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1. Introduction 

The inflationary scenario for the very early universe has proven very attrac-

tive, because it can simultaneously solve a number of cosmological puzzles, 

such as the homogeneity of the Universe on scales exceeding the particle 

horizon at early times, the flatness or entropy problem, and the origin of 

density fluctuations for large-scale structure [1]. In this scenario, the ob-

served Universe (roughly, the present Hubble volume) represents part of a 

homogeneous inflated region embedded in an inhomogeneous space-time. 

On scales beyond the size of this homogeneous patch, the initially inhomo-

geneous distribution of energy-momentum that existed prior to inflation is 

preserved, the scale of the inhomogeneities merely being stretched by the 

expansion. 

In its conventional form, inflation predicts a nearly scale-invariant spec-

trum of density perturbations produced by the inflaton field, and that the 

Universe is observationally indistinguishable from being spatially flat (k = 

0) . In the absence of a cosmological constant or exotic forms of matter, this 

implies that the present matter density parameter Ω ο  = 87rGpm(to)/3HQ is 

very close to unity. However, it is not clear that such an Einstein-de Sitter 

Universe jibes with astronomical observations. As is well known, dynami-

cal estimates of mass-to-light ratios from galaxy rotation curves and cluster 

dynamics [2] typically indicate Ω ο  ^ 0.1 — 0.2. Similar conclusions have re-

cently been reached from the consistency of the ROSAT observations of 

X-ray emission from the Coma cluster and Big Bang nucleosynthesis con-

straints on the baryon density Ω # [3]. 
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Moreover, if Ω ο  = 1 the age of the Universe is to = (2/3HQ) = 6.7 x 

1 0 9 / i - 1 y r s (where the present Hubble parameter is HQ = lOO/i k m / s e c / M p c ) . 

This is less than globular cluster age estimates of t g c ~ 13 —  15 x 10 9 yr if 

h > 0.5, and a number of extragalactic distance indicators suggest h ~ 0.8. 

A large age is also indicated by the colors of stellar populations of radio 

galaxies at high redshift, ζ  ~ 4 [4]. The presence of galaxies and perhaps 

even protoclusters at ζ  > 3.5 is also easier to explain in a low-density Uni-

verse, where structures should have collapsed by ζ  ~ Ω ^ 1 —  1 [5]. On larger 

scales, the situation is still uncertain: several analyses of large-scale peculiar 

motions suggest higher values of Ω ο , consistent with unity [6], while other 

methods are consistent with low values of Ω ο  [7]. 

In sum, the current observational status of Ω ο  is at best inconclusive, 

with much of the data pointing to a low-density Universe. In the context 

of inflation, the simplest way to accomodate Ω ο  < 1 is to incorporate a 

cosmological constant Λ  = 3Η $Ω \, retaining spatial flatness by imposing 

Ω Ο + Ω Λ  = 1. However, initial studies of observed gravitational lens statistics 

indicate the bound Ω Α  ί £ 0.7 [8], marginally disfavoring the spatially flat, 

low-density model. 

The other logical possibility is an open, negatively curved universe, and 

various suggestions have been made to try to accommodate an open, low-

Ω ο  Universe within inflation [9]. While the models differ in the mechanisms 

that drive inflation, their common feature is that the homogeneous patch 

that encompasses the presently observable Universe was inflated by just the 

right number of e-foldings to ensure that 1 —  Ω ο  ^ 1; generally, this implies 

that the present size LQ of the inflated patch is comparable to the current 

Hubble distance, -Ho"1. 

Points separated by distances larger than the scale of the inflated ho-

mogeneous patch have never been in causal contact, and one thus expects 

large density fluctuations, (δ ρ /ρ )ι  ~ 1, on scales L ϊ ζ , L Q . However, if the 

size of the homogeneous region is close to the present Hubble radius, such 

non-linear inhomogeneities on large scales will induce significant microwave 

background anisotropy via the Grischuk-Zerdovich (GZ) effect [10]. In or-

der of magnitude, the quadrupole anisotropy induced by superhorizon-size 

fluctuations of lengthscale L is QL ~ (6p/p)L(LH0)~
2. The COBE D M R 

has measured a quadrupole anisotropy of QcOBE = (4.8 ±  1.5) x 10~ 6 

from the first year of data and QcOBE = (2.2 ±  1.1) x 10~ 6 from the first 

two years of data [11]. Consequently, assuming order unity density fluctu-

ations on scales L ϊ ζ , Lo, the size of the inflated patch must be significantly 

larger than the present Hubble radius, LQ > 500Ü TJ"1 [12, 13]. However, 

the Grischuk-Zel ' dovich analysis was performed for a spatially flat (k = 0) 

universe; to self-consistently exclude an open model, it must be extended 

to the case of negative curvature. 
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This talk summarizes an investigation of the Grischuk-Zel'dovich effect 

in an open universe, done in collaboration with Alexander Kashlinsky and 

Igor Tkachev [14]. We found that the constraint on LQ generally becomes 

even tighter when Ω ο  < 1. If the Universe began from inhomogeneous 

initial conditions, the comoving size of the quasi-homogeneous patch that 

encompasses our observable universe must extend to at least 500 —  2000 
times the present Hubble radius. Thus, the required large size of the inflated 

patch is very improbable in low-Ω  inflationary models. 

To relate the size of the inflated patch to the local value of Ω ο  we 

write the Friedmann equation as — K = [1 —  Ω ( £ ) ] # 2 ( ί ) α 2 ( ^ ) , where a(t) is 

the global expansion factor and i f = +1, —  1, o r O i s the spatial curvature 

constant. Note that the global topology of the inflationary Universe could be 

quite complex, with e.g., locally Friedmann universes of both positive and 

negative spatial curvature connected by wormhole throats. We will focus on 

the open, negatively curved (K = — 1) model, since it is the open model that 

attracts attention as an alternative to the flat Universe on observational 

grounds. Thus, we can relate the present scale LQ of the homogeneous patch 

to its size Ls at the start of inflation, (1 - Q0)H$Ll = (H2L2)(1 - Ω 5) 

(where subscript 's ' denotes quantitites at the onset of inflation). By the 

onset of inflation, we expect that causal microphysical processes could have 

smoothed out initial inhomogeneities only on scales up to the Hubble radius, 

so that HSLS ~ 1. This is also a sufficient condition for spatial gradients to 

be subdominant compared to the vacuum energy density driving accelerated 

expansion [15]. Inflation was proposed in part to allow 1 - Ω 5 ~ 1 as an 

initial condition, but in any case 1 —  Ω 5 < 1. Consequently, we expect the 

present size of the homogeneous patch to satisfy LQ i$ HQ2/(1 —  Ω ο ) = 

i2 2

u r v, i.e., the present size of the inflated patch is at most comparable to 

the present curvature radius i? C urv If 1 —  Ω ο  <C 1, the Universe is nearly 

spatially flat, and the present curvature radius is much larger than the 

Hubble radius. On the other hand, if 1 —  Ω  ~ 1, then i?Curv ~ -H^-1, implying 

LQ ^ -Ho"1, and in particular LQ <C 500-H^"1. This simple argument shows 

that the GZ effect is only naturally suppressed in the limit Ω ο  — > 1, and 

that the required large size of the homogeneous domain of our observable 

Universe implied by the microwave background measurements is difficult 

to produce in Ω ο  <S 1 inflationary models. However, as noted above, the 

effect of spatial curvature on the GZ anisotropy can be significant, and this 

calculation should be done self-consistently in an open universe. 

Microwave background anisotropies in an open universe have been stud-

ied by a number of authors [16]. We write the background metric of the 

open universe in the form d s 2 = α 2(η )[ά η 2-ά χ 2-ύ η \?(χ )(ά θ 2+ζ \η 2 θ ά φ 2)} , 

where η  = / dt/a(t) is conformai time, and χ  is the comoving radial dis-

tance in units of the curvature scale (i.e., the physical distance x p h y s —  
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-RcurvX)- Foi* the matter-dominated universe, the scale factor is given by 

α (η ) = am (cosh 77 —  1), where am is a constant and 77 = 0 corresponds to 

the initial singularity. At a given conformai time, the density parameter is 

given by Ω ( η ) = 2(cosh η  — 1) / s inh 2

 77. Thus, at early times, η  «C 1, the 

universe is effectively flat, î î (î | < 1) ~ 1, and at late times, η  J£ 1, it is 

curvature-dominated. 

To describe the propagation of waves in curved space, we expand them in 

terms of eigenfunctions of the Helmholtz equation ( V 2 + k2 + 1 ) / ( χ , 0, φ ) = 

0, where V 2 is the Laplace operator on the three-surface of constant nega-

tive curvature. The solutions are of the form X\{k\ vjYJ m (0, 0 ) , where Y j m 

are the spherical harmonics and the radial eigenfunctions are given by 

Y d Λ  ί  ^ / + l ( f c 2 + 1 ) / / 2 ·  ul d^jcoskx) 
Xifax) = (—1) + — y — — sinh χ ——τ —π τ γ  ·  (1) 

Nl

 L(k) d(cosh%) / + 1 

Here NJ* = k2(k2 + l ) . . . ( fc 2 + 1
2

) . The normalization is chosen such that in 

the limit Ω  —> 1 the radial eigenfunctions become spherical Bessel functions. 

For a perturbation of comoving wavelength λ , the comoving wavenumber 

k = 2 π / λ  = &phy S Ä C urv Using this relation and the Friedmann equation, 

the comoving wavenumber corresponding to the size of the inflated patch 

is k0 ^ Rcuw/Lo = l/LsHsyfl - Ω 3 £ 1. 

Similarly, the microwave background temperature can be expanded in 

spherical harmonics on the sky, δ Τ /Τ  —  Σ  α ΐ τ η Υ ΐ π ι (θ · > Φ )· > and the multipole 

moments of the anisotropy are then given by the Sachs-Wolfe relation 

< H
2

> = lj \Φ ,(η  = Q)\%^j^Ldk , (2) 

where 

h{k) = ^-Χ ί (η ο  - Vis) + 2 £ ^XliVO - η )ά η  , (3) 

η ΐ 8 denotes the epoch of last scattering, and the gravitational potential 

fluctuation satisfies $k(v) = ® k(v = 0 ) ^ ( r / ) î  with (ignoring the decaying 

mode) [17] 

, sinh 2 η  — 3η  sinh η  + 4 cosh η  — 4 

(cosh η  — l ) a 

Note that ^(77) = 1 for Ω ο  = 1; in an open universe, ^(77) ~ 1 for 77 ^ 1 

and decays as 1/α (η ) for 77 i> 1. Eqs. (1) - (4) allow one to estimate the 

anisotropy due to superhorizon-size perturbations, with wavelengths λ  S> 

HQ1. The p o t e n t i a l is a gauge-invariant measure of the spatial curvature 

perturbation, related to the density fluctuation by the relativistic curved-

space analogue of the Poisson equation [18]. For perturbations on scales 

, . 0 1 1 1 1 1 / / — 01/ 0 1 1 1 1 1 / / " F t : ^ w ö i i / / —  * ±  . . 

r [η ) = ο  / ι _ „  _ ι  \3 ·  W 
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larger than the Hubble radius, Η η  ̂  1, it satisfies ~ — 6^/2 ~ constant, 

where δ  is a gauge-invariant measure of the density perturbation amplitude, 

equal to the density fluctuation in the longitudinal (conformai Newtonian) 

gauge [17]. For such long wavelengths, the dominant anisotropy is generally 

the quadrupole / = 2 (for some values of Ω ο , the quadrupole is accidentally 

suppressed, and the main contribution would be the I = 3 octupole moment, 

as we discuss below). The quadrupole anisotropy due to such superhorizon-

scale modes is thus 

<H
2

> ~ i - fj ^± i\92(k)\2(\6k\
2)k2dk . (5) 

For superhorizon-size modes, the quadrupole mode contribution | 0 2 ( & ) | 2 

quadrupole depends on Ω ο : for example, for Ω ο  = 0.1, we find | # 2 ( & ) | 2 0.1 

for these modes, while for Ω 0 = 0.7, \02(k)\2 ~ 0.02. For Ω 0 = 0.4, the mode 

contribution is strongly suppressed, due to a near cancellation of the line-

of-sight contribution (the second term on the RHS of eq. (3)) with the last 

scattering term (see below). We emphasize that for modes outside the scale 

of the homogeneous patch, k < fco, the pre-inflation perturbation amplitude 

8k is preserved and expected to be of order unity. To study the implications 

of this result, we consider two limits: Ω ο  close to unity (1 —  Ω ο  <C 1) and 

low-density models with 1 —  Ω ο  ~ 1. 

Ω ο  c l o s e t o 1: Using the relation cosh η  —  1 = 2(1 —  Ω )/Ω , the limit 

Ω ο  — » 1 corresponds to taking 7/q ~ 4(1 —  Ω ο ) — • 0. Taking this limit in Eq. 

(1) while keeping fcphyS fixed, we find X2{k; V — * 0) ~ (1 + ^)η 2/15 ~ 4 (1 + 

k2)(l —  Ω ο )/15. In this limit, the line-of-sight integral in Eq. (3) becomes 

/(ά Ρ /ά η )Χ 2ά η  ~ —  (1 + fc
2

)7/o/630, which can be neglected compared to 

the last scattering term. As a result, the quadrupole arising from modes 

with &7/ο  1 can be expressed as 

<H
2

> * j f dk k\# + l)(k2 + 4 )< | i t |
2 > . (6) 

The usual flat-space result can be recovered from Eq. (6) by taking the 

limit k >·  1 and keeping fcphys fixed in the relation fcphys = kH^y/l —  Ω ο ·  

Eq. (6) can be used to constrain Ω ο  with any given pre-inflation power 

spectrum (|£fc|2) on scales k < ko. A plausible assumption is that (|£fc|2) ~ 

kn with η  > 0, i.e., random Poisson fluctuations (or less). For example, 

such a spectrum would arise if one imagines that prior to inflation the 

universe consisted of uncorrelated, quasi-homogeneous regions of size k^1. 

However, quantitatively the result does not depend strongly upon the shape 

of the power spectrum. With the assumption of no fine tuning prior to 

inflation, i.e., ( |#(&o)| 2) —  15 and since in inflationary models ko ̂  1, the 
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COBE measurement of the quadrupole moment translates eq. (6) into the 

constraint 

Ω 0 > 1 - a 2 ( C O B E ) ~ 1 - 10~ 6 . (7) 

Thus, if an epoch of inflationary expansion was responsible for the homo-

geneity of our observable Universe, the density parameter Ω ο  cannot differ 

from 1 by more than one part in Q~l ~ 106. 

L o w Ω ο : We now consider the case of low Ω ο  and estimate the scale out 

to which the Universe must be homogeneous in light of the COBE results, 

independent of considerations of inflation, namely we allow &o <C 1. If Ω ο  is 

not very close to 0.4 or 1, 02(k) is nearly independent of k for small fc, and 

we can set #2(&) —  ^(0) to good approximation for k < 1. (This is very 

different from the spatially flat model, where |#2(&)| = i2(2&) and goes to 

zero as k2 at small k). The zero-mode contribution |#2(0)| as a function of 

Ω ο  is shown in Fig. 2. In this case the quadrupole becomes: 

<|a 2 |
2> * |Ö2(0)|2^ £° jj£±i<|fc| V d * · (8) 

Again conservatively assuming an initial spectrum that falls at least as 

white noise (n > 0), eq. (8) yields a lower bound on the scale k^1 ~ 

L{)Hoy/l — Ω ο  over which the Universe must be homogeneous if Ω ο  ̂  1, 

k i > f J M 2 L V / 3

 S IO 4 |O 2 (0) | 2 / 3 . (9) 
\a>2,COBE J 

Eq. (9) implies that the Universe must to be homogeneous over scales 

kç 1 k, 2000 for Ω 0 £ 0.1 and over scales k^1 £ 500 for Ω - 0 . 5 - 0.8. 
In inflation models these bounds on ko <C 1 require superhorizon-sized cor-

relations prior to inflation. Note that for a given constant value of \δ ^\2 the 

7/2 quadrupole anisotropy for i o C l scales as ~ fc0

; for Ω  = 1 and only as 

- & 0 / 2 for Ω  < 1. 
Ω ο  —  0.4: The quadrupole due to long wavelength modes is suppressed 

not only at Ω ο  — •  1 but also accidentally for Ω ο  ~ 0.4, due to cancellation 

between the last scattering term and the line-of-sight integral. (The positive 

last scattering term dominates at Ω ο  — •  1, while the negative line-of-sight 

term dominates at Ω ο  — •  0.) As Ω ο  is varied over a small interval around 

0.4, the wavenumber where the two terms cancel varies over the interval 

(0, η ^1). While interesting, this suppression cannot make inflation and low-

Ω ο  compatible, for in this case the contribution to the octupole (Z = 3) 

mode will be dominant and lead to similarly severe constraints on L Q . 

We have arrived at two results of significance for inflation and open uni-

verse models. (1) Inflation can produce a homogeneous patch encompassing 
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the observable Universe (the present Hubble volume) and be consistent with 

the microwave background observations only if the present density param-

eter Ω ο  differs from unity by no more than 1 part in QQOBE ~ ^ ·  (2) 

On the other hand, if Ω ο  is significantly below 1, the Universe must be 

homogeneous on scales k^1 > (500 — 2000). If this is the case, inflation 

does not by itself solve the horizon problem. Indeed, if we assume that the 

distribution of quasi-homogeneous regions satisfies Poisson statistics, the 

probability of finding one such region per volume in curvature units is 

Ρ  ~ k$s x exp(—fc^ 3 ), which is negligibly small for the k$l values above. If 

it turns out that the universe is open, Ω ο  < 1, this implies that our Hubble 

volume occupies a very special place in the space of initial conditions, which 

is precisely the condition inflation was meant to alleviate. 

I thank my collaborators Sasha Kashlinsky and Igor Tkachev. This work 

was supported by the DOE and NASA grant NAGW-2381 at Fermilab. 
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