̄ beyond which
it starts to increase. A notable remark is that the predictions for ns and r “freeze” to some
values (their largest values) without being affected by a further increasing of the parameter
ξ̄. This “freezing” occurs at the values of ξ̄ ' 3, 30 and 300 for ξ = 0.1, 1 and 10 respectively,
see also Table 2. In figure 5 we also present the observables versus the parameter ξ̄, for better
understanding of the analysis above.

In Figs. 6 and 7 we explore the case in which the cubic part of the non-minimal coupling
function g(φ) of Eq. (4.16) dominates, i.e. we choose ξ̄ = 0. In this case the tensor-to-scalar
ratio r is constantly increasing as ξ̄′ gets larger (from 10−3 to 103), while the spectral index ns
initially increases, gets its maximum value and then starts to decrease and go well outside of
the observational acceptable bounds [14, 15]. The datasets that correspond to the maximum
value of ns are given in Table 3. The values of the rest parameters and the coloring of Figs. 6
and 7 are the same with that in Figs. 4 and 5.

In all of the figures presented the parameter γ has the value 106, but for any value
lower than ∼ 107 the predictions will remain unaffected. This can be easily understood if we
have a look at the large field limits of the effective potential and the kinetic term K̄(φ) (see
Eq. (4.17)). For both of them the limits are functions of the combination ξ2/λ + γ, which
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Table 3. Predictions of the model for the benchmark points that correspond to the maximum values
of the spectral index ns of figure 6.

ξ ξ̄′ ns0.05 r0.05 N0.05 r0.002 N0.002

0.1 5× 10−3 0.9643 6.70× 10−3 56.13 6.01× 10−3 59.35
1 5× 10−2 0.9666 9.92× 10−4 55.28 8.95× 10−4 58.50
10 6× 10−1 0.9701 2.63× 10−4 54.81 2.40× 10−4 58.02
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0.955

0.960
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0.975

10-3 10-2 10-1 100 101 102 103

0.955

0.960

0.965

0.970

0.975

10-3 10-2 10-1 100 101 102 103

10-4

10-3

10-2

Figure 7. Predictions of the model as a function of the parameter ξ̄′ using the pivot scale 0.05 Mpc−1

for both ns and r. Shaded regions in the left plot are the allowed parameter regions, ns = 0.9649 ±
0.0042, at 68% and 95% confidence coming from the Planck data [14]. In the right plot the whole
region is allowed, since r0.05 < 0.036 at 95% confidence [15]. The values of the parameters and the
coloring are the same with that in figure 6.

means that if ξ2/λ� γ the inflationary predictions are controlled by ξ2/λ. In the parameter
space under consideration the ratio ξ2/λ is always larger than ∼ 7 × 108. In particular, in
Figs. 6-7 varies from 1.2× 109− 6.6× 108 (for ξ = 0.1), 1.2× 1010− 3.2× 109 (for ξ = 1) and
1.2× 1011− 5.5× 109 (for ξ = 10). Similar values are noticed also in Figs. 4-5. At this point,
we would like to mention that we do not consider larger values of γ that would drive us to the
regime ξ2/λ � γ, since the tensor-to-scalar ratio would be even smaller. The sensitivity in
the measurement of the tensor-to-scalar ratio by the next-generation CMB satellites [74–76]
is expected to be δr ∼ 10−4, so smaller values for r are only subject of academic significance.
The general picture is that the presence of the pseudoscalar and its coupling to the inflaton
through the term g(φ)R̃ has as a result an increase of the tensor-to-scalar ratio, in comparison
to the Palatini-R2 model, while the spectral index can either decrease or increase depending
on the rest of the parameters. In the whole range of the aforementioned parameters the
number of e-folds is calculated to be N0.05 & 55, under the assumption of instantaneous
reheating. A smaller number of e-folds can arise for larger values of ξ, nevertheless, this
would also lead to a smaller value for the tensor-to-scalar ratio.

6 Conclusions

In the present article we considered the framework of Metric-Affine theories of gravity in
which the metric and the connection are independent variables. We extended the Einstein-
Hilbert action to include the parity-odd Holst invariant R̃ as well as quadratic terms of it
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and of the Ricci scalar, expected to be generated by quantum corrections. This context gives
rise to a new dynamical pseudoscalar degree of freedom. Furthermore, we considered the
coupling of this system to a scalar field φ through the non-minimal terms f(φ)R and g(φ)R̃,
the latter corresponding to a coupling of φ with the new pseudoscalar. The potential of the
resulting Einstein-frame action of the two fields φ and σ has a minimum line along σ0(φ).
Considering this model in an FRW background we found that the pseudoscalar σ falls quickly
into the valley defined by the minimum line σ0(φ), this transition being supported by the
numerical solution of the two-field system of equations of motion. Thus, the model is reduced
to an effectively single-field model. Furthermore, along this minimum line the potential takes
the form of the Palatini-R2 potential with its characteristic inflationary plateau.

We have proceeded to study the resulting single-field inflationary model making a choice
of the coupling functions f(φ) = 1 + ξφ2 and g(φ) = ξ̄φ + ξ̄′φ3. A numerical calculation of
the inflationary observables was undertaken in the framework of the adiabatic approximation
[72]. The parametric space was constrained by the latest available bounds set by [14, 15].
We have found that our model complies with observations for a wide range of parameters.
More precisely taking the parameter ξ to be ≥ 0.1, the parameters ξ̄ and ξ̄′ run in the
range 10−3 − 103. We examined two limiting cases for the function g(φ) in order to better
understand the behaviour of the observables: the linear case (ξ̄′ = 0) and the qubic case
(ξ̄ = 0). In the linear case the predictions for ns and r “freeze” to their largest values
without being affected by a further increase of the parameter ξ̄. This “freezing” occurs at
the values of ξ̄ ' 3, 30 and 300 for ξ = 0.1, 1 and 10 respectively. In the cubic case after the
initial increase of the spectral index, once it gets its maximum value, it starts to decrease and
go well outside of the observational acceptable bounds as ξ̄′ gets larger. In general we found
that the coupling g(φ) has as a result an increase of the tensor-to-scalar ratio, in comparison
to the Palatini-R2 model, while the spectral index can either decrease or increase depending
on the position in parametric space. The coefficient of the R̃2 term does not modify the
inflationary observables, while the one of the R2 term can have a significant result only if
it is larger than 107, which case is not considered here. Finally, under the assumption of
instantaneous reheating, in the whole range of the aforementioned parameters the number of
e-folds measured from the end of inflation to the pivot scale k? = 0.05 Mpc−1 is N0.05 & 55.

Summarizing, we have considered a general quadratic Metric-Affine theory, featuring
an extra dynamical degree of freedom, and coupled it non-minimally to a scalar field. We
studied inflation in the resulting two-field model and found that it effectively reduces to a
single-field model, with a potential of the Palatini-R2 form with its characteristic inflationary
plateau and a modified kinetic term. We find that the inflationary predictions of this model
fall within the latest observational bounds for a wide range of parameters. Furthermore, it
allows for an increase in the tensor-to-scalar ratio.
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